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ABSTRACT

Graph analysis now percolates society with applications ranging
from advertising and transportation to medical research. The struc-
ture of graphs is becoming more complex every day while they
are getting larger. The increasing size of graph networks has made
many of the classical algorithms reasonably slow. Fortunately, CPU
architectures have evolved to adjust to new and more complex prob-
lems in terms of core-level parallelism and vector-level parallelism
(SIMD-level).

In this paper, we are exploring how the modern vector architec-
ture of CPUs can help with community detection, partitioning, and
coloring kernels by studying two representatives algorithms. We
consider the Intel SkylakeX and Cascade Lake architectures, which
support gather and scatter instructions on 512-bit vectors.

The existing vectorized graph algorithms of classic graph prob-
lems, such as BFS and PageRank, do not apply well to community
detection; we show the support of gather and scatter are necessary.
In particular for the implementation of the reduce-scatter patterns.
We evaluate the performances achieved on the two architectures
and conclude that good hardware support for scatter instructions
is necessary to fully leverage the vector processing for graph parti-
tioning problems.
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1 INTRODUCTION

Graphs are at the center of most modern applications today: city and
road analysis [24], social media analysis [10, 12, 25], biological data
processing and medical research [12, 14], academic networks [30],
intelligence [16]. And with the advent of the big data era, graph size
has grown exponentially in recent years. We are particularly inter-
ested here in partitioning algorithms at large: coloring [6, 18, 21],
clustering [28], partitioning [15], community detection [2, 25]. Re-
cent interest in fast graph algorithms has met with a new look
at how computer architectures can leverage. GPUs have been un-
derstandably popular because of the high flop rate, high memory
bandwidth, and high power efficiency for graph problems [4]. CPU
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architectures have reacted by increasing core count but also by
increasing SIMD width in a move to catch up in terms of perfor-
mance and energy efficiency. In particular, modern Intel processors
support AVX-512. These SIMD operations bring the expectation
to provide higher energy efficiency than increasing the number of
cores.

In this paper, we consider the use of these new instructions to
solve graph problems in the class of partitioning. We pick two graph
partitioning algorithms, namely a speculative parallel greedy algo-
rithm for graph coloring and the Louvain method for modularity
optimization, as representative of graph partitioning algorithms.
Section 3 describes these two problems. And we will study their
performance on two different processors architecture; Intel Cascade
Lake and SkylakeX.

With support for scatter operations, we designed, in Section 4, a
strategy called ONPL, for One Neighbor Per Lane. Scatter operations
enable us to write to the color of groups of neighbors at once.
The operation in the Louvain Method adds some affinity values to
the neighboring communities. Because the same community may
appear multiple times, we call this operation a reduce-scatter, and
we provide two implementations of this operation for different use
cases.

Then, we show that the vectorization of these algorithms on x86-
64 processors is impractical if they do not support scatter operations.
Indeed the only feasible strategy in such a case is to use the different
lanes of the vector to process different vertices at the same time.
While this strategy applies to classic problems like BFS or SpMV, it
requires reordering the graph so that no two vertices in a block of
16 vertices are neighbors for partitioning problems. This strategy
only makes sense for the Louvain Method. The derived algorithm,
presented in Section 5, is OVPL for One Vertex Per Lane.

Section 6 presents the experimental settings, the code base used
as baselines, and the set of graphs to be analyzed. Section 7 presents
experimental results which show that ONPL can outperform the
scalar implementation for graph coloring for some graphs. The
Louvain Method is more computationally expensive. And using
ONPL and OVPL in NetworKit leads to performance improvement
on both architectures.

2 NOTATIONS

A graph is denoted by G = (V, E) where V and E represent the
vertex and edge set respectively. Edges are represented by (u, v)
pair and are associated with an edge weight @ : E — R*. We use ¢
to represent the community set and communities are represented
by distinct integers. We use N(u) to represent the neighbor set of a
vertex u € V. The volume of a node and a community are defined
as vol(u) = Xy v)weN@w) @ v) + 2 X o(u,u) and vol({) =
Zueg vol(u) respectively.
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3 GRAPH PARTITIONING PROBLEMS

Graph partitioning problems are seen here as a large class of graph
algorithms that encompass graph coloring algorithms [6, 18, 21],
partitioning to minimize edge cuts [15], modularity optimizing
community detection algorithms [2, 25], overlapping community
detection algorithms [32], label propagation, and certainly many
others. All these algorithms have a similar structure in that each
vertex is associated with a group of vertices (or multiple groups),
and when considering the neighbors of a vertex, the group the
neighbor belongs to is the key information rather than the neighbor
itself.

