
	

Scheduling	Challenges	for	Variable	Capacity	

Resources	

Chaojie	Zhang1	and	Andrew	A.	Chien1,2	

1	
University	of	Chicago,	Chicago	IL,	USA	

2	
Argonne	National	Lab,	Chicago	IL,	USA	

chaojie@uchicago.edu,achien@cs.uchicago.edu	

Abstract.	 Datacenter	 scheduling	 research	 often	 assumes	 resources	 as	 a	

constant	 quantity,	 but	 increasingly	 external	 factors	 shape	 capacity	

dynamically,	 and	 beyond	 the	 control	 of	 an	 operator.	 Based	 on	 emerging	

examples,	we	define	a	new,	open	research	challenge:	the	variable	capacity	

resource	 scheduling	 problem.	 The	 objective	 here	 is	 effective	 resource	

utilization	despite	sudden,	perhaps	large,	changes	in	the	available	resources.	

We	define	the	problem,	key	dimensions	of	resource	capacity	variation,	and	

give	 specific	 examples	 that	 arise	 from	 the	 natural	world	 (carboncontent,	

power	price,	datacenter	cooling,	and	more).	Key	dimensions	of	the	resource	

capacity	 variation	 include	 dynamic	 range,	 frequency,	 and	 structure.	With	

these	 dimensions,	 an	 empirical	 trace	 can	 be	 characterized,	 abstracting	 it	

from	the	many	possible	important	real-world	generators	of	variation.	

Resource	capacity	variation	can	arise	from	many	causes	including	weather,	

market	 prices,	 renewable	 energy,	 carbon	 emission	 targets,	 and	 internal	

dynamic	 power	 management	 constraints.	 We	 give	 examples	 of	 three	

different	sources	of	variable	capacity.	

Finally,	 we	 show	 variable	 resource	 capacity	 presents	 new	 scheduling	

challenges.	 We	 show	 how	 variation	 can	 cause	 significant	 performance	

degradation	 in	 existing	 schedulers,	 with	 up	 to	 60%	 goodput	 reduction.	

Further,	 initial	 results	also	show	 intelligent	 scheduling	 techniques	can	be	

helpful.	 These	 insights	 show	 the	 promise	 and	 opportunity	 for	 future	

scheduling	studies	on	resource	volatility.	
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1 Introduction	

The	 extensive	 research	 studies	 on	 job	 scheduling	 and	 resource	 management	

generally	focus	on	problems	where	the	quantity	of	resources	is	fixed	or	constant.	

In	this	paper,	we	define	a	new,	open	research	challenge:	the	variable	capacity	

resource	scheduling	problem.	That	is,	in	data	centers	or	clusters	of	the	future	it	
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will	 be	 common	 to	 have	 variable	 capacity,	 and	 that	 capacity	 determined	 by	

external	factors.	Changing	resource	capacity	is	a	challenge	for	job	schedulers	

	

Fig.1.	Management	to	minimize	carbon	emissions	or	power	cost	combined	with	power	grid,	

power	markets,	 and	 renewable	 generation	 producing	 variable	 capacity.	 This	 is	 because	

changing	power	level	directly	affects	the	available	computing	resources	[17,	

34].	

and	resource	managers	because	of	the	uncertainty	about	future	resource	capacity.	

On	 one	 hand,	 this	 means	 that	 even	 if	 job	 runtime	 is	 known	 at	 start	 time,	 the	

resources	may	not	be	available	 long	enough	 to	 complete	 it.	On	 the	other	hand,	

resources	can	increase	rapidly,	challenging	the	availability	of	workload	to	utilize	

them.	

A	 wide	 variety	 of	 sources	 can	 produce	 variable	 resource	 capacities.	 For	

example,	 power	 limits	 are	 constraining	 the	 scale	 of	 world’s	 largest	

supercomputers	 [6]	 and	 already	 define	 datacenter	 size.	 With	 the	 largest	

supercomputers	approaching	50	megawatts,	and	predicted	to	grow	well	beyond	

150	megawatts	by	2025	[43].	These	limits	make	dynamic	power	management	for	

cost,	cooling,	sharing,	or	simply	to	be	a	good	citizen	in	a	 fluctuating	or	stressed	

power	grid	a	source	of	variable	capacity	for	datacenters.	At	another	level,	carbon	

emission	management	can	give	rise	to	dynamic	capacity.	Concerned	about	climate,	

governments	around	the	world	have	adopted	policies	to	reduce	carbon	emissions	

whenever	 possible	 at	 the	 same	 time	 hyperscale	 cloud	 operators	 (e.g.	 Amazon,	

Microsoft,	 Google,	 etc.)	 are	 growing	 rapidly,	 accelerated	 further	 by	 exploding	

popularity	 of	 machine	 learning	 [19,36].	 This	 means	 that	 they	 must	 reduce	

datacenter	power,	perhaps	on	a	dynamic	basis	in	concert	with	use	of	renewable	

generation[27,32,	

29].	
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The	 importance	 of	 power	 and	 carbon	 as	 both	 a	 limit	 and	 a	 key	 cost	 has	

spawned	a	large	and	vibrant	body	of	research	on	synergizing	use	and	load	with	the	

grid	 (ZCCloud	with	renewables	and	 low	price	 [42,8])	or	with	 the	availability	of	

local	renewables	[16,20,12].	These	approaches	all	suggest	that	future	data	centers	

will	 have	 variable	 capacity,	 determined	by	 external	 factors	 such	 as	 the	 general	

(grid-wide)	or	local	(on	site)	availability	of	renewable	generated	power.	

