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Abstract
We prove that certain problems naturally arising in knot
theory are NP-hard or NP-complete. These are the problems
of determining whether a link has an unlinking or splitting
number k, finding a k-component unlink as a sublink, and
finding a k-component alternating sublink.

The unlinking number of a link is the minimum number
of crossing changes required for it to become an unlink,
minimized over all diagrams of the link. Similarly, splitting
number is the number of changes for the link to become split.
Problems concerning unlinking and splitting numbers have a
long history in topology and knot theory. At the same time,
nothing is known about computability or complexity of these
problems. A recent breakthrough by Lackenby suggests an
algorithm to determine whether a hyperbolic link satisfying
certain restrictions has unlinking or splitting number one
[11], but no algorithm for the general case is yet known. We
therefore provide the first bounds on the complexity of the
general unlinking and splitting number problems. Our proof
of NP-hardness for unlinking and splitting numbers is built
upon our other proof, that of NP-hardness of unlink as
a sublink problem. This problem is a special case (i.e. a
restriction) of the sublink problem, previously proven to
be NP-hard [10]. More generally, for any property X of links
one can also consider decision problems of the form ”Given
a diagram of a link L and a positive integer k, is there a
k component sublink of L with the property X?” We show
that this is also NP-hard if X is the property of being an
alternating link.

1 Overview

Many problems that lie at the heart of classical knot
theory can be formulated as decision problems, with an
algorithm being a solution. Among them, for example,
is the question of equivalence (up to isotopy) of two
links given by their diagrams. This can be approached
in many different ways, among which applying Reide-
meister moves perhaps has the longest history. Other
examples are the unknotting, unlinking and splitting
number questions, i.e. arriving to a diagram of an un-
link, an unknot, or a split diagram from some diagram
by interchanging overpasses and underpasses in a cer-
tain number of crossings.

The complexities of these basic decision problems

*Supported by Okinawa Institute of Science and Technology.
�Supported by Okinawa Institute of Science and Technol-

ogy, NSF DMS-1664425 (previously 1406588) grant, NSF DMS-

2005496 grant, and Insitute of Advanced Study under DMS-
1926686 grant.

in knot theory are not yet well-understood. Despite
the lack of polynomial algorithms, few problems in knot
theory are known to be NP-hard or NP-complete at all.
Those few problems are the problem of determining a
bound on the genus of a knot in a general 3-manifold
[1] (the genus of a knot is by definition the least genus
of any Seifert surface), a closely related problem of
determining a bound for the Thurston complexity of
a link in S3 [10], and the problem of detecting a sublink
isotopic to a given link [10]. There is also a proof that
obtaining one diagram from another one of a link in
a bounded number of Reidemeister moves is NP-hard
in our preprint [7], and an improvement of this result
to knots in [2]. The purpose of this paper to establish
that a number of other natural problems in knot theory
are NP-hard. The problems described here have an
advantage that they can be formulated solely in terms
of link diagrams. They are described below.

In section 2 we look at the unlink as a sublink
problem, a special case of the sublink problem defined
and proven to be NP-hard by Lackenby [10]. We prove
that the unlink as a sublink problem is NP-hard.
Note that restricting a problem makes it easier, so the
proof that the restricted problem is hard also implies
that the general problem is hard. Thus, NP-hardness of
the sublink problem is a corollary of the NP-hardness
of the problem that we consider. The techniques used
in the proof are widely used throughout this paper.
More generally, for any property X of links one can
also consider decision problems of the form ”Given a
diagram of a link L and a positive integer k, is there
a k-component sublink of L with the property X?” We
show in section 5 that this is also NP-hard if X is the
property of being an alternating link. We expect that
many other problems of this form are NP-hard.

Very little is known about unknotting, unlinking
and splitting numbers in general, without restricting
to particular classes of links. It is possible that these
invariants are not even computable. Moreover, it is
not known whether there is an algorithm to detect
whether a knot has unknotting number 1. A recent
breakthrough by Lackenby suggests an algorithm to
determine whether a hyperbolic link satisfying certain
restrictions has unlinking or splitting number one [11],
but no algorithm for the general case is yet known. We
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provide the first lower bounds on the complexities of
the general unlinking and splitting number problems in
sections 3 and 4. We note that soon after our preprint
[7] with these bounds appeared online, an alternative
proof of NP-hardness of the unlinking number problem
was given in [2].

Every section that follows is devoted to one of the
above problems. We put the sections in the order that
makes it easier for the reader to follow the proofs, since
some of the arguments can be seen as refinements of the
others.

For an overview of complexity theory including NP-
hardness and NP-completeness, see, for example, [4].
For basic notions from knot theory, e.g. knot, link,
knot diagram, isotopy, link group, Wirtinger presenta-
tion, split link, prime link, meridian, longitude, incom-
pressible torus, satellite torus, we refer the reader to
[12] or [15], and provide exact page and definition num-
bers further in the text. The previous status of many
decision and complexity problems from knot theory is
discussed in [8].

2 The unlink as a sublink problem

The definitions of a knot, an n-component link, an
unknot, a knot diagram are given in Chapter 4.1 of [15].
An unlink with n components is an n-component link
where each component is an unknot unlinked from the
rest of components. An (n − k)-component sublink of
a given n-component link L is obtained by deleting k
components of L, where k is between 0 and n− 1.

The sublink problem asks ”Given diagrams of
two links, is there a sublink of the first that is isotopic
to the second?” Lackenby showed that this problem is
NP-hard using a Karp reduction (see Section 3.1.2 in
[5]) from the hamiltonian path problem [10]. Here we
examine the unlink as a sublink problem, in which
the second link is an unlink.

unlink as a sublink: given a diagram for a link L
and a positive integer k, is there a k-component sublink
of L that is an unlink?

