Motivating High Performance Serverless Workloads

Hai Duc Nguyen Zhifei Yang Andrew A. Chien
ndhai@cs.uchicago.edu zhifei@cs.uchicago.edu achien@cs.uchicago.edu
University of Chicago University of Chicago University of Chicago and Argonne

Chicago, Illinois, U.S.A.

ABSTRACT

The historical motivation for serverless comes from internet-of-
things, smartphone client server, and the objective of simplify-
ing programming (no provisioning) and scale-down (pay-for-use).
These applications are generally low-performance best-effort. How-
ever, the serverless model enables flexible software architectures

suitable for a wide range of applications that demand high-performance

and guaranteed performance. We have studied three such appli-
cations - scientific data streaming, virtual/augmented reality, and
document annotation. We describe how each can be cast in a server-
less software architecture and how the application performance
requirements translate into high performance requirements (invoca-
tion rate, low and predictable latency) for the underlying serverless
system implementation. These applications can require invocations
rates as high as millions per second (40 MHz) and latency deadlines
below a microsecond (300 ns), and furthermore require performance
predictability. All of these capabilities are far in excess of today’s
commercial serverless offerings and represent interesting research

challenges.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS

Serverless; High Performance Computing; Document Annotation;
Virtual Reality; Stream Processing

ACM Reference Format:

Hai Duc Nguyen, Zhifei Yang, and Andrew A. Chien. 2021. Motivating High
Performance Serverless Workloads. In Proceedings of the 1st Workshop on
High Performance Serverless Computing (HiPS °21), June 25, 2021, Virtual
Event, Sweden. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3452413.3464786

1 INTRODUCTION

Recent years have witnessed a rapid growth in the popularity of
serverless (aka function-as-a-service or FaaS), which enables users
to create functions without provisioning VM’s or containers, and
provides a pay-for-use model. With these advantages, serverless

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HiPS °21, June 25, 2021, Virtual Event, Sweden

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8388-2/21/06...$15.00
https://doi.org/10.1145/3452413.3464786

Chicago, Illinois, U.S.A.

National Laboratory
Chicago, Illinois, U.S.A.

lowers the bar for building applications in effort, use, and cost. With
the cloud provider responsible for resource management, server-
less allows applications to scale rapidly to hundreds of invocations
within a few seconds [19, 42]. This has been a great boon to IoT and
smartphone applications. Most commercial serverless implementa-
tions focus on these smartphone clients and IoT applications. These
applications are low rate per client (but can scale up for large num-
bers of clients) and access the serverless functions over wide area
networks. They are not demanding in terms of invocation rate (per
client) and invocation latency. As a result, serverless systems today
require 10-250 milliseconds of software overhead per invocation
[12, 42], limiting the scope of application use in both invocation
rate (cost) and guaranteed performance.

Recently, serverless has been the focus of interest for a wide
range of distributed applications, such as video encoding, distributed
compilation, and data analytics [3, 14, 15, 19, 20, 27]. These types
of intra-cloud serverless applications are driving increased perfor-
mance requirements for serverless systems. These applications and
more are the focus of our work.

Despite the current commercial incarnations of serverless that
provide only best-effort service and incur significant overhead for
invocations (limiting invocation rates), we believe that the server-
less model and serverless application architectures can be applied
for a wide range of demanding distributed applications. Specifically,
we consider demands of high performance and strict performance
guarantees. To support these applications, serverless systems will
need to achieve dramatically lower overhead per invocation (high
performance) and provide applications with the ability to engineer
strict performance guarantees (real-time). To make this case, we
have collected a set of demanding applications of the serverless
model, and present them here.

We consider three applications: streaming scientific data, aug-
mented reality, and text document annotation. For each, we de-
scribe the application and its critical performance requirements.
Next, we map the application onto a serverless software architec-
ture, describe how these requirements manifest in the serverless
application architecture, and the derived performance requirements
that result such as invocation rate, latency, etc. These serve as moti-
vation and requirements for high-performance serverless systems.
Next, to enable research on high-performance serverless implemen-
tations, we describe a set of parametric workload models, which
characterize each application, and can be used to study both the
performance of serverless implementations and their impact on
application performance.

Specific contributions of the paper include

e Identification and documentation of three compelling high-
performance application classes for serverless systems

e Exposition of a serverless architecture that illustrates how
the quantitative application performance requirements and
guarantees translate into quantitative performance require-
ments in invocation rates (millions/second) and latency guar-
antees (< 1 microsecond) for the serverless system

e For each we present a characterization and workload model
enabling future applications and serverless systems research

The rest of the paper is organized as follows. Sections 2, 4, and
3 each describe a demanding application, its performance require-
ments, and a serverless architecture for that application. We close
each section with a workload model that can be used for serverless
system experiments. Section 5 briefly describes related work, and
Section 6 summarizes the paper.

