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application dependent (Doshi-Velez & Kim, 2017). For spa-

tial analysis, one of the unique properties of spatial patterns

is spatial auto-correlation: close objects have similar values

(Moran, 1950), which we use as a criterion for interpretabil-

ity. As latent factor models are sensitive to initialization,

previous research (Miller et al., 2014; Yue et al., 2014) has

shown that randomly initialized latent factor models can

lead to spatial patterns that violate spatial auto-correlation

and hence are not interpretable (see Fig. 1).

In this paper, we propose a Multiresolution Tensor Learning

algorithm, MRTL, to efficiently learn accurate and inter-

pretable patterns in spatial data. MRTL is based on two key

insights. First, to obtain good initialization, we train a full-

rank tensor model approximately at a low resolution and

use tensor decomposition to produce latent factors. Second,

we exploit spatial auto-correlation to learn models at multi-

ple resolutions: we train starting from a coarse resolution

and iteratively finegrain to the next resolution. We provide

theoretical analysis and prove the convergence properties

and computational complexity of MRTL. We demonstrate

on two real-world datasets that this approach is significantly

faster than fixed resolution methods. We develop several

finegraining criteria to determine when to finegrain. We

also consider different interpolation schemes and discuss

how to finegrain in different applications. The code for our

implementation is available 1.

In summary, we:

• propose a Multiresolution Tensor Learning (MRTL) op-

timization algorithm for large-scale spatial analysis.

• prove the rate of convergence for MRTL which depends

on the spectral norm of the interpolation operator. We

also show the exponential computational speedup for

MRTL compared with fixed resolution.

• develop different criteria to determine when to transi-

tion to a finer resolution and discuss different finegrain-

ing methods.

• evaluate on two real-world datasets and show MRTL

learns faster than fixed-resolution learning and can

produce interpretable latent factors.

2. Related Work.

Spatial Analysis Discovering spatial patterns has signifi-

cant implications in scientific fields such as human behavior

modeling, neural science, and climate science. Early work

in spatial statistics has contributed greatly to spatial analysis

through the work in Moran’s I (Moran, 1950) and Getis-Ord

general G (Getis & Ord, 1992) for measuring spatial auto-

correlation. Geographically weighted regression (Brunsdon

et al., 1998) accounts for the spatial heterogeneity with a

1https://github.com/Rose-STL-Lab/mrtl

local version of spatial regression but fails to capture higher

order correlation. Kriging or Gaussian processes are popular

tools for spatial analysis but they often require carefully de-

signed variograms (also known as kernels) (Cressie, 1992).

Other Bayesian hierarchical models favor spatial point pro-

cesses to model spatial data (Diggle et al., 2013; Miller

et al., 2014; Dieng et al., 2017). These frameworks are

conceptually elegant but often computationally intractable.

Tensor Learning Latent factor models utilize correlations

in the data to reduce the dimensionality of the problem, and

have been used extensively in multi-task learning (Romera-

Paredes et al., 2013) and recommendation systems (Lee &

Seung, 2001). Tensor learning (Zhou et al., 2013; Bahadori

et al., 2014; Haupt et al., 2017) uses tensor latent factor

models to learn higher-order correlations in the data in a

supervised fashion. In particular, tensor latent factor models

aim to learn the higher-order correlations in spatial data by

assuming low-dimensional representations among features

and locations. However, high-order tensor models are non-

convex by nature, suffer from the curse of dimensionality,

and are notoriously hard to train (Kolda & Bader, 2009;

Sidiropoulos et al., 2017). There are many efforts to scale

up tensor computation, e.g., parallelization (Austin et al.,

2016) and sketching (Wang et al., 2015; Haupt et al., 2017;

Li et al., 2017b). In this work, we propose an optimization

algorithm to learn tensor models at multiple resolutions that

is not only fast but can also generate interpretable factors.