Theorem 2.1. unlink as a sublink is NP-complete.

Proof. We first prove NP-hardness by providing a Karp-
reduction of the 3–SAT problem to the given prob-
lem. Suppose there are variables x1 . . . xn and clauses
c1 . . . cm, in a formula F , where each clause is of the
form

zαi ∨ zβi ∨ zγi , 1 ≤ αi < βi < γi ≤ n,

and zk represents either xk or ¬xk. We construct a
(2n + m)-component link LF such that there exists an
(n + m)-component unlink as a sublink if and only if

there is a variable assignment to x1 . . . xm satisfying all
the clauses c1 . . . cm.

To begin, create n Hopf links, one for each variable
xα. See Figure 1. Denote this link by LF0 .

Figure 1: Hopf links, one for each variable xi.

Label the top components of the Hopf links x1 . . . xn
and the bottom components ¬x1 . . .¬xn. Zoom in on
the grey dotted box in Figure 1 and divide it vertically
into m shorter boxes as in Figure 2. For each clause ci,
we will add one more link component which we call a
clause component lying in the ith grey dotted box. In
this box we see two strands of the link LF0 labelled xi
and two strands labelled ¬xα for each α. Pick a single
strand for each label, and leave the remaining strands
unlabeled.

Figure 2: Dividing the box into m shorter boxes
vertically, to put each clause component in.

The link group is a fundamental group of a link.
The Wirtinger presentation allows to compute the group
from a link diagram. For a quick algorithm, see Chap-
ter 4.9 of [15]. Consider the Wirtinger presentation of
the link group π1(S3 − LF0 ). A word in the generators
corresponds to a string of arcs/arrows passing under the
labeled strands, passing left to right for x and ¬x, and
right to left for x−1 and ¬x−1. By placing such arrows
from top to bottom in the diagram, and stringing them
together using arcs which pass over the strands in the di-
agram, we can introduce a loop representing any word
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which has no self-crossings. This construction is sug-
gested in, for example, [14], and Figure 3 gives an exam-
ple. In this way, draw a loop corresponding to the word
[zαi

, [zβi
, zγi ]] = zαi

(zβi
zγiz

−1
βi
z−1γi )z−1αi

(zγizβi
z−1γi z

−1
βi

)
(an iterated commutator). Let the clause component
corresponding to ci = zαi ∨ zβi ∨ zγi be this loop. For
the formula F , we then obtain the link LF by adding
all clause components to LF0 .

Each clause component links with three variable
components in a Brunnian way (for Brunnian links, see
p.67 of [14]). Indeed, an iterated commutator is trivial
as a group element if any of the commuting elements
is trivial, and the associated word can be reduced to
the empty word by cancelling adjacent generators and
inverses. Consider a clause ci = zαi

∨ zβi
∨ zγi and

assume we have erased one of zαi , zβi , or zγi , so
the iterated commutator can be reduced to the empty
word by such cancellations. With the way we have
drawn the clause component, each cancellation in the
commutator gives a sequence of type II Reidemeister
moves simplifying the diagram (for Reidemesiter moves,
see Chapter 4.2 of [15]). As an illustration, in our
example in Figure 3, after removing one of ¬x1,¬x3,
or x4, the clause component can be pulled away from
the other components to become an unlinked unknot.

It remains only to show that the clause component
links the three variable components in a nontrivial way.
This follows from the fact that the fundamental group
of the complement of the three variable components is
free, and the clause component represents a nontrivial
group element in that free group. It is therefore not
freely homotopic to a trivial loop, since free homotopy
corresponds to conjugation in the group, and so cannot
be isotopic to a trivial loop.

Figure 3: A link representing the commutator
[¬x1, [¬x3, x4]], corresponding to the clause ¬x1∨¬x3∨
x4.

Each clause component has precisely ten under-

crossings, and has at most 8n crossings between two
such undercrossings. Indeed, between undercrossings it
passes over each of the 4n strands in Figure 2 at most
twice (in fact, at most once except when returning from
the bottom back to the top). It follows that the number
of crossings introduced for each new clause component is
at most 64n+ 10. There are m clauses and 2n crossings
corresponding to the n Hopf links, so the final diagram
has at most 2n+m(64n+ 10) crossings, which is poly-
nomial in the size of the input formula F .

We now argue that the link LF contains an (n +
m)-component unlink as a sublink if and only if the
corresponding formula F is satisfiable.

Suppose there is some set of variable assignments
making F true. If the variable xα is assigned to be
TRUE, then delete the component labelled xα from
the link LF , and if it is assigned FALSE, delete the
component labelled ¬xα. For each clause component c
of LF that corresponds to a commutator [zαi

, [zβi
, zγi ]],

one of zαi
, zβi

, or zγi is TRUE, and the link component
with the respective label was deleted. Hence the clause
component c is unlinked from the rest of the diagram of
L by the Brunnian property. After pulling away all the
m clause components, we are left with the n unknotted
components (“halves”) of the Hopf links, so we have an
(n+m)-component unlink.

Conversely, assume the link LF contains an (n+m)-
component unlink U as a sublink. We want to prove
that F is satisfiable. The sublink U must contain at
most one component from each of n Hopf links, since
otherwise it contains pairs of components with nonzero
linking number. U must therefore contain every clause
component and exactly one component of each of the n
Hopf links in order to have n+m components total. This
corresponds to the variable assignment determined by
deleting the component labelled either by xα or by ¬xα
for each α. If any clause of the formula F is not satisfied
as a result of this assignment, the corresponding clause
component will form a non-trivial Brunnian link with
the three respective “halves” of Hopf links, and thus U
is not an unlink, a contradiction.

