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Abstract. We introduce a definition of the fractional Laplacian (—A)S<'> with spatially variable
order s : Q — [0, 1] and study the solvability of the associated Poisson problem on a bounded domain
Q. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga
and Torrea; however the analytical tools and approaches developed here are new. For instance, in
some cases we allow the variable order s(-) to attain the values 0 and 1 leading to a framework on
weighted Sobolev spaces with non-Muckenhoupt weights. Initially, and under minimal assumptions,
the operator (—A)5() is identified as the Lagrange multiplier corresponding to an optimization
problem; and its domain is determined as a quotient space of weighted Sobolev spaces. The well-
posedness of the associated Poisson problem is then obtained for data in the dual of this quotient
space. Subsequently, two trace regularity results are established, allowing to partially characterize
functions in the aforementioned quotient space whenever a Poincaré type inequality is available.
Precise examples are provided where such inequality holds, and in this case the domain of the operator
(=A)*0) is identified with a subset of a weighted Sobolev space with spatially variant smoothness
s(+). The latter further allows to prove the well-posedness of the Poisson problem assuming functional
regularity of the data.
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1. Introduction. The goal of this work is twofold: (i) introduce the spectral
fractional Laplacian (—A)*() associated with a homogeneous Dirichlet condition on
a bounded domain  C RY, N > 1, in the case the fractional order s(-) is spatially
variable and possibly attains the values 0 and 1; (ii) study the well-posedness of the
equation

(=APYy=h inQ,

1
S v=0 on 09,

for some classes of data h, and where v = 0 is understood in an appropriate sense.
Motivated by the extension approach in RY by Caffarelli and Silvestre [5], or in
bounded domains by Stinga and Torrea [17], we define (—A)*() to be the Lagrange
multiplier associated to a suitable variational problem defined in an extended domain,
for measurable functions s(-) with range contained in the interval [0, 1]. For a general
class of functions s(-), the domain of (—A)*() can be identified with a quotient space
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Z (Q,w) involving weighted Sobolev spaces,
(2) 2 (Qw) == Ly 1 (C,w) )Ly (C,w),

where C =  x (0,400) is the open semi-infinite cylinder (the extended domain) with
base 2, and w is a specific weight function. Roughly speaking, the spaces foff(c ,w)

and .,2”01’2 (C,w) are composed of functions that vanish on the lateral boundary of C,
and on the whole boundary (including the base ), respectively. Equation (1) is then
solvable for every h in the dual space of 2 (Q,w). For a smaller class of s(-), the
domain can be identified as a subset of a weighted Lebesgue space L2(€2, @) for some
function @, and the equation (1) is solvable when the right hand side is in L?(Q, ).
For an even smaller class of functions s(-), this result is further improved since the
domain of (—A)*() is identified with a subset of a weighted Sobolev space of functions
with spatially variable smoothness, related to s(-).

The main application that has motivated this work, in addition to the natural
theoretical interest, is the recent paper by the authors [2]. There, initial results on
an extension approach in Hilbert spaces on an open cylinder with base ) are given.
However, the authors stopped short of defining (fA)s(') due to the lack of a proper
functional framework. The current paper aims to fill this gap. It is worth mentioning
that none of the existing results in the literature are applicable to our case and new
PDE and variational analysis tools are needed to study the current situation. For
example, the extension approaches in [5,17] assume s € (0,1) to be a constant and
avoid the extreme cases of 0 and 1. In this setting, the nonlocal problem (—A)%v = h
in Q, where (—A)? is the s-power of the realization of —A in L?(Q) with zero Dirichlet
boundary conditions, can be equivalently formulated as a local one on a Sobolev space
with a Muckenhoupt weight. On the other hand, our s(+) is a function which is allowed
to touch the extreme cases 0 and 1 and therefore, the associated weights do not fulfill
the Muckenhoupt property [2, Proposition 1]. In particular, fundamental results of
type “H = W’ or Poincaré inequalities are not known in our case, leading to a more
complex functional analytic framework.

The literature concerning possible definitions of (—A)*(*) with non-constant s is
restricted to the stochastic processes and stochastic calculus approaches and considers
always the unbounded case 2 = R”; see the monograph [3] and the references therein.
By means of the Lévy-Khintchine representation formula, and the Fourier transform,
the operator is determined to be of Lévy type. However, strong additional assumptions
on s(-) are required to show that the operator is associated to a Feller or a Markov
process. To name a few, these include assuming that s(-) is Lipschitz continuous and
satisfies € < s(-) < 1 — ¢ for some € € (0, 1); see [3, Example 3.5.9]. Neither of these
restrictions are present in this work.

The paper is further motivated by several applications. The extension approach
with spatially varying s(-) has shown remarkable potential in image denoising: A
rough choice of s(-) performs better than an optimal selected regularization param-
eter in total variation approaches; see [2]. This is indeed a game changer, especially
the variable s(-) approach can enable one to replace the nonlinear (and degenerate)
Euler-Lagrange equations in case of total variation by a linear one in the case of the
variable fractional Laplacian. Another application of variable s(-) is in geophysics.
Recently, in [20] it was shown that the behavior of fractional Helmholtz equation
matches qualitatively well with data from the USArray Magnetotelluric station lo-
cated in NW of Kansas City, KS, USA. Even though so far only the constant s(-)
case has been considered, this is a perfect place for spatially varying s(-) to further
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obtain quantitative match. Indeed, if s(-) is interpreted to represent via non-locality
some degree of long-range correlation of underlying material properties (e.g. electrical
conductivity), then it is relevant to consider how spatial variability in this correlation
is accommodated in the architecture of fractional calculus paradigm.

Outline. The notation and main assumptions we make, specially those for the vari-
able exponent s(-), are specified in Section 2. In Section 3 we provide a succinct idea
of the approach that we follow to study the fractional Laplacian with spatially vari-
able order, (—A)S(')7 which is motivated by well-known results for the usual spectral
fractional Laplacian.

Our main results begin from Section 4, where we introduce a definition of (—A)*()
on the quotient space 2 (Q,w). Also in this section we prove the existence and
uniqueness of a solution v € 2°(£2, w) to the associated Poisson problem (1) for every
h in the dual space of 2°(Q,h). It is worth mentioning that the results in Section 4
require minimal conditions on the function s(-), the weight w, and the domain 2. The
results given in Section 4, however, do not provide conditions for solvability of the
Poisson problem when the right hand side of the elliptic equation is a (regular) real
valued function defined only on 2.

In a second approach, we are able to better identify the domain of (—A)*() as a
quotient space also, now on a Sobolev space %}’LP(C, w) that consist of functions in
WLP(C, w) that formally vanish on the lateral boundary of C. Differently from the
construction given in Section 4, this second approach requires some extra conditions
on both, s(-) and Q. These conditions are intimately related with the existence of
Q-trace results for functions in %”OILQ (C,w), as well as with the existence of a Poincaré

inequality in %’615 (C,w); thus, we postpone the second construction until Section 7.

In Section 5, we first study the Q-traces of functions in %LLP(C, w), for 2 < p < oo.
In particular, we are able to characterize s()-dependent integrability and differential
regularity of restrictions of functions in %{’Lp (C,w) to Q. Subsequently, we are able to

prove the existence of a Poincaré inequality for %l,gj (C,w) in Section 6, for a special
class of non-constant s(-) functions.

Our results finish in Section 7, where the details on the second definition of
(—=A)*¢) are given. Here, we identify the domain of (—=A)*(") with a subset of a
weighted Lebesgue space L?(Q,w) for some weight @, provided s(-) vanishes only on
a set of zero measure and a Poincaré inequality holds for functions in ,%’615 (C,w).
Further, we improve this result for the case when (2 is the N-dimensional unit square
and s(-) satisfies some extra conditions. In this latter case we identify the domain of
(—A)*0) with a subset of a Sobolev space of functions with variable smoothness on .
The paper closes with Section 8 that includes, in addition to conclusions, a number
of open questions and future research directions.

As a closing remark for this introduction, it should be noted that the approach
followed in this paper can be extended to problems of the type

(—=divAV)*Oy = h,

that is, involving general spatially variable fractional elliptic operators, under natural
changes on the presented framework.

