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Abstract—Heterogeneous, dense computing architectures con-
sisting of several accelerators, such as GPUs, attached to general-
purpose CPUs are now integral High-Performance Computing
(HPC) systems. However, these architectures pose severe memory
and I/O constraints to computations involving in-situ analytics.
This paper introduces MoHA, a framework for in-situ analytics
that is designed to efficiently use the limited resources avail-
able on heterogeneous platforms. MoHA achieves this efficiency
through the extensive use of bitmaps as a compressed or summary
representation of simulation outputs. Our specific contributions
in this paper include the design of bitmap generation and storage
methods suitable for GPUs, the design and efficient implemen-
tation of a set of key operators for MoHA, and demonstrations
of how several real queries on real datasets can be implemented
using these operators. We demonstrate that MoHA reduces I/O
transfer as well as overall processing time when compared to a
baseline that does not use compressed representations.

Index Terms—Indexes, Data compression, High performance
computing, Scientific computing, Query processing, Accelerator
architecture

I. INTRODUCTION

Analytics has become a significant part of HPC, as findings
from simulation outputs can be a prominent source of data-
driven breakthrough. Recently, analytics on scientific simula-
tions output underwent a major and disruptive change because
of the shift in high-performance computing landscape. Increas-
ingly, such analytics have become in-situ, i.e., before writing
the data to the disk, either entirely or partially replacing post
hoc analysis. Though in-situ analytics does have a long history,
driven by needs like computational steering or human-in-the-
loop simulations [1], architectural trends lately have made it
a common approach as compared to an exception [2], [3],
[4], [5], [6]. The work done in recent years focus on in-situ
algorithms and applications [7], [8], as well as infrastructure
and frameworks [9], [10], [11], [12], [13], [14], [15].

However, despite a substantial volume of work in this area
in recent years, in-situ analytics workload today is mostly
simplistic and does not meet the needs associated with up-and-
coming architectural and application trends. Recently commis-
sioned machines that can offer 1017 floating-point operations
per second involve very dense nodes, packing more computa-
tional capacities in the from of multiple GPUs on each node.
Specifically, each node of DOE Summit machine has a peak
performance of 42 Teraflops/second, and delivers an order of
magnitude higher performance over the predecessor machines

with fewer nodes, and by extension lower I/O capacity relative
to its computational power [16]. It is anticipated that Exascale
machines will only have 1012 bytes/second I/O capability,
106 times lower than their floating-point computation capa-
bility [17] – a ratio that has gotten worse by a factor of 200
since the first Petaflop machine.

The second important architectural trend is that accelerators
are becoming the norm rather than the exception in the
extreme-scale systems. For example, Summit/Sierra machines
strongly feature accelerators, with 97% of the total computing
power of the machine being on GPUs. Meanwhile, there is
limited amount of work on in-situ analytics when accelerators
are involved [18], [19], [20]. With much of the computing
occurring on accelerators that have a limited memory, in-
situ analytics needs to operate with stringent memory limi-
tations. [21].

Similarly, there are changing application needs regarding
in-situ analytics. Broadly speaking, the focus is shifting from
visualization to detailed analytics. Consider the following
requirement typically associated with Smart Simulations [22]
– “as a simulation is running, compare output from each
time-step against stored data (either observed data or out-
put from another model), and summarize the spatial areas
and/or variables where the differences are significant”. Other
examples of applications that require advancements in in-situ
analytics include ensemble simulations, where all of a set of
concurrently running simulations can be terminated if there
is one successful event detection; Urgent HPC, where HPC
application need to be executed in a set amount of time (and
the output needs to be summarized and communicated); and
Computing-In-the-Loop – requiring close interaction between
an experiment or observation modality and the HPC simula-
tions. In all of these cases, in-situ analysis needs to be quick,
resource-limited, and effective.

This paper introduces an in-situ heterogeneous scientific
query system, MoHA (Modern Heterogeneous Analytics). The
system allows complex in-situ queries on data generated by
accelerators. The main idea is to construct a summary or
compressed representation of data and then perform data
transfer and query processing on this representation instead
of the original data. In that sense, the representation can
be viewed as a kind of homomorphic compression [23].
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The specific representation MoHA uses is bitmap index, an
indexing structure initially developed in the context of data
warehouses [24], [25], [26] and subsequently widely used
for scientific data [27], [28], [29], [30], [31]. In our case,
the bitmap is not used as an index for looking up data, but
a concise summary of the array-based accelerator-generated
data, which preserves both spatial and value distributions.

Such use of bitmaps instead of the original data enables
lowered data movement costs, less I/O volume, and better
memory and time efficiency in the analysis. In addition,
MoHA provides several other important features. MoHA sup-
ports a number of composable basic operators on data, all
implemented using bitmaps to facilitate the development of
complex query processing solutions; and supports parallel
query processing both within and across nodes.

We evaluate MoHA using two real-world simulations. Our
results indicate that, compared with a baseline that processes
queries using original data, MoHA significantly saves transfer-
ring cost between hosts and accelerators even after considering
the bitmap generation cost, provides speedups for both I/O
and computation intensive queries, and has good parallel
scalability. Compared with the baseline, MoHA provides an
average speedup of ∼ 1.5× when the query does not involve
I/O, and ∼ 8× for I/O-intensive queries.

In summary, this paper makes the following contributions:
• It introduces an improved bitmap format suitable for GPU

generation and processing.
• It demonstrates how such a bitmap formats allows

fast and resource-limited processing of complex in-situ
queries such as contrast set mining and overlapped inter-
est region.

• It introduces MoHA, a parallel and composable in-situ
query system for heterogeneous platforms.

• Our extensive experimental evaluation shows MoHA can
process in-situ queries on heterogeneous platforms with
significant less I/O as well as computation cost.

The remaining parts of the paper are organized as follows:
Section II lays out necessary background concepts; Section
III starts by introducing the motivating queries we use as
examples through the paper. Section IV discusses the overall
architecture of MoHA; Section V introduces the GPU-friendly
representation MoHA uses and how it can be generated;
Section VI follows by discuss query processing on such
representation. We experimentally evaluate the Section VII,
discusses related work in Section VIII, and conclude the paper
in Section IX.

