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Abstract

In this paper we study the problem of escaping from saddle points and achieving
second-order optimality in a decentralized setting where a group of agents collabo-
rate to minimize their aggregate objective function. We provide a non-asymptotic
(finite-time) analysis and show that by following the idea of perturbed gradient
descent, it is possible to converge to a second-order stationary point in a number of
iterations which depends linearly on dimension and polynomially on the accuracy
of second-order stationary point. Doing this in a communication-efficient manner
requires overcoming several challenges, from identifying (first order) stationary
points in a distributed manner, to adapting the perturbed gradient framework with-
out prohibitive communication complexity. Our proposed Perturbed Decentralized
Gradient Tracking (PDGT) method consists of two major stages: (i) a gradient-
based step to find a first-order stationary point and (ii) a perturbed gradient descent
step to escape from a first-order stationary point, if it is a saddle point with suffi-
cient curvature. As a side benefit of our result, in the case that all saddle points are
non-degenerate (strict), the proposed PDGT method finds a local minimum of the
considered decentralized optimization problem in a finite number of iterations.

1 Introduction

Recently, we have witnessed an unprecedented increase in the amount of data that is gathered in a
distributed fashion and stored over multiple agents (machines). Moreover, the advances in data-driven
systems such as Internet of Things, health-care, and multi-agent robotics demand for developing
machine learning frameworks that can be implemented in a distributed manner. Simultaneously,
convex formulations for training machine learning tasks have been replaced by nonconvex repre-
sentations such as neural networks. These rapid changes call for the development of a class of
communication-efficient algorithms to solve nonconvex decentralized learning problems.

In this paper, we focus on a nonconvex decentralized optimization problem where a group of m
agents collaborate to minimize their aggregate loss function, while they are allowed to exchange
information only with their neighbors. To be more precise, the agents (nodes) aim to solve

1 m
i = i ) 1
min f(x) m;f(X) (1)
where f; : R¢ — R is the objective function of node i which is possibly nonconvex. Finding the
global minimizer of this problem, even in the centralized setting where all the functions are available
at a single machine, is hard. Given this hardness result, we often settle for finding a stationary
point of Problem (T)). There have been several lines of work on finding an approximate first-order
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stationary point of this distributed problem, i.e., finding a set of local solutions X, . . . , X,,, where their
average Xy has a small gradient norm ||V f(Xq.4) || and a small consensus error Y.~ [|%; — Xaug]|-
Achieving first-order optimality, however, in nonconvex settings may not lead to a satisfactory solution
as it could be a poor saddle point. Therefore, finding a second-order stationary point could improve
the quality of the solution. In fact, when all saddle points are non-degenerate finding a second-order
stationary point implies convergence to a local-minimum, and in several problems including matrix
completion [[1]], phase retrieval [2]], and dictionary learning [3|] local minima are global minima.

While convergence to a second-order stationary point for the centralized setting has been extensively
studied in the recent literature, the non-asymptotic complexity analysis of finding such a point
for decentralized problems (under standard smoothness assumptions) has thus far evaded solution,
in part because of significant additional challenges presented by communication limitations. A
major difference between the centralized and the decentralized framework lies in the exchange of
information between the nodes. Exchanging Hessian information is, of course, prohibitively expensive.
Furthermore, turning to approximating schemes has the potential to create catastrophic problems for
the algorithm, as small errors in approximation across the nodes could lead to inconsistent updates
that could reverse progress made by prior steps. Moreover, escaping from first-order stationary points
requires identifying that the algorithm has reached such a point, and accomplishing even this basic
step in a communication-efficient manner presents challenges.

Contributions. In this paper we develop a novel gradient-based method for escaping from saddle
points in a decentralized setting and characterize its overall communication cost for achieving a
second-order stationary point. The proposed Perturbed Decentralized Gradient Tracking (PDGT)
algorithm consists of two major steps: (i) A local decentralized gradient tracking scheme to find
a first-order stationary point, while maintaining consensus by averaging over neighboring iterates;
(ii) A perturbed gradient tracking scheme to escape from saddle points that are non-degenerate. We
show that to achieve an (¢, v, p)-second-order stationary point (see Definition [2) the proposed PDGT
SO
1—0)2 min{e2,p?}~3"
d is dimension, f(x") is the initial objective function value, f* is the optimal function value, and
o is the second largest eigenvalue of mixing matrix in terms of absolute norm which depends on
the connectivity of the underlying graph. To the best of our knowledge, this result provides the first
non-asymptotic guarantee for achieving second-order optimality in decentralized optimization under
standard smoothness assumptions.

