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Abstract

Modeling dependencies in multivariate discrete data is a challenging problem,
especially in high dimensions. The Potts model is a versatile such model, suitable
when each coordinate is a categorical variable. However, the full Potts model has
too many parameters to be accurately fit when the number of categories is large.
We introduce a variation on the Potts model that allows for general categorical
marginals and Ising-type multivariate dependence. This reduces the number of
parameters from Ω(d2K2) in the full Potts model to O(d2 + Kd), where K is
the number of categories and d is the dimension of the data. We show that the
complexity of fitting this new Potts-Ising model is the same as that of an Ising
model. In particular, adopting the neighborhood regression framework, the model
can be fit by solving d separate logistic regressions. We demonstrate the ability
of the model to capture multivariate dependencies in real data by comparing with
existing approaches.

1 Introduction

Modeling multivariate discrete data is a basic problem in statistics and machine learning, especially
in high dimensions. Discrete data are rarely independent and a fundamental modeling task is to
characterize dependencies (correlation, causation, conditional independence, etc.) among variables.
The problem is exacerbated when the data are high-dimensional. One of the most flexible tools
available for modeling multivariate distributions are graphical models. The Potts model [1] is a
versatile such model for discrete data, suitable when each coordinate is a categorical variable. The
categorical nature of the model provides much more flexibility over Poisson-type count models. The
Potts model is the natural extension of the well-known Ising model for binary data [2].

The full Potts model, however, has too many parameters to be accurately fit when the number of
categories K is large. The large number of parameters also precludes easy interpretation. We
introduce a variation on the Potts model that allows for general categorical marginals and an Ising-
type multivariate dependence. This reduces the number of parameters from Ω(d2K2) in the full Potts
model to O(d2 +Kd), where d is the dimension of the data.

Our motivating example is the toxicity data collected in cancer clinical trials. Patients undergoing
treatment may experience multiple toxicity types (such as nausea, diarrhea, etc) with grades of
severity varying from 1, corresponding to a mild symptom, to 5 indicating death. The overall number
of toxicities observed in cancer clinical trial is often more than 100. Furthermore, there is a rich
dependence structure in toxicity data. For example, diarrhea can cause dehydration which leads to
hypokalemia, hence the three toxicities are likely positively correlated, while some toxicities such as
diarrhea and constipation are negatively correlated. The toxicity datasets are both high-dimensional
and with rich dependencies.

The variation on the Potts model that we propose, which we refer to as the Potts-Ising model
(POIS), has several attractive features. The marginals of the distribution are modeled after general
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multinationals, hence provide a much better fit than Poisson, to sparse data with limited range.
Moreover, the dependence structure is much simpler than the full model, captured by only a single
matrix Γ which allows for easy interpretation. The fitting of the model is no harder than fitting d
logistic regression problems. One can choose from a versatile array of regularization techniques to
produce sparse or highly interpretable estimates of Γ, a surrogate for the correlation matrix.

Our model is suitable for any discrete data that has a special level, usually denoted as “0”, and the
dependence is captured by the presence of this level or its absence. The model is, for example, good
for rating (or survey) data, where one level often has a special meaning. For example, in rating
movies, products, etc., 0 often means “not rated” rather than the lowest rating (which starts at 1).
Another example is the toxicity data, where “0” is significantly different from a rating of 1 or above,
signifying that no symptom was observed for that particular adverse event. Although we take 0
to be the special level, any other level could work: our model is categorical, hence, any level can
be designated as “0”. Our model also work surprisingly well with count data as long as they are
sparse enough so that the total number of unique values observed in the dataset is relatively low.
We demonstrate all the above points in the sequel and show the effectiveness of the model with
extensive simulations and comparison with a wide selection of existing approaches. The code for
these simulations is available at GitHub repository aaamini/pois_comparisons.

