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Abstract

Langevin dynamics (LD) has been proven to be a powerful technique for optimiz-
ing a non-convex objective as an efficient algorithm to find local minima while
eventually visiting a global minimum on longer time-scales. LD is based on the
first-order Langevin diffusion which is reversible in time. We study two variants
that are based on non-reversible Langevin diffusions: the underdamped Langevin
dynamics (ULD) and the Langevin dynamics with a non-symmetric drift (NLD).
Adopting the techniques of Tzen et al. (2018) for LD to non-reversible diffusions,
we show that for a given local minimum that is within an arbitrary distance from the
initialization, with high probability, either the ULD trajectory ends up somewhere
outside a small neighborhood of this local minimum within a recurrence time
which depends on the smallest eigenvalue of the Hessian at the local minimum or
they enter this neighborhood by the recurrence time and stay there for a potentially
exponentially long escape time. The ULD algorithm improves upon the recurrence
time obtained for LD in Tzen et al. (2018) with respect to the dependency on the
smallest eigenvalue of the Hessian at the local minimum. Similar results and im-
provements are obtained for the NLD algorithm. We also show that non-reversible
variants can exit the basin of attraction of a local minimum faster in discrete time
when the objective has two local minima separated by a saddle point and quantify
the amount of improvement. Our analysis suggests that non-reversible Langevin
algorithms are more efficient to locate a local minimum as well as exploring the
state space.

∗The authors are in alphabetical order.
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Consider the stochastic optimization problem:

min
x∈Rd

F (x) := EZ∼P [f(x, Z)] =

∫
Z
f(x, z)P (dz),

where f : Rd ×Z → R is a real-valued, smooth, possibly non-convex objective function with two
inputs, the decision vector x ∈ Rd and a random vector Z with probability distribution P defined
on a set Z . A standard approach for solving stochastic optimization problems is to approximate the
expectation as an average over independent observations z = (z1, z2, . . . , zn) ∈ Zn and to solve:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

f(x, zi). (0.1)

Such problems with finite-sum structure arise in many applications, e.g. data analysis and machine
learning ([GBCB16]). In this work, our primary focus will be non-convex objectives.

First-order methods such as gradient descent and stochastic gradient descent and their variants with
momentum have been popular for solving such optimization problems (see e.g. [Ber15, Bub14]).
These first-order methods admit some theoretical guarantees to locate a local minimizer, however
their convergence depends strongly on the initialization and they do not have guarantees to visit a
global minimum. The Langevin Dynamics (LD) is a variant of gradient descent where a properly
scaled Gaussian noise is added to the gradients:

Xk+1 = Xk − η∇F (Xk) +
√

2ηβ−1ξk,

where η > 0 is the stepsize, ξk is a d-dimensional isotropic Gaussian noise with distribution N (0, I)
where for every k, the noise ξk is independent of the (filtration) past up to time k and β > 0 is called
the inverse temperature parameter. With proper choice of parameters and under mild assumptions, LD
algorithm converges to a stationary distribution that concentrates around a global minimum (see e.g.
[BM99, GM91]) from an arbitrary initial point. Therefore, LD algorithm has a milder dependency on
the initialization, visiting a global minimum eventually. The analysis of the convergence behavior of
LD is often based on viewing LD as a discretization of the associated stochastic differential equation
(SDE), known as the overdamped Langevin diffusion or the first-order Langevin diffusion,

dX(t) = −∇F (X(t))dt+
√

2β−1dBt, (0.2)

where Bt is a d-dimensional standard Brownian motion (see e.g. [GM91]). Under some mild
assumptions on F , this SDE admits the following unique stationary distribution:

π(dx) = Γ−1e−βF (x)dx, (0.3)

where Γ > 0 is a normalizing constant. Note that overdamped Langevin diffusion is reversible in
the sense that if X(0) is distributed according to the stationary measure π, then (Xt)0≤t≤T and
(XT−t)0≤t≤T have the same law. It is known that the reversible Langevin algorithm converges to a
local minimum in time polynomial with respect to parameters β and d, the intuition being that the
expectation of the iterates follows the gradient descent dynamics which converges to a local minimum
(see e.g. [ZLC17, FGQ97]). It is also known that once Langevin algorithms arrive to a neighborhood
of a local optimum, they can spend exponentially many iterations in dimension to escape from the
basin of attraction of this local minimum. This behavior is known as “metastability" and has been
studied well (see e.g. [BGK05, BGK04, Ber13]).