Beyond	power,	there	are	a	number	of	other	scenarios	where	variable	capacity	

is	of	interest	for	resource	management.	For	example,	a	dependent	cloud	(a	meta-

cloud	 that	 forms	 its	 resource	 pool	 from	 spare	 resources	 of	 others)	 typically	

experiences	frequent	capacity	change.	One	example	of	this	would	be	the	metacloud	

formed	from	a	collection	of	AWS	spot	instances	and	Google’s	preemptible	virtual	

machines.	Another	example	source	of	variation	might	include	partitionshutdowns	

for	 software	upgrades,	 response	 to	a	 security	emergency,	 and	 so	on.	The	 latter	

examples	may	seem	less	compelling	as	they	may	perhaps	be	more	controllable	in	

theory.	However,	in	practice	they	may	not	be	controllable.	

These	varied	scenarios	suggest	clusters,	availability	zones,	scheduling	domains,	

even	 entire	 data	 centers	will	 have	 variable	 capacity,	 driven	by	 external	 factors	

such	as	power	allocation,	market	prices,	or	even	general	(grid-wide)	or	local	(on-

site)	availability	of	renewable	energy.	This	is	the	core	motivation	for	the	variable	

capacity	resource	scheduling	problem.	As	shown	 in	Figure	1,	an	external	 factor	

such	as	varying	power	creates	variation	in	capability/capacity	and	the	resource	

manager	must	effectively	manage	this	varying	capacity	as	it	changes	over	time,	as	

in	Figure	2(b).	

Today’s	resource	management	systems	and	schedulers	generally	assume	full	

knowledge	of	resource	capacity,	and	presume	that	it	is	stable	going	forward.	While	

resource	managers	have	dealt	with	the	addition	and	removal	of	resources,	these	

have	 typically	 been	 rare	 events	 with	 either	 unpredictable	 (failures)	 or	 simply	

structured	 (upgrade)[11].	 Further,	 these	 are	 typically	 small-scale	 compared	 to	

cluster	 size.	 In	 contrast,	 many	 of	 the	 sources	 of	 variation	 we	 consider	 are	

continually	varying,	have	complex	correlation	with	external	factors	(e.g.	weather),	

and	have	large-scale	effect	on	cluster	resources.	It	 is	not	known	how	to	achieve	

high	 goodput	 (useful	 throughput)	 in	 the	 face	 of	 continual	 resource	 capacity	

variability.	

To	 define	 the	 problem,	 in	 subsequent	 sections	 we	 first	 define	 the	 key	

dimensions	of	resource	capacity	variation.	With	this	framework	of	dynamic	range,	

frequency,	 structure,	 and	 foresight	 in	 place,	 an	 empirical	 trace	 can	 be	

characterized,	abstracting	it	as	a	generic	problem.	Second,	we	give	several	specific	

examples	in	the	natural	world	(carbon-content,	power	price,	datacenter	cooling,	

and	more)	 that	give	 rise	 to	variation.	We	 illustrate	how	varied	and	challenging	

these	examples	are.	Third,	we	present	simulation	results	that	show	that	variable	

resource	capacity	presents	new	scheduling	challenges.	Without	change,	 current	

schedulers	suffer	significant	performance	 loss,	up	to	60%	goodput	degradation.	

Finally,	 we	 present	 initial	 studies	 which	 show	 that	 intelligent	 scheduling	

techniques	can	be	helpful.	
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Specific	contributions	of	the	paper	include:	

– Formal	 definition	 of	 a	 new	 scheduling	 problem,	 variable	 capacity	 resource	

management	in	datacenters	

– Examples	 of	 and	 empirical	 traces	 of	 sources	 that	 lead	 to	 resource	 capacity	

variability	

– Study	 of	 variable	 capacity	 that	 show	 today’s	 schedulers	 suffer	 significant	

performance	degradation	

– Study	 of	 scheduler	 improvements	 shows	 that	 intelligent	 scheduling	

techniques	are	promising	in	regaining	performance	loss.	

The	rest	of	the	paper	is	organized	as	follows.	In	Section	2	we	formally	define	

the	 scheduling	 problem	 of	 variable	 resource	 capacity.	 In	 Section	 3,	we	 discuss	

some	empirical	examples	and	cover	metrics	in	Section	4.	In	Section	5,	simulation	

results	 show	 how	 resource	 variability	 impacts	 scheduler	 performance	 and	

scheduling	 techniques	 that	 can	 mitigate	 performance	 degradation.	 We	 discuss	

some	future	directions	and	opportunities	in	Section	6	and	related	work	in	Section	

7.	Finally,	we	summarize	in	Section	8.	

2 Scheduling	Problem	with	Resource	Capacity	Variations	

2.1 Scheduling	Problem	Definition	

We	formally	state	the	job	scheduling	problem	as	follows.	In	a	data	center	or	cluster,	

let	M	 denote	 the	 number	 of	 total	 machines,	 where	 each	 machine	m	 has	 r(m)	

resources.	We	want	to	schedule	a	set	of	jobs	J	on	M	machines.	Each	job	j	∈	J	has	

submission	time	s(j),	resource	requirement	r(j)	and	execution	time	t(j).	The	data	

centers	 need	 to	 decide	 jmt,	 which	 is	 the	 decision	 variable	 of	 running	 job	 j	 on	

machine	m	at	time	t.	In	traditional	systems,	such	placements	are	subject	to	each	

machine’s	resource	constraint:	

 ∀t	∈	T,∀m	∈	M,Xjmt	×	r(j)	≤	r(m)	 (1)	
j∈J	

where	 the	 left	 hand	 side	 calculates	 the	 number	 of	 active	 resources	 that	 are	

processing	jobs	on	each	machine.	