We picked two classical partitioning algorithms to represent
this class, namely Greedy Graph Coloring (for graph coloring)
and Louvain Method (for non-overlapping modularity optimizing
community detection).

3.1 Speculative Parallel Greedy Graph Coloring

The distance-1 graph coloring algorithm assigns colors to the ver-
tices of the graph so that no adjacent vertices have the same color.
Minimize the number of colors is an NP-hard problem [9], and
that is why various heuristic algorithms have proposed for the
problem. In particular, a greedy algorithm can obtain near-optimal
solutions [21]. The classic parallel algorithm for graph coloring is
a speculative parallel greedy algorithm [3, 27] and presented in
Algorithms 1, 2, 3.

Algorithm 1 Iterative Parallel Graph Coloring
Input: G = (V,E)
1: C(v) « 0, forallveV
CONF «— V
: while CONF # 0 do
AssiGNCoLors(G, C, CONF)
CONF « DETECTCONFLICTS(G, C, CONF)
. end while
: return C

N o w

Algorithm 2 AssignColors

Input: G = (V,E),C, CONF
: Allocate private FORBIDDEN with size max degree
: for v € CONF in parallel do

1
2
3. FORBIDDEN « false

4. FORBIDDEN(C(u)) < true for u € adj(v)
5

6

7

C(v) « min{i > 0|[FORBIDDEN(i) = false}
: end for
: return C

Algorithm 1 represents an iterative parallel graph coloring. It takes
a graph G with vertex set V and edge set E as an input. It first ini-
tializes the set of colors C for all vertices by 0 and a set of conflicts
CONEF by all vertices. It will iteratively color the vertices in CONF
using a speculative greedy algorithm. And then check whether two
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Algorithm 3 DetectConflicts
Input: G = (V,E), C, CONF
1: NEWCONF « 0

2: for v eCONF in parallel do
3. for u € adj(v) do

4 if C(u) = C(v) and u < v then

5: ATOMIC NEWCONF « NEWCONF U v
6 end if

7. end for

8: end for

9: return NEWCONF

neighboring vertices use the same color in which case they are in
conflict and need to be colored again.

Algorithm 2 is the algorithm that will be vectorized and handles the
assignment of the color to vertices. It takes graph G, a set of color
C and a set of conflicts CONF as input. It traverses all the conflict
vertices and finds out all the forbidden colors FORBIDDEN for the
particular vertex. To do that it iterates all its neighbors and track
down their colors. Line 4 of Algorithm 2 represents this operation.
After collecting all the forbidden colors, it assigns to the vertex the
first color that is not in the FORBIDDEN set.

Algorithm 3 detects conflicts that could arise during parallel specu-
lative coloring. It takes a graph G, a set of color C, and a previous
conflict set CONF as input. It defines a new empty conflict set
NEWCONEF. It considers all the previous conflict set of vertices in
parallel and for each visits the neighbors to detect if the edge has
both ends with the same color. In that case, one of the two vertices
is added to the new conflict set atomically.

3.2 Parallel Louvain Method

The modularity is defined as the fraction of edges that fall within
the partitions minus the expected fraction that would be within
the partition if the edges are distributed randomly. This defini-
tion enables to greedily optimize modularity by considering mov-
ing a vertex to one of its neighbor community. Indeed, if a node

u € C moves to the neighboring community D, then the mod-
w(u,D/ {u})(*Ew(u,C/ fup |
[0}

ularity gain is Amod(u,C — D) =
(vol(C/ {u})—vol(D/ {u}))+vol(u)
2xw(E)?

The Louvain Method, first proposed by Blondel et al. [2], is one
of the most popular methods to extract communities from a large
network. It is a greedy multilevel algorithm that uses modularity as
the objective function [29]. It alternates between two phases, the
Move Phase, and the Coarsening Phase. In the Move Phase, nodes are
repeatedly moved to adjacent communities to maximize modularity.
This process repeats until the communities are stable. Then, the
graph goes through a Coarsening Phase where each community
collapse into a single vertex. The coarsened graph is then recursively
processed with the same two phases. In that sense, the Louvain
Method is representative of multi-level partitioning algorithms,
such as [15].