2. Notation and main assumptions. We assume that Q@ ¢ RN, N > 1, is
a non-empty bounded open set with a Lipschitz boundary 9 (except in Section 4,
where no condition is imposed on the Q boundary). We denote by C the open semi-
infinite cylinder with base Q, by 91.C the lateral boundary of C, and by Cq, the cylinder
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C with the base 2, that is,
C =0 x(0,00), dr,C = 99 x [0, 00), Co =CU (22 x {0}).

A generic point X in RN¥*! is denoted by (z,y), where z € RY and y € R.

A function p is said to be a weight if p is positive and finite almost everywhere.
For an open set U, and a weight p, we denote by LP(U, p) the space of measurable
functions u : 2 — R such

1/p
o = ( | @)oo dx) < +oo.

The space LP(U, p) endowed with the norm || - ||zr(v,) is a Banach space. Further,
given p € [2,+00) we say that a weight p satisfies the B, condition, and write p € B,,,
if p=1/P=1 is locally integrable, that is,

peB, & p VUL (U).

For a weight p € B,, we define the weighted Sobolev space W1 (U, p) as the subset of
LP(U, p) of functions u with weak gradients Vu such that |Vu| € LP(U, p). Endowed
with the norm

fulbwssip = [ 1o@Pote as+ [ [Futa) o) dx)l/p<+oo,

WP (U, p) is a Banach space; see [12]. Notice that B, is a larger class of weights than
the Muckenhoupt A,. The latter is also used to define weighted Sobolev spaces; see
[19]. Throughout the paper we assume p € [2,00) and denote the (Holder) conjugate
exponent of p by p’.

The measurable function s(-) : € — R, which will characterize the spatially
variable order of the fractional Laplacian, is assumed to satisfy:

(H1) s(z) € ]0,1] for almost all x € Q.

We use the notation s(-) to emphasize the dependence of the function s: Q — R on
the spatial variable z € €2, and use s to denote a constant in the interval (0, 1).
Throughout the paper we consider the function w : C — R defined by

w(w,y) = Gy(z)y' >,

and such that for a given s(-), and p, the function G : Q@ — R satisfies that
(H2) Gs € By, and if s(-) = s € (0,1) constant, then

7 225711’1(5)
Gs(x) = T

for all z € ). Here I' is the standard Euler-Gamma function.
Assumptions (H1) and (H2) imply that w € B,. However, it is known that (in

general) w is not expected to be of Muckenhoupt type, see [2, Proposition 1].
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Given 7 > 0, we denote by C” the truncated cylinder C of height 7, that is,
C" =Qx(0,7),

and define the sets d.,C” and C{, accordingly. The restriction of the weight w to C” is
also denoted by w.

EXAMPLE 2.1. A possible choice for the function s(-) is given by
s(z) = o min(dist(z, B), €),

where 0 < & < 1, B C Q is a closed subset with zero-measure of RN and dist(x, B) =
inf{|lz—y| : y € B} and o € (0,1). This type of functions are useful in image processing
where the set B is the approximated set of edges/discontinuities of a certain image that
one tries to recover; see [2].

The two examples for G4 that are of relevance to us are defined by

(D)) — 9251 I'(s) an (2)() — 92s(x)-1 I'(s(x))
3)  Gyl(x) =2 -3 d G (z) =2 T - s@))’

1
where s = @/ s(z)dx. It follows that (H2) is satisfied given that o € (0,1).
Q

3. The extended domain approach. This section is devoted to briefly review
the well-known extension domain approach to define the spectral fractional Laplacian,
see for instance [5,8,17]. Throughout this section, we assume that s € (0,1) is
constant.

We denote by {A,} the sequence of eigenvalues of the Laplace operator supple-
mented with a Dirichlet boundary condition, and consider an orthonormal basis {¢,, }
of L2(€) of associated eigenfunctions. The spectral fractional Laplacian is defined by

(4) (—A)°v = Z Apbnn,  where b, = / v, dz,
Q

on the space

H:{v:an%eB ||u\|H_ZASb2 <oo}

n=1

For extensions of (4) to non-homogeneous boundary conditions, we refer to [1]. It
is worth mentioning that H = H(Q) if s € (0,3) ors € (3,1) and H = H,(Q)
for s = 1. Here, H{(Q) is the closure in H*() of the space of infinitely continuous
differentlable functions with compact support in 2, and Hg,(?) is the Lions-magenes

space [18]. Moreover, H*(£2) is the fractional Sobolev space of order s,

HY () = {v € 12(Q) :/Q i %dxdy < oo},

endowed with the norm

1/2
_ 2 |v(z) —v(y)?
v |les ) = (/ ] da:—I—/ ) |$_y|N+28 dzx dy .



The extension approach introduced by Caffarelli and Silvestre [6], see [7,17] for
the case of bounded domains, establishes that if h € H' (dual space of H) then the
unique solution to the elliptic equation

(=AYv=h inQ,

v=0 on 99,
is given by v = tro u, where u € Hg 1 (C,y"'~?*) satisfies
271 (s) 1-2s 1 1-2s
(6) (htroV)g m = m Y Vu- Vi dX Vi€ Hy (C,y )s
- c

see [7, Lemma 2.2]. Here, (-,-)gy’ g denotes the dual pairing between H' and H.
Moreover, trg is the Q-trace operator for functions in the space

H 1 (C,y" ) = {ue H(C,y"*) : u =0 on J.C in the trace sense} .
More precisely,
tro : Hy 7 (C,y' %) — Hy(Q),

is the unique bounded linear operator that satisfies trqu = u( -, 0) for every u € C°°(C)
that vanishes on 01,C; which is also onto over H, that is

(6) tro Hy 1(C,w) = H,

see [7, Proposition 2.1].
Additionally, since the minimization problem

1
minimize — / y' 72 Vu2dX  over H} L (C,yt™?),
(7) 2Je ’

subject to trou =wv,

admits a unique solution u € H&L(C, y1=2%) for any v € trg H&,L(C, w), the harmonic
extension operator

S :trg H&L(C,ylf%) — H&L(C,yl*%)7 v = S(v) =u,

where u is the solution to problem (7), is well-defined, linear, and bounded. Then one
finds that the spectral fractional Laplacian given by (4) satisfies

(8)

2s—1
(—A)0, tr By gt = e L)

1-2s X 1 1-2s
oy Lyse veax v em ey,

for all v € H, which provides an equivalent definition for (—A)#®. This second approach
is our starting point to study the fractional Laplacian with spatially variable order:
We identify a space of traces on which we can define the fractional Laplacian (—A)*()
by a formula analogous to (8).

4. Abstract definition and solution to (—A)*)v = h. We consider in this
section an abstract derivation of the spatially variable fractional Laplacian (—A)*().
The advantage of this initial approach is that it requires minimal assumptions, namely
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(H1) and (H2), which are primarily sufficient conditions to have w € B,; this leads
to an appropriate definition of the associated weighted Sobolev spaces. Also, it is
worth noticing that the arguments in this section do not require any assumption on
the regularity of the Q boundary 0€2. This path starts with the proper derivation of
the trace space for the weighted Sobolev spaces in study. For this matter, we consider
the space

LY2(C,w) = {u : C — R measurable : Vu € L*(C,w)},

and endow it with the semi-norm

lullLr2cw) = IVUll2cw)-

Note that u — [Ju]1.2(cw) is a norm on the subset of C' functions in L*?(C,w)
that vanish at OC or 9;,C. Subsequently, we define .,2”017’5 (C,w) and Z;*(C,w) as the
completion in LY?(C,w) of the infinitely differentiable functions in L'?(C,w) with
compact support in Cq and C, respectively, that is:

foﬁ’f(c,w) := completion of CZ°(Cq) N L"*(C,w) for |- |[r12(c,w)

Z3*(C,w) == completion of C°(C) N L"*(C,w) for || ||112(c,w),

where

(9) CP(Cq) = {u e C=(C) : supp(u) N IC = 0}.

The only portion of the boundary where functions in C2°(Cg,) do not necessarily vanish
is the Q cap. A few words are in order concerning fo{f(c, w) and %, "*(C,w). Note
that C2°(Cq) N LY2(C,w) and C°(C) N LY?(C,w) are both pre-Hilbert spaces when
endowed with the inner product

(u17u2)L172(C_w) = / w vu1 . VUQ dX
' C

It follows then that their completion, fo{f(c ,w) and .,%01’2(C ,w), are Hilbert spaces;
in particular for 21,2y € £, 7(C,w) there exist Cauchy sequences {z]'} and {22} in
C°(Cq) N LY2(C,w) such that

— ] n n
(ZleQ)E(}f(c,w) = nh~>nolo Csz1 -Vzy dX.