algorithm requires at most © <max { 0 %}) rounds of communication, where

1.1 Related Work

Centralized settings. Convergence to a first-order stationary point for centralized settings has been
extensively studied in the nonconvex literature [4-13]]. A recent line of work focuses on improving
these guarantees and achieving second-order optimality in a finite number of iterations. These schemes
can be divided into three categories: (i) fully gradient-based methods which use the perturbation
idea for escaping from saddle points once iterates reach a point with small gradient norm [[14-16];
(ii) methods which utilize the eigenvector corresponding to the smallest eigenvalue of the Hessian
to find an escape direction [5,6L(17-21]; and (iii) trust-region [22]|23]] and cubic regularization
algorithms [24-26] which require solving a quadratic or cubic subproblem, respectively, at each
iteration. These methods, however, cannot be applied to decentralized settings directly as they require
access to the gradient or Hessian of the global objective function.

First-order optimality in decentralized settings. Recently, several iterative methods have been
introduced and studied for achieving first-order optimality in decentralized settings. In particular, [27-
29] show convergence to a first-order stationary point by leveraging successive convex approximation
techniques and using dynamic consensus protocols. Also, a similar guarantee has been established for
several well-known decentralized algorithms including distributed gradient descent [30L31]], primal-
dual schemes [32H34]], gradient tracking methods [35/|36]], and decentralized alternating direction
method of multipliers (ADMM) [37]].

Second-order optimality in decentralized settings. Finding a second-order stationary point in a
distributed setting has been studied by several works [38-41], but they all only provide asymptotic
guarantees. The most related work to our submission is [42] which studies non-asymptotic conver-
gence of stochastic gradient-based diffusion method for decentralized settings. However, the result
of this work is obtained under two relatively less common assumptions. First, it requires a bounded



gradient disagreement condition which ensures that the local gradients V f; are not far from the global
gradient V f (Assumption 3 in [42]). Second, it assumes that the computed stochastic gradient near a
saddle point is such that there is gradient noise present along some descent direction, spanned by the
eigenvectors corresponding to the negative eigenvalues of the Hessian, i.e., stochastic gradient leads
to an escape direction (Assumption 7 in [42]). Both these assumptions, and, in particular, the second
one may not hold in general decentralized settings, and they both significantly simplify the analysis
of escaping from saddle points. Unlike [42]], the theoretical results presented here do not require
assuming these restrictive conditions, and our paper provides the first non-asymptotic guarantee for
achieving second-order optimality in decentralized settings, under standard smoothness assumptions.
In fact, the conditions that we assume for proving our results are identical to the ones used in [15] for
the analysis of perturbed gradient method in the centralized setting.

2 Preliminaries

The problem in (T)) is defined over a set of m connected agents (nodes) where each one has access to
a component of the objective function. We denote the underlying undirected connectivity graph by
G ={V,E}, where V = {1,...,m} is the set of vertices (nodes) and F is the set of edges. As this
graph is undirected, if node ¢ can send information to node j, then the reverse communication is also
possible. We call two nodes neighbors if there exists an edge between them. We further denote the
neighborhood of node i by A;, which also includes node 7 itself.

Since the optimization variable x in (I}) appears in each summand of the objective function, this
problem is not decomposable into subproblems that can be solved simultaneously over nodes of the
network. To make the objective function separable we introduce m local variables x; € R?, and
instead of minimizing = > | fi(x) in (I), we minimize the objective function = 3" | f;(x;). To
ensure that these two problems are equivalent, we enforce the local decision variables to be equal
to each other. Since the graph is connected, this condition can be replaced by consensus among

neighboring nodes, and therefore the resulting problem can be written as

m

min F(x):= %Zfi(xi) st. x; =%, VY(i,j)€E. (2)
i=1

X=[X1;X2;...;Xm ] ERMI

Note that in (Z) we have introduced the notation x € R™ to indicate the concatenation of all local
variables X := [X1; X2; ...; X and defined the function F' : R™? — Ras F(x) := L > fi(x;).
It can be verified that x* is an optimal solution of Problem (I)) if and only if x* := [x*;...;x*] is an
optimal solution of Problem (2). In the rest of the paper, therefore, we focus on solving Problem ()
as its objective function is node-separable. We should mention that solving this problem is still

challenging as the constraints of this problem are coupled.