The Move Phase (Algorithm 4) considers all the vertices in the
network. For each vertex u € V, for each neighbor v € N(u),
it calculates the modularity difference between having u in its
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Algorithm 4 Louvain Method: Move Phase

Input: graph G = (V, E, »), communities { : V —» N
Result: communities { : V — N
1: repeat
22 forueV do
3 0 — maxy,en(y){Amod(u, {(u) — {(v))}
4 if § > 0 then
5 C « {(argmaxy eN(u){Amod(u, {(u) — {(v))})
6 {(u) < C
7 end if
8. end for
9: until { stable
10: return {

current community and moving it to the community of v. The
decision of highest modularity gain is retained, and it is enacted if
the modularity gain § is positive. The algorithm repeats until no
vertex changes community.

For each vertex u, the move phase is split into two parts. First,
calculate the affinity(measures of similarity between pairs of ver-
tices) of each neighboring community {(v) by adding edge weight
(u, v) of the each neighbor v of u. Second, assign the node to the
community of highest affinity.

The affinity calculation of a vertex is the computationally ex-
pensive part of the algorithm. It is the part that we vectorize in
this paper. We do not describe the Coarsening Phase since we will
not make any changes to it. In this work, we only investigate the
performances of the Move Phase of the Louvain method.

Many parallel methods exist to detect communities in massive
networks. The most recent effort is included in NetworKit [31],
GRAPPOLO [20] and studied in [13, 29]. GRAPPOLO uses a differ-
ent and more complex algorithm than NetworKit. For simplicity,
we present the Parallel Louvain Method (PLM), used by NetworKit.

PLM [29] is a shared-memory parallelization of the Louvain
Method [2]. The algorithm performs the move phase in parallel
by giving each thread different vertices to compute the affinity
and their assignment to communities. It then coarsens the graph
and recursively performs its optimizations. The runtime of PLM is
mostly dictated by the first move phase; the process of converging
the communities on the original graph, before any coarsening in
done [29]. Trying to move vertices in parallel is not a race condi-
tion free process. Indeed, the algorithm may attempt to move two
adjacent vertices simultaneously. PLM is optimistic and assumes
that only a few benign race conditions will happen in practice.
However, race conditions may cause the process not to converge;
PLM stops the move phase after 25 iterations, whether communities
have converged or not.

In practice, Parallel Community Detection codes have limited
multi-core scalability [29]; in particular because of the noted con-
vergence issues. Since using multiple core reaps little benefit, this
paper focuses on using each core more efficiently by leveraging
vector SIMD operations. And we consider improving multi-core
scalability orthogonal to this work.
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4 ONPL: ONE NEIGHBOR PER LANE

The first strategy that we investigate, One Neighbor Per Lane
(ONPL), uses the entire vector to process different neighbors of
the same vertex.

4.1 Speculative Greedy Graph Coloring

For graph coloring, the conflict detection method naturally vector-
izes. Vectorization will be useful when marking which colors can
not be used for a vertex. One can vectorize the loop that considers
all the neighbors of a vertex. The operation boils done to loading 16
neighbors at a time with a 1oad instruction; load the colors of these
neighbors using a gather instruction. Then marking the used col-
ors using scatter instruction. Identifying the first available color
and identifying conflicting coloring vectorize naturally.

4.2 Louvain Method

Vectorized affinity calculation is complex because if two neighbors
in the same community appear in the same vector, their contribution
to the affinity of that community compounds. It will lead to con-
flicts during affinity calculation that requires resolving. We present
the One Neighbor Per Lane(ONPL) vectorized Louvain method for
community detection using intrinsic notations.

