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ABSTRACT

Graph analysis now percolates society with applications ranging

from advertising and transportation to medical research. The struc-

ture of graphs is becoming more complex every day while they

are getting larger. The increasing size of graph networks has made

many of the classical algorithms reasonably slow. Fortunately, CPU

architectures have evolved to adjust to new and more complex prob-

lems in terms of core-level parallelism and vector-level parallelism

(SIMD-level).

In this paper, we are exploring how the modern vector architec-

ture of CPUs can help with community detection, partitioning, and

coloring kernels by studying two representatives algorithms. We

consider the Intel SkylakeX and Cascade Lake architectures, which

support gather and scatter instructions on 512-bit vectors.

The existing vectorized graph algorithms of classic graph prob-

lems, such as BFS and PageRank, do not apply well to community

detection; we show the support of gather and scatter are necessary.

In particular for the implementation of the reduce-scatter patterns.

We evaluate the performances achieved on the two architectures

and conclude that good hardware support for scatter instructions

is necessary to fully leverage the vector processing for graph parti-

tioning problems.
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1 INTRODUCTION

Graphs are at the center of most modern applications today: city and

road analysis [24], social media analysis [10, 12, 25], biological data

processing and medical research [12, 14], academic networks [30],

intelligence [16]. And with the advent of the big data era, graph size

has grown exponentially in recent years. We are particularly inter-

ested here in partitioning algorithms at large: coloring [6, 18, 21],

clustering [28], partitioning [15], community detection [2, 25]. Re-

cent interest in fast graph algorithms has met with a new look

at how computer architectures can leverage. GPUs have been un-

derstandably popular because of the high flop rate, high memory

bandwidth, and high power efficiency for graph problems [4]. CPU
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architectures have reacted by increasing core count but also by

increasing SIMD width in a move to catch up in terms of perfor-

mance and energy efficiency. In particular, modern Intel processors

support AVX-512. These SIMD operations bring the expectation

to provide higher energy efficiency than increasing the number of

cores.

In this paper, we consider the use of these new instructions to

solve graph problems in the class of partitioning.We pick two graph

partitioning algorithms, namely a speculative parallel greedy algo-

rithm for graph coloring and the Louvain method for modularity

optimization, as representative of graph partitioning algorithms.

Section 3 describes these two problems. And we will study their

performance on two different processors architecture; Intel Cascade

Lake and SkylakeX.

With support for scatter operations, we designed, in Section 4, a

strategy called ONPL, for OneNeighbor Per Lane. Scatter operations

enable us to write to the color of groups of neighbors at once.

The operation in the Louvain Method adds some affinity values to

the neighboring communities. Because the same community may

appear multiple times, we call this operation a reduce-scatter, and

we provide two implementations of this operation for different use

cases.

Then, we show that the vectorization of these algorithms on x86-

64 processors is impractical if they do not support scatter operations.

Indeed the only feasible strategy in such a case is to use the different

lanes of the vector to process different vertices at the same time.

While this strategy applies to classic problems like BFS or SpMV, it

requires reordering the graph so that no two vertices in a block of

16 vertices are neighbors for partitioning problems. This strategy

only makes sense for the Louvain Method. The derived algorithm,

presented in Section 5, is OVPL for One Vertex Per Lane.

Section 6 presents the experimental settings, the code base used

as baselines, and the set of graphs to be analyzed. Section 7 presents

experimental results which show that ONPL can outperform the

scalar implementation for graph coloring for some graphs. The

Louvain Method is more computationally expensive. And using

ONPL and OVPL in NetworKit leads to performance improvement

on both architectures.

2 NOTATIONS

A graph is denoted by G = (V , E) where V and E represent the

vertex and edge set respectively. Edges are represented by (u,v)

pair and are associated with an edge weight ω : E → R+. We use ζ

to represent the community set and communities are represented

by distinct integers. We use N (u) to represent the neighbor set of a

vertex u ∈ V . The volume of a node and a community are defined

as vol(u) =
∑

{u ,v }:v ∈N (u) ω(u,v) + 2 × ω(u,u) and vol(ζ ) =
∑
u ∈ζ vol(u) respectively.
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3 GRAPH PARTITIONING PROBLEMS

Graph partitioning problems are seen here as a large class of graph
algorithms that encompass graph coloring algorithms [6, 18, 21],
partitioning to minimize edge cuts [15], modularity optimizing
community detection algorithms [2, 25], overlapping community
detection algorithms [32], label propagation, and certainly many
others. All these algorithms have a similar structure in that each
vertex is associated with a group of vertices (or multiple groups),
and when considering the neighbors of a vertex, the group the
neighbor belongs to is the key information rather than the neighbor
itself.