We focus on tensor latent factor models for their wide appli-

cability to spatial analysis and interpretability. While deep

neural networks models can be more accurate, they are com-

putationally more expensive and are difficult to interpret.

Multiresolution Methods Multiresolution methods have

been applied successfully in machine learning, both in la-

tent factor modeling (Kondor et al., 2014; Ozdemir et al.,

2017) and deep learning (Reed et al., 2017; Serban et al.,

2017). For example, multiresolution matrix factorization

(Kondor et al., 2014; Ding et al., 2017) and its higher order

extensions (Schifanella et al., 2014; Ozdemir et al., 2017;

Han & Dunson, 2018) apply multi-level orthogonal opera-

tors to uncover the multiscale structure in a single matrix.

In contrast, our method aims to speed up learning by ex-

ploiting the relationship among multiple tensors of different

resolutions. Our approach resembles the multigrid method

in numerical analysis for solving partial differential equa-

tions (Trottenberg et al., 2000; Hiptmair, 1998), where the

idea is to accelerate iterative algorithms by solving a coarse

problem first and then gradually finegraining the solution.

3. Tensor Models for Spatial Data

We consider tensor learning in the supervised setting. We

describe both models for the full-rank case and the low-rank
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case. An order-3 tensor is used for ease of illustration but

our model covers higher order cases.

3.1. Full Rank Tensor Models

Given input data consisting of both non-spatial and spa-

tial features, we can discretize the spatial features at r =
1, . . . , R resolutions, with corresponding dimensions as

D1, . . . , DR. Tensor learning parameterizes the model with

a weight tensor W(r) ∈ R
I×F×Dr over all features, where

I is number of outputs and F is number of non-spatial fea-

tures. The input data is of the form X (r) ∈ R
I×F×Dr . Note

that both the input features and the learning model are res-

olution dependent. Yi ∈ R, i = 1, . . . , I is the label for

output i.

At resolution r, the full rank tensor learning model can be

written as

Yi = a





F
∑

f=1

Dr
∑

d=1

W
(r)
i,f,dX

(r)
i,f,d + bi



 , (1)

where a is the activation function and bi is the bias for output

i. The weight tensor W is contracted with X along the non-

spatial mode f and the spatial mode d. In general, Eqn.

(1) can be extended to multiple spatial features and spatial

modes, each of which can have its own set of resolution-

dependent dimensions. We use a sigmoid activation function

for the classification task and the identity activation function

for regression.

3.2. Low Rank Tensor Model

Low rank tensor models assume a low-dimensional latent

structure in W which can characterize distinct patterns in

the data and also alleviate model overfitting. To transform

the learned tensor model to a low-rank one, we use CANDE-

COMP/PARAFAC (CP) decomposition (Hitchcock, 1927)

on W , which assumes that W can be represented as the sum

of rank-1 tensors. Our method can easily be extended for

other decompositions as well.

Let K be the CP rank of the tensor. In practice, K cannot

be found analytically and is often chosen to sufficiently ap-

proximate the dataset. The weight tensor W(r) is factorized

into multiple factor matrices as

W
(r)
i,f,d =

K
∑

k=1

Ai,kBf,kC
(r)
d,k

The tensor latent factor model is

Yi = a





F
∑

f=1

Dr
∑

d=1

K
∑

k=1

Ai,kBf,kC
(r)
d,kX

(r)
i,f,d + bi



 , (2)

where the columns of A,B,Cr are latent factors for each

mode of W and C(r) is resolution dependent.

CP decomposition reduces dimensionality by assuming that

A,B,Cr are uncorrelated, i.e. the features are uncorre-

lated. This is a reasonable assumption depending on how

the features are chosen and leads to enhanced spatial in-

terpretability as the learned spatial latent factors can show

common patterns regardless of other features.

