
Hardness of Approximation for Orienteering with Multiple Time

Windows

Naveen Garg∗ Sanjeev Khanna† Amit Kumar‡

Abstract

Vehicle routing problems are a broad class of combina-
torial optimization problems that can be formulated as
the problem of finding a tour in a weighted graph that
optimizes some function of the visited vertices. For in-
stance, a canonical and extensively studied vehicle rout-
ing problem is the orienteering problem where the goal
is to find a tour that maximizes the number of vertices
visited by a given deadline. In this paper, we consider
the computational tractability of a well-known gener-
alization of the orienteering problem called the Orient-
MTW problem. The input to Orient-MTW consists of
a weighted graph G(V,E) where for each vertex v ∈ V
we are given a set of time instants Tv ⊆ [T ], and a
source vertex s. A tour starting at s is said to visit a
vertex v if it transits through v at any time in the set
Tv. The goal is to find a tour starting at the source ver-
tex that maximizes the number of vertices visited. It
is known that this problem admits a quasi-polynomial
time O(log OPT)-approximation ratio where OPT is the
optimal solution value but until now no hardness better
than an APX-hardness was known for this problem.

Our main result is an Ω
(

log log n
log log log n

)
-hardness for

this problem that holds even when the underlying graph
G is an undirected tree. This is the first super-constant
hardness result for the Orient-MTW problem. The start-
ing point for our result is the hardness of the SetCover
problem which is known to hold on instances with a spe-
cial structure. We exploit this special structure of the
hard SetCover instances to first obtain a new proof of the
APX-hardness result for Orient-MTW that holds even
on trees of depth 2. We then recursively amplify this

constant factor hardness to an Ω
(

log log n
log log log n

)
-hardness,

while keeping the resulting topology to be a tree. Our
amplified hardness proof crucially utilizes a delicate con-
cavity property which shows that in our encoding of Set-
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Cover instances as instances of the Orient-MTW prob-
lem, whenever the optimal cost for SetCover instance
is large, any tour, no matter how it allocates its time
across different sub-trees, can not visit too many ver-
tices overall. We believe that this reduction template
may also prove useful in showing hardness of other ve-
hicle routing problems.

1 Introduction

Vehicle routing problems, which seek to find a set of
optimal routes for a set of vehicles in order to service
demands, have been widely studied in the operations
research community (see e.g. [16]). One of the most
well-known special cases of this problem is the traveling
salesman problem (TSP) [1]. In TSP and related prob-
lems, the goal is to design minimum cost routes which
visit all the demands. In the orienteering problem, we
are given a metric space (or an edge weighted graph) and
a budget B. The goal is to find a tour of length at most
B and maximize the number (or total weight) of ver-
tices which are visited by it. The first constant factor
approximation for the orienteering problem was given
by Blum et al. [3]. Since this result, several generaliza-
tions of the orienteering problem have been studied. In
orienteering with multiple time windows (Orient-MTW),
each vertex v specifies a subset Tv of available time slots
when the tour can visit it. The goal is again to find a
tour which maximizes the number of visited nodes. The
orienteering problem is a special case of Orient-MTW
where all time windows Tv are of the form [0, B]. No
constant factor approximation algorithms are known for
Orient-MTW even when the allowable set of timeslots for
each vertex is of the form [0, Bv], for some parameter
Bv, and the underlying metric is a tree metric. Given
that a constant factor approximation has remained elu-
sive even for this special case of Orient-MTW, one might
be tempted to believe that the general case of Orient-
MTW may provably exhibit a much stronger hardness.
However, Chekuri and Pal [6] showed that there is an
O(log OPT)-approximation algorithm for Orient-MTW
that runs in quasi-polynomial time, where OPT denotes
the number of vertices visited by an optimal tour.

While a logarithmic approximation ratio is achiev-
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able for Orient-MTW, the known hardness results do
not rule out the possibility of a constant factor ap-
proximation algorithm for this problem. In this pa-
per, we give the first super-constant hardness result for
Orient-MTW. Specifically, we show that under the stan-
dard complexity theoretic assumption, namely NP 6⊆
DTIME(nO(log n))), any polynomial time algorithm for
Orient-MTW must have Ω(log log n)-approximation ra-
tio, even when the underlying metric is a tree. We es-
tablish this hardness result by a reduction from the set
cover problem (SetCover). As shown by Feige [9], it is
hard to distinguish between the following instances of
SetCover: (i) there are K disjoint sets which cover the
underlying universe of elements, or (ii) any collection of
cK sets, where c > 1 is a parameter in a suitable range,
covers at most a 1− 1

ec -fraction of elements. We use such
instances of SetCover to create instances of Orient-MTW
where in the first case, there is a tour which can visit
all the vertices, whereas in the second case, any tour
must leave out a large fraction of vertices. The chal-
lenge in the analysis comes from the fact that the tour
may try to achieve a trade-off by spending more time on
some sub-trees (and less on some others) – in fact such
strategies are often used in designing approximation al-
gorithms for maximization problems. We show that the
instances created by our reduction have certain concav-
ity properties, and therefore, investing additional time
in a sub-tree does not pay off sufficiently. Note that we
cannot study such concavity properties for a fractional
tour (which can be thought of as convex combination
of integral tours), because fractional SetCover can be
solved in polynomial time, and so one cannot get any
hardness out of this reduction. Therefore, the use of
the concavity property is more subtle – we use an aux-
iliary (continuous) concave function, and show that any
tour corresponds to integral assignment of parameters
to this concave function. We feel that the novel tech-
niques used in the reduction may be useful for showing
hardness for special cases of Orient-MTW as well.

1.1 Related Work The Orienteering problem is
known to be APX-hard [3]. Blum et al. [3] gave the
first constant factor approximation algorithm for this
problem with approximation ratio of 4. Bansal et al. [2]
gave an improved algorithm with approximation ratio
of 3, which was further improved to (2+ε) for any posi-
tive constant ε by Chekuri et al. [4]. Friggstad et al. [10]
gave an LP rounding based 3-approximation algorithm
for Orienteering. A PTAS is known for this problem
when the points lie in a constant dimensional Euclidean
metric [7]. Recall that in the more general Orient-MTW
problem, Tv denotes the set of allowable timeslots for
a vertex v. In the special case when Tv is of the form

[0, Bv] for each vertex v (the variable deadline case),
Bansal et al. [2] gave an O(log OPT)-approximation al-
gorithm. Chekuri and Kumar [5] gave a constant fac-
tor approximation algorithm for the special case of this
problem when the set of deadlines Bv has constant car-
dinality.

They also gave an O(log2 OPT) algorithm when
the set Tv is given by a single time interval (sin-
gle time-window case). Chekuri et al. [4] gave
O(max(log OPT, logL))-approximation where L is the
ratio of the maximum to the minimum length of the
time window for any vertex. For the case when each of
the sets Tv consists of at most k time intervals, the only
known approximation algorithm incurs a multiplicative
factor of k over the corresponding algorithm for the sin-
gle time-window case.

The extension to directed graphs is less well-
understood. Nagarajan and Ravi [13] gave an O(α ·
log n)-approximation algorithms for Orienteering in di-
rected graphs, where α is the integrality gap for the
Held-Karp LP relaxation for the Asymmetric Traveling
Salesman Problem. Svensson et al. [15] showed that α
is O(1), which implies an O(log n)-approximation algo-
rithm for Orienteering in directed graphs. Nagarajan
and Ravi [13] also gave O(log3 n)-approximation algo-
rithm for the special case of Orient-MTW where each
vertex specifies a single time window. Similar results
for these problems were obtained by Chekuri et al. [4].
They gave an O(log2 OPT)-approximation for orienteer-
ing in directed graphs. They also gave O(log3 OPT) and
O(log4 OPT)-approximation algorithms for the variable
deadline and single time-window special cases of Orient-
MTW in directed graphs.

