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Abstract 

Research has shown that estimation of correlation from 

scatter plots is done poorly by both novices and experts. We 

tested whether proficiency in correlation estimation could be 

improved by perceptual learning interventions, in the form of 

perceptual-adaptive learning modules (PALMs). We also 

tested learning effects of alternative category structures in 

perceptual learning. We organized the same set of 252 scatter 

plot displays either into a PALM that implemented spacing in 

learning by shape categories or one in which the categories 

were ranges of correlation strength. Both PALMs produced 

markedly reduced errors, and both led trained participants to 

classify near transfer items as accurately as trained items. 

Differences in category organization produced modest effects 

on learning; there was some indication of more consistent 

reduction of absolute error when learning categories were 

organized by shape, whereas average bias of judgments was 

best reduced by categories organized by different numerical 

ranges of correlation. 
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Introduction 

The need to process patterns and relationships in data has 

never been more prominent than it is today across many 

aspects of work, citizenship, and daily living. There is 

growing interest in promoting data literacy, but we are only 

beginning to understand some of the learning challenges 

that are involved in doing so. Correlation is one of the most 

fundamental data relations used across a great variety of 

contexts, but estimation of correlation from scatterplots, 

which is how correlations are typically represented, is 

generally poor and prone to systematic errors. 

A chronic problem is observers' tendency to 

underestimate (e.g., Lauer & Post, 1989; Meyer & Shinar, 

1992; Strahan & Hansen, 1978) rather than overestimate 

(Meyer, Taieh, & Flascher, 1997). Statistically sophisticated 

observers are no better at estimating correlation than 

novices, though they do give higher estimates (Meyer & 

Shinar, 1992). Research on perception and estimation of 

correlations from scatter plots suggests the influence of a 

variety of visual features. People tend to give greater 

correlation estimates when a scatter plot has a greater 

density of point clouds, even when the points are the same 

between graphs and only the scale ranges were manipulated 

(Boynton, 2000). They also tend to give greater correlation 

estimates to scatter plots with steeper slopes (Bobko & 

Karen, 1979). Outliers, heteroscedasticity, and restriction of 

range also affect people’s estimations (Bobko & Karen, 

1979; Lauer & Post, 1989). 

Problems interpreting scatter plots led Doherty and 

Anderson (2009) to argue for standardizing the graphical 

features (e.g., axes, labels) of scatter plots in the field of 

psychology. Standardization of scatter plots, however, does 

not solve the problem of inaccurate estimation of 

correlation. In fact, when people see only standardized 

scatter plots, there is little opportunity to learn to distinguish 

relevant and irrelevant features; moreover, lack of exposure 

to non-standardized scatter plots may intensify observers’ 

perceptual biases. 

Perceptual learning – experience-induced changes in the 

extraction of information – is fundamental to this kind of 

learning challenge (Gibson, 1969; Kellman & Massey, 

2013). Research shows that perceptual learning (PL) can be 

accelerated by interventions involving many short 

classification episodes that expose the learner to variation 

within and between learning categories. As the underlying 

properties (e.g., features, relations) that drive classifications 

are discovered, perceptual processes come to extract the 

relevant features preferentially while other irrelevant 

information may be inhibited. The preferentially selected 

information comes to be picked up with lower effort or load 

and ultimately automatically (Kellman, 2002).  

The embodiment of perceptual learning techniques in 

learning technology can be markedly enhanced by 

combination with particular adaptive learning procedures in 

Perceptual Adaptive Learning Modules (PALMs; Kellman, 

Massey & Son, 2010; Thai, Krasne & Kellman, 2015). 