2 SCIENTIFIC DATA STREAMING

High data rate instruments — small (e.g. DNA sequencing or CAT
scanners) and large (the advanced photon source or CERN’s parti-
cle accelerator) produce high bandwidth streams of scientific data.
These streams are increasingly reliant on real-time processing ca-
pabilities and machine learning workflows for filtering, analysis,
and adaptive experiment control. Beyond high data rates, they also
require low latency response for real-time control. In Particular, we
focus on a challenging example from high-energy physics (HEP) to
highlight how extreme these performance requirements can be.

Consider online filtering for the Large Hadron Collider (LHC)
[4, 13] where the system targets at finding HEP events that may
contain evidence of new subatomic physical phenomena such as
dark matter. The objective is to rapidly identify the potentially
interesting collisions because the rest must be discarded due to
data storage limitations. Because collisions are extremely short,
sampling must be taken at extremely high frequency, and filtering
must in turn operate at extremely high frequency and low latency.
Detailed description is provided below.

2.1 Application Description

P

Low Latency. Medium Latency

Update weights Real-time processing

Trigger Neural 1 Hz Reconstruction Real-time
Network J loss minimization Quality
A Monitoring

Action:

Select
Images interesting
40 MHz events

Secondary Processing

LHC
Experiment Interesting Calibration Compression Archive
Events 1 kHz

Figure 1: HEP Event Filtering and Analysis System Work-
flow

At the Large Hadron Collider (LHC), a stream of event records is
generated by sampling internal physics processes. The LHC experi-
ment instruments pre-process each record into an image summary.
The image summaries are output at a fixed frequency of 40 MHz. A
Trigger Neural Network (TNN) then classifies each image summary
to tell whether it contains an interesting signal. Once it detects

an interesting signal, the TNN tells LHC Experiment buffering
devices to send the corresponding buffered event record into a
secondary processing workflow, which may include heavy and
hardware-accelerated computations, such as energy measurement,
data selection, data formatting, serialization, and data archiving.
Due to limited LHC buffering capacity, the TNN has to finish every
detection within a hard deadline of 150-300 nanoseconds (upgrades
to the LHC detectors are expected to increase this latency budget as
much as 10-fold [10]. Asynchronously, there is also a real-time qual-
ity monitoring process that samples event records and periodically
pushes updates to the TNN model to adjust filtering quality.

Figure 1 shows the workflow. Each part is annotated with in-
vocation rate and latency requirements, which will be elaborated
later in Section 2.4.

2.2 Examples

Besides HEP, there is a range of scientific data streaming examples
with similar real-time requirements, including:

e Experiments on synchrotron facilities such as ANL’s Ad-
vanced Photon Source and LBL’s Advanced Light Source

e High Energy Physics, Large Hadron Collider and ATLAS
experiments

e High speed genome sequencing machines

e High Resolution MRI (magnetic resonance imaging) or CAT
Systems (Computed Axial Tomography)

Despite objective and workflow differences, the scientific and
medical instrument that used in these examples have three key prop-
erties in common: operate at extremely high event rates, process a
large amount of data, and has strict, short deadline requirement.

2.3 Mapping into Serverless Architecture

Data stream processing in scientific experiments can be naturally
mapped into a event-driven serverless software architecture, and
doing so improves the portability, scalability and flexibility of these
workflows. As a concrete example, Figure 2 shows the serverless
architecture for the LHC event filtering workload. Each double-
border box represents a serverless function. The LHC Experiment
box at the bottom refers to the event record collecting and buffering
devices inside LHC, with the assumption that it can invoke server-
less functions with image summaries, sampled event records, or
interesting event records selected by the TNN.

Trigger Neural
Network

Real-time Quality
Monitoring

update TNN_inference() code
1 update/s

TNN_inference()

Interesting EventlD

updateModel()

EventRecord
10K invocations/s

ImageSummary
40M i

L]

Secondary Processing

Figure 2: Serverless Software Architecture for LHCTrigger-
ing

Experiment transform()

LHC ‘
\

archive()
Interesting EventRecord|

Comparing Figure 1 and Figure 2, the Trigger Neural Network
is mapped to function TNN_inference (), which receives an image
summary from LHC Experiment as input, performs classification,
and responds with an event ID if it contains an interesting sig-
nal. The Secondary Processing pipeline maps to a set of functions
that process event data in a chained invocation manner. Real-time
Quality Monitoring is implemented by updateModel (), which is
invoked with sampled event records and if necessary, updates func-
tion TNN_inference(). Depending on the actual algorithm, it may
be implemented in multiple functions, and involve the use of exter-
nal storage to maintain its state.

2.4 Performance Requirements

Such scientific data streaming tasks demand a high frequency of
processing on large bandwidth of event streams. All events must
be processed within a hard real-time deadline. For the serverless
architecture, it implies the following performance requirements:

e High invocation rate. To avoid an infinitely growing request
queue, functions need to be invoked at the input rate.

e Low latency. Functions are subject to hard deadlines, and the
tolerated latency is low.