Recently, [TLR18] provided a finer characterization of this metastability phenomenon. They showed
that for a given local optimum x∗, with high probability and arbitrary initialization, either LD
iterates arrive at a point outside an ε-neighborhood of this local minimum within a recurrence
time Trec = O

(
1
m log( 1

ε )
)
, where m is smallest eigenvalue of the Hessian ∇2F (x∗) at the local

minimum or they enter this ε-neighborhood by the recurrence time and stay there until a potentially
exponentially long escape time Tesc. The escape time Tesc measures how quickly the LD algorithm
can get away from a given neighborhood around a local minimum, therefore it can be viewed as a
measure of the effectiveness of LD for the search of a global minimizer, whereas the recurrence time
Trec can be viewed as the order of the time-scale for which search for local minima in the basin of
attraction of that minimum happens.

One popular non-reversible variant of overdamped Langevin that can improve its performance in
practice for a variety of applications (Section 4 in [LNP13]) is based on the underdamped Langevin
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diffusion, also known as the second-order Langevin diffusion ([Kra40]),

dV (t) = −γV (t)dt−∇F (X(t))dt+
√

2γβ−1dBt, (0.4)
dX(t) = V (t)dt, (0.5)

where X(t), V (t) ∈ Rd, and γ > 0 is known as the friction coefficient. It is known that under mild
assumption on F , the Markov process (X,V ) is ergodic and have a unique stationary distribution

π(dx, dv) = Γ−1
U e−β( 1

2‖v‖
2+F (x))dxdv, (0.6)

where ΓU > 0 is a normalizing constant. Hence, the marginal distribution in X of the Gibbs
distribution π(dx, dv) is the same as the invariant distribution (0.3) of the overdamped Langevin
dynamics (0.2). We refer the readers to [BCG08, CCBJ18, CCA+18, DRD20, EGZ19, MCC+19,
MSH02, Wu01, Vil09] for more on underdamped Langevin diffusions. The Euler discretization of
the underdamped Langevin diffusion is known as the inertial Langevin dynamics or the Hamilto-
nian Langevin Monte Carlo algorithm [DKPR87, Nea10]. [CCBJ18] introduced a more accurate
discretization of underdamped Langevin diffusion, where for any k ∈ N and any kη < t ≤ (k + 1)η,

dṼ (t) = −γṼ (t)dt−∇F (X̃(kη))dt+
√

2γβ−1dWt, dX̃(t) = Ṽ (t)dt.

Note that when t is between kη and (k + 1)η, the above diffusion process is an Ornstein-Uhlenbeck
process, which is a Gaussian process with explicit mean and covariance. [CCBJ18] showed that
(Vk, Xk) have the same distribution as (Ṽ (kη), X̃(kη)), where the discrete iterates (Vk, Xk), called
the underdamped Langevin dynamics (ULD)2 are generated as follows:

Vk+1 = ψ0(η)Vk − ψ1(η)∇F (Xk) +
√

2γβ−1ξk+1, (0.7)

Xk+1 = Xk + ψ1(η)Vk − ψ2(η)∇F (Xk) +
√

2γβ−1ξ′k+1, (0.8)

where (ξk+1, ξ
′
k+1) is a 2d-dimensional centered Gaussian vector so that (ξj , ξ

′
j) are i.i.d. and inde-

pendent of the initial condition, and for any fixed j, the random vectors ((ξj)1, (ξ
′
j)1), ((ξj)2, (ξ

′
j)2),

. . ., ((ξj)d, (ξ
′
j)d) are i.i.d. with the covariance matrix: C(η) =

∫ η
0

[ψ0(t), ψ1(t)]T [ψ0(t), ψ1(t)]dt,
where ψ0(t) = e−γt and ψk+1(t) =

∫ t
0
ψk(s)ds for every k ≥ 0. Recent work [GGZ18] showed

that ULD admits better non-asymptotic performance guarantees compared to known guarantees for
LD in the context of non-convex optimization when the objective satisfies a dissipativity condition.
Recent work also showed that ULD or alternative discretizations of the underdamped diffusion can
sample from the Gibbs distribution more efficiently than LD when F is globally strongly convex (see
e.g. [CCBJ18, DRD20, MS17]) or strongly convex outside a compact set (see e.g. [CCA+18]).

The second non-reversible variant of overdamped Langevin involves adding a drift term:

dX(t) = −AJ(∇F (X(t)))dt+
√

2β−1dBt, AJ := I + J, (0.9)

where J 6= 0 is a d × d anti-symmetric matrix, i.e. JT = −J and I is the d × d identity matrix,
and Bt is a standard d-dimensional Brownian motion. It can be shown that such a drift preserves
the stationary distribution (0.3) (Gibbs distribution) of the overdamped Langevin dynamics, and it
can lead to a faster convergence to the stationary distribution than the reversible Langevin diffusion
(the case J = 0), see e.g. [HHMS93, HHMS05, LNP13, Pav14, GM16] for details. Algorithms
based on (0.9) have been applied to sampling, see e.g. [FSS20, RBS16, RBS15, DLP16, DPZ17],
and non-convex optimization, see e.g. [HWG+20]. The Euler discretization of (0.9) leads to

Xk+1 = Xk − ηAJ(∇F (Xk)) +
√

2ηβ−1ξk, (0.10)

which we refer to as the non-reversible Langevin dynamics (NLD).