The recursive greedy approach of Chekuri and
Pal [6] gives a quasi-polynomial time O(log OPT)-
approximation algorithm for Orient-MTW, even in the
case of directed graphs.

1.2 Our Result and Techniques Our main result
is the following.

Theorem 1.1. Unless NP is contained in
DTIME(nO(log n)), there is no polynomial-time

o
(

log log n
log log log n

)
-approximation algorithm for Orient-

MTW even on trees.

This is the first super-constant hardness of approx-
imation result for Orient-MTW in undirected graphs.
Our starting point is establishing an APX-hardness for
Orient-MTW on trees of depth 2. Even though the
APX-hardness of Orient-MTW in general graphs follows
from the known APX-hardness of the Orienteering prob-
lem [3], the very restrictive nature of the tree metric
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space used in our reduction plays a crucial role in obtain-

ing the final hardness result of Ω
(

log log n
log log log n

)
-hardness

result on trees of higher depth.
We describe here some intuition about the APX-

hardness reduction for Orient-MTW on trees, and high-
light some technical difficulties that already arise in
showing this weaker hardness. We reduce from an in-
stance I of the SetCover problem, consisting of a ground
set U and a collection S1, . . . , Sm of subsets of U . The
first idea is to construct an instance I ′ of Orient-MTW
as follows: I ′ is just a star graph with a root r and each
leaf is identified with a unique element of U . Further
if a leaf v belongs to the sets Si1 , . . . .Sis , we define Tv,
the timeslots when v can be visited, to be {i1, . . . , is}.
Further, we set the length of every (root-leaf) edge to
0. The timeline is [1,m]. Clearly, if there is a set cover
of size K, say Si1 , . . . , SiK , then there is a tour which
visits all the leaf vertices during one of the times in
{i1, . . . , iK}, i.e., it needs to spend only K timeslots in
[1,m] to visit all the leaf vertices. Now, to ensure that
any tour spends only K distinct timeslots in this star
graph, we need to add more copies of this star graph
(as many as m/K) so that a tour can spend only K
timeslots in each such copy of the star graph. Any two
such copies will be at distance 1 from each other such
that a tour can be in only one of these copies at any
integer time instant. However, there are several issues
that arise. First, consider two leaf vertices v1 and v2

belonging to two different copies of the star graph, but
they correspond to the same element in U . Now, if the
tour can cover v1 at time t, it cannot also cover v2 at
the same time. In order to get around this, we relabel
the indices of the sets for each star graph so that this
issue does not arise – we use the structure of the hard
instances of the SetCover problem [9], and it turns out
that this relabeling operation is simply a cyclic shift op-
eration. Second, now that we have multiple copies of the
star graph, a tour may choose to spend varying amount
of time in each such copy (i.e., it need not spend K inte-
ger time instants in each such copy). For this, we show
that we can use the properties of the hard SetCover in-
stances to show that any such trade-off can only hurt
the performance of the tour.

In going from the above APX-hardness result to
the Ω(log log n) hardness, we create a sequence of trees
of increasing depth in an iterative manner where each
tree in the sequence is obtained from its predecessor by
replacing the leaf nodes with a suitably modified version
of the two-level hard instance described above. If we
denote by H(l) the tree obtained after l iterations, then
our construction ensures that in a YES instance, a visit
to a leaf vertex in the tree H(l−1) in this sequence can
be replaced with a tour of the two-level tree in the tree

H(l). On the other hand, in a NO instance, we show
that no matter how a tour allocates time across different
subtrees, it can visit only a O(1/ log l)-fraction of the
leaves. The analysis of the NO instances created above
is the heart of our technical contribution and relies on a
delicate concavity property which essentially shows that
any tour that spends more time in some subtrees at the
expense of others, can not do much better than the tours
which spend time uniformly across various subtrees.

1.3 Organization We formally define the Orient-
MTW problem in Section 2 as well as introduce the
family of hard SetCover instances that serve as the start-
ing point for our hardness results. In Section 3, we
show that Orient-MTW is APX-hard even for depth-2
trees. In Section 4, we amplify this reduction to an
Ω(log log n)-hardness on higher depth trees, assuming
a key technical result about the concavity of a recur-
sively defined function. This concavity result helps us
in proving that an algorithm cannot gain much by dis-
tributing effort non-uniformly in the tree. We prove this
concavity result in Section B.

2 Preliminaries

2.1 The Orient-MTW Problem We are given an
undirected graph G = (V,E) with edge lengths `e
and a positive integer T . Further, every vertex v
specifies a subset Tv of [T ]. We are also given a special
source vertex s in V . A solution consists of a tour T
starting from s which can be thought of as the path
traversed by a unit speed vehicle. In order to allow
the possibility of the vehicle just “idling” at any vertex,
we define a tour formally as follows: it is a sequence
s = v1, t1, v2, t2, . . . , vk, tk, where each vi is a vertex
and each ti is a positive real number. Further for each
i = 2, . . . , k, (vi−1, vi) ∈ E. Note that a vertex could
be repeated any number of times in this sequence. The
interpretation of this sequence is as follows: the vehicle
starts at v1 at time 0, waits there for t1 amount of time,
and then travels to v2 at unit speed (along the edge
(v1, v2)), waits there for t2 time units and so on. Thus,
the vehicle will reach the vertex vi in this sequence at∑i−1
j=1 tj +

∑i−1
j=1 `ej time, where ej denotes the edge

(vj , vj+1). The tour is said to visit a vertex v if it is
present at v at any of the time instances in Tv (note that
the tour can be at a vertex v at multiple time instances
in Tv, but v gets counted only once). The goal is to find
a tour which maximizes the number of visited vertices.

2.2 Hard Instances of the SetCover Problem Re-
call that an instance of the SetCover problem can be de-
scribed by a pair (U,S), where U is the ground set and S
is a collection of subsets of U . The goal is to pick a mini-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2979

D
ow

nl
oa

de
d 

06
/2

9/
21

 to
 1

65
.1

23
.2

27
.5

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



mum cardinality collection of sets in S whose union is U .
Our hardness results will utilize the following properties
of hard instances of the SetCover problem as shown by
Lund and Yannakakis [12]. The proof is given in the ap-
pendix for sake of completeness. Although there have
been improvements on the SetCover hardness [9, 8], we
rely on specific properties of the reduction in [12].

Theorem 2.1. Given a 3-SAT formula φ of size n,
there is a reduction algorithm that runs in nO(log log n)

time, and outputs an instance Iφ = {(U,S),K} of Set-
Cover of size N = nO(log log n) with following properties:

(a) All sets in S have the same size.

(b) The sets in S can be partitioned into disjoint
collections G1, . . . ,GK of equal cardinality.

Moreover, the SetCover instance created by the reduction
above behaves as follows:

• (Completeness) If φ is satisfiable, then there exists
disjoint sets Si ∈ Gi, for i = 1, . . . ,K, such that
∪Ki=1Si = U .

• (Soundness) If φ is not satisfiable, then any collec-
tion of c·K sets in S will leave out at least 1

e80c frac-
tion of elements elements in U uncovered, where
c is any positive real number lying in the range
(0, logn

C ] for some universal constant C.

We will refer to a SetCover instance above as a YES-
instance if it satisfies the completeness property and as
a NO-instance otherwise.

3 APX Hardness of Orient-MTW on Trees

In this section we show that there is a positive constant
c > 1 such that assuming NP 6⊆ DTIME(nO(log log n)),
there is no polynomial time c-approximation algorithm
for the Orient-MTW problem even when the metric
space is given by a tree of depth 2.

We will give a reduction from the SetCover instances
which satisfy the properties mentioned in Theorem 2.1
to instances of the Orient-MTW problem. Fix any
SetCover instance I = {(U,S),K} with the collections
G1, . . . ,GK as in the statement of Theorem 2.1. Let
m denote |S|, and so, each of the collections Gi has
g := m/K sets. We assign an index to each set in S
such that the sets in the same collection Gi are assigned
consecutive indices. In other words, let us denote the
sets in Gi as S(i−1)·g+1, . . . , Si·g. For ease of notation,
let gi denote i · g. So the sets in Gi are Sgi−1+1, . . . , Sgi .