Such extreme requirement is a tough, even impossible, challenge
for current serverless implementations. For example, the Trigger
Neural Network in LHC event filtering requires 40 million infer-
ences per second, each to be finished within 300 nanoseconds. Three
FPGAs are installed at the LHC, each with 6,840 DSPs clocked at
200 MHz [44], which can do 20,520 integer multiply-add operations
in one cycle (5 ns), or 1200K operations in 300 ns, that supports the
pipelined neural network implementation.

A high-end server CPU such as Intel’s Ice Lake SP (40 cores)
is capable of approximately 2,944 Int16 Gigaops/second, giving it
a capacity of approximately 900K operations in 300ns or 9000K
operations in 3 microseconds. This is already competitive with
the FPGA in throughput. An NVIDIA A100 GPU [30] is quoted at
624 teraflops of fp/int16 performance. In a 300ns window, it can
achieve 180 million operations in 300ns or 1.8 billion operations
in 3 microseconds. This shows that the GPU also has sufficient
throughput to meet the needs of these streaming applications.

So while these performance requirements seem fantastical, in
fact even a single chip of these conventional platforms has more
than enough throughput to achieve these rates. However, there
is the problem of latency, achieving the 300ns latency is probably
not realistic due to current serverless software overheads, batching,
and other hardware computation structure requirements needed
to achieve high performance. The upgrade to the LHC sensors in
the next generation LHC detector provides increased buffering,
and hence a looser deadline of 3 microseconds [10]. On the other
hand, it is always possible to encapsulate high performance special-
ized hardware as functions in serverless runtimes. To achieve this,
we need radically more efficient software architectures and imple-
mentation for serverless, such as custom runtimes and dedicated
containers [37].

2.5 Workload Model

Scientific data filtering and analysis workloads can be modelled for
serverless systems with the following parameters:

Virtual world +
object manager.

(3) Adjust state

(1) Participant
make action

(2) Apply action
effect

I_ (4) Identify participants

affected by the action

1 (5) Send update

Figure 3: Distributed VR/AR Architecture inspired by [8, 16]

e N; - Event rate, 30 Hz to 40 Mhz, this corresponds to the invo-
cation rate for TNN_inference() in the LHC event filtering
workload

e Op Associated computation for each event, 5K to 1000K
operations

o St - Size of an event summary, 2KB to 1MB

e L; - Latency limit for for filtering decision, currently 300ns

e N; - Sampling rate for quality monitoring, 1-100 kHz, corre-
ponds to the invocation rate for updateModel () in the LHC
event filtering workload

With these parameters, one can build a workload generator to
study serverless system performance with workloads demonstrat-
ing these characteristics. We call the serverless implementation
meeting the performance requirements when all invocation rates
and hard latency limit are met.

3 DISTRIBUTED VIRTUAL
REALITY/AUGMENTED REALITY

Distributed Virtual Reality (VR) / Augmented Reality (AR) applica-
tions allow many geographically distributed participants to join and
interact in a virtual world, either artificial (VR) or blending over the
real-world (AR), through a set of actions (e.g. speaking, touching,
moving, etc.). Such actions are made independently and simultane-
ously by individual participants and all together affect the virtual
world structure. VR/AR applications capture these actions, apply
their effects, and inform participants that should experience the
changes by continuously re-rendering their surrounding 3D images.
Participants who receive the changes can react with another action,
essentially creating a loop of action-update-action interaction. As
most VR/AR applications are highly interactive, smoothly handling
the action-update process is crucial for good user experiences.

3.1 Application Descriptions

Distributed VR/AR operations mostly surround Virtual worlds which
are 3D spaces that contain many 3D objects. These objects either
represent real-object or are totally made up by the application. Users
or Participants are placed in this world as virtual objects and can
interact with other objects through making actions such as moving,
touching, speaking, etc. User actions trigger the application to up-
date the virtual world to reflect the action effect. Figure 3 depicts a

typical distributed VR/AR architecture showing how interactions
are handled in 5 steps:

(1) Participants make an action at their end device, asynchronously
initiating an action request.

(2) Action request are processed by an action handler to resolve
its effect.

(3) The application synchronizes actions (if needed) then adjusts
the virtual world to reflect action effects.

(4) The application identifies participants who should experi-
ence the update.

(5) Updates are sent to proper participants and the application
goes back to resolve new actions, starting a new action-
update circle.

Since VR/AR are highly interactive, participant actions may be-
come very intensive as we will see from the examples below.