We have therefore reduced the 3–SAT problem
to the unlink as a sublink problem. The number
of crossings of the diagram of LF is bounded by a
polynomial in the size of F . This implies we have a
Karp reduction, so unlink as a sublink is NP-hard.

To see that the problem is NP, we observe that a
polynomial length certificate consists of a choice of k
link components followed by a sequence of Reidemeister
moves (and resulting diagrams) converting the corre-
sponding k-component link diagram to the trivial dia-
gram of a k-component sublink. The number of Reide-
meister moves needed to split the diagram is polynomial
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as per [6, 9], and this splitting needs to be performed
up to k−1 times. The number of moves needed to show
each component is an unknot is polynomial by [6, 9] as
well. Moreover, the size of the diagram at each step is
bounded by a polynomial in the size of the original di-
agram, since the number of crossings is fewer than the
original number of crossings plus the number of Reide-
meister moves performed. Thus there is a polynomial
length certificate showing that the original link contains
a k-component unlink as a sublink, and unlink as a
sublink is in NP.

Note that NP-hardness of the sublink problem as
proven in [10] follows immediately as a corollary, since
every instance of unlink as a sublink is also an
instance of the sublink problem.

3 Unlinking number

We next consider the problem of calculating the unlink-
ing number of a link. The unlinking number of a link
is the minimum number of crossing changes required to
become an unlink, minimized over all diagrams of the
link. The definition can also be formulated without ref-
erence to knot diagrams as is described below.

Definition 3.1. Suppose L is a link and α a simple arc
with endpoints lying on L and disjoint from L otherwise.
An unlinking move corresponding to the arc α is a
homotopy of L that is the identity outside of a regular
neighborhood N(α) of α, and within N(α) performs a
move in which the link passes over itself once as in
Figure 4.

Figure 4: An example of an unlinking move replacing
the fragment of a link on the right with the fragment of
a link on the left.

An arc α alone does not uniquely determine a given
unlinking move, as the link in Figure 4 (b) might twist
around the arc. (An example with twisting is depicted
in Figure 5.) Rather, there are infinitely many different
unlinking moves that can be performed for any given

arc. However, for our purposes distinguishing these
moves is not important; we only need a way to represent
where an unlinking move occurs.

Figure 5: Link twisting around the arc α.

A finite collection of unlinking moves can be repre-
sented by a collection of disjoint arcs with disjoint regu-
lar neighborhoods. Then each unlinking move does not
affect the neighborhoods of the arcs associated with the
other unlinking moves. Therefore, all unlinking moves
in such a collection can be performed simultaneously or
in any order without changing the resulting link.

With this definition, the unlinking number of a
link can be defined as the smallest number of unlink-
ing moves needed to change the link into the unlink.
Since unlinking moves are defined by paths in the link
complement, they are independent of the link diagram.
Hence one can take the smallest number of unlinking
moves for one given link diagram, unlike with cross-
ing changes, where the number of changes is minimized
across all link diagrams.

Nonetheless, the two definitions of unlinking num-
ber are equivalent. Any crossing change is an unlinking
move corresponding to the vertical arc connecting the
two points of the crossing. For the other direction, given
a collection of unlinking moves, first perform an isotopy
of L to make all of the unlinking move arcs perpendic-
ular to a plane Π. This can be done by first choosing
a thin regular neighborhood of each arc, performing an
isotopy that shrinks the arcs until they lie in small dis-
joint Euclidean balls, followed by an ambient isotopy
that is the identity outside the set of balls to straighten
the arcs. These isotopies will also move the link L. Once
all arcs are straight and perpendicular to Π, project L
to Π. After applying a small perturbation of L away
from the arcs if necessary, the result of this projection
will be a link diagram by general position arguments.
Then each unlinking move’s arc is a crossing arc in the
diagram. However, it is not yet true that the unlinking
moves correspond to the obvious crossing changes. If the
unlinking move twists about its arc, we must addition-
ally perform an isotopy to remove this twisting. Such
an isotopy will introduce new crossings, and by slightly
perturbing the diagram we can ensure again that all
crossings are distinct. At the end of this process, each
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unlinking move corresponds to a crossing change in the
diagram as desired.

Thus, given a diagram of L and a set of n crossing
changes turning L into the unlink, there is a set of n
unlinking moves making L into an unlink. Conversely,
if there is a set of n unlinking moves making L into
an unlink then there is a diagram for which n crossing
changes make L an unlink. Therefore, the minimum
number of crossing changes needed to make L an unlink
is the same as the minimum number of unlinking moves
needed.

unlinking number: Given a link diagram and an
integer n, does the link have unlinking number n?

It is not known whether unlinking number is
computable, and it is not expected to be in NP [8].
Below, we prove that it is NP-hard (Theorem 3.1). The
difficulty with finding a polynomial certificate lies in the
fact that crossing changes required to efficiently get an
unlink may not be visible in a given diagram. However
one can consider the following restricted problem.

diagrammatic unlinking number: Given a link
diagram D and an integer n, can the link be made into
an unlink by n crossing changes in the diagram D?

The restricted problem is NP-complete, which we
will prove as a corollary to the proof of Theorem 3.1.

Theorem 3.1. unlinking number is NP-hard.

We will prove this by modifying our construction for
the unlink as a sublink problem. In LF , we replace
each variable component with its untwisted Whitehead
double. Figure 6 demonstrates the replacement for a
single Hopf link. We continue to refer to the Whitehead
doubled variable components as variable components.