II. BACKGROUND

A. Heterogeneous (GPU) Platforms

GPUs rely on large-scale data-parallelism to improve com-
putation and energy efficiency. A GPU has many streaming
processors (SMs), each of which has its own L1 cache. SMs
shares the L2 cache and have access to a high-bandwidth
global device memory. A part of the L1 cache can be explicitly

controlled by a programmer, and is referred to as shared
memory. Although other experimental designs exist, currently,
a GPU usually cannot perform direct access to the host main
memory effectively, and exchanges data with the host system
using the PCI-E or NVMe bus, which has limited and shared
bandwidth. Hiding the latency of data transfers is usually the
key to improving the performance of a GPU program.

A user programs the GPU using an abstraction called
lightweight threads. Each GPU thread represents one piece
of execution logic that can be executed in a massively parallel
fashion. Each parallel function executed on GPU, also called
a kernel, consists of thousands of GPU threads with the same
execution logic. These threads are divided into groups called
blocks, each of which is always executed together on the same
streaming processor. The threads in the same block can com-
municate through shared memory and barriers. A streaming
processor executes the threads in a block in the granularity
of warps, each of which usually comprises 32 threads. The
execution follows Single Instruction Multiple Threads (SIMT)
model: at any given point, the same instructions are executed
for all the threads in a warp. 1

B. Scientific Datasets and Bitmap Representation

Most data generated by scientific simulations can be rep-
resented as multi-dimensional arrays. Overall, an array as-
sociates the data to a multi-dimensional Euclidean space. In
such a model, the data is represented as a one-to-one mapping
between a numeric vector (dimensions or coordinates) to a
nullable tuple (attributes). Each column of the attributes is
often referred to as a dataset. For better I/O and subsetting
performance, arrays are stored and processed in the granularity
of chunks. Although the strategy of dividing array varies, most
array models use regular tiling, with each chunk representing
a hyperrectangular subset of the array [32].

While indexing can be a powerful tool for accelerating
high-selectivity analytics queries, indexing scientific data can
be challenging, because of large cardinality and the nature
of floating-point data. Besides, large I/O block sizes make
looking up the values expensive. Bitmaps indices with binning
have been proven to be a convenient representation for such a
task [33], [34], [35], [36]. In this method, each value domain
is divided into a number of buckets or bins, and the values
in each value are stored as a bitmap, with a 1 bit represents
that the value is inside the bucket, and a 0 bit representing
otherwise. In order to reduce the size of the indices, each of
the bitmaps is usually stored in one of the compressed formats;
the widely used approaches include run-length encoding [33],
[37], small-integer compression [38] as well as tree-based
encoding [39].

Bitmap indices have the advantage of reduced size. A
key observation in this work (as well as some of the prior
researches [35], [34]) is that a bitmap can act as a summary

1The terms used here follow the CUDA programming model from NVIDIA.
Other programming models such as OpenCL might use different terms.
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Fig. 1: An example of two contrast sets with filtering predi-
cates 0 6 x < 3, 0 6 y < 3 and 0 6 v < 3. Highlighted
cells are the elements in the contrast sets. Target attributes are
omitted.
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Fig. 2: An illustration of the overlapped interested region
query. The filled regions indicates the interesting points in
each timestep. The query looks for the continuous overlapped
region across the timesteps, marked using red frames here.

representation of the original data without losing much pre-
cision. While there exist other data summarization techniques
such as sampling [40], [41], [42], [43], histograms [44], [45],
[46], wavelets [47], [48], [49], [50], and data sketches [51],
[52], [53], [54], extending these representations to skewed
high-dimensional data can be hard [46], [47], [55]. In contrast,
bitmap indices have the advantages of retaining the spatial
information of the multi-dimensional array, as well as allowing
faster intersection and union based on bitwise operations in the
hardware.

III. MOTIVATING QUERIES

As in-situ analytics attract more and more attention, the
need for performing more complex queries in in-situ query
processing increases. Fulfilling such requirements is a major
consideration during the design of MoHA. In this section, two
example queries are discussed here as motivating examples.

a) Contrast Set Mining: Contrast Set Mining [56], [57]
aims at exploring the differences between a running simulation
and a previous baseline. A pair of contrast sets are two
subsets of the simulation and the baseline selected by the
same filtering predicates. Figure 1 gives an example of a
pair of such contrast sets, with the same predicates applied
across two datasets. The filter predicate(s) that produces the

most significant difference in the value of the target attributes
(omitted in the Figure) might shed light on the difference
between the two experimental results being considered. Hence,
this query aims at finding the predicates that produce the most
different contrast sets, usually defined using a quality function
– the quality function, in turn, uses quantities such as the size
(support) and mean of the two subsets.

b) Overlapped interest region: The next query looks for
stable features across timesteps of the simulation results. Con-
tinuous regions in the simulation results that satisfy a certain
threshold are often searched for further examination [35].
Given a running simulation, and a filter condition defining
which cells are “interesting”, the overlapped interest region
query looks for adjacent time steps with large continuous
overlapped interest regions, which suggests that these time
steps have stable features that worth examination. Figure 2
gives an illustration of such a query.

These queries shows that in-situ analytic engines need a
flexible design that can accommodate queries that involves
disk-based data, as well as queries that focus on individual
simulation results. The next section discusses how MoHA
addresses such issues.

IV. SYSTEM OVERVIEW

Our in-situ heterogeneous analytics system MoHA is de-
signed with multiple goals in mind. From the performance
angle, our goals are to reduce the amount of time spent on
data transfers and I/O, reduce the memory requirements for
doing in-situ analytics, and reduce the time spent on analytics.
From the programmability side, we want support for managing
the simulation output data, a simplified logical view of data
on which analytics are specified, and the ability to compose
queries using a series of simple operators.

A. Modeling and Representing Simulation Data

A scientific simulation usually generates many timesteps,
each contains several multi-dimensional datasets. Hence,
MoHA views all the data as a (virtual) single multi-
dimensional array, with the identifier of a timestep being
one of its dimensions, and each datasets being one of the
attributes of the array. When the simulation is executing,
each accelerator usually generates a portion of the timestep
at a time, corresponding to a hyper-rectangular chunk of the
array. MoHA accepts a stream of such chunks, and performs
analytics on it.

Under the hood, each chunk is represented by a bitmap
index, dividing the value domain into a number of disjoint
buckets and using a bitmap to represent the values that fall
in each bucket. As the next two sections will show, such
a representation can be efficiently generated on GPU and
can be used to execute complex queries efficiently. This
representation serves multiple goals: its reduced size alleviates
the memory pressure and the bottleneck of transferring data
to CPU, and it is more efficient for many queries, primarily
because it accelerates value-based filtering operations.
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Fig. 3: An overview of the MoHA system. Concise bitmap
indices reduce the I/O bottleneck between host and the accel-
erator and storage subsystems, while a parallel query processor
utilizes the CPU resources.