3.2 Examples

Pokemon GO [29] is a great example of massive distributed AR ap-
plications. It is a mobile multi-player AR-based game that players
can hold their phones, walk around the real world to find and
catch virtual characters, call Pokemons, rendered by the game
through the phone’s camera view. Pokemons are located at some
specific geographic locations and only appear to players when they
walk around these areas. Since Pokemon GO virtual world is con-
structed upon the real world, it is vast enough to let millions of
players/participants join and interact. They make actions by simply
walking and looking for new Pokemon through the phone camera.
Pokemon app will keep track of player’s movement and response
with the appearance of Pokemon or collectible items as rewards.

Despite simple gameplay, the game was a big hit right after it
was released with more than 10 million downloads after the first
week. The game is still popular nowadays. By 2020, Pokemon GO
has approximately 600 million active players worldwide [40]. Even
with a simple action-update design, this number is very highly
demanding: suppose an average person walks around 7,000 steps a
day and Pokemon GO app generates an action for every 10 of them;
if only 1% of active players intensively play the game daily then
there are up to 4.2 billion actions can be made a day, an average rate
of 50,000 requests per second! This demand is not uniform, however.
According to [40], Pacific Asia accounts for 52% of global players so
this region is far more demanding than Central and Latin America,
where has only 9%. Furthermore, in 2019, Pokemon GO held 77
events, and one of them, Safari Zone New Taipei City, attracted
327,000 attendees with 50 million Pokemon caught, potentially
generating a burst of thousands of actions per second in Taiwan
alone. And in the most extreme case, soon after its release in 2016,
Pokemon received a never-seen-before demand increase of 50x
their expected load, causing severe experience disruptions for days
before it successfully upgraded in Google Cloud and became one
of their biggest services since then [7].

Stand Out: VR Battle Royale [33] is another example. It is a
VR first-person shooter battle royale that can allow up to 40 play-
ers/participants to combat over a wide battlefield that is totally
made up by the game designers. Unlike Pokemon GO, the game lets
participants make actions in a much more intensive way: to win,
they have to act (run, shoot, hide, etc.) fast to take others down. If

Geo-distributed
Storage

—

Actions =
- - S

|

Serverless Logics

—_—

LU

Participants

I State Update Pub/Sub
System |

Figure 4: Mapping Distributed VR/AR to Serverless Architec-
ture

participants make actions by pressing their controller keys then it
is possible to have up to multiple key presses per sec during combat
resulting 100 or higher action per second per match. If there are
500 matches are hosted concurrently, then the total rate can go
up to 50,000 actions per second, comparable with Pokemon GO
load worldwide with merely 20,000 participants! As VR/AR appli-
cations are becoming more popular, we are expecting to see a more
aggressive load increase in the future.

3.3 Mapping to Serverless Architecture

Hosting VR/AR application components over serverless is attrac-
tive, at least from the cost perspective as it allows the applications
to scale the cost to support their highly varied demand down to
actual use. Doing so is straightforward, as shown in Figure 3. Each
action is mapped to one serverless invocation. After a participant
makes an action via their VR/AR end device, the action is sent to an
API Gateway. This component collects actions and redirects them
to functions located at appropriate locations. Serverless invocations
are invoked upon action arrivals to apply their effect, synchronize
with the virtual world structure persisted on a geo-distributed stor-
age. Update on the virtual world will trigger a pub/sub system that
continuously listens to changes inside the virtual world to inform
affected participants.

3.4 Performance Requirements

Since most VR/AR applications are interactive, maintaining a good
interactive experience is crucial. From the performance perspective,
this is about smoothly responding to/updating participant actions,
and can be done by specifying certain requirements around the
following metrics:

e High update/rendering rate. Participant experience becomes
smoother when his view of the virtual world refreshes more
often. Low update rate, especially variable, damages effective
tracking of changes, reducing the quality of experience. For
high quality, an update/rendering rate of 30 to 60 fps is
required.

e Low latency. Each update is perceptible to the participant.
Low latency enables rendering at high rate without skipping
or missing changes, improving the interaction quality. To
meet the update rate requirement of 30 to 60 fps, the latency
requirement should be around 15-30ms. In some cases, this

can be a statistical requirement (e.g. 1% of the frames could
be late), or qualitative requirements on the "shape” of the
distribution.

e Scalability: participant experience must be robust, as the
system scales to large numbers of participants, and distribu-
tions of those participants in both the interaction space and
geographic space.

Given the architecture mapping and requirements above, imple-
menting Pokemon GO with serverless will generate a load of 50,000
invocations per second, each need to be done within 15-30ms. For
Stand Out, the demand can be much more if their active users in-
creases. However, with 100+ milliseconds of invocation latency that
the current commercial serverless implementation are experiencing
nowadays, meeting this latency requirement is challenging [42].
It is even harder as action arrivals are so intensive bursty in both
temporal and spatial that requires careful resource allocation and
load distribution design.

