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Abstract

Missing data poses significant challenges while learning representations of video
sequences. We present Disentangled Imputed Video autoEncoder (DIVE), a deep
generative model that imputes and predicts future video frames in the presence of
missing data. Specifically, DIVE introduces a missingness latent variable, disentan-
gles the hidden video representations into static and dynamic appearance, pose, and
missingness factors for each object. DIVE imputes each object’s trajectory where
the data is missing. On a moving MNIST dataset with various missing scenarios,
DIVE outperforms the state of the art baselines by a substantial margin. We also
present comparisons on a real-world MOTSChallenge pedestrian dataset, which
demonstrates the practical value of our method in a more realistic setting. Our code
and data can be found at https://github.com/Rose-STL-Lab/DIVE.

1 Introduction

Videos contain rich structured information about our physical world. Learning representations from
video enables intelligent machines to reason about the surroundings and it is essential to a range of
tasks in machine learning and computer vision, including activity recognition [1], video prediction
[2] and spatiotemporal reasoning [3]. One of the fundamental challenges in video representation
learning is the high-dimensional, dynamic, multi-modal distribution of pixels. Recent research in
deep generative models [4, 5, 6, 7] tackles the challenge by exploiting inductive biases of videos and
projecting the high-dimensional data into substantially lower dimensional space. These methods
search for disentangled representations by decomposing the latent representation of video frames
into semantically meaningful factors [8].

Unfortunately, existing methods cannot reason about the objects when they are missing in videos.
In contrast, a five month-old child can understand that objects continue to exist even when they are
unseen, a phenomena known as “object permanence” [9]. Towards making intelligent machines, we
study learning disentangled representations of videos with missing data. We consider a variety of
missing scenarios that might occur in natural videos: objects can be partially occluded; objects can
disappear in a scene and reappear; objects can also become missing while changing their size, shape,
color and brightness. The ability to disentangle these factors and learn appropriate representations is
an important step toward spatiotemporal decision making in complex environments.

In this work, we build on the deep generative model of DDPAE [5] which integrates structured
graphical models into deep neural networks. Our model, which we call Disentangled-Imputed-Video-
autoEncoder (DIVE), (i) learns representations that factorize into appearance, pose and missingness
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latent variables; (ii) imputes missing data by sampling from the learned latent variables; and (iii)
performs unsupervised stochastic video prediction using the imputed hidden representation. Besides
imputation, another salient feature of our model is (iv) its ability to robustly generate objects even
when their appearances are changing by modeling the static and dynamic appearances separately.
Thismakes our technique more applicable to real-world problems.

We demonstrate the effectiveness of our method on a moving MNIST dataset with a variety of missing
data scenarios including partial occlusions, out of scene, and missing frames with varying appearances.
We further evaluate on the Multi-Object Tracking and Segmentation (MOTSChallenge) object tracking
and segmentation challenge dataset. We show that DIVE is able to accurately infer missing data,
perform video imputation and reconstruct input frames and generate future predictions. Compared
with baselines, our approach is robust to missing data and achieves significant improvements in video
prediction performances.

2 Related Work

Disentangled Representation. Unsupervised learning of disentangled representation for sequences
generally falls into three categories: VAE-based [10, 6, 5, 7, 11, 12], GAN-like models [13, 14, 4, 15]
and Sum-Product networks [11, 16]. For video data, a common practice is to encode a video frame
into latent variables and disentangle the latent representation into content and dynamics factors. For
example, [5] assumes the content (objects, background) of a video is fixed across frames, while the
position of the content can change over time. In most cases, models can only handle complete video
sequences without missing data. One exception is SQAIR [6], an generalization of AIR [17], which
makes use of a latent variable to explicitly encode the presence of the respective object. SQAIR is
further extended to an accelerated training scheme [16] or to better encode relational inductive biases
[11, 12]. However, SQAIR and its extensions have no mechanism to recall an object. This leads to
discovering an object as new when it reappears in the scene.

Video Prediction. Conditioning on the past frames, video prediction models are trained to recon-
struct the input sequence and predict future frames. Many video prediction methods use dynamical
modeling [18] or deep neural networks to learn a deterministic transformation from input to output,
including LSTM [19], Convolutional LSTM [20] and PredRNN [21]. These methods often suffer
from blurry predictions and cannot properly model the inherently uncertain future [22]. In contrast
to deterministic prediction, we prefer stochastic video prediction [2, 23, 22, 24, 14, 25], which is
more suitable for capturing the stochastic dynamics of the environment. For instance, [22] proposes
an auto-regressive model to generate pixels sequentially. [14] generalizes VAE to video data with a
learned prior. [26] develops a normalizing flow video prediction model. [25] proposes a Bayesian
Predictive Network to learn the prior distribution from noisy videos but without disentangled rep-
resentations. Our main goal is to learn disentangled latent representations from video that are both
interpretable and robust to missing data.

Missing Value Imputation. Missing value imputation is the process of replacing the missing
data in a sequence by an estimate of its true missing value. It is a central challenge of sequence
modeling. Statistical methods often impose strong assumptions on the missing patterns. For example,
mean/median averaging [27] and MICE [28], can only handle data missing at random. Latent
variables models with the EM algorithm [29] can impute data missing not-at-random but are restricted
to certain parametric models. Deep generative models offer a flexible framework of missing data
imputation. For instance, [30, 31, 32] develop variants of recurrent neural networks to impute
time series. [33, 34, 35] propose GAN-like models to learn missing patterns in multivariate time
series. Unfortunately, to the best of our knowledge, all recent developments in generative modeling
for missing value imputation have focused on low-dimensional time series, which are not directly
applicable to high-dimensional video with complex scene dynamics.