If there is no risk of confusion, and in order to simplify notation, occasionally we
simply write

(21,22)501;5(@10) = /cw Vz1 - VzodX,

and analogously we treat %, (C, w).
Given that C2°(C) N LY2(C,w) C C(Cq) N LY?(C,w), then we observe that
Z)2(C,w) is a closed subspace of fo{f(C ,w). Thus, we can define an abstract space

of traces on €2 of functions in fol’f(c ,w) as the quotient space

2 (Quw) =21 (C,w)/ Ly (C ).
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We then define

Tro u := [u],

i.e., the abstract trace on € of a function u € zol,f(c ,w) is identified with the equiv-
alence class [u] that contains u. The space 2 (2, w) is then endowed with the usual
norm

ITrq ull 2wy = Wl 27wy = Inf{{lu = 2l G120 0y 2 € %2 (C,w)}.
Note that
(10) Tro : %1 (C.w) = 2(Qw),

is a linear and bounded operator, and that 2 (Q,w) is a Hilbert space, given that
fo{f(c,w) and .%,*(C, w) are also Hilbert spaces. We denote its inner product as
(+,+) 2. Further notice that, by definition, Trq ,Zol’LQ(C, w) = 2 (Q,w). Unless it is not
clear from the context, we denote the class [v] € 2 (Q, w) simply by v. The following
result establishes the existence of the harmonic extension operator.

THEOREM 1. Let v € Z°(Q,w) and p > 0. The minimization problem:
(Puw) minimize J,(u,v) over fo{f(c,w),
for
Tuli:0) 3= Slulpns ey + 50w = o]
pU, V) 1= 2 u w%l,f(C,w) 9 Qu v X (Q,w)>

admits a unique solution u, € .,iﬂolf(c,w) that, as p — 00, converges strongly to the
unique solution to

®,) minimize J(u) over fo{’g(C,w),
! subject to Trqu = v,

for

1
J(u) == §‘|u||fg&f(c’w)

Proof. The existence of a solution {u,} to (P, ) follows from arguments of the
direct methods for calculus of variations: The functional u — J,(u, v) is non-negative,
coercive, and weakly lower semicontinuous; for the latter part note that .,?Olf(c Jw) D
w = [|Trowl 2 (Q,u) is also weakly lower semicontinuous. Uniqueness follows from
the strict convexity of u +— J,(u,v).

Since v € 2°(Q,w), there exists @ € %, 7 (C,w) such that v = [4] = Trg & Thus,
given that u, is a minimizer of J,(-,v), l

(11) Ju(uy,v) < Ju(u,v) = J(u),

for every p > 0. Then, by basic theory for penalty functions (see [13, Lemma 1 in
Chapter 10]) we have that

L
(12) tim £Tro = 01 9,0y = 0.

p—00
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Thus, by (11) we have that the sequence {u,} is bounded in fol_f(c,w), so it
admits a weakly convergent subsequence, say

(13) Uy — U in ,Zolf(c,w).

Further, by (12) we observe that Trqu = v. Next we show that J(u,) — J(u) with u
being the minimizer to (P,). By weak lower semicontinuity of J and (12), we observe:

J(u) < lim J(uy) < lim J(uy) = Lm Ju(u,,v) < Im Jy(u,0) = J(u),

' —00 p'—o00 ' —o0 ' —o0

that is J(u, ) = J(u). The fact that u is a minimizer to (P,) follows by selecting an
arbitrary u such that Trg 4 = v, then the previous to last inequality above yield

J(w) < Tm J, (@) = J(@),

p'—o00

i.e., u is a minimizer. Further, by strict convexity, minimizers to (IP,) are unique, so
that the entire sequence {u,} satisfies

(14) Uy — U in Zolf(C,w),
and also J(u,) — J(u). Using (12), this limit is equivalent to

MILH;O Hu#”fol’vf(c,w) = ”u”.:f(};f(c,w)’

which together with (14) implies that
(15) Uy = u in ‘Zolf(c,w);

see [4, Proposition 3.32]. O
Theorem 1 ensures the existence of the abstract weighted harmonic extension
operator

S:TrQXO{’LQ(C,w)%ZO{’LQ(C,QU), v S(v) =u.

where u is the solution to (P,). In addition, the map S is linear and bounded:
Linearity follows directly from the examination of the first order conditions. For
boundedness, consider (11) with « — 2z instead of @, where u solves (P,) and 2z €
Z2(C,w), to obtain J,(u,,v) < J(u— z). Then, by taking the limit as i — oo we
observe

IS g2y = 1ull 222wy < e = 2l 22 -
Then, by considering the infimum over all z € £, *(C, w), we obtain
||S(U)Hg(};§(c,w) < ol 2 @w)-
The well-posedness of the map S allows us to establish a definition for the frac-

tional Laplacian with spatially variable order.
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DEFINITION 2. Let 2 (Q,w)’ be the dual space of Z (2, w). The operator
(=A)P0)  2(Q,w) = 2 (Q,w)
is determined as follows: for v € 2" (Q,w), then (—A)*Ov € 2 (Q,w) is defined by
(16)  (-A)OuTraw) s = (SO, Dggew YV ELICL),

REMARK 1. The relation of the above definition with the classical spectral frac-
tional Laplacian (8) is straightforward in light of the abuse of notation disclosed at
the beginning of the chapter; in which case we can write

(=A)*Ov, Tro ¥) g0 9 = /chS(v) -V dX, YRR ,,sfo{f(c,w).

Furthermore, by a formal integration-by-parts formula and using the fact that S(v)
is weighted harmonic, we obtain that (—A)*") is equal to the generalized Neumann
trace of S(v) when restricted to Q x {0}. In other words, similarly to the classical case
where s(+) is a constant, the variable order fractional Laplacian can also be interpreted
as the Dirichlet-to-Neumann map.

REMARK 2. In view of Theorem 1, the expression in (16) is equivalent to
<(_A)s(')v7 Tro ¢>EK’,£K = H]LH;O /L(TI‘Q Uy — U, Tro w)gg, Vi e fo{f(c, U}),

where u,, is the unique solution to (P, ).

The operator (—A)*¢) : 27(Q,w) — 2 (Q,w) is well-defined as we see next,
and it can be seen as the Lagrange multiplier associated to the harmonic extension
problem.

PROPOSITION 3. For each v € Z (Q,w), there exists a unique X = A(v) €
Z (Q,w)" such that

N Trav) a2 = (S(0),9) 220 Vi € Z57(Cw).

Proof. Initially, note that S(v) is the solution to (P,). For convenience, we write
the constraint in (P,) as G(u) = 0, where G : Xolf(ﬁw) — Z(Q,w) is defined by
G(u) = Trqu — v. Since the operator Trq is linear and bounded, also it is G, and
hence G'(u)h = Trq h. Thus, G'(u) : foﬁf(c,w) — 2 (Q,w) is linear, bounded, and
surjective. Therefore, there exists a unique Lagrange multiplier A € 2°(Q,w)" such
that

J'(S(0)) = Ao G'(S(v)), Vi) € £y (Cow)

which proves the statement. 0

In view of Remark 1, we can also interpret A as the Neumann trace of the extension
onto Q x {0}.

REMARK 3. It follows that (—A)*C) : 27(Q,w) — 2 (Q,w) is a bounded linear
operator given that S is linear and bounded.
We are now able to determine existence of solutions to the Poisson problem with
spatially variant Laplacian.
10



THEOREM 4. Let h € 27 (Q,w)’. The equation
(17) (—A) Oy = h,
admits a unique solution in Z (Q,w) that is given by v = Trq u, where u solves
(18) minimize J(u) over ZO{’Lz(C,w),
for

T) = 2l — (s Tro uh oo
2L L (Cw) :
Proof. Since Trq is linear and bounded, we have that
u (h, Trou) g a,

is a linear functional over 92”017’2 (C,w). Then, there exists a solution to the problem
(18) and the solution is unique due to strict convexity of 7.