Related work. The Ising model [3] for binary data and its extension, the Potts model, are well-
known statistical models for discrete multivariate data [4, 5, 6]. Ravikumar et. al. [7] has shown
that the ℓ1-penalized neighborhood regression in the Ising model can achieve high-dimensional
model selection consistency, in analogy to the work of [8] for the Gaussian graphical models.
Their algorithm was used in [9] to iteratively approximate the full likelihood by a series of pseudo-
likelihoods estimated by neighborhood selection. In [10], an Ising model was used to detect the
association between the US senators from their binary voting patterns. A sparse covariate-dependent
Ising model was proposed in [11] to study conditional dependence within the binary data and its
relationship with the additional covariates. The Potts model has been used in [2] to improve contact
prediction between amino acids in protein chains. A quasi-Bayesian approach was proposed [12] to
fit large Potts models with spike-and-slab priors to encode sparsity. The existing approaches either
consider a Potts-type model with count variables or the full categorical Potts model. Our approach is
categorical (hence more flexible than count modeling) but simpler than the full classical Potts model.
Many other multivariate count models, based on extensions of the Poisson distribution, have been
introduced in the literature. Inouye et. al. [13] provide a comprehensive review and comparison.
We compare with a sizable selection of these approaches in Section 4 to which we defer the further
discussion of these models.

2 The Potts-Ising model

Consider a discrete random vector z = (zi)
d
i=1 taking values in Zd

K := {0, . . . ,K}d, that is, each
coordinate can take values 0, . . . ,K. The general Potts model for z assumes the following (joint)
density,

p(z) ∝ exp
( d∑

i=1

K∑

k=0

θikzik +

d∑

i,j=1,
i<j

K∑

k,l=0

γij,klzikzjl

)
, z ∈ Zd

K (1)

where zik = 1{zi = k}. One could also impose a constraint on interaction parameters of the form
γij = 0, (i, j) /∈ E, for some edge set E ⊂ [d]2. Here, we do not assume such a priori constraint
explicitly, although all the discussions easily extend to the case of a given edge set E. Model (1) is
extremely flexible in capturing a multivariate dependence structure among the coordinates of z. This
flexibility, however, comes at a cost: the number of parameters of the model is of the order of d2K2,
which is quite large if either the dimension d or the number of levels K is large. The drawbacks
are two-fold; from a statistical perspective, the sample size needed to accurately estimate the model
is high; from a computational perspective, fitting the model will be slow and prone to numerical
instability for small sample sizes.

In this paper, we consider a restriction of (1) that preserves much of the flexibility of modeling
pairwise interactions among the variables, but significantly reduces the model complexity. Our
approach is suitable for sparse random vectors where level 0 has a special meaning. Instead of
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modeling the interactions among all levels, we simply model the interaction between level 0 and
not-0. To be more precise, let

σi := σi(zi) :=

{
1 zi = 0

−1 zi 6= 0
, (2)

and consider the model

p(z) ∝ exp
(∑

i,k

θikzik +
∑

(i,j):i<j

γijσiσj

)
. (3)

which we refer to as the Potts-Ising (POIS) model. The rationale behind the naming is that the
interaction term in (3) is similar to an Ising model which is the special case of the Potts model for
K = 1. We, however, note that (3) is much richer than an Ising model because it allows for modeling
arbitrary marginal distributions for the coordinates via parameters θik, i ∈ [d], k ∈ [K]. We will show
that we can achieve this extra flexibility over the Ising model, at virtually no extra computational
cost. Model (3) is a special case of the general Potts model with the following restriction on the
parameters:

γij,kl :=

{
γij k = l = 0, or k 6= 0, l 6= 0

−γij k = 0, l 6= 0 or k 6= 0, l = 0
.

Through empirical validation on real data, we show that much of the statistical flexibility of the Potts
model is also retained. In fact, the model in most cases achieves a performance similar to the ideal
nonparametric benchmark as discussed in Section 4.

3 Model fitting

Consider a random sample {zt}nt=1 of size n where each zt is an i.i.d. draw with the same distribution
as that of z given in (1). We let zti be the ith coordinate of zt and write z∗i := (zti , t ∈ [n]). For the
vector z, let z−i = (zj , j 6= i) and similarly for z∗−i = (ztj , t ∈ [n], j 6= i) and zt−i. We gather the

interaction parameters of (3) in the d× d matrix Γ = (γij) and the marginal parameters in the d×K
matrix B = (βik).

