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Abstract

Reflexive anaphora present a challenge for semantic interpretation: their meaning varies depending
on context in a way that appears to require abstract variables. Past work has raised doubts about
the ability of recurrent networks to meet this challenge. In this paper, we explore this question in
the context of a fragment of English that incorporates the relevant sort of contextual variability.
We consider sequence-to-sequence architectures with recurrent units and show that such networks
are capable of learning semantic interpretations for reflexive anaphora which generalize to novel
antecedents. We explore the effect of attention mechanisms and different recurrent unit types
on the type of training data that is needed for success as measured in two ways: how much
lexical support is needed to induce an abstract reflexive meaning (i.e., how many distinct reflexive
antecedents must occur during training) and what contexts must a noun phrase occur in to support
generalization of reflexive interpretation to this noun phrase?

1 Introduction

Recurrent neural network architectures have demonstrated remarkable success in natural language pro-
cessing, achieving state of the art performance across an impressive range of tasks ranging from machine
translation to semantic parsing to question answering (Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2016). These tasks demand the use of a wide variety of computational processes and information
sources (from grammatical to lexical to world knowledge), and are evaluated in coarse-grained quantitative
ways. As a result, it is not an easy matter to identify the specific strengths and weaknesses in a network’s
solution of a task.

In this paper, we take a different tack, exploring the degree to which neural networks successfully master
one very specific aspect of linguistic knowledge: the interpretation of sentences containing reflexive
anaphora. We address this problem in the context of the task of semantic parsing, which we instantiate
as mapping a sequence of words into a predicate calculus logical form representation of the sentence’s
meaning.

(1) a. Mary runs — RUN(MARY)

b. John sees Bob — SEE(JOHN,BOB)

Even for simple sentences like those in (1), which represent the smallest representations of object
reflexives in English, the network must learn lexical semantic correspondences (e.g., the input symbol
Mary is mapped to the output MARY and runs is mapped to RUN) and a mode of composition (e.g., for
an intransitive sentence, the meaning of the subject is surrounded by parentheses and appended to the
meaning of the verb). Of course, not all of natural language adheres to such simple formulas. Reflexives,
words like herself and himself, do not have an interpretation that can be assigned independently of the
meaning of the surrounding context.
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(2) a. Mary sees herself — SEE(MARY,MARY)

b. Alice sees herself — SEE(ALICE, ALICE)

In these sentences, the interpretation of the reflexive is not a constant that can be combined with the
meaning of the surrounding elements. Rather, a reflexive object must be interpreted as identical to the
meaning of verb’s subject. Of course, a network could learn a context-sensitive interpretation of a reflexive,
so that for any sentence with Mary as its subject, the reflexive is interpreted as MARY, and with Alice as
its subject it is interpreted as ALICE. However, such piecemeal learning of reflexive meaning will not
support generalization to sentences involving a subject that has not been encountered as the antecedent
of a reflexive during training, even if the interpretation of the subject has occurred elsewhere. What is
needed instead is an interpretation of the reflexive that is characterized not as a specific (sequence of)
output token(s), but rather as an abstract instruction to duplicate the interpretation of the subject. Such an
abstraction requires more than the “jigsaw puzzle” approach to meaning that simpler sentences afford.

Marcus (1998) argues that this kind of abstraction, which he takes to require the use of algebraic
variables to assert identity, is beyond the capacity of recurrent neural networks. Marcus’s demonstration
involves a simple recurrent network (SRN, Elman 1990) language model that is trained to predict the next
word over a corpus of sentences of the following form:

(3) a. Aroseis arose.

b. A mountain is a mountain.

All sentences in this training set have identical subject and object nouns. Marcus shows, however, that the
resulting trained network does not correctly predict the subject noun when tested with a novel preamble ‘A
book is a ...”. Though intriguing, this demonstration is not entirely convincing: since the noun occurring
in the novel preamble, book in our example, did not occur in the training data, there is no way that
the network could possibly have known which (one-hot represented) output should correspond to the
reflexive for a sentence containing the novel (one-hot represented) subject noun, even if the network did
successfully encode an identity relation between subject and object.