Contributions. In this paper, we investigate the metastability behavior of non-reversible Langevin
algorithms for non-convex objectives. We extend the results of [TLR18] to non-reversible Langevin
dynamics and show that for a given local minimum that is within an arbitrary distance r from
the initialization, with high probability, either ULD trajectory ends up somewhere outside an ε-
neighborhood of this local minimum within a recurrence time T Urec = O

(
| log(m)|√

m
log(r/ε)

)
or they

enter this neighborhood by the recurrence time and stay there for a potentially exponentially long
2This algorithm is also known as the kinetic Langevin Monte Carlo algorithm.
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escape time. The analogous result shown in [TLR18] for reversible LD requires a recurrence time
of Trec = O

(
1
m log(r/ε)

)
. This shows that underdamped dynamics requires a smaller recurrence

time by a square root factor in m (ignoring a log(m) factor). The difference is significant as the
smallest eigenvalue m of the Hessian matrix at a local optimum can be very small in a number of
applications, including deep learning (see e.g. [CCS+17, SBL16]). Since the recurrence time can be
viewed as a measure of the efficiency of the search of a local minimum [TLR18], our results suggest
that ULD operates on a faster time-scale to locate a local minimum. Similar results are obtained for
NLD. In order to obtain the results, we first give a refined characterization of the dynamics around
a local minimum by linearizing the gradients. The analysis here is more complicated compared
to the LD case in [TLR18] due to non-reversibility, and requires us to develop new estimates, e.g.
Lemma 2, where the eigenvalue and the norm estimates require a significant amount of work because
the forward iterations correspond to non-symmetric matrices Hγ (defined in (1.3)) and achieving the
acceleration behavior requires careful estimates. The analysis here also requires us to establish novel
uniform L2 bounds for NLD in both continuous and discrete times.

In addition, we consider the mean exit time from the basin of attraction of a local minimum for
non-reversible algorithms. We focus on the double-well example which has been the recent focus
of the literature [BR16, LMS19] as it is the simplest non-convex function that gives intuition about
the more general case and for which mean exit time has been studied in continuous time. Our
analysis shows that non-reversible dynamics can exit the basin of attraction of a local minimum
faster under some conditions and characterizes the improvement for both ULD and NLD compared
to LD when the parameters of these algorithms are chosen appropriately. These results support
the numerical evidence that non-reversible algorithms can explore the state space more efficiently
[CDC15, CFG14, GM16] and bridges a gap between the theory and practice of Langevin algorithms.

Other related work. Langevin dynamics has been studied under simulated annealing algorithms in
the optimization, physics and statistics literature and its asymptotic convergence guarantees are well
known (see e.g. [Gid85, Haj85, GM91, KGV83, BT93, BLNR15, BM99]). However, finite-time
performance guarantees for LD have not been studied until more recently (see e.g. [Dal17, DM17]).
Non-asymptotic performance guarantees for stochastic gradient versions have also been studied.
See also e.g. [RRT17, ZLC17, CDT20] for related results. [XCZG18] shows that it suffices to have
O(nd/(λε)) gradient evaluations or O(d7/(λ5ε5)) stochastic gradient evaluations to compute an
almost minimizer where λ is a spectral gap parameter that is exponentially small in the dimension d
and ε is the target accuracy. These results improve upon the existing results from the seminal work
of [RRT17]. [EMS18] also considered Euler discretization of general dissipative diffusions in the
non-convex setting, proved a 1/ε2 convergence rate, showing that different diffusions are suitable
for minimizing different convex/non-convex objective functions f . Their expected suboptimality
bound also generalizes the results in [RRT17]. See also [NŞR19] for non-asymptotic guarantees for
non-convex optimization using Lévy-driven Langevin dynamics proposed in [Şim17].

Notations. Throughout the paper, for any x, y ∈ R, we use the notation x ∧ y to denote min{x, y}
and x ∨ y to denote max{x, y}. For any n× n matrix A, we use λi(A), 1 ≤ i ≤ n, to denote the n
eigenvalues of A. We also assume that H is the Hessian matrix∇2F evaluated at the local minimum
x∗, and is positive definite. The norm ‖ · ‖ denotes the 2-norm of a vector and the (spectral norm)
2-norm of a matrix.

