£ COGSCI2018

changing / minds
40" annual cognitive science society meeting
madison wisconsin usa july 25-28

learning.development.evolution.emergence.plasticity.aging.disorder.cross-culture.experience.persuasion.propaganda.discovery.context.control
emergence.plasticity.aging.disorder.cross-culture.experience.persuasion.propaganda.discovery.context.control.learning.development.evolution
disordercross-culture.experience.persuasion.propaganda.discovery.context.control.learning.development.evolution.emergence.plasticity.aging

KEYNOTE SPEAKERS

Susan Gelman
University of Michigan

Matthew Botvinick
DeepMind

Michael Kearns
University of Pennsylvania

ORGANIZERS

Charles Kalish, Martina Rau, Jerry Zhu, Timothy T. Rog

€
INVITED SYMPOSIA

changing education ®
big data goes to school & C

changing society
persuasion, propaganda, politics

changing science ®.
Rumelhart prize symposium % &




Perceptual Learning in Correlation Estimation:
The Role of Learning Category Organization

Lucy Cui (lucy.cui@ucla.edu)
Christine M. Massey (cmassey@psych.ucla.edu)
Philip J. Kellman (kellman@cognet.ucla.edu)
Department of Psychology, 405 Hilgard Avenue, Los Angeles, CA 90095 USA

Abstract

Research has shown that estimation of correlation from
scatter plots is done poorly by both novices and experts. We
tested whether proficiency in correlation estimation could be
improved by perceptual learning interventions, in the form of
perceptual-adaptive learning modules (PALMs). We also
tested learning effects of alternative category structures in
perceptual learning. We organized the same set of 252 scatter
plot displays either into a PALM that implemented spacing in
learning by shape categories or one in which the categories
were ranges of correlation strength. Both PALMs produced
markedly reduced errors, and both led trained participants to
classify near transfer items as accurately as trained items.
Differences in category organization produced modest effects
on learning; there was some indication of more consistent
reduction of absolute error when learning categories were
organized by shape, whereas average bias of judgments was
best reduced by categories organized by different numerical
ranges of correlation.

Keywords: perceptual learning; category learning;
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Introduction

The need to process patterns and relationships in data has
never been more prominent than it is today across many
aspects of work, citizenship, and daily living. There is
growing interest in promoting data literacy, but we are only
beginning to understand some of the learning challenges
that are involved in doing so. Correlation is one of the most
fundamental data relations used across a great variety of
contexts, but estimation of correlation from scatterplots,
which is how correlations are typically represented, is
generally poor and prone to systematic errors.

A chronic problem is observers' tendency to
underestimate (e.g., Lauer & Post, 1989; Meyer & Shinar,
1992; Strahan & Hansen, 1978) rather than overestimate
(Meyer, Taich, & Flascher, 1997). Statistically sophisticated
observers are no better at estimating correlation than
novices, though they do give higher estimates (Meyer &
Shinar, 1992). Research on perception and estimation of
correlations from scatter plots suggests the influence of a
variety of visual features. People tend to give greater
correlation estimates when a scatter plot has a greater
density of point clouds, even when the points are the same
between graphs and only the scale ranges were manipulated
(Boynton, 2000). They also tend to give greater correlation
estimates to scatter plots with steeper slopes (Bobko &
Karen, 1979). Outliers, heteroscedasticity, and restriction of

262

range also affect people’s estimations (Bobko & Karen,
1979; Lauer & Post, 1989).

Problems interpreting scatter plots led Doherty and
Anderson (2009) to argue for standardizing the graphical
features (e.g., axes, labels) of scatter plots in the field of
psychology. Standardization of scatter plots, however, does
not solve the problem of inaccurate estimation of
correlation. In fact, when people see only standardized
scatter plots, there is little opportunity to learn to distinguish
relevant and irrelevant features; moreover, lack of exposure
to non-standardized scatter plots may intensify observers’
perceptual biases.

