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2048 Without Merging
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Abstract

Imagine ¢ < mn unit-square tiles in an m xn rectangular
box that you can tilt to cause all tiles to slide maximally
in one of the four orthogonal directions. Given two tiles
of interest, is there a tilt sequence that brings them to
adjacent squares? We give a linear-time algorithm for
this problem, motivated by 2048 endgames. We also
bound the number of reachable configurations, and de-
sign instances where all ¢ tiles permute according to a
cyclic permutation every four tilts.

1 Introduction

2048 is a popular open-source video game by then-
19-year-old Gabriele Cirulli [Cir14l [Wik20] that took
the world by storm in 2014. It was inspired by an-
other game called 2048 by Saming, which in turn was
inspired by a similar game called 1024!, which in turn
was inspired by the genesis game Threes! by Vollmer,
Wohlwend, and Hinson released just two months ear-
lier, all of which inspired many other variants. See
[LUILS] for more on the history and descriptions of sev-
eral game-variant rules. Cirulli’s 2048, Threes!, Fives,
Det2048, and Fibonacci all feature the same kind of
movement, also identical to the 2011 physical puzzle
game Tilt [BDET19) BLCT19, BGCT20]: unit-square
tiles in a rectangular box with only four global #:lt con-
trols — sliding all tiles maximally in an orthogonal di-
rection among {N, E, S,W}. Each tile has a label, and
certain labeled tiles merge together (into a single newly
labeled tile) when slid into each other; the goal is gen-
erally to produce a tile with a particular label. Each
game also has a (possibly randomized) algorithm for in-
troducing new tile(s) after each move. Most of these
games (in their perfect-information form) are NP-hard
[LUIR, AADI6].
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Our results. In this paper, we consider a variant where
no tile merging can happen, no additional tiles are in-
troduced (as in [AAD16]), and there are no fixed obsta-
cles (as in most games above, but unlike Tilt and e.g.
1024!). This minimal variant, which we call 2048 with-
out merging, intends to capture some core mathemat-
ical structure of the many game variants listed above.

In particular, we study the problem of whether two
particular tiles can be made adjacent by a sequence of
tilt operations, which is motivated by a subproblem aris-
ing near the end of a 2048 game, where the board has
two 1024-labeled tiles and the player wants to make
them adjacent so that another tilt merges them into
a 2048-labeled tile. This problem was posed by Mike
Paterson in 2018. We solve this problem in Section
by giving an O(t)-time algorithm to decide, given an
initial m x n board configuration of t < mn tiles and
two marked tiles t; and to, whether there exists a tilt
sequence that brings t; and ¢2 to adjacent squares. In
the positive case, our algorithm also outputs the min-
imum tilt sequence. This algorithm generalizes to de-
cide in O(st) time whether any pair among s special
tiles (1024s) can be made adjacent. In particular, this
running time is O(t) for s = O(1) and always O(t?).

We also consider the combinatorial structure of the
motion of all tiles, which is roughly described by pow-
ers of a single permutation. In Section[d] we give a lower
bound of 22V and an upper bound of 20(VtleeD) oy
the number of different states that can be reached by a
tilt sequence from an initial m x n board configuration
with ¢ = O(mn) tiles. Section [5| shows that there ex-
ist initial m x n board configurations with permutation
cycles of length Q(mn) and, for even m and n, there is
a configuration in which every tile is part of the same
permutation cycle. In the latter configurations, each tile
can reach any possible target square via a tilt sequence
of length O(mn).

2 Definitions and Basics

We base our terminology on |[BLCT19, BGCT20]. A
board is a rectangular region of the 2D square lattice,
whose 1 x 1 cells we refer to as squares. We represent
an m x n board B by {(z,y) |z € {0,1,...,m—1},y €
{0,1,...,n—1}} where (0,0) represents the bottom-left
square. Let 7 be a set of ¢ objects called (slidable)
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tiles. A configuration is an injective function C :
T — B. We call a square full if it is in the image of C,
and empty otherwise.