We picked two classical partitioning algorithms to represent
this class, namely Greedy Graph Coloring (for graph coloring)
and Louvain Method (for non-overlapping modularity optimizing
community detection).

3.1 Speculative Parallel Greedy Graph Coloring

The distance-1 graph coloring algorithm assigns colors to the ver-
tices of the graph so that no adjacent vertices have the same color.
Minimize the number of colors is an NP-hard problem [9], and
that is why various heuristic algorithms have proposed for the
problem. In particular, a greedy algorithm can obtain near-optimal
solutions [21]. The classic parallel algorithm for graph coloring is
a speculative parallel greedy algorithm [3, 27] and presented in
Algorithms 1, 2, 3.

Algorithm 1 Iterative Parallel Graph Coloring

Input: G = (V , E)

1: C(v) ← 0, for all v ∈ V
2: CONF← V

3: while CONF , 0 do
4: AssignColors(G,C, CONF)
5: CONF← DetectConflicts(G,C, CONF)
6: end while

7: return C

Algorithm 2 AssignColors

Input: G = (V , E),C, CONF

1: Allocate private FORBIDDEN with size max degree
2: for v ∈ CONF in parallel do
3: FORBIDDEN← f alse

4: FORBIDDEN(C(u))← true for u ∈ adj(v)
5: C(v) ← min{i > 0|FORBIDDEN(i) = f alse}
6: end for

7: return C

Algorithm 1 represents an iterative parallel graph coloring. It takes
a graph G with vertex set V and edge set E as an input. It first ini-
tializes the set of colors C for all vertices by 0 and a set of conflicts
CONF by all vertices. It will iteratively color the vertices in CONF

using a speculative greedy algorithm. And then check whether two

Algorithm 3 DetectConflicts

Input: G = (V , E),C, CONF

1: NEWCONF← 0
2: for v ∈CONF in parallel do
3: for u ∈ adj(v) do

4: if C(u) = C(v) and u < v then

5: ATOMIC NEWCONF← NEWCONF ∪ v
6: end if

7: end for

8: end for

9: return NEWCONF

neighboring vertices use the same color in which case they are in
conflict and need to be colored again.
Algorithm 2 is the algorithm that will be vectorized and handles the
assignment of the color to vertices. It takes graph G, a set of color
C and a set of conflicts CONF as input. It traverses all the conflict
vertices and finds out all the forbidden colors FORBIDDEN for the
particular vertex. To do that it iterates all its neighbors and track
down their colors. Line 4 of Algorithm 2 represents this operation.
After collecting all the forbidden colors, it assigns to the vertex the
first color that is not in the FORBIDDEN set.
Algorithm 3 detects conflicts that could arise during parallel specu-
lative coloring. It takes a graph G, a set of color C , and a previous
conflict set CONF as input. It defines a new empty conflict set
NEWCONF. It considers all the previous conflict set of vertices in
parallel and for each visits the neighbors to detect if the edge has
both ends with the same color. In that case, one of the two vertices
is added to the new conflict set atomically.

3.2 Parallel Louvain Method

The modularity is defined as the fraction of edges that fall within
the partitions minus the expected fraction that would be within
the partition if the edges are distributed randomly. This defini-
tion enables to greedily optimize modularity by considering mov-
ing a vertex to one of its neighbor community. Indeed, if a node
u ∈ C moves to the neighboring community D, then the mod-

ularity gain is ∆mod(u,C → D) =
ω(u ,D/ {u })−ω(u ,C/ {u })

ω(E)
+

(vol (C/ {u })−vol (D/ {u }))∗vol (u)

2∗ω(E)2

The Louvain Method, first proposed by Blondel et al. [2], is one
of the most popular methods to extract communities from a large
network. It is a greedy multilevel algorithm that uses modularity as
the objective function [29]. It alternates between two phases, the
Move Phase, and the Coarsening Phase. In theMove Phase, nodes are
repeatedly moved to adjacent communities to maximize modularity.
This process repeats until the communities are stable. Then, the
graph goes through a Coarsening Phase where each community
collapse into a single vertex. The coarsened graph is then recursively
processed with the same two phases. In that sense, the Louvain
Method is representative of multi-level partitioning algorithms,
such as [15].