However	in	the	new	scheduling	problem	with	resource	capacity	variations,	the	

available	resource	capacity	is	a	function	of	time	t,	denoted	as	R(t)	where	R(t)	≤	M.	

Hence,	 all	 job	 placements	 are	 now	 subject	 to	 a	 time-varying	 resource	 capacity	

constraint	at	each	time	slot	t:	
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∀t	∈	T,∀m	∈	M,Xjmt	×	r(j)	≤	r(m)	

j∈J	 subject	

to	

(2)	

umt	=	1	⇐⇒	∃j	∈	J	s.t.	jmt	=	1	

X	

umt	×	r(m)	≤	R(t)	m∈M	

This	 constraint	 ensures	 that	 the	 total	 number	 of	 machines	 which	 have	 active	

running	 jobs	do	not	 exceed	 current	 resource	 capacity	R(t),	where	umt	 indicates	

whether	a	machine	is	active	or	not.	

	

 (a)	Goodput	 (b)	Hourly	Capacity	

Fig.2.	Scheduler	goodput	for	a	batch	HPC	workload	under	variable	capacity	(a);	as	dynamic	

range	increases,	performance	degrades.	Example	of	hourly	capacity	variation	(b),	assuming	

with	enough	capacity	headroom.	

2.2 Challenges	of	Job	Scheduling	

When	 resource	 capacity	 varies,	 even	 if	 the	 average	 capacity	 does	 not	 change,	

significant	 losses	 in	 system	 goodput(useful	 resource	 utilization	 based	 on	 total	

available	 resources)	can	result.	 In	Figure	2(a),	we	present	 the	resulting	system	

goodput	 under	 dynamic	 capacity,	 even	when	 a	 state-of-the-art	 scheduler	 [9]	 is	

used!	As	the	dynamic	range	of	variation	increases	from	0	to	0.6	(around	an	average	

capacity	 of	 0.7),	 goodput	 decreases	 by	 30%.	 Results	 are	 shown	 for	 capacity	

variability	with	random	walk	structure	with	stepsize	of	one-fourth	the	dynamic	

range.	 Figure	 2(b)	 shows	 an	 example	 of	 capacity	 variation	 based	 on	 constant	

hourly	carbon	emissions	from	the	Germany	electricity	market	on	12.03.2020[15].	

The	quantity	 of	 compute	 resources	 available	R(t)	 can	vary	 significantly	 and	on	

short	time	scales	compared	to	job	runtimes.	

What	accounts	for	this	degradation	in	goodput?	Traditional	schedulers	assume	

constant	 resource	 capacity.	Based	on	 the	assumption	 that	 current	 capacity	will	

continue,	these	schedulers	make	decisions	that	commit	resources	into	the	future.	

Because	they	have	been	designed	to	maximize	goodput,	they	strive	to	fill	as	much	



6	 Chaojie	Zhang	and	Andrew	A.	Chien	

of	this	capacity	as	possible.	So	if	resource	capacity	decreases,	expressed	as	R(t)	<	

R(t−1),	the	schedule	reflects	an	overestimate,	and	the	resource	capacity	constraint	

in	Equation	2	can	be	violated.	This	results	in	that	some	scheduled	jobs	may	have	

to	be	terminated	(fail)	to	release	the	machine.	If	resource	capacity	increases,	the	

situation	is	a	little	better.	No	jobs	need	to	be	disturbed,	but	the	schedule	reflects	

an	 underestimation,	 and	 the	 scheduler	 has	 missed	 an	 opportunity	 to	 increase	

goodput.	

In	this	new	world,	key	open	research	questions	include:	

1. How	do	current	schedulers	respond	to	capacity	variation?	

2. How	can	scheduler	performance	be	improved	in	these	challenging	situations?	

3. How	should	we	best	limit	or	shape	capacity	variability	for	performance	and	

other	benefits?	

	

Fig.3.	Modeled	dimensions	of	capacity	variation	include	(1)	dynamic	range,	(2)	variability	

structure	 and	 (3)	 change	 frequency	 (temporal	 granularity)	 on	 a	 time-sequence	 of	

datacenter	capacity	from	Figure	2(b).	

2.3 Approach	

To	characterize	the	challenge	to	conventional	schedulers	under	dynamic	resource	

capacity,	 we	 study	 workloads	 and	 schedulers	 drawn	 from	 both	 HPC	 and	

commercial	environments.	These	workloads	are	well-known	exemplars	of	 their	

respective	environments.	For	each	workload,	we	use	a	system	model	that	varies	

the	 resource	 capacity	 available	 to	 the	 scheduler	 and	 evaluate	 performance.	

Constant	resources	is	a	simple	model;	variable	resources	can	have	many	different	

dimensions	of	variation.	We	consider	three:	

– Dynamic	range:	minimum	to	maximum	capacity	

– Variability	Structure:	random	uniform,	random	walk	

– Change	Frequency:	frequency	of	capacity	variation	
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We	 consider	 these	 key	 dimensions	 as	 abstract	 framework,	 where	 specific	

examples	 can	 be	 characterized	 and	 generalized.	 Dynamic	 range	 captures	 the	

distance	over	which	resource	capacity	varies	–	from	a	low	to	high	watermark	and	

back.	It	is	the	most	foundational	element	of	resource	capacity	change.	Variability	

structure	reflects	how	capacity	is	constrained	to	change	from	one	time	period	to	

the	 next.	 Such	 constraints	 often	 reflect	 the	 realities	 of	 physical	 systems	 -	

inductance,	 momentum,	 inertia	 and	 more	 –	 that	 prevent	 large	 instantaneous	

change.	Change	frequency	reflects	our	choice	to	model	time	discretely	–	capacity	

varies	only	at	time	period	boundaries	–	so	change	frequency	reflects	the	size	of	

those	periods.	 In	a	real	system,	periods	could	be	defined	by	external	structures	

(power	 markets),	 datacenter	 physicals	 (cooling	 and	 power	 sharing	 control	

systems),	or	other	factors.	