Tilt is an operation that takes a configuration C' and
adirection d € {N, E, S, W} and returns a configuration
C’ as follows. A tilt is horizontal if d € {E, W}, or
vertical if d € {N, S}. We describe a tilt for d = N; the
other cases are symmetric. For all rows j from top to
bottom, and for all columns i, if (¢, ) is full, then move
the tile at (7,7) (marking (¢,7) empty) to the topmost
square (4, j’) in the ith column marked as empty, where
j' > j (marking (7, 5’) as full).

A tilt sequence is a sequence of tilts applied to a
configuration represented by a sequence of directions
D = (dy,ds,...,dx). Two tilt sequences are equivalent
if they produce the same configuration. A row (col-
umn) is called monotone non-increasing if every full
square is to the left of (below) every empty square in the
row (column). Monotone non-decreasing is defined
analogously. We call a configuration SW -canonical if
every row and every column is monotone non-increasing.
Alternatively, C is SW-canonical if a tilt with direction
S or W would return C'. Symmetrically, we can define
NE-, NW-, and SFE-canonical configurations.

Lemma 1 After one horizontal and one vertical tilt,
not necessarily in this order, we get a canonical config-
uration.

Proof. Without loss of generality, we apply the tilt
sequence (S, W). After the first tilt, every column is
monotone non-increasing. Consequently, the number of
full squares in a row is monotone (non-increasing) from
bottom to top. Similarly, the second tilt makes every
row monotone non-increasing. By definition, a horizon-
tal tilt does not change the number of full squares in
each row. The columns in the resulting configurations
are also monotone non-increasing. The result is a SW-
canonical configuration. 0

The following lemma will allow us to focus only on
a clockwise or counterclockwise tilt sequence, i.e., a
substring of (N, E, S, W)* or (N,W,S, E)* (where the
Kleene Star notation A* denotes sequence A repeated
zero or more times).

Lemma 2 FEvery shortest tilt sequence between two
configurations is either a clockwise or counterclockwise
tilt sequence.

Proof. It is clear by definition that the tilt sequence
(S,S) is equivalent to (S). Similarly, (N, S) is equiv-
alent to S. Then the shortest tilt sequence between
configurations either has length less than 2 or one of its
two first tilts is horizontal and the other one is verti-
cal. Without loss of generality, let (S, W) be the prefix
of such sequence. By Lemma [I] after these two initial

tilts we get a SW-canonical configuration and hence the
third tilt cannot be in the S or W direction. It cannot be
E, since (S, E) is equivalent and shorter than (S, W, E).
Hence the sequence starts with (S, W, N). We can then
induct on the length of the sequence to show that all
subsequent tilts must follow a clockwise order. O

The following lemma allows us to describe the move-
ment of the tiles using permutations.

Lemma 3 After every four tilts in a shortest sequence,
the union of the filled squares form the same shape, but
with permuted tile positions.

Proof. Suppose C is a SW-canonical configuration
where the length of row 7 is a; and the length of col-
umn j is b;. Since every row and column in C is mono-
tone non-increasing, ag > ... > am,_1, and we find that
bj = |{i| a; > j}|. After a horizontal tilt in direction
E to reach configuration C’, all the row lengths remain
as before and are monotone non-increasing. Since C’
is a SFE-canonical configuration the column lengths are

non-decreasing and b,—1_; = |{¢ | a; > j}|, as before
but counting from the right. So the sequence of col-
umn lengths is now reversed, i.e., b;,_1,...,bp. From

C" a vertical tilt in direction N would reverse the row
length order, and so on, and a complete cycle of four
tilts will return row and column lengths to their origi-
nal sequences. O

Let g be the permutation referred by Lemma [3] Our
techniques will be based on the cyclic subgroup gener-
ated by g and its cycle decomposition. For example, if
the initial configuration is given by a lower-triangular
matrix in a square board where exactly the squares on
and below the main diagonal are full, the permutation
g will induce cycles of length 3.

If C is a cycle in the permutation generated by g,
and s, s2 € C, then the cycle index ind(s1, s2) is the
smallest nonnegative integer i such that gi(s;) = sa,
that is, 7 successive application of g carries s; to so. We
say that two cycles are adjacent if there exists a pair
of adjacent squares with one square in each cycle.