Note that via necessary and sufficient conditions of optimality for (18), the unique
solution u satisfies:

(19) () gr2e,y = (. Trav) e Vo € L7 (C,w),

and then u is identical to its harmonic extension, i.e., u = S(Trq u). To see the latter,
we consider 1 € C2°(C) N %, 7 (C,w) in (19) and observe that by density

(20) (%) gr2eay =0 Vi €L7(Cow),

where we have used the fact that the functions in C$°(C) vanish on 2x {0}. Moreover,
we also (trivially) have Trq S(Trq u) = Trq u so that u satisfies first order optimality
conditions for (P,) for v = Trqu. Hence, by convexity (uniqueness) u = S(Trqu).
Also, by definition of the operator (—A)*() and (19), we have

21) (=AU Trqu, Tra¥) 2,2 = (S(Trou),v) g1 ) = (b Tra¥) 2,27,

for all ¢ € fol’f(c, w) and hence Trg u solves (17).
To prove uniqueness, consider a solution v to (17) with A = 0 and notice that

(S(U)aw)gom(c’w) =0 Vi e golf(ca w).

Then, S(v) satisfies first order optimality conditions for

1 1,2
B ||u\|?%1,2(c,w) over Z,7(C,w),

minimize
whose unique minimizer is the zero function. Then, by convexity, S(v) = 0, so that
v =Trg S(v) and hence v = 0. 0

REMARK 4 (Truncated cylinder C7). It is worth mentioning that exactly the same
construction with C replaced by the truncated cylinder C™, T > 0, leads to a definition
of (—A)S(‘) by means of an extension problem on C”, as well as to the existence and
uniqueness of solution to the associated Poisson problem. We care about C™ because
it makes the problem tractable from an implementation point of view [2, 15].
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A few words are in order concerning Theorem 4; although it provides a solvability
result for the elliptic problem, it does not establish existence of solutions based on
maps defined on Q. That is, we would like to address the question: Under what
conditions on h : Q@ — R, does the equation (—A)*")v = h admit a solution? This
question is answered in Section 7 and it is intimately related to the following trace
results.

5. Trace theorems. In this section we identify a trace operator that properly
relates values of maps on a Sobolev space in C to their values at 2. For this matter,
in addition to (H1) and (H2), we assume that the measurable function s(-) satisfies:

(H3) The set of points on which s(-) is zero has measure zero, i.e., |Ag| = 0 where
Ag:={z €N :s(x) =0}

We define jffﬁf (C,w) to be the closure in WP (C, w) of the infinitely differentiable
functions in WP (C,w) with compact support in Cq, that is,

A 1 (Cw) = C(Ca) NWTP(C, oy’ e

where C°(Cq) is given in (9). Then, formally speaking, %{g’(c,w) is the set of
functions in WP (C, w) that vanish on 97,C. We now prove the regularity of restrictions
of functions in %ILP(C ,w) on the Q boundary.

THEOREM 5 (TRACE THEOREM). Provided that (H1), (H2), and (H3) hold
true, there exists a unique bounded linear operator

tro : A (C,w) — LP(Q, ),

that satisfies trq v = u(-,0) for all u € z%%lf(c,w) N CX(Cq), where the weight
w: Q2 — R is defined by

w(x) = Gg(x)(p — 2 — 2s(x))P.

The same statement is true if we replace %’f)l”Lp(C,w) by the space %%’LP(CT,w), for
every T > 0.

Proof. For the sake of brevity, we define 6(-) := 1 — 2s(-) so that

w(z) = Gs(x)(p — 1 —6(x))".
Let u € ji’f)lf(c,w) N C(Cq) and (x,y) € C be such that s(x) # 0 and G4(x) # 0.

Initially, we write

1
(22) u(z,0) = u(z,y) — /0 yDniiu(z, ty) dt,

where Dy 4qu is the partial derivative of w with respect to the (N + 1) coordinate.
Let o € (0,1). Multiplying (22) by w(z,y)"/? and then integrating from 0 to o
with respect to y, we find:
|u(z,0)|/ w(z,y)Pdy <I) + I,
0

12



where:

I = / |u(x,y)|w(x,y)1/p dyv
0

1 o
I = / / YD s1u(e, ty)|w(, )P dy dt.

Now, we notice that [ w(z,y)/Pdy = G,(z) [y y°®/Pdy and that

/ys(m/pdyz/ Y P dy = L5 S,
0 0

since o € (0,1) and §(x) < 1. Thus,

p+1

p o _PT1
|u(z,0)|Gs(z)/? < po(+p)/p

(I1 + I2).
Multiplying the last expression by (p — 1 — d(x)), we obtain:

(23) (e, )i (x) /P < —2H L

< o P 1= 0@+ b).

Next, we shall estimate I; and I5. A direct use of the Holder’s inequality yields:

o 1/p
<ol ( | ety dy) .
0

We now estimate I in several steps. With the change of variables y = zt~! in the
inner integral of Is, we obtain:

to
(24) L <o / / | D yru(z, 2)|w(z, 2) /Pt 170@ /P 4z dt.
0 0

By adding and substracting (1 4+ §(x))/pp’ in the exponent of ¢, we rewrite the r.h.s.

of (24) as
L g [t 1-pp’+(1—p)é(x)
o t e F(x,2)t vp’ dz dt,
0 0

where F(z,z) = Dyjiu(z, z)w(x7 2)1/P. Then, by the Holder’s inequality, we find:

D 1/1’
L) 1-pp’+(1—p")5(x)
IgSU(/t ) (/ (/ F(x,2)t o’ dz) dt>
0
1/p 1 ot o (15 P 1/p
0 <p > / (/ Fla,2)t o dz> dt
p—1-4d(z) 0o \Jo

Applying the Holder’s inequality on the integral with respect to z, we obtain:

1/p 1 . ot oo (105 ()
L <o (p) (/ (ot)P/? / Flo,z)Pt o dzdt)
p—1-46(z) 0 0
/v’ 1 , (e —pp’ +(1—p")5 () 1/p
<o (p) (/ (ot)P/? / Fla,z)Pt ¥ dzdt)
p—1-46(z) 0 0

/ 1/p U s 1/p o 1/p
—gltp/p (p) (/ e dt) (/ F(z,z pdz) .
p— 1-— (5(%) 0 0 ( )

13
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Finally, we have:

p0.1+p/p' 1/p

I, < = 1-0@) </OU | Dy t1u(z, 2)|Pw(z, 2) dz)

Using the above estimations for I; and I5 in (23), and observing that p—1—4d(x) <
p, we obtain:

o 1/p
ju(z, 0)|i(x) /P < (p+ 1)o7 (/O lu(z, y)[Pw(z, y) dy)

o 1/p
s+ 0o ([ Dt Pt as)
0

from which we have:
(25)

, o 1/p
u(@, 0)|i(x) /P < (p+1)o2/P (/ (Ju(z,y)|” + |Dn1ulz, y)[P) w(z, y) dy) ;
0

since gP—1-1/p < o~2/p,

Raising inequality (25) to the p power and then integrating over 2, we find:

/Q [uz, 0) () dz < (p+ 102 (Jul}y ey + IVl ) -
Therefore, u(-,0) € LP(Q, @) and
[u(-, 0)lzr(@.a) < C; o) llullwiec,w)

where C(p,o) = (p + 1)0‘2/”/. Notice that o is an arbitrary, but fixed, number in
(0,1), so that in this case we can fix C'(p, o) to depend only on p. The operator trq is
the unique bounded linear extension of the mapping u(x,y) — u(z,0) to %{’Lp (C,w).

Let us finally see that the same trace result holds true when we replace %’61)}5’(6' , W)
by fféf(CT, w™), where 7 > 0. If 7 > 1, it follows from (25) that

/ . 1/p
Jul, 0)|(x)/? < (p+ 1)o7 (/0 (IU(w,y)lerIDNHU(%y)I”)w(fE,y)dy) :

from which, exactly as before, we find

(26) [u(-, 0)llr @) < C,0)lullwrrcr wry-

If, on the contrary, 0 < 7 < 1, then we select ¢ = 7 in (25) and obtain (26) in the
same way. The trace operator is now obtained as before. 0

REMARK 5. If s(-) = s € (0,1) is constant, then both W and G4 are also con-
stants. Hence, LP(Q,w) = LP(Q) and jf(ﬁf(c,w) = C%%T’Lp(c,ylf%), so it follows
from Theorem 5 that

tro : 1 (Cy' %) = LP(Q).