Figure 6: (a) A Hopf link and (b) the link obtained by
replacing each component with a Whitehead double.

In the resulting link, any variable component can
be made into an unknot unlinked from the remainder
of the diagram using a single crossing change. In

fact, there are two such distinct crossing changes, but
they determine only one unlinking move. This is
the same unlinking move that is determined by any
crossing change in a standard diagram of a Whitehead
link. We call this unlinking move an unclasping move.
Using n such unlinking moves followed by Reidemeister
moves we can replace n variable components from the
connected diagram that we have with an n-component
unlink, disjoint from the rest of the diagram. Moreover,
if there exists a set of n unlinking moves resulting
in the unlink, then Lemma 3.1(a) asserts that there
exists another set of n unlinking moves, also resulting
in the unlink, such that any move involving a variable
component is an unclasping move for that component.
The second part of the lemma (Lemma 3.1(b)) will be
used in Section 4.

Here and further, if L is a link and K is a component
of L, denote by L\K the sublink of L consisting of
components other than K.

Lemma 3.1. Suppose L is a link, and K is a component
of L. Let C = c1, c2, ..., cn be a set of n unlinking
moves of L, at least one of which involves the component
K. Let c be an unlinking move of L that involves the
component K and results in K becoming an unknot split
from the other components of L. Then we can replace C
with another sequence C ′ of unlinking moves beginning
with c such that

(a) C ′ has length equal or less than that of C.
(b) If C results in L being an unlink, so does C ′.

(c) If P is some component of L\K and C results
in P being split from L\P , so does C ′.

Proof. Since the first unlinking move of C ′ is c, the
component K is unknotted and unlinked from L\K
after c is applied, and L\K is unchanged. Let D be the
disk bounded by K after c is applied. We now construct
C ′ iteratively by modifying moves from C.

For each move of C, if the move involves the
component K, we do not include the move in C ′. We
will obtain the remaining moves of C ′ by modifying the
moves of K that do not involve K. Since at least one
move of C is assumed to involve K, this ensures that
condition (a) is upheld. If a move ci does not involve K,
and the path determining ci does not intersect the disk
D, we add ci to C ′ unmodified. If the path does pass
through D, we isotope the path relative its boundary
in the complement of L\K to make it disjoint from
D. Figure 7 shows a link with a component K that
is unlinked and unknotted. In the diagram on the left,
the green arc corresponds to an unmodified unlinking
move (a crossing change), and passes through the disk
D bounded by K. In the diagram on the right, the
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green arc is isotoped in the complement of L\K (but
not in the complement of L) to correspond to a modified
unlinking move that avoids D. This modification is
always possible when K is unlinked from L\K. Note
that since we isotope in the complement of L\K, the
path must intersect K at some point in time during the
isotopy. We add the modified unlinking move to C ′, and
repeat for each unlinking move ci of C

Figure 7: Modifying an unlinking move from C.

Let C ′ = c, c′1, ..., c
′
m, where for notational conve-

nience we do not assume that c′i is the result of modi-
fying ci (for example, if c1 involved K then we would
have skipped it, so c′1 would be a result of modifying
c2). Since the paths determining the modified moves
were constructed to be disjoint from D, the disk D is
disjoint from L\K after performing C ′. Therefore, after
performing all unlinking moves of C ′, K must be an un-
linked unknot. To evaluate conditions (b) and (c), we
therefore only need to analyze how the moves of C ′ af-
fect L\K. If we restrict both C and C ′ to the subset of
moves that do not involve K, then the sets of restricted
moves act similarly on L\K, since the paths determin-
ing the moves only differ by an ambient isotopy of L\K.
So (b) and (c) hold.

We can now prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] For a given 3–SAT prob-
lem F with n variables and m clauses, take the asso-
ciated link LF constructed for unlink as a sublink,
and modify it by replacing every component with an
untwisted Whitehead double. Denote this link by LF∗ .
In this diagram, unclasping moves for each Whitehead
doubled component are visible as crossing changes in the
diagram. Each Whitehead doubled component bounds
an obvious disk in the diagram after performing such an
unclasping move.

Take a sequence C of n unlinking moves of LF∗
resulting in an unlink. A Whitehead doubled Hopf
link cannot be unlinked without an unlinking move
that only involves the components of that Whitehead

doubled Hopf link. Indeed, moves involving other
components will not split the two components of a
Whitehead doubled Hopf link from each other. Note
however that once a component of Whitehead doubled
Hopf link is a split from all other components, it is
an unlinked unknot. Denote the Whitehead doubled
Hopf sublinks by W1,W2, ...,Wn. Since there are n
distinct Whitehead doubled Hopf sublinks of LF∗ and
C consists of n unlinking moves, C must consist of one
move involving each of Wi. Note that such sequence C
is not unique: we just choose one such C.