Using	 these	 workloads	 and	 schedulers,	 we	 execute	 a	 set	 of	 scheduler	

experiments	 that	 explore	 this	 multi-dimensional	 capacity	 change	 space,	

characterizing	 scheduler	 performance.	 In	 effect,	 each	 experiment	 explores	

scheduler	 performance	 when	 actual	 resource	 capacity	 diverges	 from	 the	

scheduler’s	simple	fixed	

	

Fig.4.	Power	 price	 ($/MWh)	 (left)	 and	 resulting	 resource	 capacity	 for	 a	 200	megawatt	

datacenter	 (right),	 using	 constant	 cost	 purchase	 approach.	 Exemplar	 24-hour	 day	 from	

MISO	January	9,	2018,	CIN.Marklnd	grid	node.	

estimate	of	stable	resources.	Our	goal	is	to	understand	the	capabilities	of	existing	

state-of-the-art	schedulers.	With	a	broad	characterization	of	the	negative	impacts	

of	 capacity	 variation,	 we	 explore	 several	 scheduling	 ideas	 for	 how	 to	mitigate	

performance	degradation	due	to	capacity	variability.	

3 Resource	Capacity	Variations	from	Empirical	Traces	

We	focus	on	a	 few	such	 factors	 that	give	rise	 to	variable	 resource	capacity	and	

derive	variable	resource	traces	from	them	that	can	be	used	to	evaluate	scheduling	

systems.	For	each	of	these	sources,	we	produce	a	set	of	sample	traces	of	one-year	

duration	with	a	variety	of	temporal	resolutions	(spanning	5	minutes	to	hourly).	
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These	exemplar	capacity	traces	are	generated	based	on	several	simple	policies,	e.g.	

constant	(hourly)	carbon	budget.	

3.1 Variation	from	Price	

In	order	to	manage	a	supply	cost	(e.g.	power),	a	common	strategy	is	to	constrain	

expenditures	to	a	constant	rate	for	an	operating	period.	In	datacenters	or	many	

types	 of	machinery,	 this	 couples	 dynamic	market	 price	 to	 resource	 capacity	 as	

illustrated	 in	 Figure	 4,	 showing	 capacity	 variation	 of	 5-fold	 [0.2,1.0]	 or	 more.	

Variation	can	be	large	over	time	periods	as	short	as	5-minutes,	and	with	very	low	

(even	negative)	prices	variable	capacity	may	be	limited	by	physical	capacity.	

3.2 Variation	from	Carbon	Emissions	

Concern	 is	 increasing	 about	 climate	 change,	 and	 thereby	 associated	 carbon	

emissions	with	 power	 consumption.	 Carbon	budgets	must	 be	managed	 against	

power	 grids	 with	 large	 fluctuations	 in	 carbon	 content.	 A	 basic	 strategy	 is	 a	

constant	 carbon	 budget	 for	 each	 time	 period	 as	 shown	 in	 Figure	 5.	 Carbon	

emissions	often	vary	not	only	daily,	but	also	with	patterns	that	differ	by	month	of	

the	 year.	 Note	 that	 workload	 SLOs	 such	 as	 “catchup	 by	 end	 of	 day”	 can	 have	

difficult	interactions	with	the	shape	of	variation	curves.	

	

Fig.5.	Carbon-emissions	rate	(mT/MWh)	(left)	and	resulting	resource	capacity	at	Constant	

Carbon	purchase	approach	(December	2019,	right).	

3.3 Variation	from	Stranded	Power	

A	different	approach	to	lower	carbon	emissions	is	stranded	renewable	power	[8,	

42],	where	excess	renewable	energy	(power	with	zero-marginal	carbon)	can	be	

used	to	power	datacenters	intermittently.	This	excess	case	may	be	important	for	

combatting	climate	[42,43],	and	produces	a	nearly	binary	on-off	resource	capacity	

(Figure	6,	ERCOT),	while	operating	at	zero	carbon	emissions.	The	graphs	illustrate	

15-minute	 intervals,	 and	 reflect	 variation	 over	 a	 weeklong	 period.	 The	 power	

availability	variation	is	day-to-day,	week-to-week,	and	also	by	season	of	the	year.	
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Fig.6.	Stranded	Power	(curtailed	and	negative	priced	power)	in	15-minute	intervals	for	a	

node	in	the	ERCOT	power	grid	(left,	each	line	is	a	different	week),	and	the	resulting	resource	

capacity	for	a	200	megawatt	datacenter	for	the	week	in	December	(right).	

4 Metrics	

In	 this	 section,	 we	 discuss	 the	 metrics	 for	 resource	 capacity	 variation	 and	

measuring	system	performance.	

4.1 Capacity	Variation	

Since	resource	capacity	variation	is	produced	by	external	sources,	such	as	power	

prices,	carbon	footprint	rates,	and	renewable	generations,	 it	can	be	viewed	as	a	

stochastic	process.	To	better	characterize	and	explore	capacity	variation,	we	look	

at	three	dimensions:	

– Dynamic	 range:	 the	 range	 over	which	 the	 resource	 capacity	 can	 vary.	We	

define	 the	 lower	 and	 upper	 bound	 of	 resource	 capacity,	 expressed	 as	

lbound,ubound,	as	a	fraction	of	the	maximum	datacenter	capacity.	Therefore,	

R(t),	 the	 resource	 capacity	at	 any	 time	 t,	will	be	within	 the	dynamic	 range,	

lbound	≤	R(t)	≤	ubound.	