Frank et al. (2013) explore a related task in the context of SRN interpretation of reflexives. In their
experiments, SRNs were trained to map input words to corresponding semantic symbols that are output
on the same time step in which a word is presented. For most words in the vocabulary, this is a simple
task: the desired output is a constant function of the input (Mary corresponds to MARY, sees to SEE,
etc.). For reflexives however, the target output depends on the subject that occurs earlier in the sentence.
Frank et al. tested the network’s ability to interpret a reflexive in sentences containing a subject that had
not occurred as a reflexive’s antecedent during training. However, unlike Marcus’ task, this subject and
its corresponding semantic symbol did occur in other (non-reflexive) contexts in the training data, and
therefore was in the realm of possible inputs and outputs for the network. Nonetheless, none of the SRNs
that they trained succeeded at this task for even a single test example.

Since those experiments were conducted, substantial advances have been made on recurrent neural
network architectures, some of which have been crucial in the success of practical NLP systems.

e Recurrent units: More sophisticated recurrent units like LSTMs (Graves and Schmidhuber, 2005)
and GRUs (Cho et al., 2014) have been shown to better encode preceding context than SRN.

e Sequence-to-Sequence architectures: The performance of network models that transduce one
string to another, used in machine translation and semantic parsing, has been greatly improved by the
use of independent encoder and decoder networks (Sutskever et al., 2014).

e Attention mechanism: The ability of a network to produce contextually appropriate outputs even in
the context of novel vocabulary items has been facilitated by content-sensitive attention mechanisms
(Bahdanau et al., 2016; Luong et al., 2015).
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These innovations open up the possibility that modern network architectures may well be able to solve
the variable identity problem necessary for mapping reflexive sentences to their logical form. In the
experiments we describe below, we explore whether this is the case.

2 Experimental Setup

Our experiments take the form of a semantic parsing task, where sequences of words are mapped into
logical form representations of meaning. Following Dong and Lapata (2016), we do this by means of a
sequence-to-sequence architecture (Sutskever et al., 2014) in which the input sentence is fully processed
by an encoder network before it is decoded into a sequence of symbols in the target domain (cf. Botvinick
and Plaut 2006, Frank and Mathis 2007 for antecedents). This approach removes the need to synchronize
the production of output symbols with the input words, as in Frank et al. (2013), allowing greater flexibility
in the nature of semantic representations.

The sequence-to-sequence architecture is agnostic as to the types of recurrent units for the encoding
and decoding phases of the computation, and whether the decoder makes use of an attention mechanism.
Here, we explore the effects of using different types of recurrent units and including attention or not.
Specifically, we examine the performance and training characteristics of sequence-to-sequence models
based on SRNs, GRUs, and LSTMs with and without multiplicative attention (Luong et al., 2015).

In all experiments, we perform 5 runs with different random seeds for each combination of recurrent
unit type (one layer of SRN, LSTM or GRU units for both the encoder and decoder) and attention (with or
without multiplicative attention). All models used hidden and embedding of size of 256. Training was
done using Stochastic Gradient Descent with learning rate of 0.01. Models were trained for a maximum
of 100 epochs with early stopping when validation loss fails to decrease by 0.005 over three successive
epochs.

We conduct all of our experiments with synthetic datasets from a small fragment of English sentences
generated using a simple context-free grammar. This fragment includes simple sentences with transitive
and intransitive verbs. Subjects are always proper names and objects are either proper names or a reflexive
whose gender matches that of the subject. Our vocabulary includes 8 intransitive verbs, 7 transitive verbs,
15 female names, and 11 male names. The grammar thus generates 5,122 distinct sentences. All sentences
are generated with equal probability, subject to the restrictions imposed by each experiment. We use a
unification extension to CFG to associate each sentence with a predicate calculus interpretation. The
symbols corresponding to the predicates and the entities in our logical language are identical with the
verbs and names used by our grammar, yielding representations like those shown in (1) and (2). The
output sequences corresponding to the target semantic interpretations include parentheses and commas as
separate symbols. Quite clearly, this dataset does not reproduce the richness of English sentence structure
or the distribution of reflexive anaphora, and we leave the exploration of syntactically richer domains for
future work. However, even this simple fragment instantiate the kind of contextual variable interpretation
found in all cases of reflexive interpretation and therefore it allows us to probe the ability of networks to
induce a representation of such meanings.