This is in accordance to the classical case, see [14, Theorem 8.2]. If, additionally,
p = 2, then we observe that trq and the trace operator given in [7] (see also Section 3)
coincide for functions in C°(Cq). From this, we find that trq is just given by the
restriction to %}f(c,yl’%) C Hy (C,y' %) of the map in [7]. However, a deeper
result is true; see Theorem 15.

14



In Theorem 5, we have characterized the integrability of functions in the trace

space of %’BT’LP(C, w). We aim now to identify the “smoothness” of functions in this
trace space. This is a more complicated task since we aim at determining a space
with a spatially variable smoothness associated to the function s(-).

For simplicity, from now on we assume that €2 is the N-dimensional unit square
Qn = (0,1)N. The forthcoming analysis requires one final assumption on the func-
tions s(-) and G:

(H4) For almost every z;,z € (0,1), j #¢,and ¢ = 1,..., N, it holds true that

1 lfpl
/ (Gs(a:)|xl - z|1_28(’”)) dz; < oo,
0
where z = (21, ..., 2,)

Assumption (H4) enables us to use a Hardy-type inequality (see Lemma 9 below)
for two specially chosen weights, which is a key ingredient to prove the subsequent
improvement of the trace result in Theorem 10.

EXAMPLE 5.1. Let Q = Qq, p = 2, and G4 = Ggl) constant; see (3) in Ezam-
ple 2.1. Suppose that s(-) satisfies:

(27)  s(z) >m|x —xo|? if |z —x0| > R, s(x) >pu>0 if |r—xzo| <R,

for some g, R € (0,1), m, > 0, and zy € (R,1—R). Notice that the only point where
s is allowed to be zero is xg. For this particular setting, although w ¢ A,(C), i.e., w
is not a Muckenhoupt weight (see [2]), we find that (H4) holds true as we see net.

To simplify the notation below, we write 6(-) :== 1 — 2s(+). Since 6(z)(1 —p') =
—0(x) > —1 for all x # x¢, we have:

1 2s(z) 1 — 2)25(=)
/ |z — 2| 79@) dz = * +d-2) V& # xg.
0 2s(x)

1 1 1y
/ </ |z — 2| 79®) dz) dz < / ——dz.
o s(@)
We now observe that, by (27), we have:
zo—R dx T tR - qg ! dz
v et
0 xo—R S(I) x0+R 5(:1;)

ro+R
< —=(1-2R)+ / | — zo|"?dz < 0.
m mng

1 1
/ </ |z — 2| 79®) dz) dz < oo.
o \Jo

Therefore, by Tonelli’s Theorem, we have that (z, z) — |z — 2|~ belongs to L' (Qz),
which in turn implies that

Then,

=N

Hence,

1
/ |z — 2| 7°@ dz < oo,
0
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for almost all z € (0,1), by Fubini’s Theorem.
Minor changes in the above arguments yield the same conclusion for functions s
with a finite number of zeros and a local behavior as (27) around each of them.

Next, in Definition 6 we present a Sobolev space of functions where smoothness
is spatially dependent and related to s(-). First, we introduce the required notation.
Fori=1,...,N,let ¢;,v¥; : Qny+1 — R be given by

, max{z;,7} . , -p
pi(z, 1) = P4(z, T)l_p (/ Py (xy T)l_p dt/) )

min{z,;,7}

, max{z;,T} , P

Vi(x,7) =0 (2, 7)1 P (/ ®;(z, )P dT') ,
min{z;,7}

where

®;(z,7) = Gy(2)|z; — 7|72
and the notation x% for a € (0,1) means that the ith-coordinate of z = (z1,...,7x) €
Qu is replaced by a, that is:
.Z'Z = (1‘1, ey L1,y Tj15- - - ,l‘N).

DEFINITION 6. The space W*()P(Qy, @, w1, ..., wy) is defined by
(28)
WS(‘)’p(QN,fu,wl,...,wN) ={v e LP(Qn,w) : A;(v) < oo foralli=1,...,N},

with the norm
N 1/p
(29) e (nvn'zp@m) +2Ai<v>> ,
i=1

where

/ / (/ / wi(xt, 7)|v(zl) — v(zt)|P det) dzy ... dx;—y dziqq ... day,

(N— 1) —fold

and

w; = min{e;,¥;} for i=1,...,N.

In order to address that s(-) controls locally the differential regularity of elements
in WeO)»(Qu, @, wy, ..., wy), consider the following. For s € (0,1), let W*P(Qx) be
the fractional Sobolev space of order s, that is,

(y)[”
W“’(QN):{UGL2 / / drdy < ooy,
QN QN ‘x B y|N+pg

equipped with the norm

o) — o)l ;N
ol = (Iolgu + / | e d)
N



If p =2, we have H*(Qy) = WH2(Qx). Then, note the following lemma that can be
found in [14] (see also [11]).

LEMMA 7. Let —1 < e < p— 1. There exists a positive constant ¢ such that

N
Ioll oo < (wnimm + ZAxv)) ,
=1

for every v € LP(Qn) that satisfies A;(v) < oo for alli=1,...,N, where

v
/ /(//| |t—T|P E)| ddt)dxl“‘dxil dzipr... doy.

fold

We now can show the relation between W*()?(Qx, @, wy, ..., wy) and the clas-
sical Sobolev spaces.

THEOREM 8. If s(-) = s € (0,1) constant, then

WOP(Quy, @, wr, . .., wy) < W25

P(Qw).
Proof. Let § := 1 — 2s and consider ¢, 7 € (0,1). Since 6(1 —p’) > —1, we have:

max{t,T} max{t,7} 1481 —p’
/ [t/ — 7002 q¢’ = / it — 7007 g7 = M_
min{t,7} min{¢,7} 1+ 5(1 —-p )

Then, a direct calculation yields:

%‘(Iﬂ') = wi(ZE?T) =

for all (x,7) € Qn41 since Gy is constant by assumption (H2). Therefore,

1 1 v
:C(p7s)/0 /(; (/ / | |t—7’|p 6)| det) dxl...dxi_l d£i+1...d$N,
N——

(N—1)-fold
where C(p,s) = G4(1+ (1 —p'))?. In addition, we notice that L (Qx, @) = L' (Qx)
since w is constant. Now the conclusion follows from Lemma 7 with € = 4. 0
REMARK 6. In light of the previous result, it seems that a more appropriate nota-
2(1-s(:))
tion for WOP(Qn, w,wy,. .., wy) would be W= 2 P(Qn, D, wr,...,wy). We
avoid this for the sake of brevity.

The following lemma is a key tool for the improvement of the result in Theorem 5.
The proof can be found in [16, Sect. 2.6].

LEMMA 9 (WEIGHTED HARDY-TYPE INEQUALITY). Let p be a weight function
defined in the interval (a,b). If

b
/ p(t)' 7" dt < oo,
then

b b
(30) / PO dt < Cr(p) / O (B dt Ve € (a,b),
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for all absolutely continuous functions f in (a,b) that satisfy lim;_,,+ f(t) = 0, where

o) =pier = ([ o) i)

and Cy(p) =p?/(p— 1)P~1
Now we are in shape to prove the improvement of Theorem 5

THEOREM 10 (IMPROVED TRACE THEOREM). Provided that (H1) to (H4) hold
true, there exists a unique bounded linear operator

trQN : %{f(ca w) - WS(.)’p(QNa ﬂ}, Wy, .- - awN)a

that satisfies trqeu = u(-,0) for all u € %”l’p(C w) NCXP(Cqy)-

The same statement is true if we replace %” P(C,w) by the space %ﬂ L, w),
for every T > 1.

Proof. For the sake of simplicity, we give the proof only for N = 1; with the
natural changes, the proof adapts straightforward to the case N > 2.

Let u € %{’L”(C, w) NCX(Cq, ). Initially, we write:
(31) Ai(u(-,0)) =1 + I,

where:
1 t
j. / / wi (8, 7)[ut,0) — u(r, 0)F dr dt,
0 0
1 1
Iy = / / wq (t, 7)|u(t,0) —u(r,0)P dr dt,
0 t

where w; = min{p1,1} as in Definition 6. Next, we shall estimate I; and I5 sepa-
rately. For this, we introduce the auxiliary function v : Q2 — R given by

v(t,7) = u(t, max{t, 7} — min{t, 7}).