1 Main results

In this section, we will study the recurrence time T Urec of underdamped Langevin dynamics (ULD),
and the corresponding time-scale T Jrec for non-reversible Langevin dynamics (NLD). We will show
that recurrence time of underdamped and non-reversible Langevin algorithms will improve upon
that of reversible Langevin algorithms in terms of its dependency to the smallest eigenvalue of the
Hessian at a local minimum. For non-convex optimizations, our results suggest that for ULD and
NLD, searching for a local minimum happens on a faster time scale compared to the reversible LD.
For the rest of the paper, we impose the following assumptions.

Assumption 1. We impose the following assumptions.

(i) The functions f(·, z) are twice continuously differentiable, non-negative valued, and
|f(0, z)| ≤ A, ‖∇f(0, z)‖ ≤ B, and

∥∥∇2f(0, z)
∥∥ ≤ C, uniformly in z ∈ Z for some

A,B,C > 0.
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(ii) f(·, z) have Lipschitz-continuous gradients and Hessians, uniformly in z ∈ Z , there exist
constants L,M > 0 so that for all x, y ∈ Rd,

‖∇f(x, z)−∇f(y, z)‖ ≤M‖x−y‖,
∥∥∇2f(x, z)−∇2f(y, z)

∥∥ ≤ L‖x−y‖. (1.1)

(iii) The empirical risk F (·) is (m, b)-dissipative: 〈x,∇F (x)〉 ≥ m‖x‖2 − b.

(iv) The initialization satisfies ‖X0‖ ≤ R :=
√
b/m.

For the Hessian H at a fixed local minimum of F defined in (0.1), it is a d× d symmetric positive
definite matrix with eigenvalues {λi}di=1 in increasing order, i.e.3

m = λ1 ≤ λ2 ≤ · · · ≤ λd = M. (1.2)

1.1 Underdamped Langevin dynamics

Recall the underdamped Langevin (0.7)-(0.8). Define

Hγ :=

[
γI H
−I 0

]
, (1.3)

where we recall that H is the Hessian matrix ∇2F evaluated at the local minimum x∗. In the first
lemma, we provide an estimate on ‖e−tHγ‖. This is the key result that allows the underdamped
dynamics to achieve faster rate compared with overdamped dynamics.

Lemma 2 (Estimate on ‖e−tHγ‖). (i) If γ ∈ (0, 2
√
m), then

∥∥e−tHγ∥∥ ≤ Cε̂e
−
√
m(1−ε̂)t, where

Cε̂ := 1+M√
m(1−(1−ε̂)2)

, and ε̂ := 1− γ
2
√
m
∈ (0, 1), wherem,M are defined in (1.2). (ii) If γ = 2

√
m,

then we have
∥∥e−tHγ∥∥ ≤√CH + 2 + (m+ 1)2t2 · e−

√
mt, where CH := maxi:λi>m

(1+λi)
2

λi−m .

We investigate the behavior around local minima for the underdamped Langevin dynamics (0.7)-(0.8)
by studying recurrence and escape times with the choice of the friction coefficient γ = 2

√
m which is

optimal for ‖e−tHγ‖. We first recall the Lambert W function W (x) which is defined via the solution
of the algebraic equation W (x)eW (x) = x. When −e−1 ≤ x < 0, W (x) has two branches, the
upper branch W0(x) and the lower branch W−1(x), see e.g. [CGH+96].

Theorem 3. Fix γ = 2
√
m, δ ∈ (0, 1) and r > 0. For a given ε satisfying 0 < ε < εU =

min {O(r),O(m)} , we define the recurrence time

T Urec = − 1√
m
W−1

(
−ε2
√
m

8r2
√
CH + 2 + (m+ 1)2

)
= O

(
| log(m)|√

m
log
(r
ε

))
,

and the escape time T Uesc := T Urec + T , for any arbitrary T > 0. Consider an arbitrary initial point x
for the underdamped Langevin dynamics and a local minimum x∗ at a distance at most r. Assume
that the stepsize η satisfies

η ≤ ηU = min

{
O(ε),O

(
m2βδε2

(md+ β)T Urec

)
,O
(

m5/4δ

(d+ β)1/2(T Uesc)
1/2

)
,O(m5/2)

}
,

and β satisfies

β ≥ βU = max

{
Ω

(
d+ log((T + 1)/δ)

mε2

)
,Ω

(
dηm1/2 log(δ−1T Urec/η)

ε2

)}
,

for any realization of training data z, with probability at least 1 − δ with respect to the Gaussian
noise, at least one of the following events will occur: (1) ‖Xk − x∗‖ ≥ 1

2

(
ε+ re−

√
mkη

)
for some

k ≤ η−1T Urec; (2) ‖Xk − x∗‖ ≤ ε+ re−
√
mkη for every η−1T Urec ≤ k ≤ η−1T Uesc.