We now create from I an instance I ′ of Orient-MTW
where the graph G in I ′ will be a two level rooted tree.
The root vertex r has g children, labelled w1, . . . , wg.
The length of each of these edges is 1/2. Each of the

r

w
1 w

2 w
g

v
1

1
v
1

2 v
1

n
v
2

1 v
2

2
v
2

n v
g

1 v
g

2
v
g

n

· · ·

· · · · · · · · ·

Figure 1: Reduction from SetCover to Orient-MTW:
Suppose g = 10. Then G1 = {S1, . . . , S10},G2 =
{S11, . . . , S20} and so on. If the element v2 appears
in the set S5 in G1 and in the set S28 in G3, then
Tv12 = {5, 28}, Tv22 = {6, 29}, Tv32 = {7, 30}, Tv42 =
{8, 21}, . . . , Tv102 = {4, 27}.

vertices wi has n children, where n denotes |U | – call
these children vi1, . . . , v

i
n. We shall denote the set U as

{v1, . . . , vn}, and so the vertex vij will correspond to the

element vj . The length of the edge between wi and vij
is 0 for all i, j. It remains to describe the subsets Tvij
for all the leaf vertices in the tree (all other vertices do
not require to be visited – we can define their Tv sets to
be empty).

Before we describe these sets, we define an opera-
tion, which is similar to the mod operation, but wraps
a number around a range.

Definition 3.1. Given a range [a, b], where a < b are
non-negative integers, and a non-negative integer x ≥ a,
define x mod [a, b] as (x− a) mod (b− a) + a. Note that
x mod [a, b] always lies in the range {a, a+1, . . . , b−1}.

Consider the leaf vertex v1
j (which is the child of

w1 that corresponds to the element vj in the SetCover
instance). Let S`1 , . . . , S`r be the sets in S containing
vj . Assume that these sets belong to the groups
Gs1 , . . . ,Gsr respectively. We define Tv1j as {`1, . . . , `r}.
The definition of the corresponding set for vij , i.e. Tvij , is

more nuanced. Note that the indices `k ∈ [gsk−1+1, gsk ]
for each k ∈ 1, . . . , r. We would like Tvij to be same as

Tv1j shifted by (i − 1) units, i.e., {`1 + (i − 1), . . . , `r +

(i−1)}. However the problem with this definition is that
`k + (i− 1) may go outside the range [gsk−1 + 1, gsk ] for
some k. So we use the mod operation to ensure that it
stays within this range. More formally, we define

Tvij := {(`1 + i− 1) mod Is1 , . . . , (`r + i− 1) mod Isr},

where Ik denotes the interval [gk−1 + 1, gk + 1]. This
completes the description of the reduction. Note that
the reduction takes only polynomial time in the size
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of the SetCover instance. We now show that there is
a constant factor gap between the optimal values of
the Orient-MTW instances created from YES and NO
instances of SetCover.

Analysis of YES-instances: We start by showing
that in the YES-case, the resulting Orient-MTW in-
stance always admits a solution that visits all leaf nodes.

Lemma 3.1. Suppose the Orient-MTW instance above
is created from a YES-instance I = {(U,S),K} of
SetCover. Then there is a tour that starts at the root
at time 0, and visits all the leaf nodes.

Proof. By Theorem 2.1, since I is a YES-instance, there
exists a set cover, say, S`1 , . . . .S`K , where S`j belongs
to Gj for j = 1, . . . ,K. Let ∆ denote the index
set {`1, . . . , `K}. Define ∆i as the index set ∆ shifted
by (i − 1) units, i.e., {(`1 + i − 1) mod I1, . . . , (`K +
i − 1) mod IK}. First notice that the sets ∆i are pair-
wise disjoint for i = 1, . . . , g. Indeed, for any number
x, x mod Ik, (x + 1) mod Ik, . . . , (x + g − 1) mod Ik, are
distinct because the length of Ik is gk−gk−1 +1 = g+1.
Consider time t = (`k+i−1) mod Ik ∈ ∆i. At time t, the
tour will visit all the children vij of wi which are covered

by S`k , i.e., {vij : j ∈ S`k}. Notice that the allowed time
slots for these vertices contain time t. Also the edge
lengths of the subtree below wi are 0, and so all these
vertices can be visited if the tour happens to be at wi

at time t. Since the distance between wi and wi
′

for
distinct indices i and i′ is 1, we can always ensure that
the tour is in the correct sub-tree at each time (also the
timeslots in the sets Tv for any leaf vertex are at least 1,
and the path from the root to any leaf has length 1/2).
Furthermore, the fact that the sets S`1 , . . . , S`K cover
all the elements of U implies the tour will visit all the
leaf nodes.

Analysis of NO-instances: We now show that in the
NO-case, any tour in the resulting Orient-MTW instance
fails to visit a constant fraction of the leaf nodes. We
start by showing a simple property of any tour. Let Gi

denote the sub-tree rooted below wi.

Claim 3.1. For any integer time t, the set of leaf nodes
which get visited by any tour at time t lie in a particular
sub-tree Gi. Further, these leaf nodes correspond to the
elements contained in one of the sets in S.

Proof. Fix an integer time t and suppose vij and vi
′

j′ are
two vertices which can be visited at time t (i.e., t belongs
to Tvij and Tvi′

j′
). Since both these vertices are getting

visited at the same time, distance between them must
be 0. It follows that i = i′. By definition of the sets

Tvij and Tvi′
j′

, t must be of the form (`u + i− 1) mod Iu

and (`r + i− 1) mod Ir, where S`u ∈ Gu and S`r ∈ Gr
are sets containing vj and vj′ respectively. It follows
that Tvij and Tvi′

j′
lie in the range [gu−1 + 1, gu] and

[gr−1 + 1, gr] respectively. These two intervals are
disjoint unless r = u. But then `u = `r, proving the
claim.

Lemma 3.2. Suppose the Orient-MTW instance I ′
above is created from a NO-instance I = {(U,S),K}
of SetCover. Then any tour in the instance I ′ can visit
at most (1− 1/e80 + o(1))-fraction of the leaf nodes.

Proof. By Theorem 2.1, since I is a NO-instance, any
collection of c ·K sets in S covers at most (1 − 1/e80c)
elements in U , where c is any positive real number lying
in the range (0, o(log n)]. Consider any tour T . At
any integer time t, it can only be in one of the sub-
trees Gi (because all edges incident with the root have
positive length). Let Ai denote the integer time instants
at which it is in Gi, and let ai be such that |Ai| = aiK.
Since the maximum time by which a vertex can be
visited is at most m (recall that m denotes the number
of sets in I, and is equal to g ·K), we get

g∑
i=1

ai ≤ g.(3.1)

Let Z be the collection of sub-trees Gi such that
|ai| ≥ γ where γ ∈ [1, o(log n)] is a parameter to
be specified later. The above inequality implies that
|Z| ≤ g/γ. Consider a sub-tree Gi which is not in
Z. Claim 3.1 shows that any time the set of leaves
in Gi which get visited during a time t ∈ Ai correspond
to the set of elements in a set in S. Therefore, the
assumption in the lemma implies that the tour will cover
at most

(
1− 1/e80ai

)
n vertices in Gi, where n denotes

|U |. Therefore, the number of vertices covered by the
tour T is at most

|Z| · n+ n ·
g∑
i=1

(
1− 1/e80ai

)
The second term is maximized when all the ai’s are
equal, i.e., are equal to 1 (by inequality (3.1)). Therefore
the above expression is at most gn/γ+ gn ·

(
1− 1/e80

)
.

Setting γ = ω(1) implies the result as the total number
of leaf nodes is gn.