As discussed in the previous section, we are interested in whether sequence-to-sequence models can
successfully generalize their knowledge of the interpretation of sentences containing reflexives to ones
having novel antecedents. To do this, we employ a poverty of the stimulus paradigm that tests for
systematic generalization beyond a finite (and ambiguous) set of training data (Chomsky, 1980). In
our experiments, we remove certain classes of examples from the training data set and test the effect
on the network’s success in interpreting reflexive-containing sentences. Each of our experiments thus
defines a set of sentences that are withheld during training. The non-withheld sentences are randomly split
80%—-10%—-10% between training, validation, and testing sets. Accuracy for each set is computed on a
sentence-level basis, i.e., an accurate output requires that all symbols generated by the model be identical
to the target. Our experiments focus on two sorts of manipulations of the training data: (1) varying the
number of lexical items that do and do not occur as the antecedents of reflexives in the training set, and
(2) varying the syntactic positions in which the non-antecedent names occur. As we will see, both of
these manipulations substantially impact the success of reflexive generalization in ways that vary across
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network types.

3 Experiment 1: Can Alice know herself?

In the first experiment, we directly test whether or not networks can generalize knowledge of how to
interpret herself to a new antecedent. We withhold all examples whose input sequence includes the
reflexive herself bound by the single antecedent Alice, of the form shown in (4).

(4) Alice verbs herself — verb(ALICE, ALICE)

Sentences of any other form are included in the training-validation-test splits, including those where Alice
appears without binding a reflexive.

3.1 Results

All network architectures were successful in this task, generalizing the interpretation of herself to the
novel antecedent Alice. Even the simplest networks, namely SRN models without attention, achieve 100%
accuracy on the generalization set (sentences of the form shown in (4)). This is in sharp contrast the
negative results obtained by Frank et al. (2013), suggesting an advantage for training with a language with
more names as well as for instantiating the semantic parsing task in a sequence-to-sequence architecture
as opposed to a language model.

4 Experiment 2: Doesn’t Alice know Alice?

While the networks in Experiment 1 are not trained on sentences of the form shown in (4), they are trained
on sentences that have the same target semantic form, namely sentences in which Alice occur as both
subject and object of a transitive verb.

(5) Alice verbs Alice — verb(ALICE, ALICE)

In Experiment 2 we consider whether the presence of such semantically reflexive forms in the training
data is helpful to networks in generalizing to syntactically reflexive sentences. We do this by further
excluding sentences of the form in (5) from the training data.

4.1 Results

All architectures except SRNs without attention generalize perfectly to the held out items. Inattentive
SRNs also generalize quite well, though only at a mean accuracy of 86%. While success at Experiment
1 demonstrates the networks’ abilities to generalize to novel input contexts, success at Experiment 2
highlights how models can likewise generalize to produce entirely new outputs.

S Experiment 3: Who’s Alice and who’s Claire?

So far, we have considered generalization of reflexive interpretation to a single new name. One possible
explanation of the networks’ success is that they are simply defaulting to the (held-out) ALICE interpreta-
tion when confronted with a new antecedent, as an elsewhere interpretation (but see Gandhi and Lake 2019
for reasons for skepticism). Alternatively, even if the network has acquired a generalized interpretation for
reflexives, it may be possible that this happens only when the training data includes overwhelming lexical
support (in Experiments 1 and 2, 25 out of the 26 names in our domain appeared in the training data as
the antecedent of a reflexive). To explore the contexts under which networks can truly generalize to a
range of new antecedents, we construct training datasets in which we progressively withhold more and
more names in sentences of the forms shown in (6), i.e., those that were removed in Experiment 2.1

ISince himself and herself are different lexical items, it is unclear if the network will learn their interpretations together, and
whether sentences containing himself will provide support for the interpretation of sentences containing herself. We therefore
withhold only sentences of this form with names of a single gender. We have also experimented with witholding masculine
reflexive antecedents from the training data, but the main effect remains the number of female antecedents that is withheld.
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Figure 1: Mean generalization accuracy by number of names withheld in Experiment 3. The (4) or (—)
next to the type of recurrent unit indicates the presence or absence of attention. Error bars display the
standard deviation of accuracies.