3.5 Distributed AR/VR Workload Model

VR/AR workloads can be modeled as a sequence of actions initiated
by participants. The work depends on the type of actions, and the
clustering of other participants in the interaction space. This can
be characterized by the following parameters.

e }; — Action arrival rate for participant i, reflecting the fre-
quency of making actions (and serverless invocation). The
arrivals should be bursty. We model this as a Poisson process
with the average rate raging from 0.01 to 10 per second, de-
pending on participants’ aggressiveness of making actions.

e L - Location distribution of participants in the virtual world.
L can be formed as a set of multiple clusters of participants
(e.g. region, see example above), each is modeled as a two-
variable Gaussian distribution with standard deviation vary
from 0.1x to 10x of the mean depending on the cluster den-
sity.

e P(L) - The distribution of the number of participant affected
by a given action, and depends on L, the location distribution

e F(L) - The work embodied in the serverless functions that
are required to respond to an action. It is also a function
of the participant location distribution L, capturing the fact
that more affected participants required more effort on syn-
chronization and update.

e D - Update deadline, which is the maximum latency for
any action. To meet the 30-60 fps requirement, we set the
deadline within 15-30ms.

We define the following metrics to evaluate application perfor-
mance over a given workload:

e M — Miss rate, the fraction of actions that take longer than
the deadline D. Typical miss rate targets are 5% and 1% or
lower.

e Used — Quantity of resource used, for serverless it is in
GB*second, to support the workload

4 DOCUMENT ANNOTATION

To support intelligent human decision making, numerous orga-
nizations have built text document annotation systems that pore

Stream annotated
— Metadata Annotation Feed

F-———=—=—=—=—=———---=-= 1
1 1
@ Index & cluster documents |1
1 T - T !
1 Document ingestion service 1

Search index

(2) Retrieve documents
& online cluster IDs

(5) Cache
overview

Real-time stream
of documents

I

(1) Send search query : (* (3) Cluster search (4) Summarize :
: L results clusters :
L Overview compositionservice . __ [_ !

(6) Return overview

User interface

Figure 5: Text Document Annotation Pipeline from [5] that
shows how annotated documents are deposited in a database.
They are also streamed to customers in real-time (see blue
arrows).

through enormous numbers of documents, organizing them with
annotations [6, 24, 25], and providing a large range of derivative
summaries. These systems are under performance pressure because
of the rapid rate of information growth in the world, and the need
to make fast decisions in a competitive landscape, i.e. financial
trading. A document annotation application processes millions of
documents everyday.

4.1 Application Description

We describe the Bloomberg Financial text annotation pipeline which
processes 2 million documents a day. Bloomberg is a real-time in-
formation service, and to a large degree, they are annotating docu-
ments that are publicly released (company earnings reports, filings,
government/fed/treasury statements, business press, and more). In
order to provide value to their customers for their very expensive
Bloomberg terminals, their document annotation system has a hard
deadline of 100ms and no lower bound on desired lower latency
(see Figure 5). Examples of processing include natural language
processing, specific features (e.g. earnings), topic formation and
classification, summarization, and more. Some annotations are done
in parallel to minimize the latency, and others may follow a work-
flow that depends on its content — topics and type of document. The
heavy use of natural language means that growing deep learning
models such as BERT and GPT-3 are often used. The Bloomberg
annotation workflow has a hard deadline of 100ms - though no
latency is too low! The objective is to meet ALL of the deadlines
with the lowest resource cost.

Each document input is a short collection of text written in natu-
ral language, typically 50 to 750 words. In the higher-end examples,
images can be included. Annotation is application output that con-
tains information extracted from the document and may relate it to
other information in the knowledge base. Workflow is a set of tasks
performed by the application to generate annotations for a docu-
ment. Tasks may depend on each other. Document workflows may
interact with each other. A number of papers have been written
about a variety of real-time annotations [5, 43]. While each appli-
cation differs, the basic structure and properties are representative
of all of the applications mentioned below.

Annotating a document uses NLP techniques combined with
ML/DL models. A standard pipeline is

Individual Serverless
Functions

|
uy)

s
Incomin, —]
Documeits To Streaming &
— Databases
- .
\l —p

Workflows call
Serverless Functions

Figure 6: The text annotation application cast into a server-
less architecture has key parameters for each function and
workflow, as well as their number. Another key parameter
is the deadline.

(1) Pre-processing, including parsing [36, 43], cleaning, and to-
kenization [23], etc. Tasks dependency in the step is prede-
fined (e.g. Parsing — Cleaning — Tokenization). Depending
on the annotation purposes, some tasks may be skipped by
the workflow.

(2) Feature extraction, with tasks vary depending on the pur-
pose of annotation, and models used in downstream steps.
Generally, this step contains POS tagging [24], word em-
bedding construction [24, 26], etc. Tasks are independent.
Depending on the annotation purpose, some tasks may be
skipped by the workflow.