B. Constructing an In-situ Scientific Analytics Engine for
Heterogeneous Platforms

At a high level, the query processor is structured as any
of the common relational and array database engines [58],
[59], [60]. Each query plan in MoHA is constructed using
composable operators, each describing how the input data
should be transferred, modified, aggregated, or processed one
step at a time. The query processor executes the operators
using appropriate computing and I/O resources to generate the
results.

Although MoHA adheres to the standard model, the needs
of in-situ queries and heterogeneous platforms require certain
changes. First, the chosen operator model needs to consider
the streaming nature of the simulation results. Specifically,
our query engine adapts a push-based operator model [61],
with each operator pushing a chunk of the output results
array to its parent. This creates a more natural control flow
and closer match to the asynchronous nature of the in-situ
query processing. Second, because different operators can be
run on different threads and devices to utilize the parallelism
provided by heterogeneous platforms, special operators are
provided for transferring chunks between the threads and from
the accelerator to the CPU. Finally, MoHA represents the input
as bitmaps indices to utilize the limited memory and communi-
cation capability of accelerators. A bitmap conversion operator
is provided for that purpose.

C. Parallelization Within and Across Nodes

One challenge of processing in-situ queries on heteroge-
neous platforms is utilizing the various available forms of
parallelism in the system effectively. The execution model of
MoHA permits parallelism both within and across compute
nodes, through pipelining as well as data parallelism.

A query plan of MoHA is divided into different fragments
that can run on different devices or machines concurrently. Dif-
ferent fragments are connected through pairs of send/receive
operators, which transfer data from the fragments that produce
the data to the fragments consuming it. The data transfer hap-
pens between the accelerators and the host memory, between
different worker threads on the host CPU, and can happen
across nodes also.

Within a node, MoHA spawns one or more worker threads
to run the fragments instead of individual processes. This
allows more efficient inter-fragments communication through
shared memory space rather than costly IPC facilities. Also,
global resources such as memory buffers are shared between
different threads. When necessary, multi-consumer, multi-
producer queues are used to buffer and transfer intermediate
results as well as distribute tasks between different worker
threads.

In addition to intra-node parallelism, MoHA supports par-
allelization across the nodes when in-situ analysis needs to
combine results from simulation output from multiple nodes.
An MPI-based asynchronous send/receive operator pair serves
the purpose of shuffling the results between different nodes.
Between processes, all data is transferred using point-to-point
MPI directives. All MPI requests are funneled through one
thread. In order to send a message, the input threads serialize
the message and put it into a send queue. A looping thread
then issues the send requests and monitors the status. The
process on the receiving end is similar: the receiving thread
puts buffers it receives into a queue. The working threads then
deserialize the message and drive the query by calling the
consume() API on its parent operator. One consideration
is avoiding unnecessary memory allocation and duplication
as much as possible. This is achieved by maintaining shared
buffer pools and allowing buffers to be passed between threads
as necessary.

V. IN-SITU BITMAP GENERATION ON A GPU

One key component of the MoHA system is a compact
approximate representation of the simulation data. As we have
discussed earlier, such a representation 1) reduces the memory
pressure while processing queries; 2) accelerates data transfer
operations; and 3) speeds up analytics. This section introduces
the compact bitmap representation MoHA uses to perform
in-situ analytics, and how such an index can be generated
efficiently on GPUs.

A. GPU-friendly bitmap index representation

Bitmaps were originally developed as indices for discrete
values in relational datasets [62], by representing a range of
similar contiguous values using the same bin. Later, they were
found suitable as an index for scientific datasets [63]. Most
recently, they have been used as an effective approximate
representation of the data on which queries can be processed
directly [34], [64], [57]. When simulations are executing on
GPUs, and given that data transfer between GPU and CPU
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Fig. 4: An illustration of the bitmap storage layout of MoHA.

is likely to be a bottleneck, it is desirable to convert output
simulation data to bitmaps on GPUs.

However, utilizing bitmaps on the GPU is not straightfor-
ward. This is because the highly parallel nature of many-
core processors conflicts with the serial nature of run-length
encoding mechanisms used by popular bitmap compression
schemes [33], [37]. While there are prior works on generating
bitmaps on GPUs [65], [66], they mostly focus on generat-
ing run-length-encoding (RLE) bitmap representations on the
GPU. Thus, they are generating a serial representation on an
accelerator designed to perform massive parallel computations.
As a result, they require linear temporary spaces for execution
and are not efficient [65], [66].

Instead, MoHA utilizes a segmented (chunked) 2 bitmap
representation similar to Roaring bitmaps [38], [67]. In such
a representation, a bitmap is divided to a number of slices of
equal lengths, and each slice is compressed according to its
cardinality, which is the number of 1 bits in the slice. This
structure has the advantage of allowing efficient and parallel
random access as well as storing each individual slice in a
fashion that allows for an efficient size.

Because there are multiple buckets in the bitmap represen-
tation of a generated chunk, MoHA generates all the buckets
for an input chunk together. The bitmap indices of a chunk
with length L will contain d L

LS
e × B slices, B and LS

being the number of buckets and the length of each segment,
respectively. MoHA follows the example of Roaring and sets
LS to 216. Before explaining the rationale of such a setting,
we first discuss how each individual slice is stored.

The physical representation of a slice depends on its car-
dinality, i.e., the number of values it contains. The current
implementation of MoHA stores one slice in one of three
formats: bitset, array, or full. A slice is always stored in the
format that occupies the least storage. As its name suggests,

2The meaning of chunk is overloaded in different contexts. To avoid
confusion, this paper reserves chunk to represent a hyper-rectangular block
of the input array. Instead, it refers to each fixed-length partition of the input
dataset as a segment, and each fixed-length partition of the bitmap indices as
a slice.

a bitset slice stores the values as a contiguous bitset using
216 bits (4096 bytes) words, with a 1 bit representing a value
at the position, and a 0 bit otherwise. An array slice stores
the offsets of the values in it using 16-bit integers, using 2C
bytes for a slice with cardinality C. Finally, a full slice just
represents a slice that contains all ones, it occupies no extra
spaces other than its metadata.