The Move Phase (Algorithm 4) considers all the vertices in the
network. For each vertex u ∈ V , for each neighbor v ∈ N (u),
it calculates the modularity difference between having u in its
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Algorithm 4 Louvain Method: Move Phase

Input: graph G = (V , E,ω), communities ζ : V → N
Result: communities ζ : V → N

1: repeat

2: for u ∈ V do

3: δ ← maxv ∈N (u){∆mod(u, ζ (u) → ζ (v))}

4: if δ > 0 then
5: C ← ζ (argmaxv ∈N (u){∆mod(u, ζ (u) → ζ (v))})

6: ζ (u) ← C

7: end if

8: end for

9: until ζ stable
10: return ζ

current community and moving it to the community of v . The
decision of highest modularity gain is retained, and it is enacted if
the modularity gain δ is positive. The algorithm repeats until no
vertex changes community.

For each vertex u, the move phase is split into two parts. First,
calculate the affinity(measures of similarity between pairs of ver-

tices) of each neighboring community ζ (v) by adding edge weight
ω(u,v) of the each neighbor v of u. Second, assign the node to the
community of highest affinity.

The affinity calculation of a vertex is the computationally ex-
pensive part of the algorithm. It is the part that we vectorize in
this paper. We do not describe the Coarsening Phase since we will
not make any changes to it. In this work, we only investigate the
performances of the Move Phase of the Louvain method.

Many parallel methods exist to detect communities in massive
networks. The most recent effort is included in NetworKit [31],
GRAPPOLO [20] and studied in [13, 29]. GRAPPOLO uses a differ-
ent and more complex algorithm than NetworKit. For simplicity,
we present the Parallel Louvain Method (PLM), used by NetworKit.

PLM [29] is a shared-memory parallelization of the Louvain
Method [2]. The algorithm performs the move phase in parallel
by giving each thread different vertices to compute the affinity
and their assignment to communities. It then coarsens the graph
and recursively performs its optimizations. The runtime of PLM is
mostly dictated by the first move phase; the process of converging
the communities on the original graph, before any coarsening in
done [29]. Trying to move vertices in parallel is not a race condi-
tion free process. Indeed, the algorithm may attempt to move two
adjacent vertices simultaneously. PLM is optimistic and assumes
that only a few benign race conditions will happen in practice.
However, race conditions may cause the process not to converge;
PLM stops the move phase after 25 iterations, whether communities
have converged or not.

In practice, Parallel Community Detection codes have limited
multi-core scalability [29]; in particular because of the noted con-
vergence issues. Since using multiple core reaps little benefit, this
paper focuses on using each core more efficiently by leveraging
vector SIMD operations. And we consider improving multi-core
scalability orthogonal to this work.

4 ONPL: ONE NEIGHBOR PER LANE

The first strategy that we investigate, One Neighbor Per Lane
(ONPL), uses the entire vector to process different neighbors of
the same vertex.

4.1 Speculative Greedy Graph Coloring

For graph coloring, the conflict detection method naturally vector-
izes. Vectorization will be useful when marking which colors can
not be used for a vertex. One can vectorize the loop that considers
all the neighbors of a vertex. The operation boils done to loading 16
neighbors at a time with a load instruction; load the colors of these
neighbors using a gather instruction. Then marking the used col-
ors using scatter instruction. Identifying the first available color
and identifying conflicting coloring vectorize naturally.

4.2 Louvain Method

Vectorized affinity calculation is complex because if two neighbors
in the same community appear in the same vector, their contribution
to the affinity of that community compounds. It will lead to con-
flicts during affinity calculation that requires resolving. We present
the One Neighbor Per Lane(ONPL) vectorized Louvain method for
community detection using intrinsic notations.