We have:

1
/ w (t,7)|v(t,t) —v(r, )P dr dt
0

I
[ [

p
dr dt

/Dlvt T dt—|—/D2UtT)dT’

<2P1//w1tT /Dwt ) dt’
+2p71/ / wi (¢, 7) / Dayv(t, 7)) dT'
0 Jo T

where Dyv and Dsv denote the partial derivative of v with respect to the first and
second coordinates, respectively.

Interchanging the order of integration in the first term of the right hand side of
the above inequality, and introducing the change of variable 7 = —7 in the second

18
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one, we find:
(32)
1 1 1 0
I gzpfl/ / wy (¢, 7)|f1(t, 7)|P dt dT+2P*1/ / wi(t, =7)|fo(t,7)P d7T dt,
0 T 0 —t

where:

t -7
filt,T) = / Dyo(t',7) dt’, and fa(t,7) = Dov(t,7") dr'.
T t

The function f (-, 7) is absolutely continuous in (7, 1) and satisfies lim;_,.+ f1(¢,7) =
0 for almost all 7 € (0,1). Additionally, by definition we observe that

pi(t,T) = By(t,7) 7 (/T

for almost all 7 € (0,1). Then, by Lemma 9, we have:

t

—-p
oy (', 7) " dt’) Vit > T,

1 1
(33) /w%ﬂmmwﬁé%@/ﬁﬁﬂ@WﬂW%

for almost all 7 € (0, 1).
Similarly, the function fa(t, -) is absolutely continuous in (—t,0) and satisfies
limz , 4+ fa(¢,7) = 0 for almost all ¢t € (0,1). Since

5 -p
Yi(t, —7) = @1 (¢, —7)' " ( / P (1, —7) d%’) VF > —t,
—t

for almost all ¢ € (0,1), it follows by Lemma 9 that

0
1 (t,—7) | Dav(t, —7)|P d,
t

0
(34) /fWrWMWW&S%@/
for almost all ¢ € (0,1).

Then, since w; = min{e1, 11}, the estimation (32) in conjunction with (33) and
(34) yields:

1 1
L <Cup) zp—l/ / B (t,7) | Dyo(t, )P dt dr
0 T

1 0
+ Cru(p) 2”‘1/ / @y (t, —7) |Dav(t, —7)|P dF dt.
0 —t

Interchanging the order of integration in the first term of the r.h.s., and making the
change of variable 7 = —7 in the second one, we obtain:

35 L <Cu(p)2! /0 /0 ®1(t,7) (|Dro(t, )P + | Dyv(t, )7 dr dt.

Since the function v is given by v(¢,7) = u(¢t,t — 7) for ¢t > 7, we have:
Dl’U(t7 T) = Dlu(t7 t— T) + Dzu(t,t — 7')7
Dov(t, 7) = — Dou(t,t — 7).
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Then,
|Dyo(t, 7)[F + |Dov(t,7)[P < (|Dru(t,t — 7)| + | Dau(t,t — 7)| )* + |Doult, t — 7)|°
(2771 1) (|Dyu(t,t — 1) P + |Dau(t, t —7)|")

< 2P/2(2P71 4 1)|Vu(t,t — 7).

<
<

Using this estimation in (35) and then making the change of variable y = ¢t — 7 in the
inner integral, we find:

I <Cy(p)2r~tor/2(op—1 4 / / (t,7)|Vu(t,t — )P dr dt

— Cy(p) 27 12r/2 (20 4 1) / / By (t,t — y)|Vult,y)? dy dt.
0 0

Hence,

1 1
66 h<Cul)2 2Pt vy [ e u)lr dy a
0 0

To estimate I, we first write:

1 1
I = / / wi (7)ot £) — o(r, 7P dr dt
0 t

:/01 /OTwl(t,T)|v(t,t)—v(T,7')p dt dr.

and notice that, in general, Iy # I; since wi(t,7) # wi(7,t) for s(-) not constant.
However, similarly as we obtained (36), we identify the same bound for I5:

1 1
(B87) I <Cu(p) 2222 1 1) / / wlt, y)|Vult, y)P dy dt,
0 0

Using (36) and (37) in (31), we obtain:
Ar(u(+,0)) <Cr(p) 2P 27222 + DIVulll, ¢ s
hence,
A(u(-,0)) < Cu(p) 2 222+ 1)l o)

In addition, we know by the Theorem 5 that:

flu( -, O)HiP(Qhﬂ;) < (1 +pPo” 2/’ ||u||W1 2 (Cyw)?

where o is some arbitrary, but fixed, number in (0, 1).
Therefore, u(-,0) € W*()P(Qq, @, w;) and

(- 70)||W5<‘>vP(Q1,fu,w1) < C(p, U)||U|\W1w(c,w)7

where C(p, o) = (Cr(p) 2P 2°/2(2071 +1) + (1 4 p)Po—2r/P")1/p,
The operator trq, is the unique bounded linear extension of the map u — u(-,0)
to 7 (C,w).
The proof when jf #(C,w) is replaced by %”1 #(C™,w) where 7 > 1 is identical.0
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REMARK 7 (Surjectivity of trace operator). Although the previous result repre-
sents an improvement on the Q-trace characterization for functions in %%LLP(C,w),

nothing can be said about the surjectivity of the trace operator trq : %”O%’Lp((,’,w) —
WOP(Qn,w, wi, ..., wy) for s(-) non-constant.
REMARK 8. If s(-) = s € (0,1) is constant, then it follows by Theorem 8 that

2(1—s)
W2(Qn, W, w1, ..., WN) Wi==% P(Qn). Hence, the trace result in Theorem 5
is again in accordance to the classical case, see [1/, Theorem 2.8] (see also Remark 5).
Moreover, if p=2 and s € (0,1/2), we observe that

(38) Wo2(Qn, @, w, ..., wy) = H,

since H*(Qn) = H§(Qn) = H, so in this case we further partially recover the trace
result in [7, Lemma 2.2] given that %{f(C,yl’zs) C Hj ,(Cy' 2.

6. Cases where the Poincaré inequality holds. We address now in this
section cases and conditions on s(-) not constant that are sufficient for the Poincaré
inequality to hold true. Two results are given, one in the entire cylinder and one in the
truncated cylinder; see Theorem 11 and Theorem 13 respectively. From now on until
the end of the section, we assume that G, = Ggl) constant, see (3) in Example 2.1;
and s(-) is given by

M
(39) 3() = Zsi]lﬂi(')v
i=1

where s; € (0,1) for i = 1,...,M and {Q; : ¢ = 1,..., M} is a finite collection of
non-empty open subsets of () that satisfies Uf\il Q; = Q. In other words, we assume
that s(-) is a step function in Q with range contained in the interval (0,1). Our
first example is given by the next theorem which basically states that the Poincaré
inequality holds provided that all pieces €2; of the partition of €2 touch the boundary
o9

THEOREM 11. Assume that G, = G constant and s(+) is given by (39). If

(40) |02; N O] > 0 Vi=1,...,M,
then there exists a positive constant Cp(p,Q1,..., Q) that satisfies
(41) ||u||Lp(cvw) § Cp(p,Ql,...,QM)HVUHL;:(QU,) Vu S %%ZD(C,U))

Proof. The proof is quite direct, thanks to the existence of a Poincaré inequality
for functions in C*°(€;) that vanish on a subset of non-zero measure of 9€);: Let
u € CX®(Cq) NWHP(C,w) and i € {1,...,M}. For every y > 0, the function u(-,y)
belongs to C*°(£2;) and vanishes on a portion with non-zero measure of 9€;, by (40).
Then, by the Poincaré inequality, we have

(42) / (e, y)P de < c; / IVou(e, y)l? da,

where ¢; is a positive constant that depends only on €2; and p, and V, u is the gra-
dient of u with respect to the first N coordinates. Multiplying (42) by y'=2% then
integrating for y € (0, 00), and finally adding up for ¢ = 1,..., M, we obtain

/c y (e y)PdX < e /c y' OV y) P dX,
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where ¢ = ¢ + ...+ cpr. Since |V ulP < |VulP in C and Gy is constant, we get

/w(x,y)\u(x,yﬂp dX < c/ w(z, y)|Vu(z,y) P dX Yu e CX(Cq) NWHP(C,w).
c c

Now (41) follows by density. d

Next we prove that the truncated domain allows a much more amenable result
than the one in the complete cylinder C. In particular, we prove that (39) is a sufficient
condition for the Poincaré inequality to hold; the result is given in next Theorem 13.
The proof requires the following auxiliary lemma, see [10, Theorem 5.2] for its proof.

