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Abstract

In this paper, we consider distributed algo-
rithms for solving the empirical risk mini-
mization problem under the master/worker
communication model. We develop a dis-
tributed asynchronous quasi-Newton algo-
rithm that can achieve superlinear conver-
gence. To our knowledge, this is the first dis-
tributed asynchronous algorithm with super-
linear convergence guarantees. Our algorithm
is communication-efficient in the sense that at
every iteration the master node and workers
communicate vectors of size O(p), where p is
the dimension of the decision variable. The
proposed method is based on a distributed
asynchronous averaging scheme of decision
vectors and gradients in a way to effectively
capture the local Hessian information of the
objective function. Our convergence theory
supports asynchronous computations subject
to both bounded delays and unbounded de-
lays with a bounded time-average. Unlike in
the majority of asynchronous optimization lit-
erature, we do not require choosing smaller
stepsize when delays are huge. We provide
numerical experiments that match our the-
oretical results and showcase significant im-
provement comparing to state-of-the-art dis-
tributed algorithms.
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1 Introduction

Many optimization problems in machine learning in-
cluding empirical risk minimization are based on pro-
cessing large amounts of data as an input. Due to
the advances in sensing technologies and storage ca-
pabilities the size of the data we can collect and store
increases at an exponential manner. As a consequence,
a single machine (processor) is typically not capable
of processing and storing all the samples of a dataset.
To solve such “big data” problems, we typically rely on
distributed architectures where the data is distributed
over several machines that reside on a communication
network (Bertsekas and Tsitsiklis (1989); Recht et al.
(2011)). In such modern architectures, the cost of com-
munication is typically orders of magnitude larger than
the cost of floating point operation costs and the gap
is increasing (Dongarra et al. (2014)). This requires de-
velopment of distributed optimization algorithms that
can find the right trade-off between the cost of local
computations and that of communication.

In this paper, we focus on distributed algorithms for
empirical risk minimization problems. The setting is as
follows: Given n machines, each machine has access to
mi samples {ξi,j}mi

j=1 for i = 1, 2, . . . , n. The samples
ξi,j are random variables supported on a set P ⊂ Rd.
Each machine has a loss function that is averaged over
the local dataset:

fi(x) =
1

mi

mi∑
j=1

φ(x, ξi,j) +
λ

2
‖x‖22

where the function φ : Rp × Rd → R is convex in x
for each ξ ∈ Rd fixed and λ ≥ 0 is a regularization
parameter. The goal is to develop communication-
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efficient distributed algorithms to minimize the overall
empirical loss defined by

x∗ := argmin
x∈Rp

f(x) := argmin
x∈Rp

1

n

n∑
i=1

fi(x). (1)

The communication model we consider is the central-
ized communication model, also known as the mas-
ter/worker model (Xiao et al. (2019)). In this model,
the master machine possesses a copy of the global
decision variable x which is shared with the worker ma-
chines. Each worker performs local computations on its
local data which is then communicated to the master
node to update the decision variable. Communications
can be synchronous or asynchronous, resulting in differ-
ent types of optimization algorithms and convergence
guarantees. The merit of synchronization is that it
prevents workers from using obsolete information and,
thereby, from submitting a low quality update of pa-
rameters to the master. However all the nodes have
to wait for the slowest worker, which leads to unneces-
sary overheads. Asynchronous algorithms do not suffer
from this issue, maximizing the efficiency of the workers
while minimizing the system overheads. Asynchronous
algorithms are particularly preferable over networks
with heterogeneous machines with different memory
capacities, work overloads, and processing capabilities.