Currently, a 216 segment size is used because indices in the
segment can be stored as byte-aligned 16-bit integers for fast
random access as well as compact storage, without wasting
bits [38]. In principle, more flexible chunk size can be used
by sacrificing a few extra bits per element, or utilizing a
more compact small integer encoding [68]. Examination of
the trade-offs involved is an interesting question for future
research but beyond the scope of current work.

Of course, certain slices can be stored more efficiently if
more representations are introduced. For example, run-length
encoding can be used to compress a slice with long, contiguous
range. Similarly, for the slices containing all but a few values
in the dataset, representing the slice as its negation might save
space. However, more complex schemes can complicate slice
generation as well as query processing.

One key difference of our representation from Roaring [38]
is its storage layout. Such a layout plays an essential role
in ensuring the bitmap being GPU-friendly. This is because
dynamic allocation on GPUs, while possible, is expensive
and causes fragmentation, which prevents data from efficiently
being moved to the host memory [69], [70], [71], [72], [73].
MoHA always stores all the slices in one continuous storage.
The bitmap representation keeps the storage offset and type of
each slice as metadata. As the size of a slice can be inferred
from the offsets of adjacent slices, this allows any slice to be
accessed efficiently. Each kind of metadata is kept in separate
arrays for better parallelism and data locality.

B. Space-efficient bitmap generation on a GPU

When new data emerges from simulation, the
to_bitmap() operator converts individual input chunks to
the bitmap formats MoHA uses. This subsection introduces
the space-efficient bitmap generation method used by MoHA,
which requires only O(S) extra space, with S being the total
number of slices in the bitmap. The bitmap generation is
conducted in two passes, to overcome inefficient memory
allocation on GPUs. The first pass computes the necessary
metadata as well as the total space requirements. After that,
the second pass produces the actual slices to be stored.

Algorithm 1 gives an overview of this process. The first
pass (Line 4 - 9) computes the sizes and types of each slice.
Because how a slice is stored depends on its cardinality,
the first pass essentially needs to compute the cardinality
of each slice. Because each value belongs to precisely one
bucket of the bitmap indices, this is essentially constructing
a histogram on the bucket IDs of values. When the bucket
numbers are small, a histogram can be produced by computing



Algorithm 1: Generating bitmap indices on GPU.

1 function generate bitmap(input chunk I, total buckets
B):

2 S ← d LI

LC
e ;

3 for s ∈ [0, S) in parallel blocks do
4 card[s]← cardinality histogram of segment s;
5 for b ∈ [0, B) in parallel threads do
6 Compute types[s, b], sizes[s, b] according

to card[s];
7 end
8 end
9 offsets ← prefix sum(sizes);

10 Allocate necessary storage data for the index;
11 for idx ∈ [0, S ×B) in parallel blocks do
12 s← idx div B, b← idx mod B;
13 Generate a types[s, b] slice at offsets [s, b];
14 end
15 return types, offsets , data;
16 end

partial histograms in shared memory per GPU thread, and
aggregating the results; otherwise, atomic instructions are
needed for aggregating partial counts [74]. After the histogram
generation, the type and size of each slice are computed
based on the computed cardinality. Then the total storage
needs of each are determined, and the memory is allocated.
(Line 10-11). Then, a second pass on the input produces the
actual physical slice representation (Line 12 - 15). In this
pass, the bitmap representation of each slice is generated
by a corresponding GPU thread block, that is, if a bitmap
index has B buckets and B × S slices, B × S blocks are
allocated for the index generation. Each value in the dataset is
scanned B times, once for each bucket. This may not appear
efficient, as theoretically, a single scan can generate all the
blocks at the same time. However, we find the saved work
does not translate to saved generation time. Two factors can
explain this. First, efficient L2 cache mechanisms in the GPUs
reduces the overhead of reading the data multiple times, and
second, allocating multiple slices in the same block increases
the complexity of the code, adds more register pressure, and
reduces the efficiency of the block schedule mechanism of
stream processors.

Next, we describe how each kind of slices can be generated
(Line 13 in Algorithm 1). For bitset chunks, the generation
is straightforward. Each GPU warp generates one 32-bit word
of the bitsets at a time. This is achieved by each GPU thread
generating one single bit of the bitset, and then using warp-
wide synchronization instructions (ballot in CUDA) to
generate the bitset word. Although it is also possible to avoid
the warp-wide communication by letting each GPU thread
process 32 input values and generate one bitset word on its
own, in our evaluation it did not yield better performance.

An array slice stores the values in the slice as a list of

Algorithm 2: Generating a array bitmap slice.

1 function generate array slice(slice storage data, input
segment S, bucket range [min,max)):

2 for i ∈ [0, LS) in parallel threads do
3 in bucket← if S[i] ∈

[min,max) then 1 else 0;
4 offset ← exlusive scan(in bucket);
5 data[offset ]← i;
6 end
7 return data;
8 end

16-bit offsets. Array slices can be generated using a modified
parallel scan [75] algorithm. In this approach, first, a boolean
array is generated, indicating whether a value in the slice is
inside the bucket. An exclusive prefix sum is then run on this
generated array; resulting in a list of the index of each value
in the bucket. Finally, if the original value is inside the bucket,
its offset is written into the index of the bucket, producing the
array chunk. Note that because the boolean array and the index
list does not need to be actually materialized, this process
does not need any extra temporary space either. Algorithm 2
illustrates this point.

Finally, full chunks and empty arrays do not occupy storage,
and can be skipped in the second pass. Adding everything up,
the algorithm does not need any extra global memory space
for the bitmap generation, resulting in a very memory-efficient
bitmap generation algorithm.

VI. PERFORMING COMPLEX ANALYTICS USING BITMAPS

As we have stated throughout, increasingly, scientists desire
more complex analytics from their in-situ analytics engines.
This section describes how MoHA enables the development
of complex in-situ analytics. We start by showing how certain
primitive operations can be effectively processed on the bitmap
representation, and then discuss implementation of several
complex queries, including the two queries we had previously
described in Section III.