3 Algorithm

In this section we give an algorithm that decides the
following problem. Given an initial configuration Cy on
an m X n board, and two tiles t1,t5 € T, can a tilt
sequence produce a configuration Cj in which ¢, and ¢,
are in adjacent squares? If yes, output a shortest such
sequence. We denote by C; the configuration obtained
after the ith tilt.

1. Guess the first two tilt directions from {(S, W),
(S,E), (N,W), (N,E), (E,N), (E,S), (W,N),
(W, S)}, checking whether ¢; and to are adjacent
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Figure 1: Application of tile sequence (N, E, S, W) on a single ring of C,, resulting in permutation g(C,,). Each tile
moves cyclically counterclockwise by k positions, where 2k is the width of the ring, e.g., the tile marked in blue.

in Cy and Cy. The obtained configuration Cj is in
canonical form.

2. Guess a type of canonical configuration from {SE,
SW, NE, NW}, computing the first configuration
in the sequence, i.e., a configuration C’ in {Cs, Cs,
Cy4,C5}.

3. Compute the permutation g equivalent to four tilts
in clockwise or counterclockwise direction depend-
ing on the guessed first two tilts.

4. Compute the cycle decomposition of g.

5. Let C; and Cs be the cycles containing ¢; and to
respectively. By restricting our attention to the el-
ements of C; and Cy, successively applying g results
in lem(|C1], |C2]) possible different permutations of
these elements. For example, if C; = Co, then the
number of such states is [C1]. Check in each of these
states whether t; is adjacent to ts.

Theorem 4 Given an initial configuration Cy on an
m X n board, and two tiles t1,to € T, a shortest tilt se-
quence required to make t1 and to adjacent can be com-
puted in O(|T|) time.

Proof. The correctness of our algorithm follows di-
rectly from Lemmas After the first two configu-
rations, a clockwise or counterclockwise tilt sequence
produces only canonical configurations. In Step [} the
algorithm tries all possible starting tilts and both ro-
tation directions. Step [2| considers all possible types of
canonical configurations. Steps considers all pos-
sible relative positions of t; and ty given a rotation
direction of the tilt sequence and a type of canonical
configuration. Hence, the algorithm is correct.

Most of the algorithm runs in O(|7]) time. Steps
add a 8 -4 = 32 multiplicative factor to the runtime.
Steps [BH4] can be executed in O(|T7) time by simulating
four tilts to obtain a directed graph representing g, and
obtaining the cycles of g containing ¢; and ¢y via a DFS
from such vertices. Here we use that a tilt operation can

be simulated in O(|T|) time using counting sort on the
coordinates; for instance, a horizontal tilt determines
the x order of tiles in each row, then moves the tiles to
one extreme of the board without changing such order.

In Step[5] we need more care. A naive implementation
iterates through all lem(|Cy|,|C2|) = O(|T|?) different
possible positions of ¢; and 5 since both |C;| and |Cs]
are O(|T]). The resulting running time is O(|T1?).

We can reduce the runtime of Step [5|to O(|T7) as fol-
lows. For all |C1| < |T| possible positions of ¢, we can
try all possible adjacent squares (up to four), checking
whether a tilt sequence can bring tiles ¢; and ¢, simulta-
neously to those squares, as follows. Suppose the desired
positions are indeed in C; and Cs respectively, say the
pth and gth positions of C; and C; respectively, counting
from the initial positions of ¢; and to with zero index-
ing. By Bézout’s Identity [JJ98|, the set of all integer
linear combinations ¢|Cy| + j|C2| is exactly the set of in-
teger multiples of d = ged(|C1],|C2]). Thus the desired
tiles can meet at the specified position exactly if p = ¢
(mod d). We can then find the actual number of tilts by
using the Chinese Remainder Theorem. Since we only
need to compute d once, spending O(|7]) time, and we
can test each of the 4|C;| meeting positions in constant
time, the total runtime is O(|T]). O