Perceptual learning — experience-induced changes in the
extraction of information — is fundamental to this kind of
learning challenge (Gibson, 1969; Kellman & Massey,
2013). Research shows that perceptual learning (PL) can be
accelerated by interventions involving many short
classification episodes that expose the learner to variation
within and between learning categories. As the underlying
properties (e.g., features, relations) that drive classifications
are discovered, perceptual processes come to extract the
relevant features preferentially while other irrelevant
information may be inhibited. The preferentially selected
information comes to be picked up with lower effort or load
and ultimately automatically (Kellman, 2002).

The embodiment of perceptual learning techniques in
learning technology can be markedly enhanced by
combination with particular adaptive learning procedures in
Perceptual Adaptive Learning Modules (PALMs; Kellman,
Massey & Son, 2010; Thai, Krasne & Kellman, 2015).
PALMs systematically put learners through series of
classification trials, each dedicated to a particular perceptual
classification, which we call a learning category. These
learning categories are spaced and interleaved adaptively
using the ARTS (Adaptive Response-Time-based
Scheduling) algorithm (Mettler & Kellman, 2014; Mettler,
Massey, & Kellman, 2016), which uses the learner’s
accuracy and response time on items within a learning
category to assess learning strength and determine the
learning category’s sequencing priority. Remarkably, the
same adaptive learning concepts tend to optimize spacing in
both factual and perceptual classification domains (Mettler,
Massey & Kellman, 2016), a fact likely explained by a
general principle — the “successful effort hypothesis” — that
applies across learning domains. The key idea is that the
best time for another learning trial for a given category in
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Figure 1. Shapes of scatter plots — manipulated independent from correlation strength. Examples were randomly selected and
have different correlations. Normal was a linear function with normally distributed errors. Diamond was a cluster of dots with
its greatest dot density in the middle and least on both ends. Outlier left corner was the normal shape but with outliers in the
left corner, as is outlier right corner but with outliers in the right corner. X bell curve was a cluster of dots with its greatest
density located from the x-axis to center and then tapering off. Y bell curve was the same but on the y-axis. Fan was a
triangular shape with the range of y-values increasing as x increases. 3 clusters was three diamond shaped clusters.

PL is the longest interval at which the learner can still
respond correctly (Mettler, Massey & Kellman, 2016).

An unsolved problem of applying perceptual-adaptive
learning to category learning is how to determine learning
categories. This has usually been done intuitively, where
categories are defined such that practice on some instances
is likely to advance learning to extract relevant structure in
other instances in that category. In some domains, such as
diagnostic categories in electrocardiography (Thai, Krasne
& Kellman, 2015), the relevant categories are fairly
obvious. In other domains, this is not the case. Here we
investigate the domain of correlation estimation, in which
there are no obvious natural categories, and we test two
different schemes of organizing categories spanning the
same set of learning instances. We developed two PALMs
with learning categories that organized scatter plots based
on overall shape or strength of correlation and manipulated
within-category and between-category similarities. The
PALMs shared the same scatter plots.

Learning categories in the Shape PALM were organized
by surface pattern — the shape of the scatter plot. Therefore,
they looked like “naturally occurring” categories (greater
perceptual similarity within categories than between
categories), but all learning categories spanned the full
correlation range (0 — 1). Thus, there was a large range of
correlations within categories that was similar between
categories. The learning categories in the Correlation
Strength PALM were different correlation ranges; within
cach category, instances could appear with various shapes,
and the range of shapes was the same between categories.

The two PALMs provide different learning experiences.
Given an incorrect item, the Shape Category PALM would
set a higher priority for presenting another scatter plot from
the same shape category, while the Correlation Strength
PALM would prioritize another scatter plot with the same
correlation range. As a result, participants in the Correlation
Strength condition might reach mastery of a learning
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category without seeing instances of that category in every
possible shape. Participants in the Shape Category condition
would continue getting instances of any given learning
category until mastery but would not be guaranteed to see
all ranges of correlation.

We hypothesized that if one way of organizing learning
categories was more compatible with commonalities of
perceived structure, that condition might show better
learning.

Methods

Participants

103 undergraduates from the University of California, Los
Angeles participated for course credit. Four participants
were excluded for not completing the experiment.