We	consider	variation	ranges	of	0	(constant),	0.2,	0.4	and	0.6	as	a	fraction	of	

maximum	 datacenter	 capacity.	 To	 normalize	 average	 capacity	 at	 0.7,	 this	

produces	dynamic	ranges	and	intervals:	0:	[0.7],	0.2:	[0.6,	0.8],	0.4:	[0.5,	0.9],	

and	0.6:	[0.4,	1.0].	

– Variability	Structure:	defines	how	much	 the	capacity	can	change	between	

adjacent	time	periods.	Random	Uniform:	Resource	capacity	can	be	any	 level	

within	 the	 dynamic	 range	 at	 each	 interval	 and	 is	 drawn	 from	 a	 uniform	

distribution	U([lbound,ubound]),	and	Walk:	Resource	capacity	can	be	any	level	

within	the	dynamic	range,	but	can	only	change	by	a	maximum	of	stepsize	in	

adjacent	time	intervals.	Stepsize	is	one-fourth	of	the	dynamic	range.	

(	
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 U([lbound,ubound]),	 if	Random	Uniform	

R(t)	=	

 R(t	−	1)	±	stepsize,	 if	Random	Walk	

– Temporal	Granularity	represents	the	length	of	each	time	slot	t.	Between	any	

time	t	and	t−1,	the	capacity	is	constant.	We	vary	the	change	frequency	from	

0.25	per	hour	(every	240	minutes)	to	4	per	hour	(every	15	minutes).	

4.2 Performance	

Scheduling	performance	is	measured	by	a	group	of	widely-adopted	metrics.	Here	

we	 formally	 define	 these	 metrics	 which	 address	 system	 expectation	 and	 user	

experiences.	

– Goodput	 is	 a	measure	 of	 useful	 cluster	 utilization.	 It	 is	 calculated	 as	 total	

completed	work	divided	by	total	available	resource	capacity: .	

– Failure	Rate	represents	 the	percentage	of	 jobs	 that	 fail	 to	complete	due	to	

resource	capacity	changes.	It	is	calculated	as	 .	

– Average	Job	Wait	Time	measures	the	average	of	interval	between	job	arrival	

time	in	the	queue	and	job	start	time,	which	can	be	expressed	as	

.	

– SLO	Miss	Rate	represents	the	percentage	of	jobs	that	fail	to	complete	before	

Service-Level-Objective	(SLO)	required	deadline.	For	each	job	j,	SLO	miss	SM(j)	

is	true	if	FINISHj−ARRIV	ALj−t(j)	≥	X%×t(j),	where	X%	

	

Fig.7.	Goodput	for	12	exemplar	days,	comparing	fixed	and	variable	capacity.	

is	 a	 threshold	 and	usually	 set	 to	10%.	The	 total	 SLO	miss	 rate	 is	 therefore	

calculated	as	 .	
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There	are	many	other	widely-used	metrics	 targeting	different	goals,	such	as	

response	 time	 and	 slowdown	 for	 cloud	 workloads	 and	 scheduling	 fairness.	 In	

addition	to	metrics,	there	are	also	various	constraints	that	a	system	must	consider.	

For	example,	”catch-up”	constraint	that	bound	the	maximum	start	time	of	jobs,	and	

hardware	constraints	that	limit	system’s	ramping	capabilities	or	headroom	limits	

that	constrain	system’s	maximum	capacity.	

5 Example	studies	of	Variable	Resource	Capacity	Data	

Centers	

5.1 Experiment	methodology	

We	 considered	 a	 variety	 of	 publicly	 available	workloads.	While	 all	 of	 them	are	

relevant	and	useful	to	study,	we	pick	a	few	examplars	that	are	widely-studied	with	

distinct	characteristics	to	understand	new	scheduling	challenges.	We	use	a	month-

long	production	trace	from	ALCF/Mira	with	a	full	range	of	job	runtimes	and	large	

parallelism	as	the	exemplar	of	large-scale	HPC	workload[5].	We	pick	Azure[10],	

Borg	V2	 traces	 [33]	 as	node-sharing	 commercial	 cloud	workload.	 Compared	 to	

Azure,	 the	Borg	trace	has	more	small	and	short	 jobs,	as	well	as	significant	 load	

from	long-running	jobs.	

For	the	Mira	workload,	we	study	the	corresponding	Cobalt[9]	scheduler	with	

the	Mira	supercomputer,	a	10-petaflops	IBM	Blue	Gene/Q	system,	deployed	at	the	

Argonne	 Leadership	 Computing	 Facility.	 Mira	 contains	 49,152	 nodes	 (786,432	

cores)	 and	 760	 TB	memory	 [28].	We	model	 an	Azure	 commercial	 cluster	with	

1,250	nodes	(20,000	cores)	and	160	TB	of	memory.	This	system	is	a	close	match	

in	scale	in	resource	utilization	to	the	Mira	system.	We	also	model	a	Borg	cluster	

with	630	nodes	(336	GCU	-	Google-Compute-Unit)	and	300	normalized	bytes	of	

memory.	This	system	is	sized	to	match	the	sampled	Borg	V2	trace	used.	Both	cloud	

clusters	use	a	FCFS	first-fit	scheduling	policy.	