Generalization to |S| special tiles. We can generalize
Theorem [ to the case of a subset S C T of special
tiles, where 2 < |S| < |T]. Specifically, we consider
the following problem. Given an initial configuration
Cp on an m X n board, and a subset S C T of |S|
special tiles, can a tilt sequence produce a configuration
C) in which two special tiles are in adjacent squares?
If yes, output a shortest such sequence. We modify our
previous algorithm, designed for the case |S| = 2, by
replacing Step 5] with the following:

5*. For each pair {s1, s2} of adjacent squares that be-
long respectively to special cycles C; and C; of g
(that is, cycles containing at least one special tile
in §), check whether any of the special tiles in C;
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and C; can simultaneously move to s; and sy by
successively applying g, as follows:

e Let d = ged(|Cil, |Cy).

e For each t € C; NS, compute the cycle in-
dex ind(¢,s1) (as defined in Section [2)), and
let I; = {ind(¢,s1) mod d |t € C; N S}.

e Similarly, compute I = {ind(¢,s2) mod d |
te Cj N S}

e Check whether I; N Iy # (.

Theorem 5 Given an initial configuration of |T| tiles
on an m X n board and a set S C T of special tiles, a
shortest tilt sequence required to make two special tiles
adjacent can be computed in O(|S|-|T]) time.

Proof. For the correctness of the algorithm, assume
that there exist two special tiles t; € C;NS, t2 € C; NS
and an integer h > 0 such that ¢g"(t;) = s; and
gh(tg) = S9, where s; and sy are adjacent squares in
a canonical configuration C’. Then h = ind(ty,s1)
(mod |C;|) and h = ind(t2,s2) (mod |C;|). By Bézout’s
Identity, ind(¢1,s1) = ind(te, s2) (mod d), where d =
ged(|Ci],1C5]).  Conversely, if ind(t1,s1) = ind(t2, s2)
(mod d), then there exits an integer h > 0 such that h =
ind(t1, 81) (HlOd |C1D and h = ind(tg, 32) (HlOd |C]|)
As noted above, Steps of the algorithm run in
O(|T]) time. In Step we can memoize the ged of
the lengths of all pairs of adjacent special cycles. For
each such pair {C;,C;}, the Euclidean algorithm com-
putes ged(|C;l, C;]) in O(log(ICi] + [C;1)) = O(log |T])
time. There are at most |S| special cycles, and hence
O(|S|?) pairs of special cycles. Furthermore, every pair
of adjacent cycles contain a pair of adjacent squares,
and since each square has at most four neighbors, there
are O(|T|) adjacent pairs of squares. Therefore, the
geds can be computed in O(min{|S|?, |7} log |T]|) time.
This time bound is always O(|S| - |T]): if |S|* < |T],
then we have O(|S|?log|T|) = O(|S| - |S|log|T|) =
O(IS|V/T1log |T1) = O(|S|-|T1); and if [T| < [S]?, then
we have O(|T|log|T]) = O(ITI\/IT]) = O(IT| - |S]).
Step[5¥iterates through all O(|T7) pairs (s1, s2) of ad-
jacent squares. Suppose that s; € C; and s, € C; where
C; and C; are special cycles. Given the precomputed in-
dices of g, the index sets I; and I3 can be computed in
O(IC; NS +1C;NS]) = O(]S]) time. Checking whether
I;NI; = () via hashing takes O(|I1]|+|1I2]) = O(|S]) time.
For each index in I; N I3, we can then find the actual
number of tilts using the Chinese Remainder Theorem,
in overall |I; N I3] = O(|S|) time. After memoizing the
ged of adjacent special cycles, Step [b™ of the algorithm
thus runs in O(|S| - |T|) time. O

4 Bounds on Reachable Configurations

Lower bound. For even n, consider the configuration

F L
Cn: l:F F:|

on an n X n board where F' is a full n/2 x n/2 square,
and L is a n/2 x n/2 matrix where exactly the squares
below the main diagonal are full (see Figure[l). Let the
outer ring be the set of extremal tilesin N, E, S, or W
direction, and define inner rings recursively. The outer
ring contains 7(n/2 — 1) 4 3 tiles, while each successive
inner ring contains 7 fewer tiles. So C,, comprises n/2
rings, with 7k + 3 tiles in ring k for k € {0,...,n/2—1},
where the innermost ring 0 is an L-shaped tromino.