LEMMA 12 (CLASSICAL HARDY INEQUALITY). Lete > p—1 and let f be a
differentiable function almost everywhere in (0,00) that satisfies lim;_,o f(t) = 0. If

/ EIF (0P dt < oo,
0

then

/ TP dt < Cu(pae) / TR dt < oo,
0 0

where Cy(p,e) =pP /(e —p+ 1)P.
We are now in a position to present the final result in this section.

THEOREM 13. Assume that G, = G constant and s(+) is given by (39). For
every T > 0 there exists a positive constant Cp(T,p,1,...,Qn) that satisfies

(43)  ullrerw) < Cr(T,0, oo, Q) |Vl o (e ) Vu e %}g)(czw).

Proof. Let 7> 0 and u € C°(CL) N WP (CT, w). Initially, we write:

M
(44) / POz, P dX =31,
cr i=1

where

I; :=/ yl‘zs"/ u(z,y)|” dx dy.
0 Q;

We denote by c a positive constant that may depend only on p and the partition
{Q; :i=1,..., M}, whose numerical value may be different from one line to another.
Let i € {1,..., M}. We define

_ 1 /
ui\y) = 757 ulz,y d$7
(y) @l o, (z,y)
and observe that
(45) I <c(Iin + ILia),

where

yl‘%i/ﬂ lu(z,y) —u;(y)|P de dy,

i

/
Lei= [ v [ )l dody =i [y
0 Q 0

i

ui(y)|” dy.
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For each fixed y € (0,7), the function u(-,y) belongs to C*°(£;). Thus, by the
Poincaré-Wirtinger’s inequality, we obtain:

/ hu(z, y) — w(y)P dz < c / IVau(e, y)|? dr.

From this, similarly as in the proof of Theorem 11, we find:

(46) Iil §C/ / y172si

Let Teqt be the extension by zero of @ to [0, 00). Notice that @, is differentiable
almost everywhere in (0, 00) since u(z, -) € C*([0,7]) for all z € Q;, and, trivially,
Ueqe Satisfies limy_, oo Ueqe(y) = 0. Also, observe that

Vu(z,y)|P de dy

T

o0 T
/ y P L, (y) [P dy =/ y P ()P dy < c/ y TP dy < oo,
0 0 0

since 1 +p — 2s; > —1 and @’ is bounded in [0, 7].
Then, by the classical Hardy inequality in Lemma 12 with ¢ = 1 + p — 2s;, we
have:

(47) I = 4] / Y ea () dy < | / Vi ()P dy.

We now observe that:
> &/ P 1 " £
Yluea W) dy =157 | v Dyyiu(z,y) de
0 127 Jo o

1 T p
§|Q_|p/0 Y (/Q VU(%y)IdJC) dy,

where Dy1ju is the partial derivative of u with respect to the (N + 1) coordinate.
Then, by the Holder’s inequality on the inner integral, we have:

p

dy

oo 1 T
| vtawrar< o [y [ vete ) ar ay.
0 | l| 0 Q;

With this estimation in (47), we find:

(48) Ii2 SCTP/ / yliQsi

Finally, using (46) and (48) in (45), we obtain:

-
Iigcrp/ / ytm2si
o Jo,

and hence, by (44) and since G, is constant, we have:

Vu(z,y)|P dzdy.

Vu(z,y)|P dz dy,

/w(m,y)\u(w,yﬂp dX < crp/w(x,y)|Vu(x,y)|p dX Vue CEO(CQ)HWLP(CT,UJ).
cr cr

Then we obtain (43) by density. d
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7. Second definition and solution to (—A)*()v = h. We are now in a position
to give a new definition for the operator (fA)S('), and to solve the associated Poisson
problem for right hand sides defined on . The arguments below are very similar
to those developed in Section 4 but now we assume some extra conditions on the
function s(-) and the domain €2, which enable a better characterization of the domain
of (=A)*(). We present the ideas for the semi-infinite cylinder C, but the same
arguments are valid for a truncated one C7.

From now on, we assume that the functions s(-) and G satisfy hypotheses (H1),
(H2), and (H3). Further, we assume that the Poincaré inequality holds true, that is
there exists C' > 0 such that

lull 2wy < ClVullLzewy — Vu€ 51 (C w).

For example, this is satisfied under the assumptions of Theorem 11 (see Theorem 13
for the case of a truncated cylinder). In particular, this implies that

%%7[,2(67 w) = golf(c’ w),

algebraically and topologically. We endow %15 (C,w) with the norm |[|v]| AEPCw)
Vo] z2(c,w)- Under the hypotheses assumed, we have established in Theorem 5 an
Q-trace operator

(49) tro :%{f(c,w) — L2, ),

and proved it is bounded, linear, and such that trou = u( -, 0) for all u € WHP(C,w)N
C°(Cq). Note that this operator is not, however, surjective. Subsequently, consider

#5(Cw) == {u € %{’Lz(C, w) :trg u = 0},

which is a closed subspace of %1f (C,w). Hence, a space of abstract traces on € of

functions in %’BI’LQ (C,w) can be defined as the quotient space

Y (Qw) = A2 (C.w) [ #y2(C,w).

REMARK 9. Due to the absence of density results of the type “H = W7 for non-
Muckenhoupt weights, we are not in a position to assure that the spaces Z (Q, w) and
X (Q,w) are actually the same.

Immediately from here, via the isomorphism theorems, we can argue that there
is an isomorphism

(50) 0 Y (Qw) = trg L%’BT’LQ(C, w).

Moreover, one can simply consider ¢ to be given by [u] — trg u. However, in order to
identify % (2, w) with a subset of functions defined on 2, we need further information
related with the structure of the function space trg %%15 (C,w).

Analogously as in Section 4, we define

(51) TRq : 7 (Cow) = X (Q,w)
24



as TRq u := [u], and observe that Trq is surjective by definition. In this setting we
identify the abstract {2-trace of u € %‘615 (C,w) with the equivalence class [u] that
contains u. The space (), w) is then endowed with the usual quotient norm

ITRe ullo @,w) = [ullla@uw) = nf{llu =2l 12 (¢ ) : 2 € #5%(C,w))}-

As before, we have TRq .,5/”01,’];2(6’, w) = % (Q,w). Note that Z(Q, w) is a Hilbert space,

given that %’61’5 (C,w) and "*(C,w) are also Hilbert spaces.
Identically as in Theorem 1, we argue the existence of the weighted harmonic
extension operator

S:TRQ%”O%f(C,w) %%{f(c,w), v S) =u.
where w is the solution to

minimize J(u) over f%’éf(c,w),

subject to TRou =,

for

N 1 2 _ 1 2
Tw) = Sl y = 5/Cw|vu| d4x.

The well-posedness of the map S allows us to establish a definition for the fractional
Laplacian with spatially variable order.

DEFINITION 14. Let % (Q,w)’ be the dual space of % (Q,w). The operator
(—A)* O F(Qw) > Z(Qw)

is determined as follows: for v € #(Q,w), then (—A)*Wv € #(Q,w)" is defined by
(-8 0, TRa ¥)ar = [(wVS()- VHax, v e A ),
c

Since Proposition 3 holds true with the usual changes, the operator is then well-defined
and Theorem 4 is also proven mutatis mutandis: For a h € #'(Q, w)’, the equation

(52) (=AY =h inQ,
admits a unique solution v € #(Q, w) that is given by v = TR u, where u solves
(53) minimize J(u) over %%’LQ(C, w),

for
1 2
J(u) := 5 w|Vul*dX — (h, Trou) o' o .
C

Although this approach seems equivalent to the one in Section 4, in this setting
we have a more detailed representation of the elements #(Q, w). In fact, within this
approach, there exists an injection

I:%(Q,w) — L*(Q, ), u > I([u]) = trg u,
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which is linear and bounded. Linearity follows directly, and boundedness follows given
that for arbitrary z € ”//01’2 (C,w),

(D2 @.m) = Itva ullz2@.m) = lltra (u = 2)[L2@.@) < Cllu = 2l 412 (c.w)>

where we have used the linearity of tro and that trg z = 0, and then

I ([u)llz2@.e) < Cyé%ggﬁﬁﬂ)) e = 2l 200y = Clllulllo @)

In order to see that I is an injection, suppose that I([u]) = 0, then trq u = 0 so
that u € #,"*(C,w), and the class #{"*(C,w) is the zero element of % (Q,w). This
identification allows us to consider I to be the identity, and identify the continuous
embedding

Y(Q,w) — L2(Q, ).