3.3. Spatial Regularization

Interpretability is in general hard to define or quantify

(Doshi-Velez & Kim, 2017; Ribeiro et al., 2016; Lipton,

2018; Molnar, 2019). In the context of spatial analysis, we

deem a latent factor as interpretable if it produces a spatially

coherent pattern exhibiting spatial auto-correlation. To this

end, we utilize a spatial regularization kernel (Lotte & Guan,

2010; Miller et al., 2014; Yue et al., 2014) and extend this

to the tensor case.

Let d = 1, . . . , Dr index all locations of the spatial dimen-

sion for resolution r. The spatial regularization term is:

Rs =

Dr
∑

d=1

Dr
∑

d′=1

Kd,d′‖W:,:,d −W:,:,d′‖2F , (3)

where ‖ · ‖F denotes the Frobenius norm and Kd,d′ is the

kernel that controls the degree of similarity between loca-

tions. We use a simple RBF kernel with hyperparameter σ.

Kd,d′ = e(−‖ld−ld′‖
2/σ) , (4)

where ld denotes the location of index d. The distances

are normalized across resolutions such that the maximum

distance between two locations is 1. The kernels can be

precomputed for each resolution. If there are multiple spatial

modes, we apply spatial regularization across all different

modes. We additionally use L2 regularization to encourage

smaller weights. The optimization objective function is

f(W) = L(W;X ,Y) + λRR(W) , (5)

where L is a task-dependent supervised learning loss, R(W)
is the sum of spatial and L2 regularization, and λR is the

regularization coefficient.

4. Multiresolution Tensor Learning

We now describe our algorithm MRTL, which addresses both

the computation and interpretability issues. Two key con-

cepts of MRTL are learning good initializations and utilizing

multiple resolutions.

4.1. Initialization

In general, due to their nonconvex nature, tensor latent

factor models are sensitive to initialization and can lead

to uninterpretable latent factors (Miller et al., 2014; Yue
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et al., 2014). We use full-rank initialization in order to learn

latent factors that correspond to known spatial patterns.

We first train an approximate full-rank version of the tensor

model at a low resolution in Eqn. (1). The weight tensor

is then decomposed into latent factors and these values are

used to initialize the low-rank model. The low-rank model

in Eqn. (2) is then trained to the final desired accuracy.

As we use approximately optimal solutions of the full-rank

model as initializations for the low-rank model, our algo-

rithm produces interpretable latent factors in a variety of

different scenarios and datasets.

Full-rank initialization requires more computation than

other simpler initialization methods. However, as the full-

rank model is trained only for a small number of epochs,

the increase in computation time is not substantial. We

also train the full-rank model only at lower resolutions, for

further reduction.

Previous research (Yue et al., 2014) showed that spatial reg-

ularization alone is not enough to learn spatially coherent

factors, whereas full-rank initialization, though computa-

tionally costly, is able to fix this issue. We confirm the

same holds true in our experiments (see Section 6.4). Thus,

full-rank initialization is critical for spatial interpretability.

4.2. Multiresolution

Learning a high-dimensional tensor model is generally com-

putationally expensive and memory inefficient. We utilize

multiple resolutions for this issue. We outline the procedure

of MRTL in Alg. 1, where we omit the bias term in the

description for clarity.

We represent the resolution r with superscripts and the it-

erate at step t with subscripts, i.e. W
(r)
t is W at resolution

r at step t. W0 is the initial weight tensor at the lowest

resolution. F (r) = (A,B,C(r)) denotes all factor matrices

at resolution r and we use n to index the factor F (r),n.

For efficiency, we train both the full rank and low rank

models at multiple resolutions, starting from a coarse spatial

resolution and progressively increase the resolution. At each

resolution r, we learn W(r) using the stochastic optimiza-

tion algorithm of choice Opt (we used Adam (Kingma &

Ba, 2014) in our experiments). When the stopping criterion

is met, we transform W(r) to W(r+1) in a process we call

finegraining (Finegrain). Due to spatial auto-correlation,

the trained parameters at a lower resolution will serve as a

good initialization for higher resolutions. For both models,

we only finegrain the factors that corresponds to resolution

dependent mode, which is the spatial mode in the context

of spatial analysis. Finegraining can be done for other non-

spatial modes for more computational speedup as long as

there exists a multiresolution structure (e.g. video or time

series data).