We claim that by repeatedly applying Lemma 3.1
to LF∗ and one of the components of each Wi, we obtain
another set of unlinking moves C∗ such that the ith
move of C∗ is an unclasping move for either the xi or
¬xi component of LF∗ . Indeed, first find an unlinking
move of C involving one of the components K1 of W1.
Applying Lemma 3.1 to L and K1 gives a sequence of
unlinking moves C ′ of equal or lesser length than C.
The first unlinking move c′1 of C ′ is an unclasping move
for K1. By Lemma 3.1(b), the new sequence of moves
C ′ must still result in L being an unlink. Note that
C ′ must have a move involving one of the components
K2 of W2, since C had a move involving only W2, and
in the proof of Lemma 3.1 we did not exclude such
moves. So we can again apply Lemma 3.1 to L and
the component K2 of W2. Recall that we are working
with a particular link diagram of LF∗ , described in the
beginning. After performing an unclasping move c′2 for
K2, the component K2 bounds a disk visible in the link
diagram, and the path determining c′1 does not intersect
this disk. Therefore, the application of Lemma 3.1 does
not modify c′1, and we obtain a sequence beginning with
c′2, c

′
1. Repeating this process, we can get a sequence

of unlinking moves such that, up to reordering, its ith
unlinking move is an unclasping move for either the xi
or ¬xi component of LF∗ .

Deleting an unlinked unknot does not change
whether a link is an unlink. So every unlinking move of
C∗ can be seen as deleting a component of LF∗ , as in the
proof of NP-hardness for unlink as a sublink (The-
orem 2.1). Hence from the proof of Theorem 2.1, a set
of unlinking moves C∗ that results in LF∗ becoming an
unlink corresponds to a variable assignment satisfying
the 3–SAT problem F .

The number of crossings in LF∗ is at most four times
the number of crossings in LF plus twice the number
of components (the number of components is bounded
by the number of crossings of LF ). In the proof of
Theorem 2.1 we show that the number of crossings of
LF is polynomial in the size of F , therefore so is the
number of crossings of LF∗ . Hence the reduction above
is polynomial in the size of F .
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Corollary 1. diagrammatic unlinking number
is NP-complete.

Proof. In this proof, for every 3SAT formula F we need
to construct a link diagram (rather than a link) that
can be unlinked with n unlinking moves if and only if
F is satisfiable. We will use the initial diagram of LF∗
from above. With this, the fact that diagrammatic
unlinking number is NP-hard follows from the proof
of Theorem 3.1. In the proof, a set of n unlinking moves
C assumed to take LF∗ to the unlink is modified to obtain
a new set C∗ that also changes LF∗ into an unlink. In
particular, all moves of C∗ consist of changing a crossing
of a Whitehead double of an unknot. All such moves are
actually realized in the diagram, so there exists a set of
n crossing changes changing the diagram of LF∗ into a
diagram of the unlink if and only if the formula F has
a solution. Thus, the restricted problem is NP-hard.

For proving that the problem is in NP, note that
LF∗ can be changed to a diagram of an unlink with
n crossing changes, though the diagram might not
yet be the standard unlink diagram consisting of n
circles with no crossings. Hence, we need to take
a polynomial length certificate consisting of a choice
of these n crossings followed by one of the known
polynomial length certificates for the unlink. This
proves the problem is NP-complete.

Remark 2. An alternative construction for the link LF∗
is to take the link LF and replace only the Hopf link
components with the Whitehead doubles.

While we do not use this directly, we note that
Theorem 1.2 from [3] shows that there is a unique way,
up to a certain natural notion of equivalence, to unknot
by a crossing change a Whitehead double of any knot
but the figure-eight.

4 Splitting and Unknotting numbers

There are two other natural problems related to un-
linking number. The first is the unknotting number
problem, which is the restriction of the unlinking num-
ber problem to single component links.

unknotting number: Given a knot diagram and
an integer n, does the knot shown have unknotting
number n?

The next is the problem of calculating the splitting
number of a link. A split link is a link that has a
(topological) 2-sphere in its complement separating one
or more link components from the others.

Definition 4.1. The splitting number of a link L is
the minimal number of crossing changes required to

make the link a split link, minimized over all diagrams.

As with the unlinking number, the splitting number can
also be formulated without reference to diagrams by
using unlinking moves. Specifically, it is the minimum
number of unlinking moves needed to change a link
into a split link. Variations of the splitting number
have also been analyzed in the literature (see, for
example, [8] for details). For example, while the
splitting number only requires one separating 2-sphere
in the link complement, the total splitting number asks
for the minimum number of crossing changes needed to
ensure that every component is split by a 2-sphere from
the other components.

splitting number: Given a link diagram and an
integer n, does the link have splitting number n?

The unknotting number and splitting num-
ber problems can also be rephrased as upper bound
problems with “number at most n”. Although rephras-
ing in this way changes the problems, it does not affect
the property of being NP-hard. Indeed, n calls to an
oracle solving the exact value problem is sufficient to
solve the upper bound problem, while two calls to an
oracle for the upper bound problem will solve the ex-
act value problem. Since both the crossing number and
splitting number are bounded by the crossing number
and therefore the size of the input, both reductions are
polynomial.

If one tries to extend the proof of Theorem 3.1 to
the unknotting number, the main difficulty is that an
unknotting number is known only for few specific classes
of knots. Therefore, when constructing a new knot
corresponding to a given 3–SAT instance, it is hard to
show that there are no unexpected ways of unknotting
it. Nonetheless, we conjecture:

Conjecture 3. unknotting number is NP-hard.

We will use methods similar to the ones in Theorem
3.1 to prove the following theorem.

Theorem 4.1. splitting number is NP-hard.

We start with two preliminary lemmas.

Lemma 4.1. Let x1, · · · , xn be generators for the free
group Fn and let g be a nonempty product of non-
trivial twice iterated commutators in x1, · · · , xn, so
g = [xα1

, [xβ1
, xγ1 ]][xα2

, [xβ2
, xγ2 ]] · · · [xαm

, [xβm
, xγm ]],

where 1 ≤ αi < βi < γi ≤ n for all i. Then g is non-
trivial in Fn.