4.2.1 Affinity Calculation. In AVX-512, the registers are 512 bits
large so that it enables the ability to load 16 neighbors of a vertex at
a time to process. Computing the affinity values requires a sequence
of load, gather, addition, and scatter operations. Vectorized affinity
will work well if all the vertices have their neighbors in different
communities. Otherwise, blindly scattering causes some of the up-
dates to be discarded, leading to incorrect affinity values. It requires
summing the edge weights of every community before accessing
the current affinity of adjacent communities. This operation is es-
sentially a reduce and scatter. Unfortunately, no instruction directly
does this operation. But the AVX-512F and AVX-512CD instruction
sets enable two different ways to handle this. ONPL uses either one
of them, depending on circumstances and these two instruction
sets are sufficient to implement the algorithm.

Consider the extreme case where all the communities in the
vector are different. It is typical at the beginning of the execution
of the community detection code. In such a case, the addition and
scattering can occur independently without requiring any reduc-
tion. If we know that all the lanes are independent, then no two
lanes will write to the same location. Fortunately, the AVX-512CD
instruction set provides _mm512_conflict_epi32 instruction that
tests each 32-bit element of an array A for equality with all other
elements in A closer to the least significant bit. Each element’s
comparison forms a zero extended bit vector in dst. This instruc-
tion(_mm512_conflict_epi32) is the basis of the conflict detection
method for reduce and scatter as it enables the extraction of dif-
ferent sets of communities and neighbors that can safely process
at the same time. Figure 1(a) represents the process. Here, N is
the list of neighbors of a vertex, and C is the corresponding list of
communities. Instruction(_mm512_conflict_epi32) is applied on
C to calculate the mask M. Figure 1(b) shows the code snippet to
calculate the mask M. There are two techniques to handle the con-
flicted case: the first iteratively performs the vector operation on



Chicago "21, August 9th, 2021, Chicago, Illinois, USA

(128 1693 44 11 72 5023
Cl1]1]4]5[3]1[3]2]
oo oo Hio
:5 72 5o RIRIRIE

(a) Conflict Detection.

const __m512i set@ = _mm512_setl_epi32(0x00000000);

__m512i N = _mm512_loadu_si512((__m512i %) &pnt_outEdges[il);

__m512i C = _mm512_mask_i32gather_epi32(set@, self_loop_mask, N, &zetal[el, 4);

__m512i C_conflict = _mm512_conflict_epi32(C);

const __mmask16 M = _mm512_mask_cmpeq_epi32_mask(self_loop_mask, C_conflict, set@);

(b) Code snippet to calculate mask M. pnt_outEdges represents the list of out edges,
self_loop_mask is the mask to prevent the self-loop and zeta represents the list of
community.

Figure 1: Perform reduce scatter using conflict detection.
The neighbors (N) are in their Communities (C). A mask (M)
is derived from C to denote the entries that will be processed
(in green). Some neighbors will remain (RN) to be processed.

the non-conflicted sets and performs as many iterations of vector
operations as there are non-conflicted sets; the second one applies
vector operation on a non-conflicted set of neighbors only once
and performs the remaining entries using purely scalar operations.
Indeed, in practice, this conflict detection method uses many in-
structions. And it only useful if many communities can process at
once. The vector will process one entry at a time with expensive
vector operations if adjacent vertices belong to the same commu-
nity. One can avoid the problem by performing vector operation
only on the first set of independent communities and use the scalar
operations afterward in the conflict detection method.

Another extreme case comes when all the communities in the
vector are identical. This case arises when the process has mostly
converged. In this case, an in-vector reduction is preferable. This
method (sketched in Figure 2(a)) masks out all the entries of the
vector besides the one mapping to a particular community. Fig-
ure 2(b) shows the code snippet to calculate the mask M. Then the
edge weight mapping to this community is reduced with a masked
reduction instruction _mm512_mask_reduce_add_ps and is finally
added back to the affinity of that community. In Figure 2(a), RN
represents the remaining vertices that are not processed yet, and
RC is the list of their corresponding communities. Similar to the
conflict detection method, there are two ways to proceed. Succes-
sive communities can use mask and reduce; however, this can lead
to an issue for vertices that sit at the border of many communi-
ties causing potentially a large vector overhead. In practice, ONPL
only processes vector operations for the first community of the
vector and defaults to scalar implementation for the remaining
communities.