An effective approach for fitting graphical models of the form (1) is via the so-called neighborhood
regression [8]: One separately fits the conditional distributions p(z∗i | z∗−i) for all i ∈ [d]—here and
in the sequel we use p(x | y) to denote the conditional density of random vector x given random
vector y, also evaluated at realized values x and y; this abuse of notation helps with brevity. Since
these conditional densities factorize over the sample, i.e., p(z∗i | z∗−i) =

∏
t p(z

t
i | z

t
−i), let us focus

on the generic version based on z, i.e.,

p(zi | z−i) ∝ exp
(∑

k

θikzik +
∑

j: j 6=i

γijσiσj

)
.

Let us write qik := exp(θik), γii = 0, γi∗ = (γij , i = 1, . . . , d) and σ = (σj , j ∈ [d]). Then,

p(zi = k | z−i) ∝

{
qi0e

〈γi∗,σ〉, zi = 0

qike
−〈γi∗,σ〉, zi = k 6= 0

where 〈γi∗, σ〉 =
∑

j 6=i γijσj is the usual Euclidean inner product between γi∗ and σ. Letting

βik := qik/qi0, and some algebra gives

p(zi | z−i) =

∏
k 6=0[βike

−2〈γi∗,σ〉]zik

1 + βi⊕e−2〈γi∗,σ〉
,

where βi⊕ :=
∑

k′ 6=0 βik′ . The notation ⊕ means that we are summing over all values of the index

except 0. This notation is helpful because of the special role level 0 plays in the model. Later we
use + in place of an index to mean summing over all values of that index (without exception). Since
βi0 = 1, in these notations, we have βi⊕ = βi+ − 1.
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3.1 Reduction to logistic regression

Let us go back to the sample of size n. With ztik = 1{zti = k}, we have

p(z∗i | z∗−i) :=

n∏

t=1

p(zti | z
t
−i) =

n∏

t=1

∏
k 6=0[βike

−2〈γi∗,σt〉]z
t

ik

1 + βi⊕e−2〈γi∗,σt〉
.

Here σt = (σtj , j ∈ [n]) where σtj = σ(ztj) and σ(·) is defined in (2). The conditional log-
likelihood of the model, ℓi(βi, γi∗) := log p(z∗i | z∗−i), is

ℓi(βi, γi∗) =
∑

k 6=0

z+ik log βik −
∑

t

[
2zti⊕〈γi∗, σt〉+ log

(
1 + βi⊕e

−2〈γi∗,σt〉
)]

(4)

where zti⊕ =
∑

k 6=0 z
t
ik and z+ik =

∑n
t=1 z

t
ik, using the summation convention discussed earlier.

To estimate the parameters, one often maximizes a penalized version of the the conditional log-
likelihood. To keep the discussion simple, let us assume for now that there is no added penalty.

Given βi⊕, the problems of estimating βi∗ and γi∗ decouple. A strategy is to solve the problem under
the additional constraint βi⊕ = eu for some u ∈ R, and then optimize jointly over u and γi∗:

max
βi>0, γi∗

ℓi(βi, γi∗) = max
u, γi∗

max
βi>0:

∑
k 6=0

βik=eu
ℓi(βi, γi∗).

The solution of the inner optimization problem over β is simply

β̂ik(u) = eu
z+ik
z+i⊕

, k 6= 0, (5)

where z+i⊕ =
∑

k 6=0 z
+
ik =

∑n
t=1

∑
k 6=0 z

t
ik = n − z+i0, where the last equation follows since, by

definition,
∑K

k=0 z
t
ik = 1 for all t ∈ [n]. Plugging-in, after some algebra, we have

max
β>0, γi∗

ℓi(β, γi∗) = C + max
u, γi∗

{
z+i⊕u−

∑

t

[
2zti⊕〈γi∗, σt〉+ log(1 + eu−2〈γi∗,σt〉)

]}

= C − min
u, γi∗

∑

t

[
zti⊕(2〈γi∗, σt〉 − u) + log

(
1 + eu−2〈γi∗,σt〉

)]

where C =
∑

k 6=0 z
+
ik log(z

+
ik/z

+
i⊕). The above is a convex problem jointly in u and γi∗.