(6) a. P verbs herself — verb(P,P)
b. P verbs P — verb(P,P)

Our domain contains 15 distinct feminine antecedents; we perform several iterations of this experiment,
withholding progressively more feminine names from appearing in the contexts in (6), until only a single
feminine name is included in the training data as the antecedent of a reflexive.

5.1 Results

As shown in Figure 1, reducing the set of names that serve as antecedents to reflexives in the training
data resulted in lower accuracy on the generalization set. SRNs, especially without attention, show
significantly degraded performance when high numbers of names are withheld from reflexive contexts
during training. With attention, SRN performance degrades only when reflexives are trained with a single
feminine antecedent (i.e., 14 names are held out). In contrast, LSTMs both with and without attention
maintain near-perfect accuracy on the generalization set even when the training data allows only a single
antecedent for the feminine reflexive herself. The performance of GRUs varies with the presence of an
attention mechanism: without attention, GRUs achieve near perfect generalization accuracy even for the
most demanding case (training with a single feminine antecedent), while the performance of GRUs with
attention has mean accuracy near 80%.

We also explored how recurrent unit type and attention affect zow models learn to generalize. One
way to gauge this is by examining how quickly networks go from learning reflexive interpretation for a
single name to learning it for every name. Table 1 shows the mean number of epochs it takes from when a
network attains 95% accuracy on a single antecedent contexts> to when it has attained more than 95%
accuracy on all held out antecedent contexts.’

This ‘time to learn’ highlights the disparate impact of attention depending on the type of recurrent
unit; SRNs with attention and LSTMs with attention acquire the generalization much faster than their
attentionless counterparts, while attention increases the length of time it takes for GRUs to learn for all
but the condition in which 14 antecedents were withheld. Figure 2 illustrates another important aspect
of reflexive generalization: it proceeds in a piecemeal fashion, where networks first learn to interpret
reflexives for the trained names and then generalize to the held out antecedents one by one. In Figure 2
we show an SRN without attention, but the same pattern is representative of the other networks tested.

2 An ‘antecedent context’ is the set of all reflexive sentences with a particular antecedent.
3Note that this doesn’t mean that models retained more than 95% accuracy on all contexts — some models learned a context,
only to forget it later in training; this measurement does not reflect any such unlearning by models.
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Architecture # contexts withheld
2 3 6 14

SRN (-) 75 50 — —
SRN (+) 06 06 06 —
GRU (-) 1.8 22 34 94
GRU (+) 22 36 53 15
LSTM (—) 12 22 44 122
LSTM (+) 06 08 14 34

Table 1: Average number of epochs between having learned one context and having learned all contexts,
calculated as the mean difference among runs which succeeded in eventually learning all contexts once. A
‘—’ in a row indicates that no models were able to achieve this degree of generalization.

Reflexive accuracy for an SRN ()
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Figure 2: Reflexive accuracy with different antecedents during training of an SRN without attention. Alice,

Claire and Eliza were withheld during training while Grace and Isla present in the training data.

6 Experiment 4: What if Alice doesn’t know anyone?

The experiments we have described thus far removed from the training data input sentences and logical
forms that were exactly identical to those associated with reflexive sentences. The next pair of experiments
increases the difficulty of the generalization task still further, by withholding from the Experiment
2 training data all sentences containing the withheld reflexive antecedent, Alice, in a wider range of
grammatical contexts, and testing the effect that this has on the network’s ability to interpret Alice-
reflexive sentences.