Algorithm 1 Multiresolution Tensor Learning: MRTL

1: Input: initializationW0, data X ,Y .

2: Output: latent factors F (r)

3: # full rank tensor model
4: for each resolution r ∈ {1, . . . , r0} do
5: Initialize t← 0
6: Get a mini-batch B from training set
7: while stopping criterion not true do
8: t← t+ 1

9: W
(r)
t+1 ← Opt

(

W
(r)
t | B

)

10: end while

11: W(r+1) = Finegrain

(

W(r)
)

12: end for
13: # tensor decomposition

14: F (r0) ← CP ALS

(

W(r0)
)

15: # low rank tensor model
16: for each resolution r ∈ {r0, . . . , R} do
17: Initialize t← 0
18: Get a mini-batch B from training set
19: while stopping criterion not true do
20: t← t+ 1

21: F
(r)
t+1 ← Opt

(

F
(r)
t | B

)

22: end while
23: for each spatial factor n ∈ {1, · · · , N} do

24: F (r+1),n = Finegrain

(

F (r),n
)

25: end for
26: end for

Once the full rank resolution has been trained up to resolu-

tion r0 (which can be chosen to fit GPU memory or time

constraints), we decompose W(r) using CP ALS, the stan-

dard alternating least squares (ALS) algorithm (Kolda &

Bader, 2009) for CP decomposition. Then the low-rank

model is trained at resolutions r0, . . . , R to final desired

accuracy, finegraining to move to the next resolution.

When to finegrain There is a tradeoff between training

times at different resolutions. While training for longer at

lower resolutions significantly decreases computation, we

do not want to overfit to the coarse, lower resolution data.

On the other hand, training at higher resolutions can yield

more accurate solutions using more detailed information.

We investigate four different criteria to balance this tradeoff:

1) validation loss, 2) gradient norm, 3) gradient variance,

and 4) gradient entropy.

Increase in validation loss (Prechelt, 1998; Yao et al., 2007)

is a commonly used heuristic for early stopping. Another

approach is to analyze the gradient distributions during train-

ing. For a convex function, stochastic gradient descent will

converge into a noise ball near the optimal solution as the

gradients approach zero. However, lower resolutions may

be too coarse to learn more finegrained curvatures and the

gradients will increasingly disagree near the optimal solu-

tion. We quantify the disagreement in the gradients with
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metrics such as norm, variance, and entropy. We use in-

tuition from convergence analysis for gradient norm and

variance (Bottou et al., 2018), and information theory for

gradient entropy (Srinivas et al., 2012).

Let Wt and ξt represent the weight tensor and the random

variable for sampling of minibatches at step t, respectively.

Let f(Wt; ξt) := ft be the validation loss and g(Wt; ξt) :=
gt be the stochastic gradients at step t. The finegraining

criteria are:

• Validation Loss: E[ft+1]− E[ft] > 0

• Gradient Norm: E[‖gt+1‖
2]− E[‖gt‖

2] > 0

• Gradient Variance: V (E[gt+1])− V (E[gt]) > 0

• Gradient Entropy: S(E[gt+1])− S(E[gt]) > 0 ,

where S(p) =
∑

i −pi ln(pi). One can also use thresholds,

e.g. |ft+1 − ft| < τ , but as these are dependent on the

dataset, we use τ = 0 in our experiments. One can also

incorporate patience, i.e. setting the maximum number of

epochs where the stopping conditions was reached.