Combining the above two Lemmas with Theo-
rem 2.1, we get

Theorem 3.1. There exists a constant c > 1
such that there is no polynomial time c-
approximation for the Orient-MTW problem, unless
NP ⊆ DTIME(nO(log log n)).
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4 An Ω
(

log log n
log log log n

)
-Hardness for Orient-MTW on

Trees

In this section, we extend the above construction to
amplify the hardness of approximation. We begin by
giving some intuition about the construction. Let G
be the 2-level tree constructed in the previous section.
Also, assume that we are in the “YES” case, and so
let T be a tour which visits all the leaf nodes of G.
We first show how to add two more levels to this tree.
For each of the leaf nodes vij in G, we will add another
copy of G below it – this copy will be a “scaled down”
version of G, i.e., the edge length from vij to its children

will be scaled down to 1/n2 (say) instead of 1/2. Let
G(vij) denote this sub-tree below vij . Let L(vij) be the

leaves of G(vij) and L denote the set of leaves of this tree

(i.e., ∪i,jL(vij)). The tour T will be extended as follows:

suppose the tour visits vij at time t and then visits vi
′

j′

next. In this larger tree, after visiting vij , the tour will

first take a detour and visit all the leaves in L(vij), and

then come back to vij . After this, it will continue to vi
′

j′ ,

visit the leaves in L(vi
′

j′) and so on. Several issues arise:

• The tour T may be visiting both vij and vi
′

j′ at the
same time t. Now that we have added a detour
at vij , we should slightly shift the times at which

vi
′

j′ can be visited. This shift would turn out to be
O(1/n).

• How should we define Tv for a leaf node v in L(vij)

? Since the tree G(vij) is a (scaled down) copy of

G, the leaf nodes in G(vij) can also be labelled ui
′′

j′′

where u is an element of U . The construction of
G would have allowed a set of time slots Tui′′

j′′
for

this vertex. Since we are now in a scaled down
version of G, the allowed time slots for it should be
O(1/n2) ·Tui′′

j′′
. Since we started from the root of vij

of G(vij) at time t, we should shift this by t units.
Further, t could be any time in Tvij and so we should

allow all such possibilities for t while defining the
allowed time slots for these leaf vertices.

We now formulate the above concerns below by re-
fining the definition of the graph G. We will parameter-
ize it by two quantities: the lengths of the edges below
the root, and the set of timeslots at which we can start
at the root (note that the root here could be any vertex
vij as described above).

4.1 Refinements of G Given an instance I of the
SetCover problem, let G be the 2-level tree constructed
in the instance I ′ of Orient-MTW in the previous

section. The leaves of G are labelled vij and every such

leaf vij has a set Tvij of time slots associated with it.

We will now construct a related instance consisting of
the same tree G but with two additional parameters – a
positive real number ∆ and a set Θ of time slots (think
of Θ as a collection of times when we can start the tour
from the root, earlier this set consisted of time 0 only).
Any two distinct times in Θ will differ by more than
Ω(∆·n). The intuition for this is the following – the time
taken to visit all the leaf nodes in this tree should be
much smaller than the difference between any distinct
time steps in Θ (when one can start from the root). We
shall denote this tree as G(∆,Θ). As before, we shall
use r to denote the root of this tree, its children by wi,
and children of wi by vij . We will continue to use G to
denote the “unscaled” version, i.e., where the length of
the edges from the root to its children are 1/2, and Tvij
be as defined in the previous section.

The tree G(∆,Θ) will have the following properties:

• Each edge from the root r to its children wi has
length ∆/4. Since we are scaling the lengths down
by a factor ∆/2, we should define the time slots
analogously. In other words, we should define the
set of allowable time slots for a leaf vertex vij as
∆·Tvij := {∆·t : t ∈ Tvij}. But as mentioned above,

we would like to shift these slightly. So we define
Tvij (∆) := ∆ · (Tvij + j

4n ) := {∆ · (t+ j
4n ) : t ∈ Tvij}.

Note that the maximum allowable time slot for any
vertex is at most m∆ + ∆ ≤ 2m∆, where m is the
number of sets in the SetCover instance I. We shall
use M∆ to denote 2m∆ – note that any tour of this
tree will take at most M∆ time.

• In the above definition of Tv(∆) for a leaf vertex v,
we had assumed that we start at the root at time
0. But now, we are given a set of time slots Θ,
which denotes the set of possible starting times at
r. We will assume that any two times in Θ differ by
at least 2M∆. We define the set of allowable time
slots at a leaf vertex v as

Tv(∆,Θ) := ∪t∈Θ(t+ Tv(∆)),

where t+X for a set X denotes {t+ x : x ∈ X}.

This completes the description of the tree G(∆,Θ).
We say that a tour visits a node v if it visits it at a time
in one of the allowed timeslots for v (i.e., in Tv(∆,Θ)).
Having defined these refinements, we note some easy
to verify properties. The first property says that any
time in Tv(∆,Θ) can be uniquely associated with a time
t ∈ Θ. The second property shows that for any tour,
the set of vertices which get visited during a window of
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length ∆ can be associated with the elements of a set
in S.

Claim 4.1. The instance G(∆,Θ) has the following
properties:

• For any leaf v, each time in Tv(∆,Θ) lies in the
range [t+ s∆, t + (s + 1/4)∆] for a unique integer
s and a unique time t ∈ Θ.

• For an integer s, time t ∈ Θ and tour T , the set
of leaf vertices visited by it during [t+ s∆, t+ (s+
1)∆) have a common parent wi. Furthermore, the
children of wi visited by this tour correspond to the
elements contained in one of the sets in S.

Proof. Consider a leaf v := vij and tv ∈ Tv(∆,Θ). Since
any element in Tv(∆) is at most M∆, and any two times
in Θ are separated by at least 2M∆, we can find a unique
t ∈ Θ such that tv = t + t′, where t′ ∈ Tv(∆). But any
time in Tv(∆) is of the form ∆ · (s + j

4n ), where s is a
positive integer. Since j ≤ n, tv uniquely determines s
as well. This proves the first part.

For the second statement, observe that these leaf
vertices must be visited during [t+ s∆, t+ (s+ 1/4)∆]
(using the first part above). If v1 is a child of wi and v2 is
a child of wj with i 6= j, then the distance between v1 an
v2 is at least ∆/2. So both cannot be visited during this
interval. To complete the proof of the second statement,
notice that the children vij of wi which get visited by this
tour during this time window must satisfy the property
that s ∈ Tvij . The claim now follows as in the proof of

Claim 3.1.

The proof of the following is similar to that of
Lemma 3.1.

Lemma 4.1. Consider the instance G(∆,Θ). If the
“YES” case holds, then given any time t ∈ Θ, there is
a tour T which starts at the root at time t, visits all the
leaf nodes in the tree and comes back to the root by time
t + M∆. The tour T also has the following property:
let v1 and v2 be two consecutive leaf vertices on this
tour which are visited at time t1 and t2 respectively. Let
d(v1, v2) be the distance between v1 and v2 in the tree.
Then (t2 − t1)− d(v2, v1) ≥ ∆

4n .

Proof. The proof of the existence of a tour which visits
all the leaf vertices is same as that of Lemma 3.1. Let
vij and vi

′

j′ be two consecutive vertices on this tour. If
i = i′, then the distance between them is 0. But their
visit times will be separated by at least ∆

4n . If i 6= i′, then
Claim 4.1 implies that their visit times are separated by
at least 3∆

4 . But the distance between them is only ∆
2 .