Experiment 4a starts by withholding sentences where Alice appears as the subject of a transitive
verb (including those with reflexive objects, which we already removed in earlier experiments). This
manipulation tests the degree to which the presence of Alice as a subject more generally is crucial to the
network’s generalization of reflexive sentences to a novel name. We also run a variation of this experiment
(Experiment 4b) in which sentences containing Alice as the subject of intransitives are also removed, i.e.,
sentences of the following form:

(7) Alice verbs — verb(ALICE)

If subjecthood is represented in a uniform manner across transitive and intransitive sentences, the absence
of such sentences from the training data might further impair the network’s ability to generalize to reflexive
sentences.
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Experiment 4a SRN (=) SRN(+) GRU(-) GRU((+) LSTM(-) LSTM (+)

Alice-reflexive 0.00 0.80 0.03 0.26 0.00 1.00
Alice-subject (trans) 0.02 0.83 0.04 0.29 0.03 0.28
Experiment 4b SRN(—) SRN(+) GRU(-) GRU(+) LSTM(—) LSTM (+)
Alice-reflexive 0.00 0.63 0.00 0.80 0.00 0.83
Alice-subject (trans) 0.00 0.25 0.01 0.78 0.03 0.23
Alice-subject (intrans) 0.00 0.80 0.58 0.95 0.98 1.00

Table 2: Mean accuracy on generalization sets for Experiments 4a and 4b.

6.1 Results
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Figure 3: Mean accuracy on Alice-reflexive sentences in Experiments 4a (left) and 4b (right).

Experiment 4a The left plot in Figure 3 shows the reflexive generalization accuracy for the runs of the
different architectures in the first variant of this experiment. Models without attention uniformly perform
poorly across all recurrent unit types. With attention, performance is more variable: LSTMs perform at
ceiling and SRNs do well for most random seeds, while GRUs perform poorly for most initializations with
a single seed performing at ceiling. The top portion of Table 2 contrasts the means of these results with
the generalization performance on transitives with Alice subjects. Here again LSTMs without attention
performed poorly while those with attention did much worse on Alice-transitives than on Alice-reflexive
sentences.

This result at once highlights the role that attention plays in learning this type of systematic general-
ization; attention appears to be necessary for recurrent architectures to generalize in this context. The
pattern of results also demonstrates a substantial effect of model architecture: attentive SRNs substantially
outperform the more complex LSTM and GRU architectures on generalization to Alice-transitives, though
this was not the case for reflexive sentences, where LSTMs showed a substantial advantage.

Experiment 4b  The right plot in Figure 3 shows the impact of withholding Alice-intransitive sentences
from training. As before, models without attention fail on interpreting Alice-reflexive sentences. LSTMs
and SRNs with attention perform nearly as well as in Experiment 4a, with some seeds performing at
ceiling and a somewhat larger number than before failing to doing so. In contrast, the performance
of attentive GRUs is improved in this context. The bottom of Table 2 shows the mean generalization
accuracy for transitive and intransitive sentences with Alice subjects. In some cases the transitive subject
performance is as in Experiment 4a or worse, but in one case, namely attentive GRUSs, it improves in this
more difficult context, paralleling what we saw for reflexive generalization.

The reversal of GRU (4) and SRN (+) accuracies better lines up with what we might expect given the
complexity of the network architectures, with the more complex GRUs now outperforming the simpler
SRNs. These results also reinforce the connection observed in those from Experiment 4b on the effects of
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Reflexive Accuracy for Experiment 5a Reflexive Accuracy for Experiment 5b

1.0 e ® ® 1.0 - -
0.8 1 I 0.8 1
T 0.6 1 T 0.6 1
5 5
v v
< 041 2 041
0.2 4 0.2 4
0.0 - I ® . 004 &= & - e
T T T T T T T T T T T T
CAER N U A A CAEER N U A A
S & & O S & S S
S & ) IS ) KA S S & & S &

Figure 4: Mean accuracy on Alice-reflexive sentences in Experiments 5a (left) and 5b (right).

attention in generalization.