4.2.1 Affinity Calculation. In AVX-512, the registers are 512 bits
large so that it enables the ability to load 16 neighbors of a vertex at
a time to process. Computing the affinity values requires a sequence
of load, gather, addition, and scatter operations. Vectorized affinity
will work well if all the vertices have their neighbors in different
communities. Otherwise, blindly scattering causes some of the up-
dates to be discarded, leading to incorrect affinity values. It requires
summing the edge weights of every community before accessing
the current affinity of adjacent communities. This operation is es-
sentially a reduce and scatter. Unfortunately, no instruction directly
does this operation. But the AVX-512F and AVX-512CD instruction
sets enable two different ways to handle this. ONPL uses either one
of them, depending on circumstances and these two instruction
sets are sufficient to implement the algorithm.

Consider the extreme case where all the communities in the
vector are different. It is typical at the beginning of the execution
of the community detection code. In such a case, the addition and
scattering can occur independently without requiring any reduc-
tion. If we know that all the lanes are independent, then no two
lanes will write to the same location. Fortunately, the AVX-512CD
instruction set provides _mm512_conflict_epi32 instruction that
tests each 32-bit element of an array A for equality with all other
elements in A closer to the least significant bit. Each element’s
comparison forms a zero extended bit vector in dst. This instruc-
tion(_mm512_conflict_epi32 ) is the basis of the conflict detection
method for reduce and scatter as it enables the extraction of dif-
ferent sets of communities and neighbors that can safely process
at the same time. Figure 1(a) represents the process. Here, N is
the list of neighbors of a vertex, and C is the corresponding list of
communities. Instruction(_mm512_conflict_epi32 ) is applied on
C to calculate the mask M. Figure 1(b) shows the code snippet to
calculate the mask M. There are two techniques to handle the con-
flicted case: the first iteratively performs the vector operation on
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results also reflect the scenario. Figure 8 shows only the perfor-
mance of the selected graphs where most of the vertices have the
same degree or very small variations. It shows a great performance
gain. Graphs like Delaunay(average Degree 5) triangulations of
random points or sparse matrix nlpkkt(average Degree 26) have
most vertices with degrees close to the average. Every vertex in
OVPL’s block is in sorted order and properly distributed by their
degree, which also brings great load balancing.

8 RELATED WORK

Label propagation is one of the most popular community detec-
tion algorithm proposed by Raghavan et al. [25]. The algorithm
iteratively refines labeling of vertices to communities by finding
for each vertex the label that most frequently appears in its neigh-
borhood and migrating the vertex to that label. PLM [29] is the
shared-memory parallelization of the Louvain Method [2] we use
as a reference. Halappanavar et al. [13] presented community de-
tection for static and dynamic networks using Grappolo.

Cheong et al. [5] proposed a parallel Louvain method for GPUs
using three levels of parallelism for the single and multi-GPU ar-
chitectures. Later, Naim and Manne et al. [23] proposed a highly
scalable GPU algorithm for the Louvain method, which parallelizes
the access to individual edges. There are other recent works like
Sanders et al. [19] proposed Louvain method for the python; the
main objective of their work is the simplicity to implement the
algorithm in python language. Gheibi et al. [11] proposed a cache ef-
ficient Louvain method for Intel Knight Landing(KNL) and Haswell
architecture.

Both GPUs and CPUs are SIMD systems, at least in spirit. Taking
the analogy of a GPU warp as a core and a thread inside a warp
as a lane, algorithms for GPUs can be re-envisioned as vectorized
CPU algorithm. At a very high level, the distinction between vertex-
based algorithms (such as OVPL) and edge-based algorithms (such
as ONPL) appears in GPUs. However, there are still many differences
between the architectures which cause engineering and algorithmic
decisions for CPU and GPU systems very different.

9 CONCLUSION

We considered the impact of AVX-512 instructions on graph parti-
tioning problems. We investigated, in particular, the Cascade Lake
and the SkylakeX architectures and how to use them to perform
speculative greedy graph coloring and the Louvain method. OVPL
proved to be efficient for graphs with balance and high average
degree. The vectorization strategy that processes multiple neigh-
bors of a single vertex at once also shows great performance. That
strategy is only possible thanks to scatter instructions and other
various new instructions in AVX-512 that are critical to partitioning
problems. The reduce and scatter pattern is critical in implement-
ing these vectorizations. These had to be implemented by intrinsic
operations in our software environment. In future works, we want
to investigate compiler techniques to enable us to deploy these
techniques on more graph partitioning kernels without requiring
expert programmers.
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