In this paper, we only assume standard smoothness conditions for the local objective functions f; to
establish our theoretical guarantees.

Assumption 1. The local functions f; have Lipschitz continuous gradient with constant L, i.e., for
alli € {1,...,m} and any x € R% and x' € R% we have ||V f;(x) — Vfi(x')|| < L1 ||x — ¥/|.

Assumption 2. The local functions f; have Lipschitz continuous Hessian with constant Lo, i.e., for
alli € {1,...,m} and any x € R? and x' € R? we have || V2 f;(x) — V2 f;(x)|| < L2 [|x — x'||.

The gradient Lipschitz continuity condition in Assumption [I)is customary for the analysis of gradient-
based methods. The condition in Assumption [2] is also required to ensure that the function is
well-behaved near its saddle stationary points.

Finding an optimal solution of (I) or (2) is hard since the local functions f; are nonconvex. Hence, we
settle for finding a stationary point. In the centralized unconstrained case, a first-order stationary point
of function f satisfies |V f(X)|| = 0, and an approximate e-first-order stationary point is defined as
IV f(%)]| < e. For the constrained decentralized problem in (2) the notion of first-order stationarity
should address both stationarity and feasibility as we state in the following definition.

Definition 1. A set of vectors {X;}1, is an (¢, p)-first-order stationary point of Problem @) if

. X L&, 1 &
HmZ;sz(xz) <e, EZ; xi—azng <p. 3)
i= i= i=




Algorithm 1: PDGT algorithm
1: Input: x°, V f(x°),€,7,p, 01,0,
2: Setx; =x°, y; =Vf(x°), T,=6 (—f(xo)ff* ) , T, =6 <7dlog(13/ﬂ’62)),

(1—0)2 min{e2,p?} v

m=06(1-07), »=6(sts), R=6(s}), B=6(")

3: Call (x)=PDGT Phase I (x,y,71,71,01);

4: Call (X,¥,S)=PDGT Phase Il (X,72,T5, R, B);

5. if S =1 then

6:  Return X as a second-order stationary point and stop;
7. else

8: Setx =X,y =y and go to Step 3;

9: end if -

The first condition in the above definition ensures that the gradient norm is sufficiently small, while
the second condition ensures that the iterates are close to their average. It can be shown that if
[X1,...,%y,] is an (e, p)-first-order stationary point of Problem (2)), then their average X, =
LS X, is an (e + Ly p)-first-order stationary point of Problem (I), i.e., ||-£ 31| V f;(Xqug) | <
€ + Ly p. The proof of this claim is available in the supplementary material.

The same logic holds for second-order stationary points. In the centralized case, x is an (¢, )-second-
order stationary point if |V f(X)| < e and V2 f(X) = —v L Similarly, we define a second-order
stationary point of Problem (2)) with an extra condition that enforces consensus approximately.

Definition 2. A set of vectors {X; }1, is an (e,7, p)-second-order stationary point of Problem (2)) if

1 m .
ngvfi(xi)

m

1 1 m
< — 2fi%i) = =L —
<e, m;:lV fixi) = = m;:l

m

1
fci—EZ&j

j=1

<p. @

Note that under Assumptions|l{and|2] it can be shown that if the local solutions [X1, ..., X,,] form

an (e, 7, p)-second-order stationary point of Problem (2)), then their average Xqvy 1= = > /" | X; is

an (¢ + L1p,7 + Lop)-second-order stationary point of Problem (1)), i.e., | = 37" | V fi(Xaug)|| <
e+ Lipand L 3" V2 fi(Xaug) = — (7 + L2p) L. For proof check the supplementary material.