While withholding more information during training as we move from Experiment 4a to 4b might be
expected to impair generalization for attentive GRUs, as it did for all other architectures, we in fact see an
increase in performance on Alice-reflexive sentences. One possible explanation of this surprising result is
that the attentive GRU networks in experiment 4a have learned from the training data a context-sensitive
regularity concerning the distribution of the withheld name Alice, namely that it occurs only as the
subject of intransitive verbs. In Experiment 4b, however, the absence of evidence concerning the types of
predicates with which Alice may occur allows the network to fall back to a context-free generalization
about Alice, namely that it has the same distribution as the other names in the domain. Note that this
explanation is possible only if the network treats intransitive and transitive subjects in a similar way.

7 Experiment 5: What if nobody knows Alice?

In the final experiment, we restrict the grammatical context in which Alice appears by removing from
the training data of Experiment 2 all instances of transitive sentences with Alice in object position (but it
is retained in subject position, apart from reflexive sentences). In a second variant (Experiment 5b), we
further restrict the training data to exclude all intransitive sentences with Alice subjects. Although English,
as a language with nominative-accusative alignment, treats subjects of intransitives in a grammatically
parallel fashion to subjects of transitives, other languages (with ergative-absolutive alignment) treat
intransitive subjects like transitive objects. Though the word order of our synthetic language suggests
nominative-accusative alignment, intransitive subjects have in common with transitive objects being the
final argument in the logical form, which might lead to them being treated in similar fashion.

7.1 Results

Experiment 5a The left plot in Figure 4 shows reflexive generalization accuracy when the missing
antecedent Alice is withheld from transitive objects. In contrast to the results in Experiment 4, the effect of
attention is more varied here. While SRNs and LSTMs without attention perform poorly, GRUs without
attention perform well (for some seeds). As the top panel in Table 3 shows, no models without attention
performed well on sentences with Alice in object position. For the models with attention, SRNs and
LSTMs perforrmed uniformly well while the performance of GRUs was more mixed. On Alice-object
sentences attentive SRNs again showed excellent performance, whereas the GRUs and LSTMs fared less
well. At the same time, while GRUs with attention outperformed GRUs without attention on Alice-object
sentences (25% to 4%), they greatly underperformed them on the reflexive sentences (60% to 98%).

Experiment Sb  The right plots in Figure 4 shows the effects of further withholding Alice-intransitive
sentences for Alice-reflexive sentences. This manipulation has devastating effects on the performance
of all models without attention. For models with attention, there is also a negative impact on reflexive
generalization, but not as severe. As shown in the bottom portion of Table 3, this manipulation has little
impact on the network’s performance on Alice-object sentences, with SRNs with attention continuing to
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Experiment 5a SRN (=) SRN(+) GRU(-) GRU((+) LSTM(-) LSTM (+)

Alice-reflexive 0.03 0.94 0.98 0.60 0.23 1.00
Alice-object 0.00 0.97 0.04 0.25 0.04 0.37
Experiment 5b SRN (=) SRN(+) GRU(-) GRU((+) LSTM(—) LSTM (+)
Alice-reflexive 0.00 0.65 0.45 0.14 0.00 0.80
Alice-object 0.00 0.94 0.03 0.09 0.03 0.17
Alice-subject (intrans) 0.00 0.13 0.00 0.00 0.00 0.40

Table 3: Mean accuracy on generalization sets for Experiments 5a and 5b.

perform strongly and the other models performing less well. GRUs continue to interact with attention
in unusual ways. While they perform poorly on Alice-object and Alice-intransitive sentences with and
without attention, inattentive GRUs continue to outperform attentive ones on reflexive sentences.