One of the issues for the system is moving the generated
bitmaps to the host memory for analytics. This is done by
the gpu_send() and gpu_recv() operators. When the
gpu_send() operator receives a generated bitmap chunk on
GPU, it allocates a host buffer according to its size and initial-
izes a (potentially asynchronous) transfer to copy the chunk
to the host memory. As asynchronous GPU-CPU transfers
require pinned buffers, memory allocations could significantly
draw down the performance. In such cases, MoHA employs
thread-safe memory buffer pools to reuse allocated buffers
if possible. For the experiments reported in the paper, only
synchronous transfers were used. This is because a) the GPU
device memory is usually a scarce resource while performing
in-situ analytics, and asynchronous transfer of the data requires
allocating additional buffers on the GPU side, and b) the



applications used in the paper was not designed with the
overlapping capabilities of the CUDA language in mind.

A. Analytic Primitives on Bitmaps

This subsection discusses how several basic operations are
implemented on bitmaps in MoHA. These operations are used
as the building blocks of complex analytical queries.
Filter A filter operator performs a selection operation on
attribute-based predicates. When data is represented as a
bitmap index, such operation can be decomposed into a
number of logical bitwise operations: For an array of n
attributes, a filter on conditions mini < Ai < maxi, i ∈ [1, n]
can be performed by doing a BITWISE OR operation on all
selected buckets in each attribute Ai, and then a BITWISE

AND operators on all the bitmaps generated by the BITWISE

OR operations. MoHA performs such an operation by improv-
ing the implementation described in the context of Roaring
bitmaps [38], [67] in terms of memory use. Specifically, there
is no need to materialize the entire intermediate generated
bitmaps. Instead, the bitmaps indices are processed segment by
segment. Because there is no guarantee about the cardinality
of two or operations when performing BITWISE OR operations
between buckets, a bitset slice is allocated to store the inter-
mediate slice, no matter what type of slice the input slice is.
This also has the advantage of accelerating the BITWISE AND

operation.
Subset A subset operation performs a selection on dimension-
based predicates. For example, a user might want to query
only an interest subset region of the entire timestep. For such
selections, a bitset slice mask is generated on the fly according
to the selected predicate(s). A BITWISE AND operation is then
performed between the mask and the bitmap indices for the
final result.
Aggregation Previous work has explored fast approximate
aggregation using bitmap representations [34]. The key idea is
keeping the total aggregations per attribute, and then use the
population count of filtered result to estimate the final result
based on saved aggregations. Thus, the problem reduces to the
problem of counting setting bits in the bitmap representation,
which is straightforward.
Join Array join aims at finding cell pairs that certify certain
join conditions. Equal join predicates on dimensions and
attributes can be implemented by merely performing BITWISE

AND operations between the selected attributes and dimen-
sions. More complex joining types are also considered in prior
works [76], [77].

B. Example queries

Modern data-driven science demands more complex anal-
ysis then simple filter, aggregagation, or even join. However,
many complicated queries can be implemented with the prim-
itives introduced. This subsection discusses a few examples,
including two of the examples mentioned in Section IV and a
similarity query.

1) Simulation Similarity: The first query aims at deter-
mining the similarity between the simulation being run and
a previous baseline. A user might want to have a look at
how different each simulation is from previous simulations,
to determine whether an adjustment makes sense. Such sim-
ilarity can be computed by computing the number of similar
attributes between corresponding time steps; that is, for each
attribute, we count the cells at the same dimensional position
of the time steps being compared with an attribute value
difference below a certain threshold. The scores of each
attribute are then added up to compute the similarity.

In terms of implementation within our framework, this
can be seen as a simple aggregation on top of a join op-
eration between different arrays [32], [76]. As previously
mentioned, with bitmaps, join operation can be supported by
doing BITWISE AND between corresponding bins. The bitmap
accelerates the query in two ways: it saves the I/O cost of
reading the data from disk and transferring from GPU to CPU,
as well as allowing faster comparisons between the elements.
A similar process can also be used to evaluate various other
similarity metrics [34] between time steps.

2) Contrast Set Mining: As mentioned in Section IV,
contrast sets mining looks for same groups in different datasets
that possess a largest difference according to a quality func-
tion. In order to search for such contrast sets, the search
range is discretized into a number of bins. A pruned brute-
force search strategy based on a set-enumeration tree can
be used to solve the problem. The searching starts from a
subset containing all the elements in the datasets, and adding
one filter condition at a time [56], [57]. For each subset, a
filter and aggregation operation computes the mean and size
of the subsets, and then the quality of the contrast sets is
computed. As discussed in the previous subsection, such filter
and aggregation operation can be performed effectively on
bitmap representations.

Again, the bitmap representation accelerates the I/O by
reducing the data being moved, as well as results in faster
filtering and aggregation in smaller selectivity scenarios. Being
a naturally discretized data representation, utilizing bitmap
indices to process this query also has the additional benefits
of providing results as accurate as the original representation
provided the number of bins are chosen correctly.

3) Overlapped Interest Region: The final query looks for
stable features across adjacent timesteps. It can be imple-
mented by filtering the two adjacent timesteps for interesting
cells, a joining operation is then performed to find the over-
lapped interest cells. These cells are then merged to find the
largest contiguous region. Here, bitmap indices accelerate the
query by reducing the transferring time from GPU to CPU, as
well as facilitating faster filter operation.

C. Discussion

One question is what kind of queries benefit from the
bitmap representations of MoHA. Bitmaps compactly preserve



both spatial and value information about multi-dimensional
arrays and allow fast intersection and union operations. Thus,
they can support a wide range of query with either no or
modest sacrifice on the accuracy – this include approxi-
mate aggregation [34], interesting regions [35], membership
queries [78], operations associated with visualization [79],
correlation mining [64] and other queries [57], [80], [76]. In
general, queries that explores array subsets based on values
and relationships between different datasets or their subsets
can be easily and efficiently implemented using the primitives
discussed above. In each case, performance advantages arise
from fast filtering and bitwise operations. As is the case with
most summary representations, the accuracy loss can be a
concern in certain situations, but can be reduced using better
binning schemes [34].