3 Disentangled-Imputed-Video-autoEncoder (DIVE)

Videos often capture multiple objects moving with complex dynamics. For this work, we assume
that each video has a maximum number of N objects, we observe a video sequence up to K time
steps and aim to predict T − K + 1 time steps ahead. The key component of DIVE is based on
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future. Given the updated latent representation at time t, the imputed hidden state at the next time
step is:

ĥt
i,y = FC(ht−1

i,p ) (3)

where FC(·) is a fully connected layer. This approach is similar in spirit to the time series imputation
method in [32]. However, instead of imputing in the observation space, we perform imputation in the
space of latent representations.

3.2 Inference Model

Missingness Inference. For the missingness variable zti,m, we also leverage the input encoding.
We use a heaviside step function to make it binary:

zti,m = H(x), x ∼ N (µm,σ2
m), [µm,σ2

m] = FC(ht
i,y), H(x) =

⇢

1 x ≥ 0

0 x < 0
(4)

where σ is the standard deviation of the noise, which is obtained from the hidden representation.

Pose Inference. The pose variable (position and scale) encodes the spatiotemporal dynamics of
the video. We follow the variational inference technique for state-space representation of sequences
[38]. That is, instead of directly inferring z1:Ki,p for K input frames, we use a stochastic variable βt

i to
reparameterize the state transition probability:

q(z1:Ti,p |y1:K) =

K
Y

t=1

q(zti,p|z
1:t−1

i,p ), zti,p = ftran(z
t−1

i,p ,βt
i ), βt

i ∼ N (µp,σ
2
p) (5)

where the state transition ftran is a deterministic mapping from the previous state to the next time
step. The stochastic transition variable βt

i is sampled from a Gaussian distribution parameterized by
a mean µp and variance σ2

p with [µp,σ
2
p] = FC(ht

i,p).

Dynamic Appearance. Another novel feature of our approach is its ability to robustly generate
objects even when their appearances are changing across frames. zti,a is the time-varying appearance.
In particular, we decompose the appearance latent variable into a static component ai,s and a dynamic
component ai,d which we model separately. The static component captures the inherent semantics of
the object while the dynamic component models the nuanced variations in shape.

For the static component, we follow the procedure in [5] to perform inverse affine spatial transfor-
mation T −1(·; ·), given the pose of the object to center in the frame and rectify the images with a
selected crop size. Future prediction is done in an autoregressive fashion:

ai,s = FC(hK
i,a), ht+1

i,a =

⇢

LSTM1(h
t
i,a, T

−1(yt; zti,p)) t < K

LSTM2(h
t
i,a) K ≤ t < T

(6)

Here the appearance hidden state ht
i,a is propagated through an LSTM, whose last output is used to

infer the static appearance. Similar to poses, we use a state-space representation for the dynamic
component, but directly model the difference in appearances, which helps stabilizing training:

a1i,d = FC([ai,s, T
−1(y1; z1i,p)]), at+1

i,d = ati,d + δti,d, δti,d = FC([ht
i,a,ai,s]) (7)

The final appearance variable is sampled from a Gaussian distribution parametrized by the concatena-
tion of static and dynamic components, which are randomly mixed with a probability p:

q(zi,a|y
1:K) =

Y

t

N (µa,σ
2
a), [µa,σ

2
a] = FC([ai,s, γa

t
i,d]), γ ∼ Bernoulli(p) (8)

The mixing strategy helps to mitigate covariate shift and enforces the static component to learn the
inherent semantics of the objects across frames.
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decompose them due to its rigid assumption of fixed appearances and the inherent complexity of
the scenario. In Appendix C, we perform two ablation studies. One on the significance of dynamic
appearance modeling, and the other on the importance of estimating missingness and performing
imputation.

5 Conclusion and Discussion

We propose a novel deep generative model that can simultaneously perform object decomposition,
latent space disentangling, missing data imputation, and video forecasting. The key novelty of
our method includes missing data detection and imputation in the hidden representations, as well
as a robust way of dealing with dynamic appearances. Extensive experiments on moving MNIST
demonstrate that DIVE can impute missing data without supervision and generate videos of signifi-
cantly higher quality. Future work will focus on improving our model so that it is able to handle the
complexity and dynamics in real world videos with unknown object number and colored scenes.

Broader Impact

Videos provide a window into the physics of the world we live in. They contain abundant visual
information of what objects are, how they move, and what happens when cameras move against the
scene. Being able to learn a representation that disentangles these factors is fundamental to AI that
can understand and act in spatiotemporal environment. Despite the wealth of methods for video
prediction, state-of-the-art approaches are sensitive to missing data, which are very common in real-
world videos. Our proposed model significantly improves the robustness of video prediction methods
against missing data, and thereby increasing the practical values of video prediction techniques and
our trust in AI. Video surveillance systems can be potentially abused for discriminatory targeting,
and we remained cognizant of the bias in our training data. To reduce the potential risk of this, we
pre-processed the MOTSChallenge videos to greyscale.
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