The calculation of modularity from the affinity and the assign-
ment of vertices to the community is done with simple vector
processing and does not pose particular challenges.
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(a) In-vector Reduction.

|__m512i N = _mm512_loadu_si512((__m512i *) &pnt_outEdges[il);

|_m512i C_vec = _mm512_mask_i32gather_epi32(set®@, self_loop_mask, N, &zetal0], 4);
sint vertex_cnt = _mm_popcnt_u32((unsigned)self_loop_mask) ;

C = _mm512_mask_compress_epi32(set®, self_loop_mask, C_vec);

|__mmask16 comm_mask = pow(2, vertex_cnt) - 1;
index * comm_not_processed = (index *)&C;

|__m512i first_comm = _mm512_set1_epi32(comm_not_processed[0]);

const __mmask16 M = _mm512_mask_cmpeq_epi32_mask(comm_mask, first_comm, C);

(b) Code snippet to calculate mask M. pnt_outEdges represents the list of out edges,
self_loop_mask is the mask to prevent the self-loop and zeta represents the list of
community.

Figure 2: Perform reduce scatter by compressing the com-
munities. The neighbors (N) are in their Communities (C).
A mask (M) is derived from C to denote the entries that will
be processed (in green). Some neighbors(RN) and communi-
ties(RC) will remain to be processed.

5 OVPL: ONE VERTEX PER LANE

In the One Vertex Per Lane (OVPL) method, each SIMD lane pro-
cesses different vertices. Initially, vertices of the graph are group
into multiple blocks where the size of blocks is the multiple of the
vector lanes. We have to restructure the network for the efficiency
and convergence of the algorithm.

Because two vertices in a block will be processed simultaneously,
OVPL requires two vertices in the same block not to be neighbors.
Reordering the graph to have that property requires solving a graph
coloring problem. Therefore it makes no sense to deploy OVPL
for graph coloring. We only consider OVPL for the community
detection problem.

5.1 Preprocessing

Vertices that are part of the same block will always be processed
simultaneously. This property might induce race conditions that
can prevent convergence. If the adjacent vertices are processed
simultaneously, the affinity calculation performs on the changing
information. The simplest case is a graph with two vertices that
swaps their community infinitely, but the issue also appears on
numerous complex networks.

To prevent this from happening, we first solve a graph coloring
problem: we allocate a color to each vertex so that no two adjacent
vertices have the same color. We then group the vertices where each
group holds vertices with the same color. That will make sure that
no vertices are adjacent in a group. While finding the coloring with a
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minimal number of colors is an NP-Complete problem [9], we do not
require such a high-quality solution. We use the speculative parallel
greedy graph coloring algorithm [3] we described in Section 3.1.
After grouping the vertices, we sort the vertices in each group
by non-increasing degrees. Sorting will help to minimize wasted
computation during execution.
Finally, we split each group of non-adjacent vertices into small

blocks of equal size equal to a multiple of the number of lanes.

We reformat the vertices of each block to enable vectorization by
interleaving the representation of the different vertices. That also
reduces unaligned memory accesses. The format is similar to sliced
ELLPACK [22]. A contiguous memory of size max_deg_of_block
X block_size holds each block of vertices. The index from (i —
1) x block_size to i x block_size will represent the i‘" neighbor
of the vertices of each block. Edge weights also follow a similar
representation.

Figure 3 shows a sample graph and its block structure. In the
example, we assume the vector length is 4 for readability (instead
of 16). So, the initial block will hold vertices that are not adjacent
by selecting the same color. But in the second group, there are no
four vertices with the same color; that is why it contains vertices
of different colors to fill the vector.

Vertices  Neighbors
A B| C
G B| F
E C| F
D C| /
[c][A B DE
F B E G/
B A CFG

(a) Sample Graph (b) Abstract Memory Representation

Group of vertices after pre-process

Blockl Block2

i--*-- ~~---

Neighbors array of Blockl

ST e e = = P = = g = =

(c) Physical Memory Representation

Figure 3: OVPL reorders the graph using a graph coloring
methods and structure it in blocks of vertices so that the
neighbors of the vertices of a block can be loaded in a vector
(sketched in green) simultaneously.

Chicago "21, August 9th, 2021, Chicago, Illinois, USA

5.2 Moving a Block of Vertices

Rather than moving a vertex to its most preferable community,
OVPL moves a block of vertices at once. It calculates the affinity of
all the vertices of a block concurrently. Therefore OVPL has a much
higher memory utilization than PLM because it keeps block_size
affinity structures in memory.