To simplify, let x̃ = (−2γij , j 6= i), ãt = (σtj , j 6= i), and

x =

(
u
x̃

)
, at =

(
1
ãt

)
, bt = zti⊕

so that u− 2〈γi∗, σt〉 = 〈x, at〉. Note that bt = 1− zti0. The optimization can be written as

min
x∈Rd

∑

t

[
− bt〈x, at〉+ log

(
1 + e〈x,at〉

)]

which is exactly the optimization problem for computing the MLE in a logistic regression model,
based on the data (bt, at), t ∈ [n]. Note that parameter u in (5) is the intercept in this logistic
regression problem. Once the logistic regression is fitted, we get the estimate γ̂i∗ of γi∗ and û of u.

We can then use û in (5) to obtain the estimates β̂i∗(û) of the marginal parameters. An alternative
approach to optimizing the conditional log-likelihood, using the coordinate-descent, is described in
the Supplement. We, however, found the above global approach to work better in practice.

Since all the parameters can be estimated by performing neighborhood regressions p(z∗i | z∗−i) for
all i ∈ [d], the problem of fitting (3) reduces to performing d parallel logistic regressions. The ith
problem estimates the ith rows of Γ and B. Since Γ is symmetric, we obtain two estimates for each
row/column. This is a common scenario in neighborhood regression and there are various rules
available for combining these estimates. Here, we simply take the average.
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Regularization. Due to the reduction of the (conditional) neighborhood regression to the logistic
regression, any regularization technique available for the latter is immediately applicable to the
former. In particular, we can easily minimize (βi, γi∗) 7→ − log ℓi(βi, γi∗) + ρλi

(γi∗) for a penalty
ρλ where λ is a regularization parameter. Following through with the argument of Section 3.1, this
just adds ρλi

(γi∗) to the logistic regression objective. One can also think of adding the penalty as

putting a prior, namely, one that is ∝ e−ρλ(·), on γi∗, in a Bayesian interpretation of the problem.

We consider three choices: (1) The sparsity-inducing ℓ1 penalty, ρλ(·) = λ‖ · ‖1, (2) Firth’s
biased-reducing penalty ρλ(·) = − 1

2 log det I(·), where I(·) is the Fisher information of the logistic
problem [14]; and (3) the default prior of the arm R package [15]. Firth’s approach is equivalent to
putting a Jeffrey’s prior on γi∗ and we use the implementation available in logistf R package [16].
The three approaches are implemented in the accompanying code. In the paper, we focus on the the
ℓ1 penalty as the default choice, due to its robustness, and interpretability in high dimensions, as well
as the availability of fast implementations such as the glmnet R package [17]; we take advantage of
the efficiency of glmnet in using warm starts to compute the entire regularization path as of function
of λ. We can then use cross-validation to tune λ as will be discussed in Section 4.

4 Empirical results

We now present results on the performance of the model on real data. We adopt the framework of
Inouye et. al. [13] who have done extensive simulations comparing various methods on discrete
multivariate data. Among the methods they considered, we compare with the Copula Poisson
(COPPOI)—estimated via the two-stage IFM method [18] via the DT [19], (MIXPOI), the Truncated
Poisson Graphical Model (T-PGM) [20], independently-fit Poissons (INDPOI), a log-normal model
(LOGNORM) and independently-fit negative binomials (INDNEGBIN). For the implementation of
these methods, we have relied on the open-source code provided by Inouye et. al. in [21].