Overall, as in Experiment 4, LSTMs with attention show the highest accuracy on the Alice-reflexive
sentences by a wide margin, while SRNs with attention attain the best performance on Alice-object
sentences. Unlike in Experiment 4, withholding the Alice-intransitive sentences from training does not
yield any benefit for GRUs with attention in performance on the reflexive set, in fact the opposite is true.
This may be interpreted once again as evidence that GRUs are treating transitive and intransitive subjects
as belonging to the same category. In Experiment 5a, Alice occurs in both positions, leading the network
to treat it as a subject like any other, and therefore potentially capable of serving as a subject of a reflexive.
Alice’s absence from object position does not impact the formation of this generalization. In Experiment
5b, on the other hand, where Alice occurs only as a transitive subject, it leads the attentive GRU to treat it
as name with a distinctive distribution, which impairs generalization to reflexive sentences.

8 Conclusions

Because of their abstract meaning, reflexive anaphora present a distinctive challenge for semantic parsing
that had been thought to be beyond the capabilities of recurrent networks. The experiments described here
demonstrate that this was incorrect. Sequence-to-sequence networks with a range of recurrent unit types
are in fact capable of learning an interpretation of reflexive pronouns that generalizes to novel antecedents.
Our results also show that such generalization is nonetheless contingent on the appearance of the held-out
antecedent in a variety of syntactic positions as well as the diversity of antecedents providing support for
the reflexive generalization. Additionally successful generalization depends on the network architecture
in ways that we do not fully understand. It is at present unknown whether the demands that any of these
architecture impose on the learning environment for successful learning of reflexives are consistent with
what children experience, but this could be explored with both corpus and experimental work. Future work
will also be necessary to elucidate the nature of the networks’ representations of reflexive interpretation
and to understand how they support lexical generalization (or not).

The question we have explored here is related to, but distinct from, the issue of systematicity (Fodor and
Pylyshyn, 1988; Hadley, 1994), according to which pieces of representations learned in distinct contexts
can freely recombine. This issue has been addressed using sequence-to-sequence architectures in recent
work with the synthetic SCAN robot command interpretation dataset (Lake and Baroni, 2018) and on
language modeling (Kim and Linzen, 2020), in both cases with limited success. One aspect of the SCAN
domain that is particularly relevant to reflexive interpretation is commands involving adverbial modifiers
such as rwice. Commands like jump twice must be interpreted by duplicating the meaning of the verb, i.e.,
as JUMP JUMP, which is similar to what we require for the interpretation of the reflexive object, though in
a way that does not require sensitivity to syntactic structure that we have not explored here. Recently,
Lake (2019), Li et al. (2019) and Gordon et al. (2020) have proposed novel architectures that increase
systematic behavior, and we look forward to exploring the degree to which these impact performance on
reflexive interpretation.

Our current work has focused exclusively on recurrent networks, ranging from SRNs to GRUs and
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LSTMs. Recent work by Vaswani et al. (2017) shows that Transformer networks attain superior per-
formance on a variety of sequence-to-sequence tasks while dispensing with recurrent units altogether.
Examining both the performance and training characteristics of Transformers will allow us to compare the
effects of attention and recurrence on the anaphora interpretation task. This is especially interesting given
the impact that attention had on performance in our experiments.

Finally, while our current experiments are revealing about the capacity of recurrent networks to learn
generalizations about context-sensitive interpretation, there are nonetheless limited in a number of respects
because of simplifications in the English fragment we use to create our synthetic data. Reflexives
famously impose a structural requirement on their antecedents (c-command). In the following example,
the reflexive’s antecedent must be STUDENT and cannot be TEACHER.

(8) The student near the teacher sees herself — SEE(STUDENT, STUDENT)

We do not know whether the architectures that have succeed on our experiments would do similarly well if
the relevant generalization required reference to (implicit) structure. Past work has explored the sensitivity
of recurrent networks to hierarchical structure, with mixed results (Linzen et al., 2016; McCoy et al.,
2020). In ongoing work, we are exploring this question by studying more complex synthetic domains
both with the kind of recurrent sequence-to-sequence network used here as well networks that explicitly
encode or decode sentences in a hierarchical manner. A second simplification concerns the distribution of
reflexives themselves. English reflexives can appear in a broader range of syntactic environments apart
from transitive objects (Storoshenko, 2008). It would be of considerable interest to explore the reflexive
interpretation in a naturalistic setting that incorporate this broader set of distributions.
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