This proves the completeness property.

u

v

w

T
(l)
u

T
(l+1)
v

T
(l+2)
w

Figure 2: u, v, w are vertices in V (l), V (l+1), V (l+2) re-
spectively for an integer l, and v is a (level-2) descen-
dant of u (and similarly for w). The dotted lines show

that the times in T
(l+1)
v (or T

(l+2)
w ) can be clustered

into groups, where each group is obtained by shifts on

a unique time in T
(l)
u (or T

(l+1)
v )

4.2 The reduction Armed with Lemma 4.1, we now
show the reduction from the set cover instance I to
an instance I ′′ of the Orient-MTW problem on trees
that gives us an Ω(log logN)-hardness where N denotes
the size of our final instance. The tree H in I ′′ will
be constructed in stages, with each successive stage
creating a tree of higher depth that further amplifies
the hardness gap. We shall use H(l) to denote the tree
obtained after l iterations. Also, to avoid confusion in

notation, we shall use T
(l)
v to denote the time windows

for a leaf vertex v of H(l).
Initially, for l = 0, the tree H(0) consists of a single

(root) node r with T
(0)
r := {0}. Let ε be a small

enough parameter (ε = 1
n2g will suffice). Let ∆l denote

εl. Suppose we have defined H(l). The tree H(l+1) is
constructed as follows: for each leaf node v ∈ H(l), we
attach a copy of the graph G(∆l,Θv) below it with the

set Θv for the “root” v defined as T
(l)
v . This also defines

the set T
(l+1)
w for a leaf vertex ofH(l+1), i.e., Tw(∆l,Θv),

where v is the leaf vertex in H(l) which is an ancestor
of w. We will have η stages, where η will be Θ(log n).
Let H := H(η) denote the final tree. Even though we
have defined timeslots for every vertex, we will assign
profit 0 to all non-leaf vertices of H, and profit 1 to all
leaf vertices.1

Recall that M∆ represents 2m∆. For sake of
brevity, we shall use Ml to denote M∆l

. We have chosen
ε small enough so that Ml ≥ ∆l �Ml+1. Observe that
the quantities Ml decrease by a factor ε as l increases
(also see Figure 2 for a typical scenario). We shall use
V (l) to denote the leaf vertices in H(l). First, a simple
observation. Recall that for a vertex v ∈ V (l), the
definition of Θv (when we attach a copy of G(∆l,Θv)

1Even though the problem formulation only counts the number

of vertices visited, we can reduce from this profit version by
defining the allowable timeslots to ∅ for all profit 0 vertices.
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below it) required that any two times in it differ by at
least 2Ml. We show this property below (observe that

Θv is same as T
(l)
v ).

Claim 4.2. Let v be a vertex in V (l). Then any two

distinct times in T
(l)
v are at least ∆l−1 ≥ 2Ml apart.

Proof. The proof is by induction on l. The base case
for the root follows vacuously. So assume that the
statement is true for l. Let v be a leaf node in H(l),
and w be a leaf node in H(l+1) which is contained in
the level-2 sub-tree below v, and let t1, t2 ∈ T (l+1)

w . We
know that t1 = t′1 +c1∆l+

j∆l

4n and t2 = t′2 +c2∆l+
j∆l

4n ,

where t′1, t
′
2 ∈ T

(l)
v and c1, c

′
1, j are positive integers.

First assume t′1 = t′2. Then it must be the case that
c1 6= c2. So |t1 − t2| ≥ ∆l ≥ 2Ml+1, assuming ε is small
enough.

If t′1 6= t′2, we know by induction hypothesis that
|t′1 − t′2| ≥ ∆l−1. Assume wlog that t′1 < t′2. We know
that t1 ∈ [t′1, t

′
1 + Ml]. Therefore, t2 − t1 ≥ t2 − t′1 ≥

∆l−1 −Ml ≥ ∆l.

Completeness Property. We are now ready to
prove the completeness guarantee.

Theorem 4.1. Suppose the instance I satisfies the
“YES” case property. Then there is a tour which starts
at the root at time 0 and visits all the leaves of H.

Proof. We prove the following by induction on l: let v

be a leaf vertex in H(l) and t be a time in T
(l)
v . Then

there is a tour which starts from v at time t, visits all
the leaf vertices in the sub-tree rooted at v, and comes
back to v by time t+ ∆l−1

4n .

The base case when l = η is easy: a vertex v ∈ H(l)

is a leaf vertex, and so the tour just needs to stay at v.
Assume it is true for l+1. Let v be a leaf vertex in H(l)

and t ∈ T (l)
v . Let X be the 2-level sub-tree below v. By

Lemma 4.1, there is a tour T which starts at time t in
v, visits all the leaf nodes in X and comes back to v by
time t + Ml. For each leaf vertex w of X, we perform
the following detour of T – when the tour visits w (at a

time tw ∈ T (l+1)
w ), we use induction hypothesis to take a

detour from w to visit all the leaf nodes in the sub-tree
rooted at w, and then continue back to T beyond w.
To see that this tour is still feasible, notice that each
such detour will take an extra ∆l/4n amount of time
(by induction hypothesis). But by Lemma 4.1, we have
a “slack” of ∆l/4n between any two consecutive vertices
in T .

Finally, note that this tour will be back to v by time
t+Ml ≤ t+ ∆l−1

4n , assuming ε is small enough. Applying
this to the root vertex yields the desired statement.

Soundness Property. We now come to the more
difficult soundness property. We would like to formalize
the intuition in Figure 2. First some definitions. For a
node v, let tree(v) denote the sub-tree of H rooted at v,
and leaf(v) denote the set of leaf nodes in tree(v). For
an index l, let M≥l denote Ml + Ml+1 + . . . + Mη−1.
Since the terms in this sequence are in a geometrically
decreasing sequence, it is easy to check that M≥l ≤ 2Ml.
For each vertex v ∈ V (l) (recall that V (l) denotes the
set of leaf vertices in H(l)), we shall define two types of

time windows associated with it. For a time t ∈ T (l)
v ,

define TimeWv(t) to be the time window [t, t + 2Ml].
Claim 4.2 implies that any two such time windows for

distinct times in T
(l)
v are disjoint. In fact, we show below

that any node in leaf(v) can be visited during such time
windows only; we defer the proof to Appendix A.

Claim 4.3. Let u be a leaf vertex in H and let v be the

ancestor of u in V (l). For every time tu ∈ T (η)
u , there is

a unique time tv ∈ T (l)
v such that TimeWv(tv) contains

tu.

We now define the second kind of time window
associated with a vertex v ∈ V (l). Given a time t ∈ T (l)

v ,
and integer c ≥ 0, define RefinedTimeWv(t, c) to be
the time window [t + c∆l, t + (c + 1

2 )∆l]. Again it is
not hard to show that these are mutually disjoint for
different pairs (t, c) (for a fixed v), and that these are
all contained in TimeWv(t), provided c ≤ gK. We
have the following refinement of Claim 4.3, proved in
Appendix A.

Corollary 4.1. Let v ∈ V (l) and u ∈ leaf(v). Let
w ∈ V (l+1) be the ancestor of u in V (l+1) (so w lies

on the v-u path). For every time tu ∈ T
(η)
u , there are

unique times tv ∈ T (l)
v , tw ∈ T (l+1)

w and positive integer
c, 1 ≤ c ≤ gK, such that such that tu ∈ TimeWw(tw) ⊆
RefinedTimeWv(tv, c)

The following claim further develops the relations be-
tween the two kinds of time windows; its proof is also
deferred to Appendix A.

Claim 4.4. Let v ∈ V (l) and w ∈ V (l+1) be a de-
scendant of v. For an integer c, 1 ≤ c ≤ gK and

time tv ∈ T
(l)
v , there is at most one time tw ∈ T

(l+1)
w

such that TimeWw(tw) ∩ RefinedTimeWv(tv, c) is non-
empty. Further, if this intersection is non-empty, then
TimeWw(tw) ⊆ RefinedTimeWv(tv, c)

Having shown these preliminary results, we are
ready to show the soundness part of the hardness result.
We define a collection of functions gl(x), 0 ≤ l ≤ η, for
non-negative values of x as follows:
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Definition 4.1. The function gη(x) = 1 for all posi-
tive x. The function gl is inductively defined as follows
(define gl(0) as 0):

gl(x) :=
(
1− e−80x

)
gl+1

(
x

1− e−80x

)
We shall prove the following fact later in the ap-

pendix Section B.