We also introduce and compare with four new methods: the Bootstrap, the copula multinomial
(COPMULT), the independently-fit multinomials (INDMULT) and the global POIS solution (POIS)—
as discussed in Section 3.1–with the ℓ1 regularization implemented via glmnet package. The details
of the Bootstrap are discussed below. We also did experiments with the Poisson Square Root
(POISQR) model [22] and a log-normal model (LOGNORM). The POISQR was a hit and miss
(with more misses in the datasets that we considered) while the LOGNORM performed poorly across
the board. We have excluded these two methods from the results due to their high computational
complexity.

We consider the following publicly available datasets: MovieLens 100K Dataset [23] of movie ratings
(n = 1037, sparsity ≈ 97.8%), and an Amazon customer ratings dataset [24] (n = 745, sparsity ≈
94.3%). We also use datasets on cancer drug toxicities which provided the motivating examples for
this work. The selected number of columns, d, is shown on the figures.

Toxicity and questionnaire data. We use the toxicity data from the NSABP R-04 colorectal cancer
clinical trial [25, 26]. NSABP R-04 was a phase III trial (NCT00058474). The trial included 1,608
participants, with complete toxicity data available for n = 1596 patients. The toxicities are graded
from 0 to 5, representing “no symptoms” to “death”. These data are provided by our collaborators and
not yet publicly available; see the acknowledgment section for more details. Patients were assigned
to four different treatments, but here we look at the aggregate data across all treatments. We reduce
the data to the most frequent d = 36 symptoms. The result is a 1596× 36 data matrix, with entries
in {0, 1 . . . , 5}, and sparsity of ≈ 94%. This type of data is very suitable for the application of the
POIS model due to its limited range and sparsity.

Quality-of-life questionnaires, also known as Patient Reported Outcome (PRO) questionnaires, are
another commonly collected data in cancer trials. PRO data were collected for patients enrolled in
NSABP R-04 colorectal cancer clinical trial prior to treatment, at the end of chemoradiation prior
to surgery, and then 12 months after surgery [25]. The patients answered the questions with: Not
at all, A little bit, Somewhat, Quite a bit, Very much, that are mapped to 0 to 4. Here, we look at
the aggregate PRO data, across all time points, resulting in a data matrix of size 3295 × 17, after
restricting to the most frequent symptoms. The sparsity of PRO data is ≈ 77%. We will also use the
toxicity and PRO data for the breast cancer from the same study, the details of which are presented in
the Supplement.
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Evaluation criteria. We evaluate the fit of the models using the maximum mean discrepancy
(MMD) [27], which measures the maximum difference between general moments of two distributions.
More specifically, for two probability measures Q and P, the MMD is defined as

δ(Q,P) = sup
g∈G

|Eg(X)− Eg(Y )|, X ∼ Q, Y ∼ P

where G is a class of functions. Usually one takes G to be the unit ball of a universal reproducing
Hilbert space (RKHS), in which case δ is a proper metric on the space of probability measures [27].
The MMD defined above is a single number. To get some robustness in empirical applications, we
consider the MMD between all the (d− 2)-dimensional marginals of P and Q, assuming that the two
distributions are d-dimensional. More precisely, letting X = (X1, X2, . . . , Xd), and similarly for Y ,
we compute

∆I(Q,P) = sup
f∈F

∣∣Ef(Xi1 , Xi2 , . . . , Xid−2
)− Ef(Yi1 , Yi2 , . . . , Yid−2

)
∣∣, (6)

for all I := {i1, . . . , id−1} ⊂ {1, . . . , d}. Here, F is the unit ball of an RKHS of functions on

Rd−2, which in this paper will be taken to be the RKHS of a Gaussian kernel. In simulations, we

report the histogram of ∆I as I varies over all possible
(

d
d−2

)
choices. Our approach here resembles

that of Inouye et. al. [22], with the key difference that we consider (d− 2)-dimensional marginals,
whereas they consider the 2-dimensional ones, that is, pairwise moments of the form Ef(Xi1 , Xi2).
In practice, pairwise dependence might not be strong for many pairs, but the overall distribution could
be far from a product distribution due to higher-order dependencies. Our approach has the advantage
of measuring higher-dimensional dependencies while retaining the aggregation idea introduced by
Inouye et. al. If the RKHS is rich enough, functions of the form f(Xi1 , Xi2 , . . . , Xid−2

) already
include those of the form f(Xi1 , Xi2) by being constant in the extra arguments, so the pairwise
dependence is also implicitly measured by (6).