(3) Annotating the document from selected features using pre-
trained ML/DL models for natural language [5], topic analy-
sis [34], sentiment analysis [32] and more. Tasks are gener-
ally independent, and some are large. For example, state of
the art models such as BERT or GPT-3 for NLP requires 200
ms with batch size 8 on an AWS GPU instance [21].!

4.2 Examples

While document annotation for financial information services may
aggressively optimize to create investment or trading advantage,
there are several other at-scale high-performance document anno-
tation problems. For example, Facebook analyzes posts in real-time
filtering for a variety of properties (hate speech, interest, ...), and
a more ambitious non-real-time annotation for a variety of other
properties such as targeted advertisement, user classification, and
so on. In another setting, Google and other search engines take
real-time feeds from Twitter, news services, new website pages, and
more, performing similar real-time document annotation and incre-
mental indexing to provide the ability to search the latest postings
and content. We summarize these examples below.

(1) Bloomberg Financial Text Document Annotation (real-time):
2 million documents/day, multiple sources, geographically
distributed, real-time, <100ms, no lower bound on latency.

(2) Facebook Post Annotation (real-time): 350 million posts/day,
4,000 per second, geographically distributed, real-time and
near real-time, no lower bound on latency [38].

nterestingly, also estimated at 1000 request/$.

(3) Tweet/article/Web Page Annotation (high rate, near real
time): 500 million Tweets/day, 6,000/second, 2 million news
articles/day, 24/second, 10 million new pages added to aver-
age of 55 billion pages, near-real-time to support incremental
search index update for fast-moving content [31, 39].

4.3 Mapping into Serverless Architecture

The document annotation pipeline maps naturally onto an event-
driven serverless architecture. When each document arrives, a set of
individual functions and workflows are launched. These functions
vary in size, and the workflows are a sequence of functions. This
mapping is illustrated in Figure 6. The documents vary in size
depending on application domain and may also include images
as in Facebook posts. Processing times for functions range from
short, real-time to longer analysis. Some applications partition
their processing into short real-time functions (e.g. hate speech
detection) and longer running analysis (e.g. interest classification
for targeting).

4.4 Performance Requirements

The application/system is subject to hard real-time deadlines. Its
cost is determined by how much computation resources and types
of resources (best effort, real-time, etc.) are required to meet its
constraints. All documents must meet their deadlines, or the system
FAILs. Performance requirements of the system include:

e Invocation rate

e Latency to completed annotation (hard deadline, or 99th
percentile)

o Cost: dedicated resources

4.5 Document Annotation Workload Model

Text annotations can be modeled as a series of document arrival, the
simplest model would be memoryless (Poisson), but more realistic
models would be bursty. The document processing time is typically
proportional to size, with modest variation.

e A -Document arrival rate — memoryless (poisson) process
or one with more bursty, correlated arrivals

e S - Document size distribution, ranging from 40 bytes to
4 megabytes (including images). Uniform distributions, or
skewed depending on the application.

e < F,Fs,...F,, > - a collection of serverless functions that
are invoked on each document. These serverless functions
have a corresponding runtime which is proportional to the
document size, runtimes distributed across 0.1D to 09D.

o < Wi, Wy, ...W); > -acollection of workflows each consisting
of a set of serverless functions. Again the serverless functions
with runtimes proportional to the document size. Runtimes
distributed across 0.5D to 0.95D.

e D - hard deadline of 100 milliseconds for text document
annotation, soft 99th percentile deadlines of a few seconds
for other applications.

Performance metrics for a text document annotation workload
include:

Workload Invocation Rate (per second) | Latency Requirement Scalability
Scientific Stream 40M 300ns (hard) N.A.
Distributed VR/AR 50K 15ms (soft) Users

Doc Annotation 12K 200ms (hard) Annotation Complexity

Table 1: Comparison of Performance Requirements

o Fj — the fraction of documents who miss the deadline; failing
to complete annotation within the specified D period after
arrival

e R - quantity of resources allocated to support the document
annotation to meet deadlines

5 RELATED WORK

Many efforts have been spent on applying the serverless model
for a wide range of applications, including video processing [15],
data analytics [27], modifiable virtual environments [11] and high-
performance computing [9, 37]. These applications, as well as the
ones presented in this paper, are the motivation for many studies on
serverless that optimize the framework towards high performance
[1, 12, 18, 22, 35], enable QoS [41], understand its potentials and
limitations [19], as well as to characterize implementations [42]
and workloads [35].

Meanwhile, there are studies focusing on serverless application
quality in terms of performance guarantee. Batch [2] uses an op-
timizer to provide tail latency guarantees for machine learning
inference. Real-time Serverless [28] provides invocation rate guar-
antee for bursty, real-time workloads. Spock [17] exploits VMs and
serverless functions at the same time to meet SLO at low cost. These
are critical steps towards performance predictability, which is also
a core requirement of the workloads we presented in this paper.