OVPL computes the affinity of each vertex of the block one
neighbor at a time. OVPL first loads the first neighbor of each
vertex of the block at once and gathers the community of the first
neighbors. Then it gathers the affinity of the neighbor communities
from the different affinity arrays. OVPL adds the edge weights to
the obtained affinity and scatters the updated values back to the
appropriate locations. Note that because of this, it was not possible
to perform this vectorization on x86 processors before scatter was
introduced with AVX-512.

This process repeats until all the neighbors of all the vertices
of the block are processed, i.e., until the maximum degree of the
block. However, some vertices may have a lower degree, so OVPL
needs to check the existence of the neighbor. This check increases
the number of instructions and causes the algorithm to use masked
vector instructions. OVPL does not perform that check before the
minimum degree of the block neighbors has been considered. The
difference between the maximum and minimum degree in each
block leads to wasted SIMD lanes. Preprocessing sorted the different
color groups per degree to minimize the degree difference. Also
representing the blocks by interleaving the vertices, enables access
to the graph to aligned loads.

The assignment of vertices to new communities is done without
particular optimization using a natural way of performing this task.

6 EXPERIMENTAL SETTINGS

Hardware Platform and Operating System. We used two different
machines for the two architectures we study in this paper. We refer
to the first machine as SkylakeX. It is a node with two Intel Xeon
Gold 6154 processors (SkylakeX architecture, 18 cores per processor,
no hyperthreading, 25MB L3 Cache) and 388 GB of DDR4 memory.
The second machine is Cascade Lake, which is equipped with two
Intel Xeon Gold model 6248R (Cascade Lake architecture, 24 cores
per processor, no hyperthreading, 36 MB L3 Cache) and 384GB GB
of DDR4 memory. Both processors support Intel AVX-512F and
AVX-512CD instruction sets with among others. Both machines use
Linux 3.10.0.

Software Environment. All the codes are compiled by the Intel
C++ compiler icpc version 16.0.0.109. Codes also compile with
optimization flag -03 and xCORE-AVX512 flags, so the compiler
generates a binary optimized for the architecture. We pick existing
established code bases for both algorithms to confirm we start from
implementations of reasonable good qualities.

We build graph coloring and community detection experiments
on top of Kokkos [7] and NetworKit [31], respectively. We intended
to compare to the original PLM implementation from [29]. Dur-
ing our experiments, we realized that PLM suffered from various
memory management issues like large buffers were allocated and
deallocated for each vertex traversed. We created a Modified PLM
implementation (MPLM) that preallocates memory per thread. And
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then reuse the same buffer for the computation rather than deallo-
cating and reallocating memory over and over. After confirming
that MPLM is an improvement on PLM (See section 7.2.1), we will
perform all other comparisons with MPLM.

Graphs. We perform our experiments on real-world data sets
to avoid the bias introduced by random graph generator. We se-
lect graphs from the Stanford Large Network Dataset Collection
(SNAP) [17] and DIMACS [1, 26] data sets that are well known
for graph algorithm research. Graphs are from different categories
like Social networks, clustering instances, sparse matrices, internet
topology networks, citation networks. We expect that the coverage
in the type of graphs enables deriving conclusions that are more
general and bias-free than picking all graphs from a single category.
Table 1 presents the list of undirected graphs that we use in the
experiments. The table also includes basic statistics such as the
number of nodes (V), edges (E) of the graph, the maximum degree
of the graph (A), and average degree ().

Table 1: List of graphs used in the experiment

Graph Nodes (V) Edges (E) Al 6
333SP 3,712,815 11,108,633 28 5
AS365 3,799,275 11,368,076 14 5
M6 3,501,776 10,501,936 10 5
NACA0015 1,039,183 3,114,818 10 5
NLR 4,163,763 12,487,976 20 5
Oregon-2 11,806 32,730 2,432 5
asia 11,950,757 12,711,603 9 2
belgium 1,441,295 1,549,970 10 2
delaunay_n24 16,777,216 50,331,601 26 5
europe 50,912,018 54,054,660 13 2
germany 11,548,845 12,369,181 13 2
in-2004 1,382,908 13,591,473 21,869 | 19
kkt_power 2,063,494 6,482,320 95 6
loc-Gowalla 196,591 950,327 14,730 | 9
luxembourg 114,599 119,666 6 2
netherlands 2,216,688 2,441,238 7 2
nlpkkt200 16,240,000 | 215,992,816 27 | 26
roadNet-PA 1,088,092 1,541,898 9 2
uk-2002 18,520,486 | 261,787,258 | 194,955 | 28