PALMs systematically put learners through series of 

classification trials, each dedicated to a particular perceptual 

classification, which we call a learning category. These 

learning categories are spaced and interleaved adaptively 

using the ARTS (Adaptive Response-Time-based 

Scheduling) algorithm (Mettler & Kellman, 2014; Mettler, 

Massey, & Kellman, 2016), which uses the learner’s 

accuracy and response time on items within a learning 

category to assess learning strength and determine the 

learning category’s sequencing priority. Remarkably, the 

same adaptive learning concepts tend to optimize spacing in 

both factual and perceptual classification domains (Mettler, 

Massey & Kellman, 2016), a fact likely explained by a 

general principle – the “successful effort hypothesis” – that 

applies across learning domains. The key idea is that the 

best time for another learning trial for a given category in 





the learning category and initiated active trials, where 

participants gave a response and received trial-by-trial 

feedback, for that learning category. In other words, the 

beginning of training was a combination of passive and 

active trials until all learning categories were introduced, 

then trials were only active. If a response was not given 

within 20 seconds, the trial timed out and the numerical 

correlation was presented. After every 25 trials (1 block) 

participants were shown their average accuracy and 

response time for previous block(s). Participants’ correlation 

estimations were considered correct if they were ±.07 of the 

actual correlations – chosen to be half the size of a bin 

(~0.14). Categories were adaptively sequenced using the 

ARTS sequencing algorithm (see Mettler & Kellman, 

2014), which sets priorities for categories reappearing based 

on participants’ accuracy and response time on items in 

those categories. The minimum number of trials in between 

items from the same category, or enforced delay, was set to 

two trials. The enforced delay parameter in ARTS precludes 

reappearance of the same category while recent feedback 

still persists in working memory. Participants “retired” a 

learning category when they met mastery criteria consisting 

of 4 correct responses out of the last 5 trials of a category, 

with RTs ≤ 5 seconds. Training continued until participants 

graduated from all categories.  

Scatter Plots Six unique scatter plots were created for each 

subcategory used in training (total of 252). The number of 

data points (100) and the scale of the scatter plot (0 – 100 

for x- and y-axes) were kept constant for all scatter plots 

while slope and intercepts varied. Slope was not correlated 

with correlation, r = -0.17, p = 0.60. Because scatter plots 

look very similar at very low correlation values, scatter plots 

were considered to have different shapes if they looked 

distinct at the 0.5 correlation level. Great care was made to 

ensure equal representation of and no gaps in correlations 

(i.e., 0.01, 0.02, 0.03, and so on through 0.99 appear at least 

once in the training set).  Variance in x and y values was 

determined by randomly sampling from a normal 

distribution with varying means and standard deviations.  

Assessments Pretest and posttest items were identical but 

appeared in different random orders. There were four types 

of items: 1) training set: 7 scatter plots drawn from the 

training set to represent each feature; 2) near transfer: 7 

scatter plots from each of the seven subcategories omitted 

from training, 3) far transfer: 7 scatter plots with a novel 

shape representing each correlation range; 4) negative: 4 

negative correlation scatter plots spanning -1 to 0. Far 

transfer was considered transfer of correlation estimation 

skill to a novel shape that is still within the correlation range 

trained on. The novel shape was selected to have similar 

visual features (i.e., dot densities) to trained shapes but with 

a dot distribution not seen in training (i.e., three distinct dot 

clusters). Negative items were used to test for remote 

transfer, as shapes and absolute value of correlation range 

were the same but the data had a negative trend.  

Procedure 

At the beginning of the PALM, participants were given the 

definition of correlation and a scatter plot example of a 

positive, a negative, and no correlation, without actual 

correlations labeled. They were informed that all scatter 

plots seen in the experiment would have the same number of 

data points and the same scaled axes. Participants were 

asked to give their correlation estimates to the second 

decimal place and told that their progress through the 

PALM depended on their speed and accuracy. Before the 

pretest, participants were informed that scatter plots 

presented during assessments could have negative or 

positive correlations. Prior to starting training, participants 

were reminded that scatter plots during training would only 

have positive correlations. After training, participants 

completed an immediate posttest and a survey. Participants 

were asked to report demographics (age, gender), exposure 

to statistics (number of courses and average grades), 

familiarity with the term correlation (heard of it, can define, 

can interpret, know formula) and strategy for estimating 

correlation. They also rated their level of frustration, 

attention, and effort on a Likert-scale from 0 to 5. 

Dependent Measures 

Performance was measured in several ways. The absolute 

deviation measure reflected the absolute value of the 

difference between the participants’ estimate and the actual 

correlation. We defined mean error as average signed 

deviation across responses (participant’s estimate minus 

actual correlation). Negative values of mean error 

represented underestimating and positive values 

overestimating. We defined a binned accuracy measure 

such that an estimate was scored as correct if it fell within 

±0.07 of the actual correlation. Because participants learned 

to mastery criteria, the amount of time spent and number of 

trials completed during training varied across participants. 