Proof. A word in the free group is trivial if and only
if it can be reduced to the empty word by cancelling
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adjacent xαx
−1
α or x−1α xα pairs. Within a given iterated

commutator

[xαi , [xβi , xγi ]] = xαi(xβixγix
−1
βi
x−1γi )x−1αi

(xγixβix
−1
γi x

−1
βi

)

there are no such pairs since 1 ≤ αi < βi < γi ≤
n. Between adjacent commutators, we can have at
most two pairs of elements that cancel. Indeed, each
iterated commutator begins with the product xαixβixγi
of three distinct generators but ends with the expression
xβi

x−1γi x
−1
βi

using only two distinct generators. It follows
that whatever is between those two expressions in each
iterated commutator will never be cancelled in the
product g of iterated commutators. Hence the word
g cannot be reduced to the empty word.

Lemma 4.2. Let Fn and g be as in Lemma 4.1 and
let S be a subcollection of the collection of generators
x1, · · · , xn. Let N(S) be the smallest normal subgroup of
Fn containing S, and G be the quotient Fn/N(S). Then
the image of g under the quotient map is trivial if and
only if at least one element of each triple xαi

, xβi
, xγi is

contained in S.

Proof. Denote the image of g under the quotient map
by ḡ. First suppose that at least one element from each
triple xαi

, xβi
, xγi is contained in S. Then the image

of each iterated commutator [xαi
, [xβi

, xγi ]] is trivial
in G, and so ḡ is trivial in G as the product of these
commutators.

Now we prove that if some triple contains no
element of S, then g must be nontrivial. For each
i such that one of xαi

, xβi
, xγi is in S, the image

of [xαi , [xβi , xγi ]] is trivial in G, so we can remove
[xαi , [xβi , xγi ]] from g without changing its image. Due
to this, we may assume that no triple of g contains an
element of S. Next, observe that G is a free group on
n − |S| generators. Indeed, define a map from Fn to
Fn−|S| by crossing out all appearances of elements of S
and their inverses. It is simple to check that this is a
surjective group homomorphism with kernel N(S), and
image G. The generators of G can be taken to be the
set of xα not contained in S. The word g is a sequence
of iterated commutators in these generators, so we can
apply Lemma 4.1 to see that the image of g is nontrivial.

We now begin the construction.

Proof. [Proof of Theorem 4.1]
Let F be a 3-SAT formula with n variables and

m clauses. We construct a link LF that has splitting
number n if and only if F has a solution. First, add in
additional variables xn+1 . . . x2n and clauses xi ∨ ¬xi ∨
xn+i and xi ∨ ¬xi ∨ ¬xn+i for 1 ≤ i ≤ n. These new

clauses and variables do not change the satisfiability of
the 3-SAT formula. Indeed, all new clauses are satisfied
by any TRUE/FALSE variable assignment. The new
formula F ′ has n′ = 2n variables and m′ = m + 2n
clauses.

To construct the link, begin with a 2n′-
component unlink, and label the components
x1, · · · , xn′ ,¬x1, · · · ,¬xn′ . The complement of
this unlink has fundamental group F2n′ , and Wirtinger
generators

x1, · · · , xn′ ,¬x1, · · · ,¬xn′

each corresponding to a loop going once around the
strand of the link component with the respective label.
Suppose F ′ has clauses ci = zαi∨zβi∨zγi for 1 ≤ i ≤ m′
and 1 ≤ αi, βi, γi ≤ n′, where zαi is either xαi or ¬xαi

appearing in ci. Then we add a single component P
corresponding to the word

[zα1
, [zβ1

, zγ1 ]][zα2
, [zβ2

, zγ2 ]] · · · [zαm′ , [zβm′ , zγm′ ]]

in the fundamental group. Once the above product of
the iterated commutators is written as a word in x±1α
and (¬xα)±1, P is drawn using the same method as
in the proof of Theorem 2.1 with respect to the link
strands/components labeled by the generators. Note
however that the strands do not belong to Hopf sublinks
anymore as in Theorem 2.1, but rather to unlinked
components. See Figure 8 for a simple example.

Figure 8: A link representing the commutator
[¬x1, [x3, x4]], corresponding to the clause ¬x1∨x3∨x4.

We claim P is not split from the collection of
other components. In fact, suppose S is some subset
of x1, · · · , xn′ ,¬x1, · · · ,¬xn′ and we delete the compo-
nents with labels corresponding to elements of S to get a
link LS . Then by Lemma 4.2, P is split from the other
components in LS if and only if each triple αi, βi, γi
contains some element of S.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



The next step is to construct an intermedi-
ate link Ld by replacing each of the components
x1, ..., xn′ ,¬x1, ...,¬xn′ (but not the combined clause
component P ) with an untwisted Whitehead double.
We call these Whitehead doubles the variable compo-
nents of Ld, in contrast to the clause component P , and
continue to refer to them by the same labels. Note that
as a Whitehead double, each variable component can
be made into an unknot unlinked from the other com-
ponents by a single crossing change (or unlinking move,
in the diagram free terminology). We again call this
crossing change an unclasping move. Thus, the split-
ting number of Ld is always one, although splitting the
link in this way will in general not split P from the other
components.