Collection of Result Sets. All the variants are run 25 times for each
graph. The reported values of time and modularity are average of
the 25 runs. For runtime, we only measure the time taken by the
community detection(Move-Phase) and graph coloring algorithm
itself, not the time spent reading the graph from the file system.
We computed the 95% confidence interval 8] for the results of all
the experiments. Once we realized the confidence intervals were
very narrow and that the visible differences in the plots were statis-
tically significant, we choose not to report them to improve figures
readability.
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Figure 4: Impact of vectorization of Graph Coloring on
both architectures. Y-axis represents the normalized version
of the runtime comparison between scalar and vectorized.
Scalar/Vectorized = 2.5 means vectorized version is 2 times
faster than scalar.

7 PERFORMANCE RESULTS
7.1 Speculative Greedy Graph Coloring

The performance of the ONPL vectorization on graph coloring is
displayed in Figure 4 for the Cascade Lake and SkylakeX architec-
tures. Vectorized speculative graph coloring on both processors
shows moderate performance enhancement for some graphs over
the scalar version. Vectorized graph coloring on the Cascade Lake
and SkylakeX outperform the scalar version by at most factors of
2 and 1.4. Speculative parallel graph coloring has two main parts.
One is the assignment of color, and another is conflict detection. We
only apply vectorization on the color assignment portion. Graph
coloring has a limited opportunity for vectorization that is why it
shows a moderate performance for most of the graphs.

7.2 Louvain Method on NetworKit

7.2.1 Modified Parallel Louvain Method (MPLM). We noticed some
performance deficiencies in PLM, like threads reallocation of the
memory needed for the affinity computation for each vertex that it
encounters. To be able to study the impact of vector processing, we
needed to make sure that the performance difference was rooted in
vectorization rather than in memory management. The Modified
Parallel Louvain Method (MPLM) is the code that contains various
performance fixes for PLM.

Figure 5(a) presents the improvement of MPLM compared to PLM
for 48 threads on Cascade Lake for all studied graphs. Similar results
observe on SkylakeX (not shown for brevity). We will use MPLM
as the comparison point to see the impact of vector processing in
community detection codes.

7.2.2 Modularity. Since the algorithm has significant race condi-
tions, any change of timings could affect the quality of the com-
munities detected. Modularity is one of the standard metrics to
evaluate the quality of the communities and is the metric optimized
by MPLM. Figure 5(b) shows the modularity of the implementations
of MPLM, ONPL, and OVPL on the Cascade Lake architecture using
48 threads. All methods achieve almost the same modularity which
confirms the quality of the vectorized communities has not been
significantly impacted.
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(a) PLM vs MPLM speedup on the Cascade Lake(48 threads).
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(b) Modularity of MPLM, ONPL, and OVPL on Cascade Lake(48 threads).

Figure 5: Performance and quality of the Modified PLM (MPLM) over PLM.
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Figure 6: Speedup of ONPL and OVPL over MPLM on the Cas-
cade Lake (48 threads)

7.2.3  ONPL. is a vectorized algorithm with the same memory con-
sumption as the scalar algorithm MPLM and similar memory access
patterns. Figure 6 shows the performance of ONPL compared to
MPLM on the Cascade Lake for 48 threads: ONPL shows perfor-
mance improvement for most of the selected graphs and at most a
factor of 2.5 performance gain compared to MPLM. Figure 7 shows
the ONPL performance in the NetworKit on the SkylakeX architec-
ture. ONPL performs better than its scalar counterpart for almost
all the graphs. The best performance of ONPL is recorded on the
SkylakeX processor is around a factor of 1.8 compared to MPLM.