VII. EXPERIMENTAL EVALUATION

This section empirically evaluates the in-situ query perfor-
mance of the MoHA system on a HPC cluster using real-
world queries applied on actual output from simulations. The
following questions are explored:

• How does the cost of generating bitmaps on GPUs and
then transferring them to CPUs approximate compare
against the cost of just transferring the original (plain)
simulation results? (§VII-B)

• How efficient is query execution on bitmaps compared to
execution using original data? (§VII-C)

• How does MoHA perform when in-situ queries are par-
allelized across nodes? (§VII-D)

A. Experimental Setup

Configuration. This paper evaluates the MoHA system using a
cluster with the following features. Each node has a Intel Xeon
2586 v4 vCPU and a NVIDIA V100 SXM2 GPU. The nodes
are connected with 10 Gigabytes/second network. CPU-GPU
connectivity is through the PCI-E connection with a measured
bandwidth of ∼ 11 GiB/s. The cluster uses a 4.8 TiB AWS
FSx Lustre parallel file system, with a 938 MiB/s baseline
throughput and a 6x burst throughput. The system runs an
Ubuntu LTS 18.04 operating system with a Linux kernel of
version 4.15 and Lustre client 2.10.8. While several aspects of
this cluster match features of clusters available from traditional
supercomputing centers, it happens to be hosted on AWS
cloud from Amazon [81]. The instances were allocated in the
same placement group to ensure performance.3 Furthermore,
in our experiments, multiple executions of the same job at
different times showed no substantial difference in execution
time, indicating little interference from any other jobs. As
noted by others as well [82], in recent years it has become

3Placement group “packs instances close together inside an Availabil-
ity Zone, enabling workloads to achieve the low-latency network perfor-
mance necessary for tightly-coupled node-to-node communication that is
typical of HPC applications”, see https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/placement-groups.html.

possible to create supercomputing like capabilities through
specific choice of offerings from the cloud.

The MoHA systems is programmed using C++ and CUDA.
The system is compiled using version of 8.4.0 of gcc compiler
and the CUDA 10.2 platform. The highest level of optimiza-
tion (-O3) is used for all experiments. All communication
between nodes are implemented using the asynchronous MPI
primitives of MPICH 3.3.2. All the nodes are always placed
under the same placement group for faster inter-node commu-
nication. On each node, 8 worker threads are used in query
processing unless otherwise specified.
Datasets. Two real-world benchmarks are used in our experi-
ments. LULESH [83], [84] is a hydro-dynamic inspired sim-
ulation core, widely used in other simulation-based computer
science research [85], [34], [86]. The simulation computes the
interaction of materials using a mesh-based methods, capturing
the coordinates of the matters as well as their force, velocity
and acceleration. PIC [87] is a one-dimensional electrostatic
particle-in-cell simulation program emulating the movement
of ions and electrons in the electronic fields, computing the
positions, velocity and electronic field strength at each particle
based on its electric potential and charge density. We use 64
equal-width bins based on the value domain range for all of
our experiments.
Experimental Methodology. All experiments are run at least 5
iterations and the average results are reported. System cache
is cleared before all I/O-related experiments. The order of
experiments is randomized to amortize underlying system
performance fluctuation. The reported processing time ex-
cludes simulation initialization time and the time of result
materialization to highlight the performance of actual in-situ
processing.

B. Bitmap Generation and Transfer Costs

The basic idea in MoHA is to replace simulation output on
GPUs by their bitmap representation. While this reduces the
size of data to be transferred, generating the bitmap indices
also involves more computation. The first set of experiments
investigates how the bitmap generation overhead compares
with the savings due to transferring less data. The simulation
time is also shown as a reference point. All the simulations
are executed for 1000 time steps, and we vary the amount of
data generated by controlling the problem size. We choose five
problem size for each simulation, so that difference of the data
amount generated per time step between adjacent settings is
roughly two times.

Figure 5 shows the results with LULESH simulations.
The topline number indicates that transferring bitmap indices
is consistently faster than transferring the original data. On
average, bitmaps are 1.4× faster compare with the original
representation. Also, transferring bitmaps only adds a rela-
tively small overhead compared with the simulation. With a
problem size of 2563, the transfer only adds an overhead of
13% compared with the simulation-only scenario. Under the
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Fig. 5: Comparison between 1) GPU generation of bitmaps
and transfer to CPUs (Bitmap) and 2) transfer of original
simulation output from GPU to CPU (Original) (LULESH
simulation, 1000 iterations).
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Fig. 6: Comparison between 1) GPU generation of bitmaps
and transfer to CPUs (Bitmap) and 2) transfer of original
simulation output from GPU to CPU (Original) (PIC
simulation, 1000 iterations).

hood, profiling data shows that when the problem size is 1563,
the cost of generating and copying the bitmap representation
is around 29% of copying the original data, with the majority
of time spending in bitmap generation. Another observation
is, even though the data amount generated per second stayed
relatively flat as the time step size increases, the relative
performance of the bitmap representation improves. This per-
formance strength can be explained by two factors. First, as the
problem size increases, fewer transfers need to be issued for
the same amount of data, reducing the overhead of initializing
transfers; second, as each GPU thread block handles a slice of
the bitmap indices, increasing the time step size increases the
number of threads that can be scheduled, which gives GPU
scheduler better opportunity to improve device utilization.

Figure 6 explores the results of the same experiments on
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Fig. 7: Performance of the Simulation Similarity query
(LULESH simulation, 200 iterations).

the PIC simulation. While transferring the original data is
somewhat faster when the problem size is smaller, the bitmap
representation gradually outperforms the original representa-
tion as the size of the problem increases. When the problem
size is 5.12M, MoHA enjoys a speedup of 1.4× compared
with the original representation. This matches our earlier
observation, which is that the generation of the bitmap indices
is more efficient when the GPU has more data to work with.
The profiling data confirms such view; at the problem size of
320K, while the transfer of the bitmap representation only
costs 0.2× of transferring the original data per time step,
generating such representation costs 2.1× of the transferring
cost for the original data, which more then cancels the benefits
of having a compact representation. On the contrary, when the
problem size is 2.56M, the bitmap generation and transferring
only costs 0.3× and 0.1× of copying the original data, respec-
tively. Finally, note that the bitmap representation is seeing
less advantage on the PIC dataset. This is because compared
with LULESH, its bitmap representation is not as compact
– while the bitmap representation of LULESH only occupies
less than 2% of its original size, the bitmap representation of
the PIC datasets are around 10% of the original data. Overall,
the benefits of saved transferring significantly outweigh the
overheads of bitmap generation with both the simulations.

C. Query Execution Performance with MoHA

The next question is how efficiently MoHA can handle
various query workloads. Similar to the last subsection, the
set of experiments compares the performance of querying the
bitmap representation of MoHA with querying the generated
data directly using the example queries mentioned in section
VI.

The simulation similarity query evaluates the number of
cells that are similar enough compared with a previous
benchmark. In this experiment, a 200-timestep simulation is
compared with the output from a baseline run. In order to
generate the baseline, for LULESH, we use a previous run with
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Fig. 8: Performance of the Simulation Similarity query (PIC
simulation, 200 iterations).

a different balance parameter; for PIC, we use a randomized
seed.