We will show that in Ld, the component P can
be split from all other components in n unlinking
moves if and only if there is a solution for F . More
specifically, we claim that if P can be made split from
the rest of Ld by n unlinking moves, then there is a
set of n unclasping moves for variable components that
also splits P from the rest of Ld, and that this set
of n unclasping moves corresponds to an assignment
satisfying F . Here unclasping a component labelled zβk

means assigning TRUE to zβk
in the variable assignment

for F . Note that such an assignment also corresponds
to a partial assignment of variables of F ′, but leaves
n of the variables of F ′ unassigned. However, the
construction of F ′ ensures that if such an assignment
satisfies all clauses of F , then any arbitrary choice
of TRUE/FALSE for the last n variables of F ′ will
satisfy all clauses of F ′. That is, every clause of F ′

is assured to be true by the assignment given to one of
the first n variables. It follows that in the group element
g corresponding to the component P , every iterated
commutator will collapse to the identity in the group
quotient determined by the partial variable assignment
as per Lemmas 4.1 and 4.2.

Suppose P can be split from the other components
of Ld in n unlinking moves. Denote this set of unlinking
moves by C. We now apply Lemma 3.1 to every
variable component of Ld such that there is a move in
C involving this component. The chosen component
serves as K in the lemma. Then using Lemma 3.1 (a)
and (c) for such components we can replace any move
in C involving a variable component with an unlinking
move unclasping this component. After all possible such
replacements in C, the new set of unlinking moves C ′

consists of some moves unclasping variable components
of Ld and some moves that only involve P . We will see
that the latter moves cannot appear in C ′.

Note that in C ′, the moves involving variable com-
ponents do not yet determine an assignment of variables

of F in the right way. In particular, a variable might be
assigned both TRUE and FALSE if there is an unclasp-
ing move for both xi and for ¬xi. A variable of F may
also be not assigned anything at all. In what follows,
the extra clauses that we added to F to obtain F ′ will
be used to determine a variable assignment for F fully.
Therefore our assignment for F will not come from the
current sequence C ′. Rather, we will modify C ′.

Suppose a link component that corresponds to xn+i
or ¬xn+i is unclasped for 1 ≤ i ≤ n by an unlinking
move v in C ′. We might have one of two scenarios.

In the first scenario, there is no unclasping move
for the link components labeled either xi or ¬xi. In this
case v from C ′ can be replaced by either such unclasping
move. Indeed, in Lemma 4.2, replacing xn+i or ¬xn+i
with xi or ¬xi in the set S still yields a trivial image of
g, since at least one element of every triple xαi

, xβi
, xγi

is still contained in S after the replacement. Therefore,
such a replacement of v in C ′ yields the sequence that
still splits P .

In the second scenario, there is already another
unclasping move u in C ′ for either xi or ¬xi. This means
that either (1) we applied Lemma 4 to xi or ¬xi when we
constructed C ′ from C, to obtain this unclasping move;
or (2) the move u was one of the original linking moves in
C; or (3) we already replaced another unclasping move
of xn+i or ¬xn+i in C ′ with u as in the first scenario.
In all cases, the move c can be deleted from C ′ without
changing whether F is satisfied.

Note that if we already have an unclasping move u
for xi or ¬xi in C ′, then u yields a part of a variable
assignment. All clauses of F ′ involving the component
xn+i or ¬xn+i are already satisfied by assigning xi to
either TRUE or FALSE, so the TRUE/FALSE assign-
ment of xn+i corresponding to the unclasping move c
is redundant. Indeed, no clauses of the original for-
mula F involve xn+i or ¬xn+i, and the added clauses
xi ∨ ¬xi ∨ xn+i and xi ∨ ¬xi ∨ ¬xn+i will both still be
satisfied after such a replacement or deletion.

After all modifications, denote the resulting se-
quence by C ′′. As explained above, C ′′ splits P from
the rest of Ld. At the end of this process, we can assume
that all unclasping moves in C ′′ are of link components
corresponding to xi or ¬xi for 1 ≤ i ≤ n. The clauses
xi ∨ ¬xi ∨ xn+i then ensure that either xi or ¬xi is un-
clasped for all 1 ≤ i ≤ n. Since there are at most n un-
claspings, xi and ¬xi cannot both be unclasped for any
i. The choice of which variable components to unclasp
therefore corresponds to a TRUE/FALSE assignment to
x1 . . . xn, and these unclaspings will result in the clause
component being split if and only each clause of F is
satisfied.

It follows that there must be precisely n unclasping

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



moves in C ′′. Since C ′′ is a set of n unlinking moves, all
unlinking moves must therefore be unclasping moves,
and there can be no moves involving P . The set of
unlinking moves C ′′ therefore corresponds to a variable
assignment in F , and the clause component can be split
from the other components in n unlinking moves if and
only if there is a solution for F . Note again that the
splitting number of Ld is always 1, since unclasping one
side of any variable produces a split link.

To obtain the final link LF , we add one more
component to Ld. Consider the curve E drawn in
grey in Figure 9. This curve has linking number 1
with every link component other than the combined
clause component, and we can choose this curve to
have no crossings with the combined clause component.
Thicken the curve E, and let E′ be a curve going
around the boundary torus of the thickened curve n+ 1
times longitudinally and once meridianally (p.106 of [15]
defines meridian and longitude of a knot). Then E′ links
with every non-clause component n+ 1 times.

Figure 9: A curve E in thick grey linking every non-
clause link component.

Let LF be the union of the variable components,
the combined clause component, and E′. The compo-
nent E′ cannot be unlinked from any of the variable
components in fewer than n+ 1 moves, so the only way
to get a split link from LF in at most n unlinking moves
is to split the combined clause component from the re-
maining components. As argued above, this is possible
if and only if F has a solution. Thus, LF can be split
in n unlinking moves if and only if there is a solution to
the formula F .