3Here, we abuse the notation, and for simplicity we use the same letter m to denote the smallest eigenvalue
in (1.2) and in the dissipativity constant in Assumption 1 (iii). If these two constants are different, the constant
m in our main results can be taken as the former, i.e. the smallest eigenvalue of the Hessian at x∗.

5



The expressions of technical constants in the statement of Theorem 3, including εU , ηU and βU , can
be found in the proof of Theorem 3 in the Supplementary File.

In many applications, the eigenvalues of the Hessian at local extrema often concentrate around zero
and the magnitude of the smallest eigenvalue m of the Hessian can be very small (see e.g. [CCS+17,
SBL16]). In [TLR18], the overdamped Langevin algorithm is analyzed and the recurrence time
Trec = O

(
1
m log( rε )

)
, while our recurrence time T Urec = O

(
| log(m)|√

m
log( rε )

)
for the underdamped

Langevin algorithm, which has a square root factor improvement. Since the recurrence time can be
viewed as a measure of the efficiency of the search of a local minimum, our result suggests that ULD
require smaller recurrence time, so they operate on a faster time scale to locate a local minimum.

1.2 Non-reversible Langevin dynamics

We investigate the behavior around local minima for the non-reversible Langevin dynamics (0.10)
by studying recurrence and escape times. One can expect that the convergence behavior of the non-
reversible Langevin diffusion is controlled by the decay of

∥∥e−tAJH∥∥ in time t, which is related to the
real part of the eigenvalues λJi := Re (λi(AJH)) indexed with increasing order and their multiplicity.
It has been shown that for any anti-symmetric matrix J , we have m = λ1 ≤ λJ1 ≤ λJd ≤ λd = M,
and m = λ1 = λJ1 if a very special condition holds. See Theorem 3.3. in [HHMS93] for details.
This suggests generically non-reversible Langevin leads to a faster exponential decay compared to
reversible Langevin, i.e λJ1 > λ1. In addition, we have the following estimates: there exists a positive
constant CJ that depends on J such that∥∥e−tAJH∥∥ ≤ CJ(1 + tn1−1)e−tλ

J
1 , (1.4)

where n1 is the maximal size of a Jordan block of AJH corresponding to the eigenvalue λJ1 . It
follows that for any ε̃ > 0, there exist some constant CJ(ε̃) that depends on ε̃ and J such that for
every t ≥ 0,

‖e−tAJH‖ ≤ CJ(ε̃)e−tmJ (ε̃), mJ(ε̃) := λJ1 − ε̃. (1.5)

Now we state the main result on the metastability of non-reversible Langevin dynamics (0.10).
Theorem 4. Fix δ ∈ (0, 1) and r > 0. For a given ε satisfying 0 < ε < εJ =

min
{
O
(
mJ (ε̃)
CJ (ε̃)

)
,O(rCJ(ε̃))

}
, we define the recurrence time

T Jrec :=
2

mJ(ε̃)
log

(
8r

CJ(ε̃)ε

)
= O

(
1

mJ(ε̃)
log

(
r

CJ(ε̃)ε

))
,

and the escape time T Jesc := T Jrec + T for any arbitrary T > 0. For any initial point x and a local
minimum x∗ at a distance at most r. Assume the stepsize

η ≤ ηJ = min

{
O (ε) ,O

(
δε2m3

(m+ β−1d)T Jrec

)
,O
(

δ2m3

(d+mβ + dm3)T Jesc

)}
,

and β satisfies

β ≥ βJ = max

{
Ω

(
CJ(ε̃)2

mJ(ε̃)ε2

(
d+ log

(
T + 1

δ

)))
,Ω

(
dη log(δ−1T Jrec/η)

ε2

)}
,

for any realization of training data z, with probability at least 1 − δ with respect to the Gaussian
noise, at least one of the following events will occur: (1) ‖Xk−x∗‖ ≥ 1

2

(
ε+ re−mJ (ε̃)kη

)
for some

k ≤ η−1T Jrec; (2) ‖Xk − x∗‖ ≤ ε+ re−mJ (ε̃)kη for every η−1T Jrec ≤ k ≤ η−1T Jesc.

The expressions of technical constants in the statement of Theorem 4, including εJ , ηJ and βJ , can
be found in the proof of Theorem 4 in the Supplementary File.