5.2 Impact	of	Capacity	Variation	Dimensions	

To	illustrate	the	impact	of	variable	resource	capacity	on	scheduling	performance	

in	 a	 real-world	 scenario,	 we	 consider	 a	 hypothetical	 40-megawatt	 datacenter,	

which	 dynamically	 acquires	 power	 and	 resource	 capacity	 based	 on	 carbon	

emission	 rate,	 operating	 in	 the	 German	 Power	Market[15].	 Because	 the	 power	

market	 varies	 every	 day,	 and	has	 a	 strong	 seasonal	 structure,	we	pick	 a	 set	 of	

exemplar	days	from	the	12	most	recent	months	(Sept	2019	-	August	2020).	When	

using	 constant	 carbon	 emissions	 per	 hour,	 they	 have	 power	 variation	 such	 as	

shown	in	Figure	5.	These	twelve	days	have	24-hour	capacity	increases	from	6%	to	

16%	with	an	average	of	11%.	
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We	use	an	HPC	Mira	workload,	Mira	system,	and	Cobalt	HPC	schedulers.	For	

reference,	 we	 include	 a	 baseline	 mode	 (fixed	 power),	 comparing	 the	 variable	

capacity	 resulting	 from	 constant	 hourly	 carbon	 emissions,	 and	 showing	 the	

resulting	 goodput	 in	 Figure	 7.	 Each	 blue	 bar	 depicts	 the	 results	 for	 a	 single	

exemplar	day.	 Shifting	 from	 fixed	 to	variable	 capacity	produces	a	 large	drop	 in	

goodput	as	large	at	24%	on	some	days	and	12%	on	average.	

To	 further	 understand	 the	 impact	 on	 scheduling	 performance,	 we	

systematically	 vary	 the	variability	dimensions	of	dynamic	 range,	 structure,	 and	

change	 frequency	 while	 keeping	 average	 available	 capacity	 constant	 to	

understand	how	features	of	capacity	variation	affect	scheduler	performance,	so	we	

can	highlight	what	is	most	important	to	address	with	scheduling	techniques.	

Dynamic	 Range	 First,	 let’s	 consider	 how	 resource	 capacity	 variation	 impact	

varies	as	we	increase	dynamic	range.	In	Figure	8,	we	first	consider	random	walk	

structure	 (blue,	 left),	 comparing	 to	 no	 variation	 (patterned).	 The	 x-axis	 shows	

different	 dynamic	 ranges,	 and	 stepsizes	 are	 always	 one-fourth	 of	 the	 dynamic	

range.	As	the	dynamic	range	increases,	the	scheduler	performance	degrades,	and	

with	the	largest	range,	0.6:	[0.4,1.0],	the	goodput	has	declined	by	25-45%.	

Variability	Structure	We	consider	two	variability	structures,	random	walk	and	

random	uniform.	Now	we	compare	random	uniform	(yellow,	right	 in	Figure	8).	

The	resource	schedulers	experience	goodput	degradation	as	much	as	35%	(for	a	

total	degradation	of	55%).	This	is	because	random	uniform	allows	large	jumps	in	

capacity,	disrupting	 the	 job	 schedule	with	 terminations	or	wasted	 resources.	 It	

appears	variation	structure	can	be	as	 important	as	dynamic	range	in	degrading	

scheduler	performance.	

Change	Frequency	Change	frequency	is	another	dimension	of	capacity	variation,	

so	we	start	with	a	 low	rate	(0.25	changes/hour),	and	 increase	to	a	high	rate	(4	

changes/hour).	Note	that	all	prior	experiments	used	a	change	frequency	

	

(a) HPC	
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(b) Azure	 (c)	Borg	

Fig.8.	Scheduling	performance	with	random	walk	and	random	uniform	resource	variability	

structure,	varying	dynamic	range.	

of	1	change/hour.	We	focus	on	dynamic	range	of	0.6:	[0.4,	1.0]	with	stepsize	of	0.15	

first.	 In	Figure	9,	significant	goodput	drop	 is	observed	across	all	structures	and	

workloads	as	 frequency	 increases.	For	HPC	workload,	 goodput	has	 fallen	by	as	

much	 as	 50%.	 For	 Azure	 workload,	 higher	 change	 frequencies	 cause	 clear	

degradation	in	goodput	(up	to	30%	overall,	but	15%	attributable	to	frequency);	

Borg	V2	exhibits	clear,	but	lesser	degradation.	These	commercial	workloads	are	

less	sensitive	to	resource	variation	because	of	their	lower	parallelism	and	shorter	

duration.	

We	combine	change	frequency	with	the	other	parameters	(dynamic	range	and	

structure),	putting	it	all	together	in	Figure	10.	With	very	low	change	frequency	of	

0.25	changes/hour,	performance	approaches	the	fixed	capacity	case.	The	negative	

impact	 of	 increasing	 change	 frequency	 on	 goodput	 remains	 but	 less	 extreme	

across	all	dynamic	ranges.	

We	find	that	resource	capacity	variation	can	have	a	large	impact	on	goodput,	

reducing	it	by	up	to	60%.	Goodput	in	HPC	and	both	commercial	resource	models	

are	particularly	sensitive	to	dynamic	range,	structure	(and	stepsize),	and	change	

frequency.	
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Fig.9.	Goodput	versus	change	frequency	(dynamic	range	0.6:	[0.4,	1.0]).	

5.3 Scheduling	Potential	for	Improvement	

To	 show	 there	 is	 opportunity,	 we	 examine	 scheduling	 policies	 to	 mitigate	

performance	degradation	from	capacity	variation.	When	capacity	decreases	below	

the	scheduled	workload,	to	meet	the	capacity	constraint,	jobs	must	be	terminated	

(fail).	 We	 explore	 how	 to	 choose	 the	 jobs	 for	 termination	 with	 the	 goal	 of	

maximizing	goodput.	Selective	terimination	or	preemption	is	frequently	adapted	

while	 facing	 mis-estimates	 based	 on	 priority	 or	 resource	 consumption[38,30].	