3 Perturbed Decentralized Gradient Tracking Algorithm

We now present our proposed Perturbed Decentralized Gradient Tracking (PDGT) algorithm. The
PDGT method presented in Algorithm[T]can be decomposed into two phases. Phase I of our method
uses the gradient tracking ideas proposed in [35,36] to show convergence to some first-order stationary
point. Using this scheme for our setup, however, requires overcoming the following hurdle: The
nodes do not have access to the global gradient and thus even the task of realizing that they lie close
to such a point is not trivial. Moreover, the consensus error is cumulative over the graph and tracking
this quantity for each node is an additional challenge. In prior work, it has been shown that there
exists an iterate that achieves first-order optimality without explicitly introducing a mechanism for
identifying such an iterate. In this paper, we address this issue by utilizing an average consensus
protocol as a subroutine of Phase I, which coordinates the nodes and finds with high probability and
negligible communication overhead the correct index achieving first-order optimality.

Phase II of PDGT utilizes ideas from centralized perturbed gradient descent developed in [[15],
in order to escape saddle points. Adapting these ideas to the decentralized setting poses several
challenges. A naive use of an approximation scheme could produce further issues as the noise could
lead different nodes to take different escaping directions, potentially canceling each other out. Further,
in order to control the consensus error and the gradient tracking disagreement we adopt a significantly
smaller step size than the one used in the centralized case. Finally, using a common potential function
both for Phase I and Phase II derives an interesting tradeoff between the corresponding stepsizes.
Taking into account all these challenges we design PDGT to guarantee escaping from strict saddle
points. In particular, we show that at the end of the second phase, either a carefully chosen potential
function decreases - PDGT escapes from a saddle point - and we go back to Phase I, or an approximate



Algorithm 2: PDGT algorithm: Phase I

1: Input: x,y,n1, 71,61

2: Inmitialization: x* = x, y’=1y;

3: forr=1,...,7; do -

4:  Compute x| = Zje/\/i wijx}’_l fmyir_l; Vi=1,....,m

5. Compute y; =3 . wijy§71+Vf¢(x£)—Vfi(ngl); Vi=1,...,m

6:  Exchange x7 and y] with neighboring nodes; Vi=1,...,m

7: end for

8: for j = 1:log(5-) do

9:  Choose index t; ~ [0, 7}] uniformly at random and run Consensus Protocol on ¢, to find first
order stationary point X with small gradient tracking disagreement;

10: end for

Result: Returns first order stationary point X with probability at least 1 — ¢,

second-order stationary point has been reached and the exact iterate is reported. Next, we present the
details of both phases of PDGT.

Phase L. Consider V f;(x;), the local gradient of node ¢, and define y; € R¢ as the variable of node i
which is designed to track the global average gradient % Z:L V fi(x;). The algorithm proceeds to
update the iterates x; based on the directions of y;. More specifically, at each iteration r, each agent
1 first updates its local decision variable by averaging its local iterate with the iterates of its neighbors
and descending along the negative direction of its gradient estimate yffl, ie.,

Xp = > wyx; " —myl (5)
JEN;

where 7); is the stepsize and w;; is the weight that node ¢ assigns to the information that it receives
from node j. We assume that w;; > 0 only for the nodes j that are in the neighborhood of node 4,
which also includes node i itself. Further, the sum of these weights is 1, i.e., > Jen;, Wij = 1.

Once the local x;’s are updated, each agent ¢ computes its local gradient V f;(x}) evaluated at its

current iterate x. Then, the nodes use the gradient tracking variable y! ' received from their
neighbors in the previous round to update their gradient tracking vector according to the update

yi = > wyy; V) - VAT, ©)
JEN;

Note that the update in (6] shows that node i computes its new global gradient estimate by combining
its previous local estimate with the ones communicated by its neighbors as well as the difference of
its two consecutive local gradients. Once the local gradient tracking variables are updated, nodes
communicate their local models x} and local gradient tracking vectors y; with their neighbors.

After running the updates in () and (6) for 77 rounds, we can ensure that we have visited a set
of points [x1, . .., X, that construct a first-order stationary point of Problem (2)) (see Theorem ;
however, nodes are oblivious to the time index of those iterates. To resolve this issue all nodes sample

a common time index 7 € {1,...,77} and run an average consensus protocol among themselves to
m

compute the expression ||-- 3" | V fi(x;) H2 + L3

iy 1% — = 20 %,]|? for that time index.
By repeating this process at most log(é) times, the output of the process leads to a set of points
satisfying first-order optimality with probability at least 1 — §; . The details of this procedure are
provided in the appendix. Note that the consensus procedure is standard and known to be linearly
convergent. Hence, the additional cost of running the consensus protocol log(%) times is negligible

compared to 7} ; see Theorem E] for more details.