To account for this, we calculated learning efficiency scores 

by dividing accuracy gain (posttest minus pretest) by 

minutes or trials.  

Results 

The primary results of this study are shown in Figure 2. The 

left panel shows the mean absolute deviation of correlation 

estimates at pretest and posttest, for both training set items 

and near transfer items. Both groups showed substantial 

learning. There were no differences on efficiency measures. 

There is some indication that the Shape Category condition 

showed more consistent learning for near transfer items. 

The right panel shows mean (signed) error for estimates, 

across conditions and tests. Both groups improved from 

pretest to posttest, with the Correlation Strength condition 

ending up, as a group, with mean posttest estimates not 

much different from zero. These observations were 

confirmed by the analyses, described further below. 





each of the four transfer measures, with the pretest accuracy 

for the corresponding transfer measure as a covariate. 

Accuracy improvements were modest. Both conditions 

improved their accuracy on training set items (M = .13, SD 

=.19) and on near transfer items (M = .15, SD = .24) and 

did not improve their accuracy on far transfer items (M 

= .00, SD = .16) or negative items (M = .01, SD = .22), 

p’s > .05.  

Usability and Subjective Experience  

The PALMs were very similar in length and subjective 

experiences. There were no differences between conditions 

in the number of trials completed during training or time to 

reach learning criterion. Perceiving correlations is difficult. 

The PALMs were equally frustrating for participants (M = 

4.06, SD = 1.07), but participants paid attention just the 

same (M = 3.48, SD = 0.92), n.s. Participants in the 

Correlation Strength condition (M = 3.67, SD = 0.92) 

reported slightly more effort than those in the Shape 

Category condition (M = 3.34, SD = 0.92), t(97) = -1.80,  p 

= 0.08, d = 0.36.   

Discussion 

Learning technologies designed to improve learning in 

most domains employ a category structure that mirrors 

natural categories, such as species for classifying butterflies, 

diagnoses for reading medical scans, or problem types for 

practicing mathematics. Sequencing items in this way is 

intuitive. However, we asked whether alternative category 

structures could benefit learning and perhaps even yield 

different learning outcomes. People estimate correlations 

from scatter plots poorly, even observers seasoned in 

statistics. We chose correlation estimation to see if we could 

improve this skill using perceptual learning principles and to 

see whether different category structures matter. 

Some research on correlation estimation suggests that 

various visual features influence estimation, so for one 

category structure, we grouped scatter plots by their shapes, 

whereas we used correlation ranges as an alternative 

grouping.  Both PALMs utilized the same learning items. 

We predicted that perceptual learning interventions that 

exposed observers to variation within and between learning 

categories, involve active classification episodes, and 

provide immediate feedback would increase correlation 

estimation proficiency in both PALMs but that the degree 

and nature of improvement might differ between them. We 

hypothesized that the Shape PALM would develop a 

correlation estimation skill that is more robust with respect 

to variations in surface features in scatter plots. Another 

possibility was that participants in the Correlation Strength 

condition would get an advantage in near transfer (where 

some range of correlation had been withheld from the 

training set), due to getting systematic practice along the 

dimension of degree of correlation. 

We found that both PALMs improved proficiency in 

correlation estimation - a notable result, as even years of 

interaction with scatter plots do little to develop experts’ 

ability to extract invariant structure in this domain. 

Participants did, indeed, train on a substantial number of 

unique scatter plots (252) and complete many trials (~500 

on average) during a condensed time period – a learning 

experience that is unusual. Although statisticians interact 

with scatter plots often, they certainly would rarely see this 

many in succession and certainly not in an order that 

benefits learning.  

Participants also estimated near transfer items as 

accurately as training set items. Recall that participants 

never saw scatter plots with these combinations of shape 

and correlation range in training. Equivalent performance on 

these items is consistent with perceptual learning of 

structural characteristics as opposed to memorizing 

individual instances.  