Materials

We created seven different shapes of scatter plots, inspired
by the visual features (e.g., dot density, outliers) that had an
influence on correlation estimation in the literature (see
Figure 1). The correlation range: 0 — 1 was divided into
seven bins (0 — 0.14, 0.15, - 0.28, 0.29 - 0.42, 0.43 — 0.56,
0.57 - 0.70, 0.71 — 0.84, and 0.85 — 0.99). Both PALMs had
the same 49 subcategories (from all 7 shapes x 7 correlation
range combinations), but subcategories were either arranged
into categories based on shape or correlation range. In order
to have transfer items at posttest, one correlation range (e.g.,
0 - 0.14) was withheld from training for each shape
category, with no correlation range omitted more than once
across the seven shape categories, and vice versa. The same
subcategories were omitted from training for both PALMs.

PALM Parameters Each category was introduced with an
initial passive trial, a scatter plot displayed with the
numerical correlation shown. Each passive trial “unlocked”



the learning category and initiated active trials, where
participants gave a response and received trial-by-trial
feedback, for that learning category. In other words, the
beginning of training was a combination of passive and
active trials until all learning categories were introduced,
then trials were only active. If a response was not given
within 20 seconds, the trial timed out and the numerical
correlation was presented. After every 25 trials (1 block)
participants were shown their average accuracy and
response time for previous block(s). Participants’ correlation
estimations were considered correct if they were +.07 of the
actual correlations — chosen to be half the size of a bin
(~0.14). Categories were adaptively sequenced using the
ARTS sequencing algorithm (see Mettler & Kellman,
2014), which sets priorities for categories reappearing based
on participants’ accuracy and response time on items in
those categories. The minimum number of trials in between
items from the same category, or enforced delay, was set to
two trials. The enforced delay parameter in ARTS precludes
reappearance of the same category while recent feedback
still persists in working memory. Participants “retired” a
learning category when they met mastery criteria consisting
of 4 correct responses out of the last 5 trials of a category,
with RTs < 5 seconds. Training continued until participants
graduated from all categories.

Scatter Plots Six unique scatter plots were created for each
subcategory used in training (total of 252). The number of
data points (100) and the scale of the scatter plot (0 — 100
for x- and y-axes) were kept constant for all scatter plots
while slope and intercepts varied. Slope was not correlated
with correlation, » = -0.17, p = 0.60. Because scatter plots
look very similar at very low correlation values, scatter plots
were considered to have different shapes if they looked
distinct at the 0.5 correlation level. Great care was made to
ensure equal representation of and no gaps in correlations
(i.e., 0.01, 0.02, 0.03, and so on through 0.99 appear at least
once in the training set). Variance in x and y values was
determined by randomly sampling from a normal
distribution with varying means and standard deviations.

Assessments Pretest and posttest items were identical but
appeared in different random orders. There were four types
of items: 1) training set: 7 scatter plots drawn from the
training set to represent each feature; 2) near transfer: 7
scatter plots from each of the seven subcategories omitted
from training, 3) far transfer: 7 scatter plots with a novel
shape representing each correlation range; 4) negative: 4
negative correlation scatter plots spanning -1 to 0. Far
transfer was considered transfer of correlation estimation
skill to a novel shape that is still within the correlation range
trained on. The novel shape was selected to have similar
visual features (i.e., dot densities) to trained shapes but with
a dot distribution not seen in training (i.e., three distinct dot
clusters). Negative items were used to test for remote
transfer, as shapes and absolute value of correlation range
were the same but the data had a negative trend.
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Procedure

At the beginning of the PALM, participants were given the
definition of correlation and a scatter plot example of a
positive, a negative, and no correlation, without actual
correlations labeled. They were informed that all scatter
plots seen in the experiment would have the same number of
data points and the same scaled axes. Participants were
asked to give their correlation estimates to the second
decimal place and told that their progress through the
PALM depended on their speed and accuracy. Before the
pretest, participants were informed that scatter plots
presented during assessments could have negative or
positive correlations. Prior to starting training, participants
were reminded that scatter plots during training would only
have positive correlations. After training, participants
completed an immediate posttest and a survey. Participants
were asked to report demographics (age, gender), exposure
to statistics (number of courses and average grades),
familiarity with the term correlation (heard of it, can define,
can interpret, know formula) and strategy for estimating
correlation. They also rated their level of frustration,
attention, and effort on a Likert-scale from 0 to 5.