Phase IL. In the second phase of PDGT we are given a set of variables denoted by X = [X1, ..., X,
which is a first-order stationary point. The goal is to escape from it, if it is a strict saddle, i.e., the
smallest eigenvalue of the Hessian at this point is sufficiently negative. Initialized with a first-order
stationary point X the algorithm injects the same noise £ picked uniformly from a ball of radius

R = O(V%) to all the local iterates X;. Thus for all i we have x? = X; + £. After initialization

=



Algorithm 3: PDGT algorithm: Phase II

1: Input: X,12,75,R, B
2: All nodes sample a vector £ ~ uniform ball of radius R using the same seed;

m
3: Setx) = X; + £ and run Average Consensus on V f;(x?) to set y? = L 3 V f;(x);
4: forr=1,...,T> do =t
5:  Compute x| = ZjeM- wijx;_l — ngyf_l; Vi=1,....,m
6:  Compute y; =3, wijy;-_l +Vi(xD) = VY, Vi=1,...,m
7:  Exchange x; and y; with neighboring nodes; Vi=1,...,m
8: end for
9:

Run Average Consensus Protocol for iterates xT2 and x;
10: if H(§T27yT2) — H(x, g) > —B then

11:  Return approximate second-order stationary point X = [X1,...,X,,| and set S = 1;
12: else

13:  Return x™ = [x]?,... x%2], v = [y12,...,y%] and set S = 0;

14: end if

all nodes follow the updates in (3)) and (6) with stepsize 7, for T5 rounds. If the initial point was
a strict saddle then at the end of this process the iterates escape from it; as a result our properly
chosen potential function H (formally defined in (9) in Sectiond)) decreases substantially and then
we revisit Phase I. If the potential function H does not decrease sufficiently, then we conclude that
X = [X1,...,%Xm] is a second-order stationary point of Problem (2). More precisely, choosing a
proper stepsize 7, and running PDGT for T, = O(dy~?) iterations decreases the potential function
H by at least B = 0(73), with probability 1 — J5, where 7% has only a polylogarithmic dependence
on d9. If the potential function is not substantially decreased then we confidently report X as an
approximate second-order stationary point. Note that S is our indicator, tracking whether we have
encountered some approximate second-order stationary point or not. Further, the average consensus
protocol is utilized in the second phase both to initialize the gradient tracking variables and to evaluate
the potential function H at the iterates x’ and X. Since the communication cost of the average
consensus protocol is logarithmic in v, it is negligible compared to 75. Hence, the number of
communication rounds for Phase Il is O(dy~2). Check Theorem 2| for more details.

4 Theoretical Results

In this section, we study convergence properties of our proposed PDGT method. First, we characterize
the number of rounds 7} required in Phase I of PDGT to find a set of first-order stationary points
with high probability. Then, we establish an upper bound for 75, the number of communication
rounds required in the second phase. We further show that each time the algorithm finishes Phase
I1, a potential function decreases at least by ©(?). Finally, using these results, we characterize the
overall communication rounds between nodes to find a second-order stationary point.

Before stating our result, we first discuss some conditions required for the averaging weights used
in (B and (6). Consider the mixing matrix W € R™*"™ where the element of its i-th row and j-th
column is w;;. We assume W satisfies the following conditions.

Assumption 3. The mixing matrix W € R™*™ satisfies the following:
W=W',  Wil=1, ¢:=max{|}(W)| |\, (W)} <1, (7)
where \;(W) denotes the i-th largest eigenvalue of W.