Theorem 4.2. For all non-negative integer l, the func-
tion gl(x) is monotonically increasing (with x) and con-

cave. Further, g0(1) is O
(

1
log η

)
.

Let v ∈ V (l) and x be an integer. We say that a
tour T enters v at most x times if there are x times in
T

(l)
v , say t1, . . . , tx such that the times at which T visits

the leaves in leaf(v) are contained in ∪xi=1TimeWv(ti)

(the existence of such a subset of T
(l)
v is guaranteed by

Claim 4.3). Define Max(v, x) as the maximum fraction
of leaves in leaf(v) which can be visited by any tour
which enters v at most x times. Finally, define

fl(x) := max
v∈V (l)

Max(v, x).

We now prove the main technical result of this section:

Theorem 4.3. For all non-negative integers x and in-
teger l, 0 ≤ l ≤ η,

fl(x) ≤ gl(x) +
Cx(η − l)

log n
,

where C is the constant appearing the statement of
Theorem 2.1.

Proof. The proof is by reverse induction on l. Base
case for l = η is easy – if we are at a leaf node v,
Max(v, x) = 1 for all positive integers x. We now show
the induction step. Suppose the above statement is
true for l + 1. Fix a vertex v ∈ V (l) and positive
integer x. Also fix a tour T which enters v at most
x times. Let L be the set of leaves in leaf(v) which

are visited by T . Let T ⊆ T
(l)
v , |T | = x, be the

subset of times such that all the vertices in L get visited
during ∪t∈TTimeWv(t). Corollary 4.1 shows that these
leaves must be visited during RefinedTimeWv(t, c) for
some integer c, 1 ≤ c ≤ gK, and time t ∈ T . Let Ind
denote the index set {(t, c)|t ∈ T, 1 ≤ c ≤ gK}. Clearly,
|Ind| = xgK.

In order to apply the induction hypothesis, we look
at the level-2 subtree below v. Let w1, . . . , wg be the
children of v. Recall that each node wi has n children –
call these vij , j = 1, . . . , n. For a node u, let L(u) denote
L ∩ leaf(u). Similarly, for a node u, let Ind(u) denote

the set of pairs (t, c) such that all the leaves in L(u)
are visited during ∪(t,c)∈Ind(u)RefinedTimeWv(t, c). The
proof of the claim below is very similar to the second
statement in Claim 4.1, and is deferred to Appendix A.

Claim 4.5. The sets Ind(wi), i = 1, . . . , g, are mutually
disjoint.

Since |Ind| = xgK, the above Claim implies that

g∑
i=1

xi ≤ xgK,(4.2)

where xi = |Ind(wi)|. We classify the children of v into
large and small classes depending on the value of xi.

Definition 4.2. We say that the node wi is large if
xi ≥ K logn

C , where C is the constant in the statement
of Theorem 2.1. We say that wi is small if it is not
large.

Inequality (4.2) implies that there are at most xgKC
K logn =

gC
logn large nodes. We will assume that the tour visits

all the leaves under them, which form a C
logn fraction of

the leaves under v (because v has g children). So from
now on we focus on small nodes only.

For a pair (t, c) ∈ Ind, let S(t, c) be the set vij
of level-2 descendants of v for which (t, c) ∈ Ind(vij).
Claim 4.1 shows that for any index (t, c), all the nodes
in S(t, c) will have a common parent wi.

Claim 4.6. For any index (t, c) ∈ Ind, there is a set S
in the SetCover instance I such that S(t, c) ⊆ S (where
an element vij in S(t, c) corresponds to the element vj
in I).

Proof. For every vertex vij , it follows from Claim 4.3

and Corollary 4.1 that there is a time tij ∈
RefinedTimeWv(t, c) ∩ T (l+1)

vij
. Since the distance be-

tween any two nodes in S(t, c) is 0, there is a tour which
visits all the nodes in S(t, c) during RefinedTimeWv(t, c).
The result now follows from Claim 4.1.

Since every set in the SetCover instance I has size
n/K, where n is the size of the universe in I, we see
that |S(t, c)| ≤ n/K. Let S(wi) denote the set of
children uij of wi for which L(uij) is non-empty. In other

words, S(wi) = ∪(t,c)∈Ind(wi)S(t, c). The statement of
Theorem 2.1 (the “NO” case) along with Claim 4.6
implies that

|S(wi)| ≤
(

1− e−
80xi
K

)
n.(4.3)
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For a node vij , let xi,j denote |Ind(vij)|. Since
|S(t, c)| ≤ n/K, for any pair (t, c), it follows that for
each i, ∑

j:vij∈S(wi)

xi,j ≤ xi ·
n

K
.(4.4)

Claim 4.4 implies that corresponding to each (t, c) ∈
Ind(vij), there is a unique time t′ ∈ T

(l+1)

vij
such that

TimeWvij
(t′) ⊆ RefinedTimeWv(t, c) and all the leaves

in L(vij) which are visited during RefinedTimeWv(t, c)
are actually visited during TimeWvij

(t′). Therefore, by

induction hypothesis,

|L(vij)|
leaf(vij)

≤ fl+1(xi,j).

It follows that the fraction of leaves in L(wi) which are
visited by the tour is at most (note that leaf(vij) has the
same cardinality for all j)

1

n
·

∑
j:vij∈S(wi)

fl+1(xi,j)

≤ 1

n
·

∑
j:vij∈S(wi)

(
gl+1(xi,j) +

Cxi,j(η − (l + 1))

log n

)
.

Concavity of gl+1, along with (4.4) imply that the above
is at most

|Si|
n
gl+1

(
xi · n
K|Si|

)
+
Cxi(η − (l + 1))

K log n
.

Inequality (4.3) implies that the above is at most

(
1− e−

80xi
K

)
gl+1

 xi

K
(

1− e−
80xi
K

)
+

Cxi(η − (l + 1))

K log n

= gl(xi/K) +
Cxi(η − (l + 1))

K log n
.

Inequality (4.2) along with the fact that there are
at most gC

logn large nodes implies that the total fraction
of leaves below v which get visited is at most

C

log n
+

1

g
·

(
g∑
i=1

gl(xi/K) +
Cxi(η − (l + 1))

K log n

)

≤ 1

g
·
g∑
i=1

gl(xi/K) +
Cx(η − l)

log n
.

Finally, the concavity of gl, along with (4.2), implies

that the above is at most gl(x) + Cx(η−l)
logn . This proves

the induction hypothesis.

Now applying Theorem 4.3 to the root, i.e., l =
0, x = 1, shows that any tour will visit only g0(1) +
Cη

logn = O(1/ log η) fraction of the leaf nodes (Theo-

rem 4.2 and the fact that η is set to logn
log log n ).

Putting it together: We now analyze the size of the
final tree H. It is easy to see that the size of V (l) is
O((ng)l). Since g ≤ n, the size of the instance H is
N = nO(η). If we take η = log n, we see that N =

nO(log n), and the hardness factor is Ω
(

log logN
log log logN

)
.

This completes the soundness part of the reduction and
proves Theorem 1.1.

5 Conclusion

We have given the first super-constant lower bound on
the approximation ratio of a non-trivial version of the
vehicle routing problem. However, many interesting
problems remain open:

• Can we give a logarithmic polynomial-time approx-
imation algorithm for Orient-MTW on trees ?

• Can we give a constant factor approximation prob-
lem for Orient-MTW on trees when all the time win-
dows Tv are of the form [0, Bv] for some input pa-
rameters Bv ?

• Can we give a super-constant lower bound (in
general graphs) on the approximation ratio of the
special case of Orient-MTW when each time window
consists of a single interval ? Can we show such a
result for directed graphs ?