Dependent Measures

Performance was measured in several ways. The absolute
deviation measure reflected the absolute value of the
difference between the participants’ estimate and the actual
correlation. We defined mean error as average signed
deviation across responses (participant’s estimate minus
actual correlation). Negative values of mean error
represented  underestimating and  positive  values
overestimating. We defined a binned accuracy measure
such that an estimate was scored as correct if it fell within
+0.07 of the actual correlation. Because participants learned
to mastery criteria, the amount of time spent and number of
trials completed during training varied across participants.
To account for this, we calculated learning efficiency scores
by dividing accuracy gain (posttest minus pretest) by
minutes or trials.

Results

The primary results of this study are shown in Figure 2. The
left panel shows the mean absolute deviation of correlation
estimates at pretest and posttest, for both training set items
and near transfer items. Both groups showed substantial
learning. There were no differences on efficiency measures.
There is some indication that the Shape Category condition
showed more consistent learning for near transfer items.
The right panel shows mean (signed) error for estimates,
across conditions and tests. Both groups improved from
pretest to posttest, with the Correlation Strength condition
ending up, as a group, with mean posttest estimates not
much different from =zero. These observations were
confirmed by the analyses, described further below.
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Figure 2. (Left) Improvements in mean absolute deviation on training set and near transfer items from pretest to posttest.
(Right) Improvements in mean error on training set and near transfer items from pretest to posttest. Error bars represent +/-

1 standard error.

Accuracy Measures

Absolute deviation. We conducted separate one-way
ANCOVAs on absolute deviation for each of the transfer
measures, with the pretest absolute deviation for the
corresponding transfer measure as a covariate. Posttest
scores for the Shape Category condition had a lower
absolute deviation for the near transfer items (M = .12, SD
= .05) than the Correlation Strength condition (M = .14, SD
=.06), F(1,96) = 5.51, p = .021, np2 .05. There were no
reliable differences for training set items or far transfer
items. For negative items, there were no positive learning
effects at all; both conditions showed larger absolute
deviation scores at posttest than at pretest. There was a
marginal tendency for greater increases in deviation in the
Shape Category condition, F(1,96) = 2.88, p =.093, np2
= .03. We suspected that some subjects may have only
assessed the strength of correlation, which in the absence of
the negative sign, would produce even worse deviation
scores than pretest. We calculated the absolute deviation
from the magnitude of the participants’ responses and of the
correct correlations, and ran a 2 condition x 2 assessments
(pretest, posttest) repeated measures ANOVA to investigate
this possibility. Participants did in fact improve their
estimates of strength of correlation, F(1, 97) = 44.80, p
<.001, but there was no difference between conditions, F(1,
97)=0.418,p = .52.

An important feature of these results is that near transfer
items were generally answered as accurately as training set
items. This result indicates perceptual learning of structural
characteristics rather than memorization of instances. There
was some suggestion of more consistent improvement by
the Shape Category condition across fraining set items and
near transfer items. An ANOVA using condition, test
phase, and item type showed a marginally reliable 3-way
interaction, F(1,97) =3.72, p = .057, np2: .04.

Mean Error. Absolute deviations sum the absolute values
of error (unsigned error) for participant responses. We label
mean error as the average signed deviation across
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responses. We conducted separate ANCOVAs on mean
error for each of the transfer measures, with the pretest
mean error for the corresponding transfer measure as a
covariate. Positive mean errors reflect overestimating and
negative mean errors reflect underestimating. For the
training set items, the Shape Category condition had a
positive mean error (M .03, SD .08) while the
Correlation Strength condition had a negative mean error
(M = -.01, SD = .09), F(1, 96) = 4.93, p = .03, n,” = .05.
This pattern also held for the near transfer items: the Shape
Category condition had a positive mean error (M = .02, SD
.07) while the Correlation Strength condition had a
negative mean error (M = -.02, SD = .08), F(1,96), p =.008,
npz = .07. There was no reliable effect of condition for far
transfer items.