Figures 7 and 8 report the query performance on the output
from LULESH and PIC simulations, respectively. Overall,
executing the queries on the bitmap representation significantly
accelerates the queries with both simulations. On the average,
MoHA is 6.8× faster with the LULESH simulation, while
being 6.7× faster on the PIC simulation. Also, the overhead
of the added query processing compared with running the sim-
ulation itself remains small. More specifically, processing the
in-situ query on the largest problem size tested on LULESH
only costs 1.05× time of the simulation, and the overhead of
querying the largest problem size on PIC is only 0.65× of
the simulation time. This is because on bitmap representation,
the comparing between the simulation results can be done by
simple bitwise AND operations, adding little overhead. Also,
because bitmap representation is very compact (less than 10%
of the original data in this case), the additional I/O costs are
also very limited. On the other side, querying the original data
requires reading a much larger data from a remote file system
in addition to move the same amount of data from the device
to the host memory, costing a slowdown of much as 9.5×.

While the simulation similarity query puts little pressure on
the CPUs, there are more CPU-intensive queries. Next query
being examined is contrast set mining, which evaluates which
filtering condition produces a pair of subsets of a time step
that “differs” the most. We again evaluate the performance
of MoHA by comparing its performance against querying the
original data on both simulations, with the number of iterations
set to 200. When searching for subsetting predicates, all the
dimensions and values are discretized into 64 equal-width bins
for both the bitmap and original representations.

Figures 9 and 10 report the mean processing time of the
query on both datasets. In general, it is much more slower to
perform the contrast set mining queries on the plain datasets.
Querying the bitmap representations of LULESH and PIC are
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Fig. 9: Performance of the Contrast Set Mining query
(LULESH simulation, 200 iterations).
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Fig. 10: Performance of the Contrast Set Mining query (PIC
simulation, 200 iterations).

13.1× and 3.3× faster compared with querying the original
representations, respectively.

To illustrate the performance characteristics of the contrast
set mining query, Table I breaks down five components of
the overall time between processing the bitmap indices and
the original data: the cost of bitmap generation, the time
of transferring the data to the host, the sum of the CPU
contrast set mining searching time across worker threads,
and the I/O cost of reading data from the file system. 4

The breakdown indicates that, in most scenarios, the bitmap
representation outperforms the original representation in all
three parts of the in-situ query: In most cases, generating
and transferring the data to the host outperforms transferring
the original data directly by a factor of 2× or more. The
the benefits of the bitmap representation on reading array

4The simulation, generation and transfer costs here are measured on the
device side using a GPU profiler, whereas the query processing and I/O
measurement are measured using the high-resolution clock from the host side.
The device side measurement does not reflect the cost of overhead coming
from host side and accelerator driver.



TABLE I: Detailed Performance Data with the Contrast Set Mining Query.

Bitmap Generation Transfer to Host CSM Searching on CPUs I/O

Benchmark Problem
Size

Simulation Bitmap Original Bitmap Original Bitmap Original Bitmap Original

102 0.43 0.41 0 0.00 0.55 47.64 732.80 5.64 87.07
128 0.86 0.43 0 0.00 1.10 101.70 1405.79 11.97 166.73
156 1.59 0.46 0 0.01 1.99 127.85 2521.29 15.11 296.86
192 2.96 0.80 0 0.01 3.70 228.74 4572.72 27.05 540.71

LULESH

256 6.99 1.52 0 0.01 8.78 663.36 10465.72 77.23 1244.18

320K 0.24 0.41 0 0.04 0.25 379.69 833.86 45.11 97.04
640K 0.57 0.46 0 0.06 0.50 669.86 1738.12 79.03 205.61
1.28M 1.36 0.56 0 0.11 1.01 1226.11 3684.01 144.08 433.49
2.56M 2.91 0.78 0 0.19 2.01 2263.00 6403.33 268.10 748.80

PIC

5.12M 6.02 1.19 0 0.36 4.03 4258.32 13798.71 503.06 1616.64
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Fig. 11: Performance of the Overlapped Interest Region query
(LULESH simulation, 1000 iterations)

data from the disk and as searching for the contrast sets are
even more significant: searching for contrast sets on bitmaps
and I/O can be accelerated by an order of magnitude. In
general, this again demonstrates the versatility of the bitmap
representation: it can not only accelerate the I/O performance
of an in-situ query system, but can also accelerates the CPU-
intensive queries as well. Another interesting observation is
that the performance advantage of the bitmap representation
are smaller with the PIC dataset in both the I/O and CPU
category, which reflects that the data generated by PIC is not
as skewed as the LULESH simulation.

Finally, we take a look at the overlapped interest region
query, which searches for large, stable hot regions across time
steps. Because the PIC dataset is an unstructured simulation
and does not have dimensional structure suitable for such a
query, this experiment focuses on the LULESH simulation.
The result is shown in Figure 11.

While the bitmap representation does not have as large a
speedup compared with the previous queries that involved I/O
we do still see an average speedup of 1.4×. This is because the
host CPUs are capable of keeping up with the inbound data,
therefore, the major bottleneck is still the data movement from
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Fig. 12: Parallel performance of the Contrast Set Mining query
(LULESH, 200 iterations).
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Fig. 13: Parallel performance of the Contrast Set Mining query
(PIC, 200 iterations).

the GPU to CPU, which can be saved by utilizing the bitmap
representation.



D. MoHA Performance on In-Situ Queries with Inter-Node
Communication

This subsection consider cases where the in-situ query needs
communication across nodes. As each node simulates a part of
the grid, contrast set mining task could be computing contrast
sets across nodes. In our experiments, this query is applied on
both the simulations, scaling them so that each node generates
a fixed amount of data. We adjust the problem size so that each
node generates ∼ 115 MiB data per time step for LULESH;
and ∼ 60 MiB data for the PIC; and scale the number of nodes
from 1 to 16.

Figures 12 and 13 reports the average processing time
of the contrast set mining query. As the number of nodes
increases, the query processing time of both the bitmap and
original representation holds steady with only a slightly timing
increase. However, at 16 nodes, the query processing time of
plain representation significantly increases, while the query
time of the bitmap representation holds steady. This can be
attribute to the increased I/O cost. Because the parallel file
system we are using have a fixed total bandwidth, as the total
amount of data being read from the file system increases,
the bottleneck of each node turns to I/O from computation;
because the bitmap representation requires less I/O, it can scale
out further.