• In the case of directed graphs, can we give a con-
stant factor approximation algorithms for Orient-
MTW when all time windows are of them form
[0, B] for a uniform B (the so-called “orienteering”
problem) ?
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A Omitted Proofs from Section 4

Proof of Claim 4.3 The proof is by induction on l. For
l = η, this follows easily (we need to use Claim 4.2 which

states that any two times in T
(η)
u are at least 2Mη apart).

Suppose it is true for l+1. Let w be the ancestor of u in
V (l+1). By induction hypothesis, there is a unique time

tw ∈ T
(l+1)
w such that tu ∈ [tw, tw + 2Ml+1]. Further,

the definition of the set T
(l+1)
w shows that there is a

time tv ∈ T (l)
vl such that tw ∈ [tv, tv + Ml]. Combining

the two observations, we see that [tw, tw + 2Ml+1] ⊆
[tv, tv +Ml + 2Ml+1] ⊆ [tv, tv + 2Ml].

Uniqueness of time tv in the statement follows

from the fact that times in T
(l)
v are at least 2Ml apart

(Claim 4.2). �

Proof of Corollary 4.1 By Claim 4.3, there is a

unique time tw ∈ T
(l+1)
w satisfying tu ∈ TimeWw(tw).

Also, corresponding to tw, there is a unique tv ∈ T
(l)
v

and a unique positive integer c, 1 ≤ c ≤ gK, such that
tw ∈ [tv + c∆l, tv + (c+ 1/4)∆l] (Claim 4.1). The result
now follows because ∆l �Ml+1. �

Proof of Claim 4.4 Any two times in T
(l+1)
v are at

least ∆l apart (by Claim 4.2). So there can be at
most one interval time tw such that TimeWw(tw) :=
[tw, tw + 2Ml+1] has non-empty intersection with
RefinedTimeWv(tv, c) := [tv + c∆l, tv + (c + 1

2 )∆l].

By Corollary 4.1, there is a time t′v ∈ T
(l)
v and

integer c′ such that TimeWw(tw) is contained in
RefinedTimeWv(t

′
v, c
′) := [t′v + c′∆l, t

′
v + (c′ + 1

2 )∆l].
But Claim 3.1 implies that any two distinct times

in T
(l)
v are at least 2Ml ≥ (c + c′)∆l apart, and

so it must be the case that tv = t′v. But then the
fact that [tw, tw + 2Ml+1] is completely contained in
[t′v + c′∆l, t

′
v + (c′ + 1

2 )∆l] implies that c = c′. �

Proof of Claim 4.5 The proof is very similar to the
second statement in Claim 4.1. Indeed, the length of
any edge joining v to one of it’s children is ∆l/4, and
so, any tour will incur at least ∆/2 time in going from
one child of v to another child. Since the length of the
interval RefinedTimeWv(t, c) is ∆l/2, the result follows.
�

B Proof of Theorem 4.2

For sake of brevity let h(x) denote the function (1 −
e−ax), where a = 80. The following fact about h is easy
to check.

Claim B.1. The function h(x) is increasing function
of x and is concave. Further, h(x) − xh′(x) ≥ 0 for all
x > 0.
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Here is a more non-trivial property of h:

Claim B.2. The function h(x)−xh′(x)
h(x)2 is an increasing

function of x (for non-negative x).

Proof. Notice that h′′(x) = −ah′(x). Using this and
differentiating the above expression, we get (suppressing
the argument for h)

axh′h− 2h′(h− xh′)
h3

=
(ax− 2)h′h+ 2xh′2

h3
.

We need to show that the numerator is non-negative
for non-negative values of x. Notice that for x = 0, the
numerator is 0 (because h(0) = 0). We will show that
the numerator is an increasing function of x, which will
imply that it is non-negative for non-negative values of
x. Using h(x) = (1− e−ax), the numerator is equal to

h′(x)
(
(ax− 2) + (ax+ 2)e−ax

)
.

Since h′(x) ≥ 0, it is enough to show that (ax− 2)eax +
(ax+ 2) ≥ 0. But this follows easily from the fact that
eax ≥ (1 + ax) for non-negative x.

Claim B.3. The function gl(x) is monotonically in-
creasing.

Proof. Let p(x) denote x
h(x) . We differentiate gl to get

(we suppress the arguments for sake of brevity, but note
that gl+1 is really denoting gl+1(p(x))):

g′l = h′gl+1 + hg′l+1p
′ = h′gl+1 +

g′l+1(h− xh′)
h

.

The first term is non-negative because h′(x) > 0 and
gl+1 is always non-negative. To show that the second
term is non-negative, notice that h(x) is always positive
and g′l+1 is non-negative by induction hypothesis. The
result follows by Claim B.1.

We now proceed to show that the function is
concave. This will be a more tedious calculation.
Fix a positive real x. We define a sequence xη =
x, xη−1, . . . , x1, x0 recursively as follows:

xi =
xi+1

h(xi+1)
i = η − 1, . . . , 0.

Note that xl really is a function of x. So we
should be using the notation xl(x), but we will skip the
argument whenever it is clear from the context. The
following claim is easy to check.

Claim B.4. xl(x) is an increasing function of x. Fur-
ther x′l(x) is an increasing function of x.

Proof. Proof is by reverse induction on l. For l = η,
this follows because xl(x) = x. Now suppose it is
true for l + 1. Differentiating the expression for xl and
suppressing the argument x, we get

x′l =
x′l+1

h(xl+1)
−
xl+1h

′(xl+1)x′l+1

h(xl+1)2

=
x′l+1(h(xl+1)− xl+1h

′(xl+1))

h(xl+1)2

By induction hypothesis, x′l+1 ≥ 0. The first statement
in the claim now follows from Claim B.1.

To prove the second statement, we again use induc-
tion. Since x′η = 1, the base case follows. Now suppose
x′l+1 is an increasing function of x. The result now fol-
lows from the above equation and Claim B.2.

Claim B.5. For all l, 0 ≤ l ≤ η, gl(x) = x
xl
.

Proof. The proof is by induction on l. For l = η,
gl(x) = 1, and so the statement holds. Assume it is
true for l + 1.

gl(x) = h(x)gl+1

(
x

h(x)

)
= h(x)gl+1(x1) = h(x)· x1

xl+1(x1)

where we have applied the induction hypothesis on
gl+1(x1). But note that xl+1(x1) = xl(x). Since
h(x)x1 = x, the result follows.

The above claim implies that gl · xl = x. Differenti-
ating this twice, we get

g′′l xl + x′′l gl + x′lg
′
l = 0.

The last two terms are non-negative by Claim B.3 and
Claim B.4. Therefore g′′l ≤ 0. This implies that gl is
concave function for non-negative x. To complete the
proof of Theorem 4.2, we need to upper bound g0(1).
Let xl denote xl(1) for rest of the discussion. Claim B.5
implies that gl(1)xl = 1. So g0(1)x0 = 1. Let η′ be such
that η = η′ log η′. We will show that x0 ≥ log η′, which
will imply the desired result. Suppose, for the sake of
contradiction, this is false. Since xi ≥ xi+1, this implies
that xl ≤ η′ for all 0 ≤ l ≤ η. But then

xl =
xl+1

h(xl+1)
≥ xl+1

1− 1/η′
.

Therefore,

x0 ≥
1

(1− 1/η′)η
≥ η′,

which is a contradiction.
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C Proof of Theorem 2.1

In this section, we give details of the reduction from 3-
SAT to SetCover which has the desired properties men-
tioned in the theorem statement. We begin by stating
the reduction from 3-SAT to Label Cover problem, and
then give the reduction from Label Cover to SetCover.

An instance L of Label Cover is given by a tuple
(G = (V,W,E), [M ], [N ], π), where G is a bipartite
graph with V,W on the two sides, E is the set of
edges and π : [M ] → [N ] is a projection map. A
vertex in V can be labelled from an element in [N ],
whereas as vertex in W gets label from [M ]. A labeling
` : V → [N ],W → [M ] is said to satisfy an edge
e = (v, w) if `(v) = π(`(w)).