The differences in mean error may indicate different biases
across conditions. To assess potential differences in error,
we tested all of the pretest and posttest data points for
training set items and near transfer items against the
hypothesis of zero error, using one-sample t tests. Both
conditions showed mean error reliably greater than 0 at
pretest, for both training set and near transfer items.
Posttest results suggested greater improvements in accuracy
in the Correlation Strength condition than in the Shape
Category condition. The Shape Category condition differed
reliably from zero error at posttest for training set items
1(46) = 2.17, p = .04) and for near transfer items (#(46) =
2.31, p =.03). For the Correlation Strength condition, there
was no reliable difference from the hypothesis of zero error,
cither for training set items (#(51) = -.97, p =.34) or for
near transfer items (#(51) = -1.49, p = .14). In other words,
in the Correlation Strength condition, participants moved
from underestimating to unbiased estimates, while those in
the Shape Category condition shifted from underestimating
to overestimating.

Accuracy Gain. We defined a separate binned accuracy
measure such that an estimate was scored as correct if it fell
with +.07 of the actual correlation. We conducted separate
ANCOVAs on accuracy gain (posttest minus pretest) for



each of the four transfer measures, with the pretest accuracy
for the corresponding transfer measure as a covariate.
Accuracy improvements were modest. Both conditions
improved their accuracy on training set items (M = .13, SD
=.19) and on near transfer items (M = .15, SD = .24) and
did not improve their accuracy on far transfer items (M
= .00, SD = .16) or negative items (M = .01, SD = .22),
p’s>.05.

Usability and Subjective Experience

The PALMs were very similar in length and subjective
experiences. There were no differences between conditions
in the number of trials completed during training or time to
reach learning criterion. Perceiving correlations is difficult.
The PALMs were equally frustrating for participants (M =
4.06, SD = 1.07), but participants paid attention just the
same (M = 3.48, SD = 0.92), n.s. Participants in the
Correlation Strength condition (M = 3.67, SD = 0.92)
reported slightly more effort than those in the Shape
Category condition (M = 3.34, SD = 0.92), #(97) = -1.80, p
=0.08,d = 0.36.

Discussion

Learning technologies designed to improve learning in
most domains employ a category structure that mirrors
natural categories, such as species for classifying butterflies,
diagnoses for reading medical scans, or problem types for
practicing mathematics. Sequencing items in this way is
intuitive. However, we asked whether alternative category
structures could benefit learning and perhaps even yield
different learning outcomes. People estimate correlations
from scatter plots poorly, even observers seasoned in
statistics. We chose correlation estimation to see if we could
improve this skill using perceptual learning principles and to
see whether different category structures matter.

Some research on correlation estimation suggests that
various visual features influence estimation, so for one
category structure, we grouped scatter plots by their shapes,
whereas we used correlation ranges as an alternative
grouping. Both PALMs utilized the same learning items.
We predicted that perceptual learning interventions that
exposed observers to variation within and between learning
categories, involve active classification episodes, and
provide immediate feedback would increase correlation
estimation proficiency in both PALMs but that the degree
and nature of improvement might differ between them. We
hypothesized that the Shape PALM would develop a
correlation estimation skill that is more robust with respect
to variations in surface features in scatter plots. Another
possibility was that participants in the Correlation Strength
condition would get an advantage in near transfer (where
some range of correlation had been withheld from the
training set), due to getting systematic practice along the
dimension of degree of correlation.

We found that both PALMs improved proficiency in
correlation estimation - a notable result, as even years of
interaction with scatter plots do little to develop experts’
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ability to extract invariant structure in this domain.
Participants did, indeed, train on a substantial number of
unique scatter plots (252) and complete many trials (~500
on average) during a condensed time period — a learning
experience that is unusual. Although statisticians interact
with scatter plots often, they certainly would rarely see this
many in succession and certainly not in an order that
benefits learning.