6 SUMMARY AND FUTURE WORK

Table 1 summarizes the three classes of applications we discussed.
They all have real-time (either soft or hard) sub-second latency
requirements and scale from tens of thousands to millions of in-
vocations per second. Such demands are far higher than typical
serverless workloads, which barely reach 1 invocation per second
[35]. Although it is natural to architect these applications on server-
less platforms, the performance requirements are far in excess of
today’s commercial implementations. For example, latency require-
ments of a few milliseconds versus commercial implementations
that are still struggling at 100’s of milliseconds to seconds over-
head with high variability [42]. The current best-effort allocation
employed by serverless platforms also finds it hard to reach or
maintain these high invocation rates [28].

Therefore, to support these high demanding applications, a high-
performance serverless implementation is needed. We leave find
such implementation as an open question as there are many promis-
ing directions worth exploring: reducing function initialization
overhead, employing load prediction to make proper pre-allocation,
adding support for heterogeneous resources such as hardware ac-
celerators, or bringing serverless instances closer to the caller (edge
deployment), etc. The serverless platform also needs to provide
applications ways to engineer their performance guarantee. This

requires better resource isolation to eliminate variability and al-
location guarantees to maintain performance requirements under
uncertainties.

ACKNOWLEDGMENTS

This work supported by National Science Foundation Grants CMMI-
1832230, CNS-1901466, and CCF-1909364. We gratefully acknowl-
edge support from Intel, Google, Samsung, and the CERES Center
for Unstoppable Computing.

REFERENCES

[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-

Performance Serverless Computing. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18). USENIX Association, Boston, MA, 923-935.

Ahsan Alj, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: Machine

Learning Inference Serving on Serverless Platforms with Adaptive Batching. In

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (Atlanta, Georgia) (SC "20). IEEE Press, Article

69, 15 pages.

[3] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing
Machinery, New York, NY, USA, 263-274.

[4] G. Apollinari, I. Béjar Alonso, O. Briining, P. Fessia, M. Lamont, L. Rossi, and L.
Tavian (Eds.). 2017. High-Luminosity Large Hadron Collider (HL-LHC): Technical
Design Report V. 0.1. 4/2017 (2017).

[5] Joshua Bambrick, Minjie Xu, Andy Almonte, Igor Malioutov, Guim Perarnau,
Vittorio Selo, and Iat Chong Chan. 2020. NSTM: Real-Time Query-Driven News
Overview Composition at Bloomberg. arXiv preprint arXiv:2006.01117 (2020).

[6] Joshua Bambrick, Minjie Xu, Andy Almonte, Igor Malioutov, Guim Perarnau,
Vittorio Selo, and Iat Chong Chan. 2020. NSTM: Real-Time Query-Driven News
Overview Composition at Bloomberg. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations. Association
for Computational Linguistics, Online, 350-361.

[7] Betsy Beyer, Niall Richard Murphy, David K Rensin, Kent Kawahara, and Stephen
Thorne. 2018. The site reliability workbook: practical ways to implement SRE. "
O’Reilly Media, Inc.".

[8] Chih-Yao Chang, Bo-I Chuang, Chi-Chun Hsia, Wen-Cheng Chen, and Min-Chun
Hu. 2020. Framework Design for Multiplayer Motion Sensing Game in Mixture
Reality. In International Conference on Multimedia Modeling. Springer, 703-708.

[9] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben

Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serving

Fabric for Science. In Proceedings of the 29th International Symposium on High-

Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC °20).

Association for Computing Machinery, New York, NY, USA, 65-76.

Nhan V Tran David W. Miller. [n.d.]. Personal communication.

Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. 2020. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesigning

Minecraft-Like Games as Serverless Systems. In Proceedings of the 12th USENIX

Conference on Hot Topics in Cloud Computing.

[12] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-

uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for Serverless

Computing with Initialization-Less Booting. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages

and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for

Computing Machinery, New York, NY, USA, 467-481.

Lyndon Evans and Philip Bryant. 2008. LHC Machine. Journal of Instrumentation

3, 08 (aug 2008), S08001-S08001.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos

Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:

Outsourcing Everyday Jobs to Thousands of Transient Functional Containers.

[2

—
_- o

[13

(14

In 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA,
475-488.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston, MA,
363-376.

Frank Glinka, Alexander Ploss, Sergei Gorlatch, and Jens Miiller-Iden. 2008. High-
level development of multiserver online games. International Journal of Computer
Games Technology 2008 (2008).

[17] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G. Kesidis, and

C. Das. 2019. Spock: Exploiting Serverless Functions for SLO and Cost Aware
Resource Procurement in Public Cloud. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). 199-208.

Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices. Association for
Computing Machinery, New York, NY, USA, 152-166.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University
of California, Berkeley.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444.