For a schematic relationship between the trace operators trg , Trg , the isomorphism
¢ and the embedding I, see Figure 1. An amenable consequence of this identification
is given in Theorem 16, however in first place we address the reduction to case where

s(-) = s € (0,1), a constant, where we obtain that H is recovered as the domain of
(=A)*.

t
AR (Cw) o

tro %’615 (C,w)

=
¢

N

L2(Q, @), if (H1)-(H3)
WsO2(Qu, w0, w1, ..., wx), if (H1)-(H4)

Y (Q,w) C 1 {

Fic. 1. Diagram relating the operators trqg , TRq , the isomorphism ¢, and the operator I.

THEOREM 15. Let s(-) = s € (0,1) be constant and suppose that functions in
%le (C,w) satisfy a Poincaré inequality, then

tro A1 (C,w) = H,
and therefore,
7 (Q,w) ~ H.
Proof. Given that s(-) = s € (0,1) is constant, we have that G is constant,
and hence %15 (C,w) = %%15 (C,y'~2%). Additionally, by Remark 5, we have that

tro %%{f(&yl_%) C H. Then, there is only left to prove that for each v € H

there exists a sequence {u,} in C°(Cq) N WH2(C,y'=2%) convergent in the sense of
Wh2(C,yt=2) toau € f%’g}f(c, y1=2%), and such that trqu = v. We divide the proof
into steps for the sake of clarity.
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Step 1: Let v € H be arbitrary. Since H = H§(Q?) for s € (0,1/2) or s € (1/2,1),
and H = H5,(Q) for s = 1/2, it follows that C2°(2) is dense in H. Then, there exists
a sequence {vy} in C2°(Q) such that

Vg — v in H,

as k — oo. We denote v = > o7 by, and v, = > oo bFy, to their spectral
decomposition where b% — b,, as k — oco. Further, define u, uy, : C — R by

u(x, y) = Z bn‘pn(x)gn(y) and uk(-r7 y) = Z bfﬁpn(m)gn(?j),
n=1 n=1

where each g,, satisfies the Bessel equation:

1—-2
gn(o) = 17
gn(+00) = 0.

Since the Poincaré inequality is valid for functions in W12(C,4'=2%), by the con-
struction of the proof in [7, Proposition 2.1], we have that u,u, € W12(C,y'=2%),
and

o] +oo
/ / y' 7| Vu(z,y) — Vug(z,y)|* dz dy = ey s Z(bn — 0208 = en v — okl %,
0 JQ k=1
and thus
(54) Up — U in Wh2(C,y'=2),

as k — oo. Note that since v; has compact support, the support of uj is uniformly
away from 0rC.

Step 2: For 7 > 1 and 0 < ¢ < 1, we consider a smooth non-increasing function
7y : RT — [0, 1] such that:

n(y)=1 if 0<y<r7-—o, n(y)=0 if y>r,

and notice that the function uy ,(x,y) := 1, (y)ux(z,y) belongs to W12(C,y*~2%). By
direct calculation we have that

(55) Upr — Up in Wh2(C,y'=%),

as T — oo.
Step 3: For 0 < e < 1 and 7 > 7+ ¢, we consider the shifted cylinder

¢l ={(z,y—e): (z,y) €C" },
and the weighted space W12(CT', p), where
=25 §f O<y<7 —e¢,
p(z,y) ={ (_y Y

Y= if —e<y <.
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Further, let @y, € W2(CI', p) defined by reflection as

. B up-(zy) if O<y<7t —¢,
Ukn-(xay) = { upr(z,—y) if —e<y<O0,

and note that p € A5(CT), i.e.,

1 / 1 1
sup | — de) (/ p dX) < +o0,
Bccer! <|B| B |B| B

for all squares B C C7 .
Let L, be the usual mollifier operator, i.e.,

L@ = [0 (555 1) a

where w : RN+ — [0, +00) belongs to C*° (RN 1), suppw € B(0, 1), and [pn i, w = 1.
Since p € A2(C? l) and since C] " is bounded and with Lipschitz boundary, it follows
that for f € WH2(CT', p),

Lef = f in - WD,y ™),

for any D CC CT'; see [9]. Given that the support of uy . is uniformly away from

g

0rC, and that u; » = 0 if 7 <y, it follows that
(56) Lyt » = up.r in  WhH2(C,yt 2,

as r — oo. Note in addition, that for sufficiently large » > 0, we have

Ly, € C°(Ca) C K1 (C.y* ).

Step 4: In view of (54), (55), and (56), by appropriately selecting a sequence

{(rsy kiy13) 521, we observe
U; = Ly, g, 7, = in  WhH2(C,yt 2,
as i — 00, so that u € %’BT’LQ(C, y!=2%). In particular,
trg @; — v in L*(Q),

and v = trg u; the result is then proven. 0

Next we can establish the well-posedness of the elliptic equation of interest.

THEOREM 16. Assume that (H1), (H2), and (H3) holds true, and functions in
%%15 (C,w) satisfy a Poincaré inequality. For every h € L*(Q, W), the equation
(57) (—=A)" Dy = h,

admits a unique solution v € % (Q,w) C L*(Q, ).

Proof. The conclusion follows from the existence and uniqueness of solution to the
same problem with right hand side in % (Q, w) since we identify L?(Q, @) ~ L?(Q, @),
so that L?(Q, @) C % (Q, w) by means of I’ : L*(Q,w) — % (Q,w)’. d
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The result above can be refined in terms of regularity if in addition we observe
(H4), and consider Q = Q. In this case, the injection [ is given as

I: @(QN,U)) — Ws(')’Q(QN, ﬂ),wl, c. ,wN),

leading to our last theorem, whose proof is obtained as for Theorem 16.

THEOREM 17. In addition to the hypotheses of Theorem 16, consider Q = Qpn
and assume that (H4) holds true. Then, for every h € W*):2(Qn, @, wy, ..., wy),
the equation (57) admits a unique solution v € % (Q,w) C W2(Qu, W, w1, ..., wN).

The problem in the truncated cylinder C” is treated identically, and Theorem 16
and Theorem 17 still hold true under the obvious changes.

8. Conclusions and open questions. This paper continues the program ini-
tiated by the authors in [2] and provides a rigorous definition of the variable order
fractional Laplacian. The proposed theoretical framework enables solutions to Poisson
equation on bounded Lipschitz domains 2. The techniques introduced in the paper
are completely new and none of the existing works applies to our setting. However,
the existing setting, where s(-) is a constant, can be recovered from our proofs as a
special case.

The following are open questions and topics for future research:

e The study of —A*() as regularizer in optimization problem, i.e.,

minJ(u) +yR(u)  with R(u) = (=A)*Vu,u)g gz,

and the optimal selection of s(-) in a bilevel framework.

e The extension to more general settings of the Poincaré inequality type result
presented in Section 6.

e The surjectivity of the new trace operator is still open (cf. Remark 7).

e We have introduced Sobolev spaces with s(-)-dependent weights for the ex-
tension problem and s(-)-dependent differentiability for the space on 2. New
approaches need to be established to prove additional regularity of solutions
to (—A)*()y = h in these Sobolev spaces.

e Extensions to parabolic, semilinear and obstacle type problems are of interest.

e The authors in [2] proposed a numerical method for the truncated problem.
But the numerical analysis of this problem is completely open. Also, conver-
gence of the truncated solution to the full solution is of interest as well.

e Optimal control problems with variable order PDEs as constraints.
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