In the simulations, we split the data into a training and a test set. We take P = Qtest, the empirical
distribution of the test set, as a surrogate for the true data-generating distribution Q∗. A parametric
model Q = Qθ will depend on some parameter θ which is estimated based on the training set to give

us θ̂. Ideally, we would like to evaluate ∆I(Qθ̂
,Qtest). However, since the exact computation is often

intractable, we generate a sample of size m form Q
θ̂
, and use its empirical distribution Q̂

θ̂
in place of

Q
θ̂
. The histogram plots we show are that of ∆I(Q̂θ̂

,Qtest).

We also consider a nonparametric approach, the Bootstrap, that models the distribution of the
training set by its empirical distribution Qtrain. The performance in this case is ideally measured by
∆I(Q

train,Qtest). To be consistent with the calculations in the parametric case, we instead generate a

sample of size m from Qtrain and form its empirical distribution, denoted as Q̂train. This amounts to a
resampling of the original (training) data, hence the name bootstrap. We then evaluate the histogram

of ∆I(Q̂
train,Qtest), which will serve as the benchmark for the best performance achievable (in terms

of the MMD). The sampling parameter is generally taken to be m = 1000 in our simulations. For
each pair-complement, we compute the MMD over a collection of Gaussian kernels with bandwidths
varying in the range 10−2 to 100.8 (15 points equally spaced on the log-scale) and take their mean.
The results are further averaged over nCV = 5 random training-test splits. The MMD calculations are
based on the fast approximation using 64 random Fourier features [28, 29].

Tuning. The three methods POIS, T-PGM, and MIXPOI have hyper-parameters that we tuned by
splitting the training set further into training and validation sets (at 70/30 ratio) and evaluating the
performance on the validation set using the pair-complement MMD. For the POIS model, we used a
single regularization parameter λ for the ℓ1 penalty in all the neighborhood regressions. We used
15 values of λ between 10−4 to 10−1.3, equally spaced on the log-scale. For each λ, we estimated

both the Θ̂(λ) and Γ̂(λ) matrices. Then, to determine the optimal λ, we sampled from each model

(Θ̂(λ), Γ̂(λ)) and compared the samples to the validation set using the pair-complement MMD. An
alternative approach would have been to use and tune a different λ for each neighborhood regression,
using the standard cross-validation for regression. We found that the former approach gives more
accurate results and suffers less from the ℓ1 shrinkage issue. For the MIXPOI, the tuning parameter is
the number of mixture components, for which we used a range of five values between 5 to 30, equally
spaced on the log-scale. For T-PGM, we used the same tuning code as Inouye et. al. [13].
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Figure 2: The estimated Γ matrix for the colorectal cancer toxicity data. See Table 1 (in the
Supplement) for the meaning of the abbreviations.

also cause Cnst, but this situation does not seem to have occurred in this dataset.) This reasoning also
explains the high positive association between Hypk and Drrh. The other strong negative associations
can also be traced back to near dichotomies in the dataset.

Figure 4 illustrates the runtime of the POIS algorithm versus the dimension d and the sample size
n. Since we are solving d regression problems of size n× d, we conjecture the complexity to be at
most O(nd2), assuming d ≤ n. This is corroborated by the plots in Figure 4 which in fact show a
somewhat better average complexity of roughly n0.55d1.9.