In [TLR18], the overdamped Langevin algorithm is used and the recurrence time Trec =

O
(

1
m log( rε )

)
, while our recurrence time T Jrec = O

(
1

mJ (ε̃) log( r
CJ (ε̃)ε )

)
for the non-reversible

Langevin algorithm, and T Jrec = O
(

1
mJ (ε̃) log( rε )

)
when CJ(ε̃) = O(1), which has the improve-

ment over the overdamped Langevin algorithm since mJ(ε̃) > m in general.
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One could also ask what is the choice of the matrix J in NLD. A natural idea is to maximize the
exponent λJ1 that appears in Equation (1.4), i.e., let Jopt := arg maxJ=−JT λ

J
1 . A formula for Jopt

and an algorithm to compute it is known (see Fig. 1 in [LNP13]), however this is not practical to
compute for optimization purposes as it requires the knowledge of the eigenvectors and eigenvalues
of the matrix H which is generally unknown in practice. Nevertheless, Jopt gives information
about the extent of acceleration that can be obtained. It is known that λJopt1 = Tr(H)

d , as well as a
characterization of the constants CJopt and n1 arising in Equation (1.4) when J = Jopt (see Equation
(46) in [LNP13]). We see that md ≤ Tr(H) ≤ M(d − 1) + m as the smallest and the largest
eigenvalue of H is m and M . Therefore, we have

1 ≤ λ
Jopt
1

λ1
≤ M(d− 1) +m

md
.

The acceleration is not possible (the ratio above is 1) if and only if all the eigenvalues of H are the
same and are equal to m; i.e. when M = m and Tr(H) = md. Otherwise, Jopt can accelerate by a
factor of M(d−1)+m

md which is on the order of the condition number κ := M/m up to a constant d−1
d

which is close to one for d large. In practice, one can also use some easily constructed choices of
J as suggested in the literature (see e.g. [HHMS93]), and run the NLD algorithm using αJ (which
is still anti-symmetric), where α is a constant that can be tuned and it represents the magnitude of
non-reversible purturbations. For example, one can choose J to be a circulant matrix, e.g.,
−J∇F (x) =

(
∂xdF (x)− ∂x2

F (x), ∂x1
F (x)− ∂x3

F (x), . . . , ∂xd−1
F (x)− ∂x1

F (x)
)
,

and this product is easy to implement by shifting the gradient vector in the memory by one unit to the
left and one unit to the right and then taking the difference.

2 Exit time for non-reversible Langevin dynamics

For convergence to a small neighborhood of the global minimum, Langevin trajectory needs to not
only escape from the neighborhood of a local optimum but also exit the basin of attraction of the
current minimum and transit to the basin of attraction of other local minima including the global
minima. In particular, the convergence rate to a global minimum is controlled by the mean exit time
from the basin of attraction of a local minima in a potential landscape F (·) in (0.2). In this section
we will show that non-reversible Langevin dynamics can lead to faster (smaller) exit times.

Throughout this section, we consider a double-well potential F : Rd → R, which has two local
minima a1, a2 with F (a2) < F (a1). The two minima are separated by a saddle point σ. See Figure A
in the Supplementary File. In addition to Assumption 1 (i)-(iii), we make generic assumptions that
F ∈ C3, the Hessian of F at each of the local minima is positive definite, and that the Hessian of F
at the saddle point σ has exactly one strictly negative eigenvalue (denoted as −µ∗(σ) < 0) and other
eigenvalues are all positive. For the overdamped Langevin diffusion, it is known ([BGK04, Ber13])
that the expected time of the process starting from a1 and hitting a small neighborhood of a2 is:

E
[
θβa1→a2

]
= [1 + oβ(1)] · 2π

µ∗(σ)
· eβ[F (σ)−F (a1)] ·

√
|det Hess F (σ)|
det Hess F (a1)

. (2.1)

Here, oβ(1) → 0 as β → ∞, det Hess F (x) stands for the determinant of the Hessian of F at
x, and −µ∗(σ) is the unique negative eigenvalue of the Hessian of F at the saddle point σ. This
formula is known as the Eyring-Kramers formula for reversible diffusions. Its rigorous proof was
first obtained by [BGK04] by a potential analysis approach, and then by [HKN04] through Witten
Laplacian analysis. We refer to [Ber13] for a survey on mathematical approaches to the Eyring-
Kramers formula. We note that in many practical applications, for instance in the training of neural
networks, the eigenvalues of the Hessian at local extrema concentrate around zero and the magnitude
of the eigenvalues m and µ∗(σ) can often be very small (see e.g. [SBL16, CCS+17]).