VIII. RELATED WORK

In-situ analytics on scientific data. While the idea of co-
processing has decades of history [88], it seems that the
term in-situ methods was proposed in the Petascale era [89],
[90]. Earlier in-situ scenarios were centered around visualiza-
tion, and many visualization software tools such as Paraview
Catalyst [12], VTK-m [20], and libsim [91] have added in-
situ analysis functionality. One major concern was the ability
of interactively exploring the visualization result after the
simulation concludes. One method is extracting image samples
that are potentially interested to users [92], [93]. Cinema [94],
[95] advances such model by generating multiple composable
images and generates explorable images and animations dy-
namically. Our work complements such model by considering
simulation execution on heterogeneous platforms and com-
plex queries (for example, overlapped interest regions across
timesteps. The bitmap indices generated can also be useful for
visualization tasks [79]. In another line of work, middleware
systems such as ADIOS [96], [14] and GLEAN [15] and
others have been developed (see Bauer et al. [21] for a
comprehensive survey). The approaching Exascale era has
created a momentum in this area [97], [2], [3], [4], [5], [6].
ALPINE [11] is an recent effort to provide a unified interface

for different in-situ frameworks. Several recent works [4],
[5], [6] utilize mathematical methods to reconstruct features
for in-situ analytics; In-situ indexing methods have also been
suggested for faster post hoc processing [98], [99], [100].

There has also been work on processing raw (scientific)
data resident on disks in-situ without ingestion into a database.
The NoDB [101] work formalized this approach in the context
of relational data. However, it has also been beneficial for
scientific data [102], [103], [104].

Bitmap indices and compression. Bitmap indices were origi-
nally proposed in relational database context [62], [105], [106].
FastBit [36], [35] popularized the idea of applying bitmap
indices for faster query processing (for scientific data). His-
torically, variant schemes of run-length-encoding were used
for compressing the data [33], [27], [37]. Recently, Roaring
bitmaps [38], [67] gain popularity due to its high efficiency
in query processing [107]. There are also recent efforts to
increase the accuracy of such representation [108], [77] or
further reduce its size. Lang et al. [39] proposed tree-encoded
bitmaps for space saving. While bitmaps can be a secondary
index, it can also frequently be used as a primary index or an
approximate representation for faster query processing [63],
[34]. Our paper continue this trend and considers whether such
a representation can be suitable for this heterogeneous era,
and can be the basis for a composable system for developing
queries. Prior research about bitmap building on GPU focuses
on building RLE encoding using GPU acceleration [66], [65].
However, this requires either sorting the data or constructing
the uncompressed bitmap beforehand, causing time and space
overhead that is not desirable when accelerators like GPUs are
involved.

IX. CONCLUSION

We have introduced MoHA, an in-situ query system de-
signed for complex and effective analytics on today’s dense
and heterogeneous HPC platforms. We have presented a GPU-
friendly bitmap representation, how such a representation can
be efficiently generated on GPUs, and how such a repre-
sentation can support a variety of complex in-situ queries.
Our evaluation on real-world simulations confirms that MoHA
outperforms the baseline (which does not use a summary or
compressed representation) by an average speedup of ∼ 1.4×
to ∼ 13×, while also saving memory and I/O bandwidth.
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A. Shoshani, O. Rübel, and R. D. Ryne, “Parallel index and query
for large scale data analysis,” in Proceedings of 2011 international
conference for high performance computing, networking, storage and
analysis, 2011, pp. 1–11.

[31] Y. Su, Y. Wang, G. Agrawal, and R. Kettimuthu, “SDQuery DSI:
Integrating data management support with a wide area data transfer
protocol,” in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC, 2013, pp. 1–12.

[32] E. Soroush, M. Balazinska, and D. Wang, “{ArrayStore}: a storage
manager for complex parallel array processing,” in SIGMOD. ACM,
2011.

[33] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg, “Notes on design
and implementation of compressed bit vectors,” Technical Report
LBNL/PUB-3161, Lawrence Berkeley National Laboratory, Berkeley,
CA, Tech. Rep., 2001.

[34] Y. Wang, Y. Su, and G. Agrawal, “A novel approach for
approximate aggregations over arrays,” in ACM International
Conference Proceeding Series, vol. 29-June-20. New York, New
York, USA: ACM Press, 2015, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2791347.2791349

[35] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel,
C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. J. Otoo, V. Perevoztchikov, A. Poskanzer,
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The paper reports three groups of experiments, including (1) trans-
ferring performance experiments; (2) query performance experi-
ments; and (3) parallel performance experiments. We ran all the
experiments on our in-situ query system MoHA with two bench-
marks, LULESH and PIC, on AWS cloud, with p3.2xlarge instances
with NVIDIA V100 16 GiB SXM2 GPU, with a 4.8 TiB AWS FSx
Lustre parallel file system as the storage. The system runs Ubuntu
Linux LTS 18.04, with a kernel version of 4.15. The system runs an
Ubuntu LTS 18.04 operating system with a Linux kernel of version
4.15 and Lustre client 2.10.8. MoHA is compiled using a version
of 8.4.0 of GCC compiler and the CUDA 10.2 platform. The high-
est level of optimization (-O3) is used for all experiments. All the
benchmarks are included in the provided artifact.

All experiments are run at least 5 iterations and the average
results are reported. System cache is cleared before all I/O-related
experiments. The order of experiments is randomized to amortize
underlying system performance fluctuation. The reported process-
ing time excludes simulation initialization time and the time of
result materialization to highlight the performance of actual in-situ
processing.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.3866623
Artifact name: MoHA Artifact

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: AWS p3.2xlarge instances; AWS FSx
for Lustre Parallel file systems.

Operating systems and versions: Ubuntu 18.04 running Linux
kernel 4.15

Compilers and versions: g++ 8.4.0

Applications and versions: MoHA

Libraries and versions: fmt 5.3.0 catch2 2.7.1 roaring 2019-03-05-2
boost 1.72.0 / 1.69.0 * MPICH 3.3.2

Key algorithms: bitmap generation

Input datasets and versions: LULESH 2.0.2-dev, PIC

URL to output from scripts that gathers execution environment
information.
https://bitbucket.org/randomnames/workspace/snippets ⌋

/aLjrB9↪→