The size of the diagram of LF is polynomial in the
size of the input for F . Indeed, before adding E′ the
number of crossings is less than the number of crossings
involved in the construction for unlinking number,
which was shown to be polynomial in the size of the
input in Theorem 3.1. K has n self-crossings, and
8n(n+1) crossings with other components, so adding the
component E′ adds polynomially many more crossings.
Therefore, we have a polynomial reduction and the
theorem follows.

Remark 4. The method of combining all clause link
components into a single component can also be applied
to the unlink as a sublink, unlinking number,

and alternating sublink, though we use different
methods there. While combining all components allows
the number of components in the link corresponding to
a given 3-SAT formula to be reduced, the proofs become
more complicated.

5 Alternating Sublinks

We next consider another variation of the sublink
problem. Definition 4.4.4 in [15] explains what an
alternating link is.

alternating sublink: Given a diagram of a link
L and a positive integer k, does L have a k-component
sublink that is alternating?

Note that unlike the sublink problem as proposed
by Lackenby and the special case unlink as a sublink
analyzed in Theorem 2.1, the problem above asks not for
a specific sublink, but a sublink with a given property.

Theorem 5.1. alternating sublink is NP-hard.

We need the following lemma:

Lemma 5.1. Let Ls be a link that is not the unlink, and
L′s the result of replacing every component of Ls with a
Whitehead double. Then L′s is not alternating.

Proof. The link Ls is split if and only if L′s is split. A
satellite or companion torus is defined on p.121 of [15].
A splitting sphere for Ls also splits L′s, while a splitting
sphere for L′s can be isotoped to obtain a splitting sphere
disjoint from all satellite tori, and is therefore a splitting
sphere for Ls.

We will assume L′s is alternating and arrive at a
contradiction. Consider a reduced alternating diagram
D of L′s. If L′s is split, L′s can be seen to be split in D as
was proved by Menasco [13]. Moreover, every connected
piece of D is alternating, and at least one of such pieces,
say P , is not an unknot, since L′s is not an unlink. The
piece P is alternating and has a connected diagram by
assumption, and hence P is non-split as a link in S3.

We claim that P is then prime as a link in S3

(Definition 4.3 in [12] explains what a prime link is).
Menasco’s results [13] imply that a prime link comple-
ment cannot contain an incompressible non-boundary
parallel torus, but there is a satellite torus in the com-
plement S3 − P , a contradiction.

Let us now prove the claim that P is prime.
Suppose Σ is an embedded 2-sphere intersecting P in
two points. Let K ′ be the link component of P that Σ
intersects, and let T be the companion torus for K ′. Let
K be the component of Ls of which K ′ is a Whitehead
double, so T can be thought of as the boundary of a
regular neighborhood of K. See Figure 10.
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Figure 10: The link component K ′ (black) in it’s
companion torus T (thick green), and the sphere Σ
(grey) intersecting K ′ in two points. Fragments of other
components of L are also depicted in black.

Figure 11: The link component K ′ (black) in it’s
companion torus T (thick green), and the sphere Σ
(grey) intersecting K ′ in two points. Fragments of other
components of L are also depicted in black.

If the 2-sphere Σ intersects T in an essential merid-
ianal curve, there must be at least two such curves of
intersection. Therefore, the number of intersections of
Σ and the component K ′ is at least 4, contradicting the
definition of Σ. If Σ intersects T in an inessential curve,
we can isotope Σ to remove this intersection, since P
is not split. Since Σ intersects K ′ by assumption, Σ
lies entirely on the same side of T as K ′, and any other
components of P lie on the other side of T , since T is a
companion torus for K, as shown in Figure 11. There-
fore, the connected component of the manifold S3 − Σ
that does not contain T intersects K ′ and no other com-
ponents of P . We claim this intersection with K ′ is an
unknotted arc.

Let V be the solid torus bounded by T and contain-
ingK ′. Consider a homeomorphism h of V such that the
resulting solid torus h(V ) is embedded and unknotted in
S3, and K ′ inside V ′ is an untwisted whitehead double
of an unknot. The map h can be visualized, for exam-

ple, as cutting V along a meridianal disk, unknotting
and untwisting it if necessary, and regluing along the
same disk again. Then there is a 2-sphere h(Σ) inside
h(V ) intersecting h(K ′) in two points. The sphere h(Σ)
splits S3 into two 3-balls. Since h(K ′) is the White-
head double of an unknot, and is therefore unknotted
itself, it must intersect both 3-balls in unknotted arcs.
On the other hand, h did not change the interior of V ,
and therefore pulling back by h shows that Σ bounds
an unknotted arc in V as well. We have shown that any
2-sphere intersecting Σ in two points bounds an unknot-
ted arc on one side, and hence P is prime.

Proof. [Proof of Theorem 5.1] Given a 3-SAT formula
F , we use the same construction for a link LF∗ as for
unlinking number in Theorem 3.1. Recall that each
component of the link LF∗ is the Whitehead double
of a component of the respective link LF used for
unlink as a sublink in the proof of Theorem 2.1. Let
Ls be a k-component sublink of LF , before replacing
all components with their Whitehead doubles, and L′s
be the respective sublink of LF∗ after replacing the
components with Whitehead doubles.

We proved in Theorems 2.1 and 3.1 that each of
Ls and L′s is the unlink if and only if it corresponds
to a solution of the 3–SAT problem F . If L′s does not
correspond to a solution of F , the sublink Ls is not an
unlink, and hence L′s cannot be alternating by Lemma
5.1. On the other hand, if L′s is an unlink, it is trivially
alternating. Therefore, L′s is alternating if and only if it
corresponds to a solution of F . This Karp reduction is
the same as the one used for unlinking number, so it
is polynomial in the size of input for F . It follows that
alternating sublink is NP-hard.
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