The first condition in Assumption [3]implies that the weight node ¢ assigns to node j equals the weight
node j assigns to node 7. The second condition means W is row stochastic, and by symmetry, column
stochastic. This condition ensures that the weights that each node ¢ assigns to its neighbors and itself
sum up to 1. Further note that the eigenvalues of W are real and in the interval [—1, 1]; in fact they
can be sorted in a non-increasing order as 1 = A\ (W) > A(W) > .- > \,,(W) > —1. The
last condition in Assumption [3|ensures that the maximum absolute value of all eigenvalues of W



excluding A\, (W) is strictly smaller than 1. This is required since o := max{|A\a(W)|, |\, (W)}
indicates the rate of information propagation. For highly connected graphs o is close to zero, while
for less connected graphs it is close to 1. A mixing matrix W satisfying Assumption [3|can be chosen
based on local degrees in a variety of ways (e.g., [36]]).

Remark 1. In the appendix we report explicit expressions. To simplify the presentation in the main

body, we turn to asymptotic notation and consider sufficiently small n and o, thus hiding constants
but preserving the scaling with respect to quantities that capture important elements of our analysis.

Next, we present our first result, which formally characterizes the choice of parameters for PDGT to
find an (e, p)-first-order stationary point, as defined in (T)), with probability 1 — 6.

Theorem 1. Consider Phase I of PDGT presented in Algorithm 2] If Assumptions [I| and [3| hold,
and we set 71 = O((1 — o)y/a) where a« = O((1 — 7)?), and the number of iterations satisfies

T >T =0 (J‘(’;Ol%) =0 (%) then w.p. at least 1 — 41, the iterates X1, ..., X,

corresponding to one of the randomly selected time indices 11, ..., tNIOg( 1) Sfrom [0 : Ty), satisfy
1

+E; Xi_E;Xj

2
< €2, (8)

1 — ~
E;vfi(xi)

Theorem shows that after © ( \J/cg(‘i )__Ug :2 + 125 log(5>) 1og(%)> rounds of exchanging information

with neighboring nodes the goal of Phase I is achieved and we obtain a set of first-order stationary
points with small gradient tracking disagreement. Note that the second term ﬁ log(%) log(%)
corresponds to the cost of running the average consensus protocol to choose the appropriate iterate
among time steps 71, 1o, ..., Elog(ﬁ)' This term is negligible compared to the first term.

Next we present our result for Phase II of PDGT. In particular, we show that if the input of Phase II,
which satisfies (8], is a strict saddle meaning it has sufficient negative curvature, then PDGT will
escape from it and as a result the following Lyapunov function decreases:

1 & 1 & O &>
H(Ka X) = E z;fi(xcwg) + E z;”xz - X(wg||2 + E X;H}Q - ya’ug”Qa 9
1= 1= 1=
1 m 1 m
where x := [Xl; ce ;Xm]a y = [Y1; cee ;Y'rrz], Xavg = m Zj:l X and Yavg = 7, Zj:l Y-

Theorem 2. Consider Phase Il of PDGT presented in Algorithm (3| and suppose Assumptions

hold. Further, suppose we set 1, = © (d(fiia)) and o = © ((1 = 0)?), and the local perturbed

iterates are computed according to x? = X; + &, where & is drawn from the uniform distribution over
the ball of radius R = ©(y'®). If the input of the second phase denoted by X1, . . . ,X,, satisfies

2 2
Mnin (V2 f (Ravg)) < —7 iiw.(i») < € izm: i.—iii‘ < €
min avg)) = ) m‘l 1\ A = €1 m.l 4 m,lj = *2
1= 1= J=

where €& = O(7*) and & = @(%), then after Ty > T = © (%) iterations with
probability at least 1 — 5 we have H(x"2,y™2) — H(%,§) = —Q(7®).

The result in Theorem [2] shows that if the input of Phase II of PDGT is a first-order stationary

point with sufficient negative curvature, then by following the update of PDGT for @(%3/752))

iterations with probability at least 1 — §, the Lyapunov function H decreases by 9(73). Further
in order for the nodes to verify whether enough progress has been made we include two calls
on the average consensus protocol on iterates x and x*2 with overall communication complexity

O(7%; 108(5mere7))> Which is negligible compared to é(%) iterations.

Combining the results of Theorems [1|and [2} and using the fact that the Lyapunov function H is
non-increasing in the first phase (proof is available in section[J) we obtain that if the outcome of the
first phase has sufficient negative curvature (i.e, is a strict saddle), then the Lyapunov function H
after Phase I and Phase II decreases at least by (:)(73). Hence, after at most (:)(7_3) calls to the first
and second phase of PDGT, we will find a second-order stationary point of Problem (2)).