Chuan Li. [n.d.]. OpenAI's GPT-3 Language Model: A Technical Overview.
lambdalabs.com.

[22] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019. Under-

standing Open Source Serverless Platforms: Design Considerations and Perfor-
mance. In Proceedings of the 5th International Workshop on Serverless Computing
(Davis, CA, USA) (WOSC ’19). Association for Computing Machinery, New York,
NY, USA, 37-42.

Mounica Maddela, Wei Xu, and Daniel Preotiuc-Pietro. 2019. Multi-task Pairwise
Neural Ranking for Hashtag Segmentation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Association for Compu-
tational Linguistics, Florence, Italy, 2538-2549.

Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, and Roger Zimmermann.
2018. Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles
using Phrase Embeddings. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). Association for Computational Linguistics,
New Orleans, Louisiana, 634-639.

Philipp Meerkamp and Zhengyi Zhou. 2016. Information Extraction with
Character-level Neural Networks and Free Noisy Supervision. arXiv preprint
arXiv:1612.04118 (2016).

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text
processing. In International conference on machine learning. PMLR, 1727-1736.
Ingo Miiller, Renato Marroquin, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 115-130.

[28] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien. 2019. Real-

Time Serverless: Enabling Application Performance Guarantees. In Proceedings of
the 5th International Workshop on Serverless Computing (Davis, CA, USA) (WOSC
’19). Association for Computing Machinery, New York, NY, USA, 1-6.

Niantic. [n.d.]. Pokemon GO. https://pokemongolive.com.

NVIDIA. 2021. NVIDIA A100 Datasheet.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/nvidia-a100-datasheet.pdf.

Daniel Peng and Frank Dabek. 2010. Large-Scale Incremental Processing Using
Distributed Transactions and Notifications. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’'10). USENIX Association, USA, 251-264.

Daniel Preotiuc-Pietro, Ye Liu, Daniel Hopkins, and Lyle Ungar. 2017. Beyond
binary labels: political ideology prediction of twitter users. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 729-740.

raptor lab. [n.d.]. Stand Out: VR Battle Royale. https://store.steampowered.com/
app/748370/STAND_OUT__VR_Battle Royale/.

Antonia Saravanou, Giorgio Stefanoni, and Edgar Meij. 2020. Identifying Notable
News Stories. In European Conference on Information Retrieval. Springer, 352-358.
Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). USENIX Association, 205-218.

Tianze Shi, Igor Malioutov, and Ozan Irsoy. 2020. Semantic Role Labeling as
Syntactic Dependency Parsing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 7551-7571.

Tyler J. Skluzacek, Ryan Chard, Ryan Wong, Zhuozhao Li, Yadu N. Babuji, Logan
Ward, Ben Blaiszik, Kyle Chard, and Ian Foster. 2019. Serverless Workflows for
Indexing Large Scientific Data. In Proceedings of the 5th International Workshop on
Serverless Computing (Davis, CA, USA) (WOSC ’19). Association for Computing
Machinery, New York, NY, USA, 43-48.

Kit Smith. [n.d.]. 60 Incredible and Interesting Twitter Stats and Statistics. https:
//www.brandwatch.com/blog/facebook-statistics/.

Kit Smith. [n.d.]. 60 Incredible and Interesting Twitter Stats and Statistics. https:
//www.brandwatch.com/blog/twitter-stats-and-statistics/.

Statista. [n.d.]. Number of active users of Pokémon Go worldwide from 2016 to
2020, by region. https://www.statista.com/statistics/665640/pokemon-go-global-
android-apple-users/.

Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling Quality-of-Service in Serverless Computing. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC
’20). Association for Computing Machinery, New York, NY, USA, 311-327.
Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133-146.

Chunyang Xiao, Christoph Teichmann, and Konstantine Arkoudas. 2019. Gram-
matical Sequence Prediction for Real-Time Neural Semantic Parsing. In Proceed-
ings of the Workshop on Deep Learning and Formal Languages: Building Bridges.
14-23.

Xilinx. [n.d.]. UltraScale+ FPGA Product Tables and Product Selection
Guide. https://www.xilinx.com/support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.pdf.

	Abstract
	1 Introduction
	2 Scientific Data Streaming
	2.1 Application Description
	2.2 Examples
	2.3 Mapping into Serverless Architecture
	2.4 Performance Requirements
	2.5 Workload Model

	3 Distributed Virtual Reality/Augmented Reality
	3.1 Application Descriptions
	3.2 Examples
	3.3 Mapping to Serverless Architecture
	3.4 Performance Requirements
	3.5 Distributed AR/VR Workload Model

	4 Document Annotation
	4.1 Application Description
	4.2 Examples
	4.3 Mapping into Serverless Architecture
	4.4 Performance Requirements
	4.5 Document Annotation Workload Model

	5 Related Work
	6 Summary and Future Work
	Acknowledgments
	References