Lemma 6 FEach ring in C, is self-contained (does not
miz with adjacent rings), and the cyclic order of ele-
ments around the ring does not change after applying g.

Proof. By symmetry, it suffices to show that each ring
in C/,, the NW-canonical configuration obtained after
a N tilt from C,, is exactly a ring in C,,, and that the
cyclic order of tiles does not change. The outermost
ring is composed of the first and last columns, and the
extremal tiles in each remaining column. After the tilt,
all such tiles remain extremal and their order along the
convex hull remains the same. No other tiles become ex-
tremal because the number of tiles in adjacent columns
differ by at most one. Hence, the outermost ring re-
mains the same. If we look at the remaining tiles after
removing the outermost ring, they form a configuration
Cp—2 in the (n—2) x (n—2) board obtained after remov-
ing the extremal rows and columns. The configuration
C] _, obtained after a N tilt from C),_2 can be obtained
in the same way from C/ . Hence, the second outermost
ring also remains the same in C,, and C/,. By induction,
all rings remain the same. U

Theorem 7 The number of different configurations
reachable from C,, is 2™ = OV where t is the num-
ber of tiles in C,,.

Proof. We first show that, after applying g, the ele-
ments in ring k (with width 2k) shift by k positions
counterclockwise along its ring. By Lemma [] it suffices
to show that the top-left tile x moves down by k. As
shown in Figure I} « does not move after the N and F
tilts, moves down by k after the S tilt, and again does
not move after the W tilt.

We prove the claimed bound by focusing on a subset
of rings and bounding the number of different states of
the tiles in the selected rings that are obtained by suc-
cessively applying g. We can restrict to rings with prime
lengths of the form 7k+3. In such cases, the ring induces
a single cycle in g because the length of the ring and the
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Figure 2: Application of the tilt sequence (N, E, S, W) to C,,, resulting in the permutation g(C.,,), depicting the
movement of tile subsets {L1, Lo, L3, L4, L5, Lg, R1, R, Rs, R4, R5}. Each of these subset moves as a rigid block.

amount that each element shifts around the ring after g
are coprimes and each element will eventually visit every
position in the ring. Using a variant of the prime num-
ber theorem for arithmetic progressions [Dab89, [Tao09],

ng logp = m(l—i—o(l))
p = a mod q

if (a,q) = 1, where ¢ is Euler’s totient function. In
particular, the product of primes
p<n/2,p=3 (mod 7),is e = OV, O

Upper bound. Starting from a STW-canonical configu-
ration containing ¢ tiles in an m xn board, the number of
reachable configurations equals the least common multi-
ple of the cycle lengths. Every cycle has length at most ¢
(the number of tiles), hence the lem of the cycle lengths
is bounded above by lem(1,2,...,t) = e!(+e),

We can improve upon this bound by realizing that
the sum of the cycle lengths must be ¢. The maximal
least common multiple of a partition of ¢ into positive
integers is known as Landau’s function [Nicl3], and it
is asymptotically e®(Vtlog?),

5 Long Cycles

In this section we provide a construction for an initial
m x n board configuration C,,, with ©(mn) tiles with
a single permutation cycle. We can assume that m and
n are even, or else we construct the instance of size
(2|m/2]) x (2|n/2]) and add an empty row and/or col-
umn. Refer to Figure We leave empty the last n/2+1
(n/2) squares in the top (second to top) row of Cpy,.
The remaining squares are filled with tiles.