Here	we	consider	three	policies:	

– Random:	Select	a	node	randomly,	terminate	the	associated	job,	and	free	its	

resources.	

– Least	Wasted	Work	(LWW):	Select	the	job	whose	termination	wastes	least	

work	(smallest	nodes	×	(t	−	start	time),	where	t	is	the	current	time)	and	free	

its	resources.	

– Least	 Fraction	 Done	 (LFD):	 Terminate	 the	 job	 which	 is	 least	 fraction	

completed	(minimum	 ,	where	t	 is	 the	current	 time)	and	 free	 its	

resources.	

For	each	policy,	we	repeat	until	the	desired	(lower)	resource	level	is	reached.	

For	 the	HPC	workloads,	we	use	 the	requested	runtime	to	compute	LFD;	 for	 the	

commercial	workloads	we	use	the	trace	information	for	actual	job	length.	However	

in	 production,	 this	 information	 is	 not	 generally	 available.	 We	 compare	 the	

termination	policies,	using	scheduler	performance	metrics	of	goodput	and	failure	

rate.	

Broadly,	Figure	11	presents	goodput	results	 for	a	variety	of	dynamic	ranges	

and	variability	structures.	The	results	show	that	 intelligent	termination	policies	

make	a	big	difference.	For	HPC	both	intelligent	termination	algorithms	improve	

performance,	but	best	performance	is	achieved	with	LWW	(rightmost,	gray).	The	

goodput	 achieved	 by	 LWW	 approaches	 the	 stable	 resource	 capacity,	 and	 is	 an	

average	of	44%	improvement	over	Random.	For	Azure	and	Borg	V2	workloads,	

the	 algorithm	preference	 is	 similar,	with	 LWW	producing	 highest	 goodput,	 but	

with	smaller	benefits.	
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(a) HPC	

	

(b) Azure	 (c)	Borg	

Fig.10.	Goodput	versus	change	frequency,	varying	dynamic	range	and	structure	of	capacity	

variation.	

These	policies	show	that	scheduling	strategies	can	provide	improvement,	and	

in	 this	 case	 increase	 performance	 to	 match	 the	 fixed-resource	 scenario	 (no	

variation),	 increasing	 goodput	 by	 30%	 on	 average.	 These	 results	 show	 that	

intelligent	scheduling	techniques	are	of	interest	in	variable	capacity	data	centers.	

6 Further	Directions	and	Opportunities	

While	we	have	outlined	the	core	aspect	of	the	open	scheduling	problem	variable	

capacity,	where	resource	capacity	changes	under	external	control	on	time	scales	

shorter	than	many	scheduled	jobs.	There	are	several	dimensions	that	significantly	

broaden	the	space	of	interesting	research.	

Complex	SLO	requirements	Many	workloads	have	complex	dependencies	amongst	

jobs	and	tasks	that	constrain	scheduling,	and	correlate	task	failures	[37].	Complex	

dependence	 structures	make	 variable	 capacity	 scheduling	 challenging.	 Further,	

service-level	objectives	for	jobs	and	tasks	create	further	constraints	on	scheduling	
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and	opportunities	for	improvement.	For	example,	a	24-hour	time	shifting	model	

might	have	an	asymmetic	“catch-up”	constraint.	

	

(a) HPC	

	

(b) Azure	

	

(c) Borg	

Fig.11.	Goodput	versus	termination	policy,	varying	dynamic	ranges	and	structures	

More	Sources	of	Variability	and	Correlation	Another	dimension	of	challenges	comes	

from	 different	 sources	 of	 variability.	 Beyond	 power	management,	weather	 can	

produce	 variation	 in	 time	 and	 space,	 power	 availability	 and	 cooling	 efficiency	

(external	temperature	or	humidity).	Variation	can	be	correlated	across	space	and	

time	–	cloud	cover	can	be	correlated	with	weather,	affecting	solar	and	wind	and	

temperature.	Power	grid	element	failures	have	correlated,	cascading	effects,	and	

load	 changes	 can	 spill	 over	 from	 one	 cloud	 network	 to	 another.	 Unlike	 local	

failures,	resource	capacity	variations	coming	from	various	external	factors	can	be	
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informed,	 estimated,	or	predicted	 through	other	 correlated	 information.	Power	

grid	 carbon-content	 can	 be	 correlated	 with	 price,	 and	 power	 availability	 can	

depend	on	competition.	

Resource	 Heterogeneity	 The	 addition	 of	 heterogeneity	 to	 the	 variable	 capacity	

problem	 creates	 new	 challenges.	 Variants	 include	 fixed	 ratios,	 dictated	 ratios,	

partially	controlled,	or	even	fully	controlled	ratios	of	each	type	as	capacity	changes.	

All	 of	 these	 problems	 represent	 interesting	 challenges,	 both	 creating	 more	

complex	and	changing	scheduling	problems	or	in	some	cases	added	new	critical	

decisions	such	as	to	invest	the	power	relative	to	the	potential	heterogeneity.	

Complex	 external	 metrics;	 e.g.	 “overall	 cost	 optimization”,	 overall	 carbon	

optimization	 One	 more	 additional	 dimension	 is	 the	 notion	 that	 metrics	 might	

depend	 on	 the	 input	metrics	 that	 cause	 variation.	 Such	 a	 dependence	 not	 only	

affects	 the	 assessment	 of	 success,	 but	 therefore	may	 also	 affect	 the	 scheduling	

strategies	used.	For	example,	power	costs	might	be	passed	through	to	cloud	users,	

and	 likewise	responsibilty	 for	carbon-emissions.	Combinations	of	 these	metrics	

combined	 with	 traditional	 time-based	 techniques	 –	 5s	 at	 high	 carbon,	 but	

overnight	latency	at	low	carbon	–	might	make	sense	for	some	applications.	