Although participants in both conditions trained to 

objective learning criteria, as defined by our accuracy 

requirement of being ±.07 of the actual correlation, the two 

PALMs yielded different learning outcomes. Participants in 

the Shape Category condition were more consistent in the 

amount their estimations deviated from the actual 

correlation while participants in the Correlation Strength 

condition were less biased in their estimations. In addition, 

participants in the Shape Category condition were 

significantly closer (lower absolute deviation) to the actual 

correlation on near transfer items than those in the 

Correlation Strength condition.  

The reliable differences in bias are not large, but they may 

reflect differences in learning experiences between the two 

PALMs. Participants in the Shape Category condition, on 

average, overestimated. Because learning categories in this 

condition were not systematically organized in terms of 

degree of correlation, category sequencing based on 

performance may have been less impactful at addressing 

bias, despite accuracy feedback. For example, an error on an 

exemplar from a given shape category with a true 

correlation of .75 might have been followed up soon after by 

another example of that shape category, but the new 

instance could have a very different degree of correlation. In 

contrast, in the Correlation Strength condition, an error on a 

display with correlation of .75 would be followed up within 

a couple of learning trials with another category exemplar 

with a correlation close to .75. Such effects of category 

structuring might also occur with regard to attainment of 

learning criteria. A persistent error relating to a given 

correlation range would tend to delay mastery in the 

Correlation Strength condition, leading to more learning 

trials centered on that category. A final possible contributor 

to the condition difference for bias is that overestimating 

seems to be reflective of statistical sophistication (Meyer & 

Shinar, 1992). We do not know why, but our data suggest a 

growth of skill in both conditions, whereas only in the 

Correlation Strength condition would category structure 

have tended to drive adaptive learning events that might 

tend to combat consistent overestimation, especially one 

centered in certain parts of the range of correlations. 

Perhaps some explanation along these lines explains why 



the Correlation Strength condition showed posttest results 

for both training set items and near transfer items that did 

not differ reliably from zero error.  

Conversely, participants in the Shape Category condition 

did outperform those in the Correlation Strength condition 

on near transfer items, in terms of absolute deviation. Their 

improvements on near transfer items were consistent with 

the amount they improved on training set items. This 

difference may speak to a superior pick up of structure and 

decreased attention to surface features as a result of training, 

allowing these participants to estimate correlation across a 

broader range of shapes.  

Participants were not able to transfer their correlation 

estimation skill to a novel shape, as they performed just as 

poorly on far transfer items at posttest as pretest. We 

suspect that our far transfer items were so difficult that 

transfer would have been close to impossible. Although 

participants had experienced scatter plots with dot densities 

during training, they had only one cluster, not three clusters 

as in the far transfer items. Performance on negative items 

got worse after training, which can be explained by the 

absence of the negative sign in their estimations. When only 

strength of correlation was assessed, participants did in fact 

improve from pretest to posttest. Participants may have 

omitted the negative sign because they became less attuned 

to slope, as slope varied throughout training and did not 

correlate with correlations of scatterplots, so noticing this 

feature was useless and therefore, disregarded. Negative, 

shallow slopes would be harder to detect at posttest, 

possibly leading participants to misclassify them as positive, 

resulting in larger deviations. The same filtering out of 

surface features that gave participants in the Shape Category 

condition an advantage on near transfer items could be a 

disadvantage when processing surface features becomes 

relevant to the task (i.e., looking at which way the points are 

pointing when slope is shallow), as in negative items.  

To our knowledge, little work has compared different 

ways of organizing learning categories in complex 

perceptual learning. The results of this study demonstrate 

that the perceptual learning intervention was successful in 

improving novices’ skill in the difficult and error-prone task 

of estimating correlations from scatter plots, and that 

variations in how the learning categories were defined and 

sequenced differentially showed some measurable effects on 

absolute accuracy and bias in estimation. Our results suggest 

that the type of learning outcome may depend on how 

learning categories are organized and should be considered 

when designing learning modules.  

The role of learning category organization deserves 

further study, especially in domains where learning 

instances may coherently be grouped in multiple ways. Such 

efforts may have both interesting theoretical import as well 

as implications for the design of learning technology in 

applied settings. 
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