We now show that the permutation g induced by the
tilt sequence (N, E,S,W) has a single cycle. We first
describe g by giving a successor function based on the
coordinates of a given square, then we describe an algo-
rithm that outputs in order all elements in a cycle in g
and show that the number of outputs equals the number

of tiles. Let s(z,y) be such a successor function where
s(z,y) is the coordinates of the square after the square
(z,y) in g. Let A(z,y) = s(x,y) — (z,y) be the vector
from (x,y) to its successor. Refer to Figure 2, We par-
tition the occupied squares in the board into 11 regions
as follows, where p(z,y) denotes the region containing
square (z,y):

Ly f0<z<m/2—land2<y<n
Ly fz=m/2—1land1<y<n-—1
Ly if0<z<m/2—1landy=0

Ly fl<z<m/2—1landy=1

Ly ifz=0andy=1

p(z,y) =4 Lg ifz=m/2—T1andy=0

Ry ifm/241<z<mand0<y<n-—4
Ry ifz=m/2and0<y<n-—3

Ry ifm/2+1<z<mandy=n—4
Ry iftm/241<zx<mandy=n—3
R; ifx=m/2andy=n—3

Now we define A(z,y) based on the above partition,
which can be easily verified by following the tiles ini-
tially in each region after four clockwise tilts as shown
in Figure 2]
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Figure 3: An example output cycle of g applied to Ci,p,
for m = n = 10. Indexing starts with 0 at (%,0) in-
creasing to 88 at (0, 1), where increasing indices are out-
lined with increasing opacity.

We now describe an algorithm that outputs one cycle
of g starting with square (m/2,0). Refer to Figure 3|for
an example of output of the algorithm.

1. For0<j<n—2
2. For0<i< % — 1t

(a) For 0 <j < 4

(b) For 0 <j <% —1: output (F +1+1,25)
3. For0<j<n-—-1
4. For0<i< 3 —1:

(a) For 0 <j <4 —1: output (m—1—1,1+2j)

(b) For0<j < §:

output (%, j)
output (i,n — 2 — 2j)

output (%5 —1,n —2 —j)

output (% —2—1i,n—1-2j)

Theorem 8 The permutation g of the tilt sequence
(N, E,S, W) on configuration C,,,, has a single cycle
of length mn —m — 1.

Proof. It suffices to show that the algorithm above cor-
rectly outputs a cycle in order, and that it outputs all
mn — m — 1 full squares of C,,,,. We now focus on the
former. Step [1] outputs all squares in Ry and Rs from
bottom to top. This matches the successor function for
Ry. The successor of the square in R is (0, n —2) which

is the first position output by Step [2} Step outputs
squares in L1 and a square in L3 at the end of the loop,

according to the successor function in L1, i.e., two units
below the previous one. The first square output by each
execution of Step [2(b)|is the successor of the square in
L3 output by Step i.e., m/2+ 1 units to the right.
Step outputs squares in R; and a square in R3 at
the end of the loop, according to the successor func-
tion in Ry, i.e., two units above the previous one. The
next output square is by either another execution of
Step or by Step [3} both obey the successor func-
tion of R3, A(z,y) = (—m/2,2). Step[3|outputs squares
in Ly from top to bottom and then outputs the square
in Lg, obeying the successor function in Ly. The next
square is (m — 1,1) in R; satisfying the successor func-
tion in Lg. Stepoutputs squares in R; and a square
in R4 at the end of the loop, according to the successor
function in Ry, i.e., two units above the previous one.
The first square output by each execution of Step [4(b)
is the successor of the square in R4 output by Step
ie, Alz,y) =(-m/2—1,2). Stepoutputs squares
in L; and a square in L4 at the end of the loop or, in
the last execution of the loop, it outputs the square in
Ls. The order is the same as specified in L.
The number of outputs of the algorithm is:

(n—=2)+(m/2-1)(n/2+n/2-1) +

(n—1)+ (m/2 = )(nj2 — 1 4+ny2)y — mn-m=1L

which is equal to ¢, as desired. O

6 Open Problems
A few interesting problems in this space remain open:

1. Close the gap between 22(VD and 20(V#1081) for the
number of reachable configurations in 2048 without
merging.

2. Are there examples where all ¢ tiles permute in a
single cycle, for even t? (Our construction works
only for odd ¢.)

3. Can Theorem [f] be improved, that is, is it possible
to decide in o(st) time whether any pair of s special
tiles among ¢ total tiles in a given configuration can
be made adjacent?

4. What happens in higher dimensions, such as 3D,
where Lemma [2| no longer holds? (This question
was posed by Martin Demaine in 2018.)
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