How to finegrain We discuss different interpolation

schemes for different types of features. Categori-

cal/multinomial variables, such as a player’s position on

the court, are one-hot encoded or multi-hot encoded onto

a discretized grid. Note that as we use higher resolutions,

the sum of the input values are still equal across resolutions,
∑

d X
(r)
:,:,d =

∑

d X
(r+1)
:,:,d . As the sum of the features re-

mains the same across resolutions and our tensor models are

multilinear, nearest neighbor interpolation should be used

in order to produce the same outputs.

Dr
∑

d=1

W
(r)
:,:,dX

(r)
:,:,d =

Dr+1
∑

d=1

W
(r+1)
:,:,d X

(r+1)
:,:,d

as X
(r)
i,f,d = 0 for cells that do not contain the value. This

scheme yields the same outputs and thus the same loss

values across resolutions.

Continuous variables that represent averages over locations,

such as sea surface salinity, often have similar values at each

finegrained cell at higher resolutions (as the values at coarse

resolutions are subsampled or averaged from values at the

higher resolution). Then
∑Dr+1

d X
(r+1)
:,:,d ≈ 22

∑Dr

d X
(r)
:,:,d,

where the approximation comes from the type of downsam-

pling used.

Dr
∑

d=1

W
(r)
:,:,dX

(r)
:,:,d ≈ 22

Dr+1
∑

d=1

W
(r+1)
:,:,d X

(r+1)
:,:,d

using a linear interpolation scheme. The weights are divided

by the scale factor of
Dr+1

Dr
to keep the outputs approxi-

mately equal. We use bilinear interpolation, though any

other linear interpolation can be used.

5. Theoretical Analysis.

5.1. Convergence

We prove the convergence rate for MRTL with a single spa-

tial mode and one-dimensional output, where the weight

tensor reduces to a weight vector w. We defer all proofs

to Appendix A. For the loss function f and a stochastic

sampling variable ξ, the optimization problem is:

w? = argmin E[f(w; ξ)] (6)

We consider a fixed-resolution model that follows Alg. 1

with r = {R}, i.e. only the final resolution is used. For

a fixed-resolution miniSGD algorithm, under common as-

sumptions in convergence analysis:

• f is µ- strongly convex, L-smooth

• (unbiased) gradient E[g(wt; ξt)] = Of(wt) given ξ<t

• (variance) for all the w, E[‖g(w; ξ)‖22] ≤ σ2
g +

cg‖Of(w)‖22

Theorem 5.1. (Bottou et al., 2018) If the step size ηt ≡
η ≤ 1

Lcg
, then a fixed resolution solution satisfies

E[‖wt+1 −w?‖
2
2] ≤γt(E[‖w0 −w?‖

2
2)− β] + β,

where γ = 1 − 2ηµ, β =
ησ2

g

2µ , and w? is the optimal

solution.

which gives O(1/t) +O(η) convergence.

At resolution r, we define the number of total iterations as

tr, and the weights as w
(r). We let Dr denote the num-

ber of dimensions at r and we assume a dyadic scaling

between resolutions such that Dr+1 = 2Dr. We define

finegraining using an interpolation operator P such that

w
(r+1)
0 = Pw

(r)
tr as in (Bramble, 2019). For the simple

case of a 1D spatial grid where w
(r)
t has spatial dimension

Dr, P would be of a Toeplitz matrix of dimension 2Dr×Dr.

For example, for linear interpolation of Dr = 2,

Pw
(r) =

1

2









1 0
2 0
1 1
0 2









[

w
(r)
1

w
(r)
2

]

=











w
(r+1)
1 /2

w
(r+1)
1

w
(r+1)
1 /2 +w

(r+1)
2 /2

w
(r+1)
2











.

Any interpolation scheme can be expressed in this form.

The convergence of multiresolution learning algorithm de-

pends on the following property of spatial data:

Definition 5.2 (Spatial Smoothness). The difference be-

tween the optimal solutions of consecutive resolutions is

upper bounded by ε

‖w
(r+1)
? − Pw

(r)
? ‖ ≤ ε,

with P being the interpolation operator.
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