2.1 Underdamped Langevin dynamics

Denote Θβ
a1→a2 as the first time of that the underdamped diffusion (0.4)–(0.5) starting from a1 and

hitting a small neighborhood of a2. [BR16] (Remark 5.2) suggests that the expected exit time is:

E
[
Θβ
a1→a2

]
= [1 + oβ(1)] · 2π

µ∗
· eβ[F (σ)−F (a1)] ·

√
|det Hess F (σ)|
det Hess F (a1)

,
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where µ∗ is the unique positive eigenvalue of the matrix Ĥγ(σ) =

[
−γI −Lσ
I 0

]
, where Lσ is

the Hessian matrix of F at the saddle point σ. One can readily show that µ∗ is given by the positive

eigenvalue of the 2×2 matrix
[
−γ µ∗(σ)
1 0

]
,which implies that µ∗ = 1

2 ·
(√

γ2 + 4µ∗(σ)− γ
)
.

So if γ + µ∗(σ) < 1, then we have µ∗ > µ∗(σ) and therefore

lim
β→∞

E
[
Θβ
a1→a2

]/
E
[
θβa1→a2

]
= µ∗(σ)/µ∗ < 1. (2.2)

That is, the mean exit time for the underdamped diffusion is smaller compared with that of the
overdamped diffusion. Roughly speaking, the condition γ + µ∗(σ) < 1 says that if the curvature of
the saddle point in the negative descent direction is not too steep (i.e. if µ∗(σ) < 1), we can choose γ
small enough to accelerate the exit time of the reversible Langevin dynamics. Intuitively speaking, it
can be argued that the underdamped process can climb hills and explore the state space faster as it is
less likely to go back to the recent states visited due to the momentum term (see e.g. [BR16]). For
the discrete time dynamics, it is intuitive to expect that the exit time of the underdamped discrete
dynamics is close to that of the continuous time diffusion when the step size is small [BGG17], and
hence a similar result as (2.2) will hold for the discrete dynamics when γ + µ∗(σ) < 1.

To apply the results in [BGG17], we consider a sequence of bounded domains Dn indexed by n
so that the following conditions hold: first, the region Dn contains a1, a2, σ for large n; second, as
n increases, Dn increases to the set D∞ = Oc(a2) := Rd\O(a2), where O(a2) denotes a small
neighborhood of a2; third, the underdamped SDE (diffusion) is non-degenerate along the normal
direction to the boundary of Dn with probability one. Fix the parameters β and γ in the underdamped
Langevin dynamics. Denote Θ̂β,n

a1→a2 be the exit time of Xk (from the ULD dynamics) starting from
a1 and exiting domain Dn. Fix ε > 0. One can choose a sufficiently large n and choose a constant
η̃(ε, n, γ, β) so that for stepsize η ≤ η̃(ε, n, γ, β), we have∣∣∣E [Θ̂β,n

a1→a2

]
− E

[
Θβ
a1→a2

]∣∣∣ < 2ε. (2.3)

To see this, we use Theorems 3.9 and 3.11 in [BGG17]. Write θ̂β,na1→a2 as the exit time of Xk (from
the overdamped discrete dynamics) starting from a1 and exiting the domain Dn. Then one can also
expect that when n is large and the step size is small, the mean of θ̂β,na1→a2 will be close to E

[
θβa1→a2

]
,

the continuous exit time of the overdamped diffusion given in (2.1). See Proposition 6 in the next
section. It then follows from (2.2) and (2.3) that for large enough β, n, and sufficiently small stepsize
η, we obtain the acceleration in discrete time:

E
[
Θ̂β,n
a1→a2

]/
E
[
θ̂β,na1→a2

]
= O

(√
µ∗(σ)

)
< 1.

2.2 Non-reversible Langevin dynamics

[LMS19] (Theorem 5.2) showed that the expected time of the non-reversible diffusion X(t) in (0.9)
starting from a1 and hitting a small neighborhood of a2 is given by

E
[
τβa1→a2

]
= [1 + oβ(1)] · 2π

µ∗J
· eβ[F (σ)−F (a1)] ·

√
|det Hess F (σ)|
det Hess F (a1)

. (2.4)

Here, −µ∗J is the unique negative eigenvalue of the matrix AJ · Lσ, where Lσ := Hess F (σ),
the Hessian of F at the saddle point σ. We denote u for the corresponding eigenvector of AJLσ
for the eigenvalue −µ∗J < 0. and Lσ = STDS, for a real orthogonal matrix S, where D =
diag(µ1, µ2, . . . , µd) with µ1 < 0 < µ2 < . . . < µd being the eigenvalues of Lσ.
Proposition 5. We have µ∗J ≥ µ∗(σ). As a consequence,

lim
β→∞

E
[
τβa1→a2

]/
E
[
τβa1→a2

]
J=0

= µ∗(σ)/µ∗J ≤ 1. (2.5)

The equality is attained if and only if u is a singular vector of J satisfying Ju = 0.