Discussion. We proposed a variant of the Potts model that is more interpretable, has fewer parame-
ters and can be easily fit using penalized logistic regression. We mainly considered the ℓ1-penalization
which has the sparsity-inducing property desirable in high-dimensional settings. The ℓ1 penalty,
however, is known to cause the shrinkage of the estimated parameters, and one has to be careful
not to over-regularize. In practice, one can use values of λ slightly lower than what is suggested
by cross-validation, or use other known debiasing techniques, including refitting a low-dimensional
model, without penalty, to the support uncovered by the ℓ1-penalized solution [30]. It is possible to
generalize the POIS model to allow variable thresholds and arbitrary threshold functions without
much difficulty; for example, we can take σi(zi) in (2) to = 1{zi ≤ Median({zit}

n
t=1)}, where

Median({zit}
n
t=1) is the empirical median of the ith column of the data, to bisect the range of each

variable. For count data, or other discrete data with a highly variable range, we can consider a further
discretization (i.e., binning) to make them suitable for our categorical model.

5 Broader Impact

In cancer clinical trials, patients are assigned to different treatment groups, and for each patient,
toxicities are collected. These toxicities are graded, high-dimensional and correlated. Patient reported
outcome questionnaires also collect patients’ responses to quality of life questions on a Likert-type
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Figure 3: The Spearman correlation matrix for the original data (left) versus that of the estimated
model (right). The estimated correlations were calculated based on a sample of size 2 · 104 from the
fitted model.
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Figure 4: POIS runtime versus d for fixed n (left) and vice versa (right).

scale after treatments. It is crucial to correctly model these kind of data and estimate the main effects
as well as the association between the toxicities, in order to determine the tolerability of treatments
and their impact on patients quality of life. Our Potts-Ising model is a suitable such model designed
for the toxicity data, but applicable far beyond it to any survey and rating data with limited range, as
well as, sparse count data.
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6 1.5-step block coordinate descent

An alternative approach to optimizing the conditional log-likelihood (4) is to alternate between solving
for βi⊕ and solving for γi∗, that is, performing a form of block coordinate descent. Initializing γi∗ = 0
and optimizing over (βik)k 6=0, we obtain the closed form solution

β0
ik = z+ik/z

+

i0, k 6= 0.

We then fix βik = β0
ik and optimize ℓi(β

0; γi∗) over γi∗. Let u0 = log(β0
i⊕) where β0

i⊕ =∑
k 6=0

β0
ik = (n/z+i0)− 1. Then, the problem is equivalent to solving

γ0
i∗ = argmin

γi∗

∑

t

[
zti⊕(2〈γi∗, σt〉 − u0) + log(1 + eu0−2〈γi∗,σt〉)

]

which is that of a logistic regression, with fixed intercept u0. After obtaining γ0
i∗, we can maximize

ℓi(β; γ
0
i∗) over β, whose solution can be written as β1

ik = z+ik/x where x solves the nonlinear
equation:

n∑

t=1

e−2〈γ0

i∗,σt〉

x+ e−2〈γ0

i∗,σt〉z+i⊕
= 1.

This equation can be solved efficiently by bisection. One can then repeat the iterations. However,
we found in practice that terminating after obtaining (β1

ik, γ
0
i∗) is good enough. In fact, this early

termination seems to have an implicit regularization effect.

7 Empirical results continued

We have also applied the methods to the breast cancer toxicity and PRO data from the same clinical
cancer trial discussed in the text. This toxicity data has dimensions 3070×45 with sparsity ≈ 95% and
its corresponding data is 9079× 29 with sparsity 56%. Figure 5 shows the results. POIS outperforms
all other methods except the Bootstrap on the breast cancer toxicity data. The corresponding PRO
data is the only dataset on which POIS is slightly less competitive relative to say Copula Multinomial.
This can be explained by noting that the breast cancer PRO data is quite dense (56% sparsity), making
the POIS model less suitable due to the violation of its underlying sparsity assumption.

Figure 6 shows the results on the Amazon rating data (nCV = 2) along with a larger plot of the Movie
rating results presented in the text. Similar conclusions about the relative performance of the POIS
model can be made as those discussed in the text. For completeness, Figure 7 provides larger plots
for the colorectal cancer results, already presented in Figure 1 of the main text. Table 1 shows the
abbreviations used for toxicities in Figure 2 of the text.
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