7.2.4 OVPL. is an algorithm that consumes a lot more memory
than the scalar algorithm due to having to store community affinity
information for an entire block of vertices. Figure 6 presents the
results of OVPL on the Cascade Lake architecture relative to the
scalar implementation. For the graphs that were completed (some
graphs ran out of memory), the performance derived is much better
than the scalar implementation. Figure 7 shows the performance
of OVPL on SkylakeX. We can see a factor of 9.0 and 6.5 perfor-
mance gain for OVPL on the Cascade Lake and SkylakeX processors
respectively compared to MPLM.
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Figure 7: Speedup of ONPL and OVPL over MPLM on the Sky-
LakeX (36 threads)

v Cascade Lake
°1 === Skylake

MPLM/OVPL

w N M YT N ON®OOO ANMT OO O O O

A 4 HdHdH A Hd A AN NNNNO0 O Y ®

cC c c c c c c c c ccccc == NN £
| | | | | | | | | | | | | Y £ € £ ¥

P T R T I e 1

T ®m®® O ®©® O ®©@©®©© © o0 o0 X XXX o

€ € € € € € € € € € € € € c 2 9 9 a9 ¢

5 33 3 3 3 3 3 3 3 3 3 3 3€¢¢€E€T€E€TE

T 0 © © © ® ©® ©® © ® ® © © ©

de
de
de
de
de
de
de
de
de

Figure 8: Speedup of OVPL over MPLM for the selected
graphs where many vertices have degrees close to the aver-
age on both architectures.

From the algorithm perspective, OVPL performs vectorization
on a block of vertices, more specifically proper vectorization ap-
plies on the iteration only the minimum degree of vertices from the
block. The rest of the iterations need more branching and also some
lanes of the vectorization always remain unused. Our experimental
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results also reflect the scenario. Figure 8 shows only the perfor-
mance of the selected graphs where most of the vertices have the
same degree or very small variations. It shows a great performance
gain. Graphs like Delaunay(average Degree 5) triangulations of
random points or sparse matrix nlpkkt(average Degree 26) have
most vertices with degrees close to the average. Every vertex in
OVPL’s block is in sorted order and properly distributed by their
degree, which also brings great load balancing.

8 RELATED WORK

Label propagation is one of the most popular community detec-
tion algorithm proposed by Raghavan et al. [25]. The algorithm
iteratively refines labeling of vertices to communities by finding
for each vertex the label that most frequently appears in its neigh-
borhood and migrating the vertex to that label. PLM [29] is the
shared-memory parallelization of the Louvain Method [2] we use
as a reference. Halappanavar et al. [13] presented community de-
tection for static and dynamic networks using Grappolo.

Cheong et al. [5] proposed a parallel Louvain method for GPUs
using three levels of parallelism for the single and multi-GPU ar-
chitectures. Later, Naim and Manne et al. [23] proposed a highly
scalable GPU algorithm for the Louvain method, which parallelizes
the access to individual edges. There are other recent works like
Sanders et al. [19] proposed Louvain method for the python; the
main objective of their work is the simplicity to implement the
algorithm in python language. Gheibi et al. [11] proposed a cache ef-
ficient Louvain method for Intel Knight Landing(KNL) and Haswell
architecture.

Both GPUs and CPUs are SIMD systems, at least in spirit. Taking
the analogy of a GPU warp as a core and a thread inside a warp
as a lane, algorithms for GPUs can be re-envisioned as vectorized
CPU algorithm. At a very high level, the distinction between vertex-
based algorithms (such as OVPL) and edge-based algorithms (such
as ONPL) appears in GPUs. However, there are still many differences
between the architectures which cause engineering and algorithmic
decisions for CPU and GPU systems very different.

9 CONCLUSION

We considered the impact of AVX-512 instructions on graph parti-
tioning problems. We investigated, in particular, the Cascade Lake
and the SkylakeX architectures and how to use them to perform
speculative greedy graph coloring and the Louvain method. OVPL
proved to be efficient for graphs with balance and high average
degree. The vectorization strategy that processes multiple neigh-
bors of a single vertex at once also shows great performance. That
strategy is only possible thanks to scatter instructions and other
various new instructions in AVX-512 that are critical to partitioning
problems. The reduce and scatter pattern is critical in implement-
ing these vectorizations. These had to be implemented by intrinsic
operations in our software environment. In future works, we want
to investigate compiler techniques to enable us to deploy these
techniques on more graph partitioning kernels without requiring
expert programmers.
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