The following is a consequence of the well-known
Parallel Repetition theorem [14].

Theorem C.1. Given a 3-SAT instance φ of size n and
a parameter k, we can construct an instance L = (G =
(V,W,E), [M ], [N ], π) of label-cover with the following
properties:

• If φ is satisfiable, then there is a labeling in L which
satisfies all the edges.

• If φ is not satisfiable, then any labeling in L
satisfies at most 2−αk fraction of edges, where α
is a constant.

Further, |V | = |W | = nO(k), |E| = 2O(k), M = 7k, N =
2k and each vertex has the same degree. This reduction
can be carried out in nO(k) time.

Now we give a reduction from Label Cover (as given
by the Theorem above) to SetCover. The reduction is
the same as given by [12], but we rely on the exposition
by Khot [11]. First we construct a suitable set system.

C.1 A partition system A partition system P =
(U,m, h, t) consists of the following:

• A universe U of m elements.

• Pairs of sets (A1, Ā1), . . . , (At, Āt), with each Ai ⊆
U of size exactly m/2.

• For every h′ < h and every family of subsets
Bi1 , Bi2 , . . . , Bih′ , where each Bil is either Ail or
Āil ,

| ∪h
′

`=1 Bi` | ≤ m−
m

2h′+2
.

We now show how to construct such a set system
efficiently with m = O(2hh log t). We pick subsets
A1, . . . , At, where each Ai is a random subset of U
(by assigning each element to Ai with probability 1/2).
Now to prove the property above, fix an h′ ≤ h.

Consider a family of h′ subsets Bi1 , Bi2 , . . . , Bih′ as
above. The expected number of elements not covered
by them is m

2h′
≥ 100h log t. Therefore, the probability

that they leave out more than 50h log t elements is at
least e−10h log t. Taking a union bound over all choices
of such h′ subsets, we see that the probability of not
satisfying the above condition is at most

h∑
h′=1

(
t

h′

)
2h
′
e−10h log t

which can be made very small for large h, t.
We would like each subset Ai to have size exactly

m/2. By Chernoff bounds, each Ai is close to m/2. So
we can keep aside a subset U ′ of m/2 elements and
construct the above set system on the remaining m/2
elements only. We can then make sure that both the
sets Ai, Āi have size exactly m/2 by suitably assigning
the elements of U ′. Assume we have a set system P as
above.

C.2 Reduction Given a label cover instance L with
|V | = |W |, M = 7k, N = 2k, we first make |E|
independent copies of the set system P – call these Pe =
(Ue,m, h, t) for each edge e ∈ E. Let the corresponding
subsets A1, . . . , At in P be labeled Ae1, . . . , A

e
t in Pe.

Further, we choose t = 2k, so that each subset Ai can
be identified with a label i ∈ [N ].

In the SetCover instance (X,S), the ground set X
would be ∪eUe. We define the sets in S as follows: for
every v ∈ V, i ∈ [N ], we have a set

Sv,i = ∪w:e=(v,w)∈EA
e
i .

Similarly for every w ∈W, j ∈ [M ], we have a set

Sw,j = ∪v:e=(v,w)∈EĀ
e
π(j).

For any v ∈ V , let S(v) denote the family {Sv,i : i ∈
[N ]}, and for any w ∈ W , we define S(w) similarly.
Since the degree of each vertex in G is same, and all
the sets in P have the same size, it follows that all the
sets in S have the same size as well. Furthermore, for
any v, v′ ∈ V , |S(v)| = |S(v′)|, and similarly, for any
w,w′ ∈ W , |S(w)| = |S(w′). By arbitrarily repeating
sets, as needed, we can further ensure that for any v ∈ V
and w ∈W , we have |S(v)| = |S(w)|.

The following lemma follows easily:

Lemma C.1. If L has a labeling which satisfies all the
edges, then there is a set cover of the instance (X,S) of
size at most |V | + |W |. Furthermore, for each v ∈ V ,
this set cover contains exactly one set from the family
S(v), and similarly for each w ∈ W , this set cover
contains exactly one set from the family S(w).
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Now we consider the more non-trivial direction.
Suppose no labeling satisfies more than 2−αk fraction of
edges in L. Consider a collection of at most h′(|V |+|W |)
sets in S – call this collection S ′, where 1 ≤ h′ ≤ h/16.
For a vertex v (or w), let S ′(v) denote S(v) ∩ S ′. Let
V1 ⊂ V be the set of vertices v for which S ′(v) ≤
8h′, and define W1 similarly. We first observe that
|V1| ≥ 3|V |/4. Indeed, otherwise number of sets in

S ′ will be more than |V |
4 · 8h

′ = h′(|V | + |W |), which
is a contradiction (recall that |V | = |W |). Similarly,
|W1| ≥ 3|W |/4. Let G′ be the sub-graph induced by
(V1,W1), and E′ be the set of edges between V1 and
W1. Since any edge in E \ E′ has to be incident on
either V \ V1 or W \W1, it follows that |E′| ≥ |E|/2.

We call an edge e = (v, w) ∈ E′ good if there is a
label j such that S ′(w) contains Sw,j and S ′(v) contains
Sv,i, where i = π(j). We first argue that at most half
the edges in E′ are good. Suppose not. We will give
a labeling of vertices which will satisfy a non-trivial
fraction of edges. For each v ∈ V , let L(v) denote
the set of labels i such that Sv,i ∈ S and similarly
define L(w), w ∈W . We pick a random label from each
L(v), v ∈ V and L(w), w ∈ W . A good edge e will be
satisfied with probability at least 1

64h′2
, and so there is

a labeling which satisfies at least |E′|
128h′2 ≥

|E|
256h′2 edges.

We choose h such that 1
h2 ≥ 2−αk, which will give us

the desired contradiction, because h′ ≤ h/16. For sake
of concreteness, choose h to be 2αk/2.

Now consider an edge e ∈ E′ which is not good.
Since the projection of S ′(v) ∪ S ′(w) on Ue contains at
most 16h′ < h sets, and no two of them are complement
of each other, we see that we will leave out at least

1
216h′+2 fraction of elements in Ue. Since at least 1/4
fraction of edges in E lie in E′ but are not good, we
leave out at least

1

4
· 1

216h′+2
≥ 1

220h′

fraction of elements in the ground set X (recall that
h′ ≥ 1).

Pick k such that nk = 22αk/2 = 2h. So k =
O(log log n). The size of the set cover instance is
N = nO(k) · O(2hh log t) = nO(k) · O(2hhk) = nO(k).
Therefore h/16 = logN

C for an absolute constant C.
This completes the description from 3-SAT to Set-

Cover. We now show that it has the desired properties.
As mentioned above the size of the SetCover instance is
nO(log log n). The construction of this instance also takes
nO(log log n) time. As shown above every set in S has the
same size. The parameter K is |V |+|W |, and the groups
G1, . . . ,GK correspond to the sets S(u), u ∈ V ∪W. As
shown above, each of these groups Gi have the same
number of sets. In the completeness case, Lemma C.1

shows that there is a set cover containing exactly one
set from Gi for each i.

We now come to the soundness case. As shown
above, for every c ∈ [1, logN/C], any collection of cK
sets in the SetCover instance will leave out at least

1
220c ≤ e−20c fraction of elements. It remains to consider
the range c ∈ (0, 1). We consider the following cases:

• 0 < c ≤ 1/4: Since all sets in S have the same
size, any collection of cK sets will leave out at least
(1−c)-fraction of the elements. Since (1−c) ≥ e−4c

if c < 1/4, the result follows in this case.

• 1/4 ≤ c < 1: We have shown that any collection K
sets will leave out at least 1/e−20c fraction of the
elements. Since 80c ≥ 20, the result follows.

This completes the proof of Theorem 2.1.
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