Participants also estimated near transfer items as
accurately as training set items. Recall that participants
never saw scatter plots with these combinations of shape
and correlation range in training. Equivalent performance on
these items is consistent with perceptual learning of
structural characteristics as opposed to memorizing
individual instances.

Although participants in both conditions trained to
objective learning criteria, as defined by our accuracy
requirement of being +.07 of the actual correlation, the two
PALMs yielded different learning outcomes. Participants in
the Shape Category condition were more consistent in the
amount their estimations deviated from the actual
correlation while participants in the Correlation Strength
condition were less biased in their estimations. In addition,
participants in the Shape Category condition were
significantly closer (lower absolute deviation) to the actual
correlation on near transfer items than those in the
Correlation Strength condition.

The reliable differences in bias are not large, but they may
reflect differences in learning experiences between the two
PALMs. Participants in the Shape Category condition, on
average, overestimated. Because learning categories in this
condition were not systematically organized in terms of
degree of correlation, category sequencing based on
performance may have been less impactful at addressing
bias, despite accuracy feedback. For example, an error on an
exemplar from a given shape category with a true
correlation of .75 might have been followed up soon after by
another example of that shape category, but the new
instance could have a very different degree of correlation. In
contrast, in the Correlation Strength condition, an error on a
display with correlation of .75 would be followed up within
a couple of learning trials with another category exemplar
with a correlation close to .75. Such effects of category
structuring might also occur with regard to attainment of
learning criteria. A persistent error relating to a given
correlation range would tend to delay mastery in the
Correlation Strength condition, leading to more learning
trials centered on that category. A final possible contributor
to the condition difference for bias is that overestimating
seems to be reflective of statistical sophistication (Meyer &
Shinar, 1992). We do not know why, but our data suggest a
growth of skill in both conditions, whereas only in the
Correlation Strength condition would category structure
have tended to drive adaptive learning events that might
tend to combat consistent overestimation, especially one
centered in certain parts of the range of correlations.
Perhaps some explanation along these lines explains why



the Correlation Strength condition showed posttest results
for both training set items and near transfer items that did
not differ reliably from zero error.

Conversely, participants in the Shape Category condition
did outperform those in the Correlation Strength condition
on near transfer items, in terms of absolute deviation. Their
improvements on near transfer items were consistent with
the amount they improved on training set items. This
difference may speak to a superior pick up of structure and
decreased attention to surface features as a result of training,
allowing these participants to estimate correlation across a
broader range of shapes.

Participants were not able to transfer their correlation
estimation skill to a novel shape, as they performed just as
poorly on far transfer items at posttest as pretest. We
suspect that our far transfer items were so difficult that
transfer would have been close to impossible. Although
participants had experienced scatter plots with dot densities
during training, they had only one cluster, not three clusters
as in the far transfer items. Performance on negative items
got worse after training, which can be explained by the
absence of the negative sign in their estimations. When only
strength of correlation was assessed, participants did in fact
improve from pretest to posttest. Participants may have
omitted the negative sign because they became less attuned
to slope, as slope varied throughout training and did not
correlate with correlations of scatterplots, so noticing this
feature was useless and therefore, disregarded. Negative,
shallow slopes would be harder to detect at posttest,
possibly leading participants to misclassify them as positive,
resulting in larger deviations. The same filtering out of
surface features that gave participants in the Shape Category
condition an advantage on near transfer items could be a
disadvantage when processing surface features becomes
relevant to the task (i.e., looking at which way the points are
pointing when slope is shallow), as in negative items.

To our knowledge, little work has compared different
ways of organizing learning categories in complex
perceptual learning. The results of this study demonstrate
that the perceptual learning intervention was successful in
improving novices’ skill in the difficult and error-prone task
of estimating correlations from scatter plots, and that
variations in how the learning categories were defined and
sequenced differentially showed some measurable effects on
absolute accuracy and bias in estimation. Our results suggest
that the type of learning outcome may depend on how
learning categories are organized and should be considered
when designing learning modules.

The role of learning category organization deserves
further study, especially in domains where learning
instances may coherently be grouped in multiple ways. Such
efforts may have both interesting theoretical import as well
as implications for the design of learning technology in
applied settings.
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