Proposition 5 shows that if J is not singular, the non-reversible dynamics is generically faster than
the reversible dynamics in the sense of smaller mean exit times. This holds for the discrete dynamics
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as well, since the exit time for the discrete dynamics is close to that of the continuous dynamics for
sufficiently small stepsizes, see e.g. [GM05].

Next let us discuss the discrete dynamics (0.10). Unlike the underdamped diffusion which has a non-
invertible diffusion matrix, the non-reversible Langevin diffusion in (0.9) is uniformly elliptic. So to
show the discrete exit time is close to the continuous exit time for non-reversible Langevin dynamics,
we can apply the results in [GM05] and proceed as follows. Let Bn be the ball centered at zero with
radius n in Rd. For n sufficiently large, we always have a1, a2, σ ∈ Bn. Let D̄n = Bn \ O(a2),
where O(a2) denotes a small neighborhood of a2. It follows that the set D̄n is bounded for each
n, and it increases to the set Oc(a2) as n is sent to infinity. Write τ̂β,na1→a2 for the first time that the
discrete-time dynamics starting from a1 and exit the region D̄n. Then we can obtain from [GM05]
the following result, which implies the exit times of non-reversible Langevin dynamics is smaller
compared with that of reversible Langevin dynamics.
Proposition 6. Fix the antisymmetric matrix J , the temperature parameter β, and ε > 0. One can
choose a sufficiently large n and a constant η̄(ε, n, β) so that for stepsize η ≤ η̄(ε, n, β), we have∣∣E [τ̂β,na1→a2

]
− E

[
τβa1→a2

]∣∣ < 2ε.

It then follows from Proposition 5 that for large β we have

E
[
τ̂β,na1→a2

]/
E
[
τ̂β,na1→a2

]
J=0

< 1, (2.6)

provided that (Su)i 6= 0 for some i ∈ {2, . . . , d} which occurs if and only if u is a singular vector of
J satisfying Ju = 0.

3 Numerical Illustrations

Figure 1: Choice of algorithm
parameters and comparing ULD
and NLD.

Choice of algorithm parameters. In practice, for the NLD al-
gorithm, the matrix J can be chosen as a random anti-symmetric
matrix. For quadratic objectives, there is a formula for optimal
J matrix; see e.g. [LNP13]. For the ULD algorithm, we can take
the parameter γ = 2

√
m as predicted by our theory (Lemma 2)

for quadratics. On the top panel of Figure 1, we compare ULD
and NLD to LD for the double well example with random initial-
ization over 100 runs where J is chosen randomly and γ = 2

√
m.

In this simple example, we observe NLD and ULD have smaller
mean exit times (from a barrier) compared to LD.

Comparing ULD and NLD algorithms. In general, it is not
easy to compare the theoretical performance of ULD and NLD
algorithms. However, in some regimes, our theory predicts one is
better than the other. For example, when the smallest eigenvalue
m is close to the largest eigenvalue M , NLD will not improve
much upon LD, but ULD will improve upon LD if m is small
and ULD will be faster than NLD. In this case, ULD has better
performance than NLD. On the bottom panel of Figure 1, we
provide an example for training fully-connected neural networks
on MNIST where ULD was faster when both methods were tuned.

4 Conclusion
Langevin Monte Carlo are powerful tools for sampling from a target distribution as well as for
optimizing a non-convex objective. The classic Langevin dynamics (LD) is based on the first-order
Langevin diffusion which is reversible in time. We studied the two variants that are based on
non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and the Langevin
dynamics with a non-symmetric drift (NLD). We showed that both ULD and NLD can improve upon
the recurrence time for LD in [TLR18] and discussed the amount of improvement. We also showed
that non-reversible variants can exit the basin of attraction of a local minimimum faster when the
objective has two local minima separated by a saddle point and discussed the amount of improvement.
By breaking the reversibility in the Langevin dynamics, our results quantify the improvement in
performance and fill a gap between the theory and practice of non-reversible Langevin algorithms.
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Broader Impact

Langevin algorithms are core Markov Chain Monte Carlo (MCMC) methods for solving machine
learning problems. These methods arise in several contexts in machine learning and data science.
For example, they can be applied to Bayesian inference problems. They can also be used to solve
stochastic non-convex optimization problems including the challenging problems arising in deep
learning. Our paper argues that the non-reversible variants of the classical Langevin algorithms can
perform better by providing rigorous mathematical analysis, and bridges a gap between theory and
practice. Therefore, our paper contributes to the growing literature on theoretical foundations of
MCMC methods. Researchers in the machine learning community and beyond will benefit from this
research by having a better understanding of why non-reversible variants of the classical Langevin
algorithms can improve performance.
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