7 Related	Work	

We	study	resource	management	for	both	supercomputer	and	datacenter	scenarios	

responding	 to	 capacity	 changes	 that	 could	 arise	 from	 carbon-emission-aware	

dynamic	power	acquisition.	Other	potential	sources	of	resource	capacity	variation	

include	 cluster,	 datacenter,	 and	 site	 power	 management	 [34]	 or	 power	 grid	

dynamics	 [42,22,8].	While	many	 other	 scheduling	 studies	 have	 also	 dealt	with	

variations	and	uncertainty,	 they	mainly	focus	on	fluctuation	of	the	 load	and	job	

information[35,14,18].	It	is	an	open	question	how	well	these	techniques	apply	to	

the	variation	that	is	our	focus,	and	perhaps	more	interesting	if	they	can	be	adapted	

to	cope	better	by	exploiting	the	properties	of	the	variation.	

Burstable	 Instances	 and	 Turbo	 Modes	 In	 several	 cloud	 environments,	 virtual	

machines	 can	 have	 variable	 performance	 [1],	 but	 the	 resource	 consumption	 is	

typically	controlled	by	the	application.	Bursting	credit	is	accumulated	over	time	

and	expended	as	the	application	demands.	Turbo	modes	are	similar,	where	heat	

capacity	 is	 akin	 to	 credit.	 This	 differs	 from	 variable	 capacity	 where	 resource	

constraint	is	enforced	on	the	workload/resource	manager.	

Resource	Revocation	Many	systems	have	volatile	resource	management	(e.g.	PC’s	

in	 desktop	 grids	 [26,7],	 and	more	 recently	 AWS	 Spot	 Instances[3]	 and	 Google	

Preemptible	 VM’s[4]),	 employing	 checkpointing	 and	 a	 range	 of	 statistical	

techniques	to	achieve	high	throughput	through	revocations	[39,40].	Commercial	

versions	include	[2,21].	Most	of	these	systems	are	application-oriented,	and	deal	
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with	collections	of	single-node	jobs.	The	capacity	variation	problem	is	large-scale	

resource-oriented,	and	formulated	for	a	job	scheduler	managing	a	workload	with	

complex	mixes	of	co-run,	run-before,	and	other	kinds	of	task	dependencies	in	the	

face	of	a	rich	set	of	service-level	objectives	(SLO’s).	

Meta-schedulers	There	 have	 been	 some	 systems	 that	 do	 this,	 but	 they	 typically	

manage	 batch	 queue	 delay	 (Condor	 Glideins	 with	 known	 durations).	 These	

systems	 schedule	 revocable	 resources,	 but	 the	 focus	 has	 traditionally	 been	 on	

managing	 across	 several	 resource	 pools	 and	 assumes	 new	 resources	 can	 be	

immediately	 obtained	 while	 revocations	 happen,	 not	 the	 scheduling	 efficiency	

within	one	(our	focus	here).	

Power	Capping	and	Large-scale	Power	Management	Power	capping	generally	limit	

power,	a	fixed	capacity.	Then,	the	challenge	is	managing	the	performance	of	the	

applications	within	a	fixed	cap	[13,31,23].	Large-scale	power	management,	power	

oversubscription,	 and	 power	 capping	 is	 common	 in	 commercial	 datacenters	 to	

improve	 power	 efficiency	 (e.g.	 Facebook’s	 Dynamo[41],	 IBM’s	 CapMaestro[25],	

and	 Google	 [34]).	 These	 studies	 do	 not	 model	 schedulers,	 and	 interestingly	

suggests	that	smaller	and	therefore	more	variable	power	pools	may	be	preferrable,	

suggesting	variable	capacity.	

Green	Scheduling	Researchers	have	also	explored	the	use	of	local	renewables	or	

integration	 of	 grid	 demand-response	 with	 job	 scheduling	 [16,24].	 Local	

renewables	are	a	simpler	instance	of	the	variable	capacity	scheduling	problem	–	

many	variants	exist.	The	grid	demand-response	examples	are	also	related	–	but	

deal	with	rare	circumstances	(e.g.	4	hours	a	year).	Our	formulation	of	the	variable	

capacity	problem	admits	a	rich,	general	externally	imposed	variation.	It	can	vary	

at	many	time	scales,	with	correlation	or	dependence	across	sites,	and	focuses	on	

typical	performance,	but	could	perhaps	include	rare	events.	

8 Summary	

We	 have	 proposed	 a	 new	 scheduling	 challenge:	 the	 variable	 resource	 capacity	

scheduling	 problem.	 We	 have	 defined	 the	 key	 dimensions	 (dynamic	 range,	

frequency,	and	structure)	of	resource	capacity	variations	and	provided	empirical	

traces	 of	 such	 variation	 from	 several	 real-world	 scenarios.	Using	 real	HPC	 and	

commercial	 workloads,	 our	 results	 show	 that	 the	 negative	 impact	 of	 resource	

variability	on	goodput	can	be	severe	–	as	much	as	60%,	and	30%	on	average.	

Further,	we	find	that	intelligent	scheduling	techniques	such	as	job	termination	

policies	 can	 reduce	 goodput	 losses	 for	 both	workloads.	 These	 results	 not	 only	

show	 that	 variable	 resource	 capacity	 imposes	new	 challenges,	 but	 also	 suggest	

that	 intelligent	 scheduling	 solution	 is	 of	 benefit.	 And	we	 look	 forward	 to	 both	

exploring	this	space,	and	exploring	the	coupling	of	these	studies	with	the	complex	

systems	which	are	also	producing	capacity	changes	[34,22].	
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