Theorem 3. Consider the PDGT method in Algorithm[I| and suppose Assumptions hold. If
we set the stepsizes as 11 = © ((1 —0)? ) n = © ( = a)) and the number of iterations as

_ ¢ fxO—f* _ — A(~3
T O =) mm{Z %} and Ty = © 3 , respectively, and we have € @ (7 ) and

2 _ (7)( 5 FxO)—f* d L
p° = ¥ /d), then after at most O (max =) min[cZ 77757 7 communication rounds

PDGT finds an (e, 7y, p)-second-order stationary point of Problem (2)), with high probability.

A major difference between the analysis of PDGT and its centralized counterpart in [[15] is that as the
iterates move away from a first-order stationary point, the consensus error and the gradient tracking
disagreement potentially increase exponentially fast blurring the escaping direction. Addressing
this issue requires careful selection of the algorithm’s parameters and setting appropriate stepsizes
finetuning the tradeoff on the number of iterations between the first and the second phase. The
aforementioned hurdles and the lack of knowledge regarding when the algorithm iterates lie close to a
stationary point lead to an overall slower convergence rate than the one shown in the centralized case.

Recall that if the local solutions [X1, ..., X,,] form an (e,, p)-second-order stationary point of
Prqblem (@), then their average Xavg = 221 5{1 isan(e+ Lyip,y + Lo p)—segond-order stationary
point of Problem (). Moreover, as discussed earlier, second order stationary points are of paramount
importance because when all saddle points are strict, any second-order stationary point is a local
minima. We formally state this condition in the following assumption and later show that under this

assumption PDGT finds a local minima of Problem (TJ).

Assumption 4. Function f(-) is (0, (,v)- strict saddle, when for any point x, if its gradient norm is
smaller than 0, then its Hessian satisfies the condition \pmin (V2 f(x)) < —(, unless x is v—close to
the set of local minima.

The strict saddle condition defined in Assumption {4states that if a function is (6, {, v)- strict saddle
then each point in R? belongs to one of these regions: 1) a region where the gradient is large and
it is not close to any stationary point; 2) a region where the gradient is small but the Hessian has a
significant negative eigenvalue; and 3) the region close to some local minimum. Indeed, under the
extra assumption of strict saddle property on function f, PDGT is able to find a local minima in a
finite number of iterations as we state in the following corollary.

Corollary 1. Consider the PDGT method presented in Algorithm[3|and suppose the conditions in

Theoremlare satisfied. If in addition Assumpttonlholds and the objective function f is (0,(,v)-
strict saddle point, by setting € + L1p < 0 and v + Lop < (, the PDGT will output a point v—close

FxO)—f* d Sy
=) min[eZ 77 ]7% 7 3 communication rounds.

to the set of local minima after €} (max

5 Numerical Experiments

In this section, we compare PDGT with a simple version of D-GET where each node has full
knowledge of its local gradient. D-GET is a decentralized gradient tracking method that "does not use
the perturbation idea" [36]]. Our goal is to show that PDGT escapes quickly from saddle points. We
focus on a matrix factorization problem for the MovieLens dataset, where the goal is to find a rank
r approximation of a matrix M € M!*", representing the ratings from 943 users to 1682 movies.
Each user has rated at least 20 movies for a total of 9990 known ratings. This problem is given by:

(U*,V*) = argmin f(U, V)= argmin IM—-UV'|2. (10)
UGMlXT,VGM"XT UGMZXT,VGM"X'A

We consider different values of target rank and number of nodes. Both methods are given the same
randomly generated connected graph, mixing matrix, and step size. The graph is created using the
G(n, p) model withp = 1°g2( ) enforcing the path 1 — 2 — ... — (n — 1) — n to ensure the connectivity
of the graph. Further we utlllze the Maximum Degree Welght mixing matrix as is presented in (10)
of [36]. The stepsize for D-GET and both phases of PDGT is 3. Finally both methods are initialized
at the same point which lies in a carefully chosen neighborhood of a saddle point. Note that in this
problem all saddles are escapable and each local min is a global min. Regarding the parameters of
PDGT we set the number of rounds during phase I and II to be 1500 and 100, respectively. Further,
we set the threshold before we add noise during phase I as presented in (8)) to be 1076 and the radius
of the noise injected to be 4.
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Figure 1: Average loss (left), squared norm of the average gradient (middle), consensus error (right)
vs. iteration (10 nodes and target rank 20).
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Figure 2: Average loss (left), squared norm of the average gradient (middle), consensus error (right)
vs. iteration (30 nodes and target rank 30).
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In Fig. ] the experiment is run for 10 nodes, and the target rank is 20. Initially both algorithms are
stuck close to a saddle point and make very little progress. However, since the theoretical criterion
for PDGT is satisfied in the very first rounds (small average gradient and consensus error) we have
injection of noise. This nudge is sufficient to accelerate substantially the escape of PDGT. As we see
in the plot, D-GET remains close to the saddle point at least until iteration 1400 where we can see the
gradient increasing somewhat faster. At the same time PDGT escapes the saddle point, decreases the
loss and approaches a local minimum. In Fig.[2] the experiment is run for 30 nodes and the target rank
is 30. Similarly, PDGT escapes from the saddle point much faster and decreases the loss substantially
before it reaches the local minimum. We observe that D-GET also escapes the saddle point eventually
following a similar trace to PDGT after spending a lot longer at the saddle. Interestingly, for this
experiment, we observed that some parameters such as the stepsize of the first and the second phase,
the injected noise and the threshold before we inject noise can afford to be substantially greater than
the theoretical propositions casting PDGT useful for a series of practical applications.

6 Conclusion and Future Work

We proposed the Perturbed Decentralized Gradient Tracking (PDGT) algorithm that achieves second-
order stationarity in a finite number of iterations, under the assumptions that the objective function
gradient and Hessian are Lipschitz. We showed that PDGT finds an (e, 7, p)-second-order stationary
point, where € and + indicate the accuracy for first- and second-order optimality, respectively, and p

~ 0 _fx . .
shows the consensus error, after © ( max J;(x.) J; - % communication rounds, where
(1—0)? min{e?,p?}y37 v

d is dimension, f(x") — f* is the initial error, and 1 — o is related to graph connectivity.

This paper is the first step towards achieving second-order optimality in decentralized settings under
standard smoothness assumptions, and several research problems are still unanswered in this area.
First, our complexity scales linearly with dimension d, deviating from the poly-logarithmic depen-
dence achieved for centralized perturbed gradient descent [[15]]. Closing this gap and developing
an algorithm that obtains second-order optimality with communication rounds that scale sublin-
early or even poly-logarithmically on the dimension is a promising research direction that requires
further investigation. Second, in the centralized setting, it has been shown that by using gradient
acceleration [16] it is possible to find a second-order stationary point faster than perturbed gradient
descent. It would be interesting to see if the same conclusion also holds for decentralized settings.
Last, extending the theory developed in this paper to the case that nodes only have access to a noisy
estimate of their local gradients is another avenue of research that requires further study.



7 Broader Impact

Over the last couple of years we have witnessed an unprecedented increase in the amount of data
collected and processed in order to tackle real life problems. Advances in numerous data-driven
system such as the Internet of Things, health-care, multi-agent robotics wherein data are scattered
across the agents (e.g., sensors, clouds, robots), and the sheer volume and spatial/temporal disparity
of data render centralized processing and storage infeasible or inefficient. Compared to the typical
parameter-server type distributed system with a fusion center, decentralized optimization has its
unique advantages in preserving data privacy, enhancing network robustness, and improving the
computation efficiency. Furthermore, in many emerging applications such as collaborative filtering,
federated learning, distributed beamforming and dictionary learning, the data is naturally collected
in a decentralized setting, and it is not possible to transfer the distributed data to a central location.
Therefore, decentralized computation has sparked considerable interest in both academia and industry.
At the same time convex formulations for training machine learning tasks have been replaced by
nonconvex representations such as neural networks and a line of significant non convex problems
are on the spotlight. Our paper contributes to this line of work and broadens the set of problems
that can be successfully solved without the presence of a central coordinating authority in the
aforementioned framework. The implications on the privacy of the agents are apparent while rendering
the presence of an authority unnecessary has political and economical extensions. Furthermore,
numerous applications are going to benefit from our result impacting society in many different ways.
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