There has been a number of distributed algorithms
suggested in the literature to solve the empirical risk
minimization problem (1) based on primal first-order
methods (Vanli et al. (2016); Gürbüzbalaban et al.
(2017); Cutkosky and Busa-Fekete (2018)), their accel-
erated or variance-reduced versions (Lee et al. (2017);
Wai et al. (2018a,b); Leblond et al. (2017); Pedregosa
et al. (2017)), lock-free parallel methods (Recht et al.
(2011); Peng et al. (2016)), coordinate descent-based ap-
proaches (Xiao et al. (2019); Takáč et al. (2015); Yang
(2013); Bianchi et al. (2015)), dual methods (Agarwal
and Duchi (2011); Yang (2013)), primal-dual methods
(Xiao et al. (2019); Smith et al. (2016); Ma et al. (2015);
Bianchi et al. (2015); Chen et al. (2018)), distributed
ADMM-like methods (Zhang and Kwok (2014)) as well
as quasi-Newton approaches (Eisen et al. (2017); Lee
et al. (2018)), inexact second-order methods (Shamir
et al. (2014); Reddi et al. (2016); Zhang and Lin (2015);
Wang et al. (2017); Dünner et al. (2018); Gürbüzbal-
aban et al. (2015)) and general-purpose frameworks
for distributed computing environments (Smith et al.
(2016); Ma et al. (2015)) both in the asynchronous and
synchronous setting. The efficiency of these algorithms
is typically measured by the communication complexity
which is defined as the equivalent number of vectors in
Rp sent or received across all the machines until the
optimization algorithm converges to an ε-neighborhood
of the optimum value. Lower bounds on the communi-
cation complexity have been derived by Arjevani and

Shamir (2015) as well as some linearly convergent algo-
rithms achieving these lower bounds (Zhang and Lin
(2015); Lee et al. (2017)). However, in an analogy to the
lower bounds obtained by Nemirovskii et al. (1983) for
first-order centralized algorithms, the lower bounds for
the communication complexity are only effective if the
dimension p of the problem is allowed to be larger than
the number of iterations. This assumption is perhaps
reasonable for very large scale problems where p can be
billions, however it is clearly conservative for moderate
to large-scale problems where p is not as large.

Contributions: Most existing state-of-the-art
communication-efficient algorithms for strongly con-
vex problems share vectors of size O(p) at every itera-
tion while having linear convergence guarantees. In this
work, we propose the first communication-efficient asyn-
chronous optimization algorithm that can achieve local
superlinear convergence for solving the empirical risk
minimization problem under the master/worker com-
munication model. Our algorithm is communication-
efficient in the sense that it also shares vectors of size
O(p). Our theory supports asynchronous computations
subject to both bounded delays and unbounded delays
with a bounded time-average. We provide numerical
experiments that illustrate our theory and practical
performance. The proposed method is based on a dis-
tributed asynchronous averaging scheme of decision vec-
tors and gradients in a way to effectively capture the lo-
cal Hessian information. Our proposed algorithm, Dis-
tributed Averaged Quasi-Newton (DAve-QN) is inspired
by the Incremental Quasi-Newton (IQN) method pro-
posed by Mokhtari et al. (2018a) which is a determinis-
tic incremental algorithm based on the BFGS method.
In contrast to the IQN method which is designed for cen-
tralized computation, our proposed scheme can be im-
plemented in asynchronous master/worker distributed
settings; allowing better scalability properties with par-
allelization, while being robust to delays of the workers.

Related work. Although the setup that we consider
in this paper is an asynchronous master/worker dis-
tributed setting, it also relates to incremental aggre-
gated algorithms (Roux et al. (2012); Defazio et al.
(2014a,b); Mairal (2015); Gürbüzbalaban et al. (2017);
Mokhtari et al. (2018b); Vanli et al. (2018)), as at
each iteration the information corresponding to one
of the machines, i.e., functions, is evaluated while the
variable is updated by aggregating the most recent in-
formation of all the machines. In fact, our method is
inspired by an incremental quasi-Newton method pro-
posed by Mokhtari et al. (2018a) and a delay-tolerant
method by Mishchenko et al. (2018). However, in
the IQN method, the update at iteration t is a func-
tion of the last n iterates {xt−1, . . . , xt−n}, while in
our asynchronous distributed scheme the updates are
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performed on delayed iterates {xt−dt1−1, . . . , xt−dtn−n}.
This major difference between the updates of these
two algorithms requires a challenging different analy-
sis. Further, our algorithm can be considered as an
asynchronous distributed variant of traditional quasi-
Newton methods that have been heavily studied in the
numerical optimization community (Goldfarb (1970);
Broyden et al. (1973a); Dennis and Moré (1974); Powell
(1976)). Also, there have been some works on decentral-
ized variants of quasi-Newton methods for consensus
optimization where communications are performed over
a fixed arbitrary graph where a master node is imprac-
tical or does not exist, this setup is also known as the
multi-agent setting (Nedic and Ozdaglar (2009); Man-
soori and Wei (2017)). The work proposed by Eisen
et al. (2017) introduces a linearly convergent decentral-
ized quasi-Newton method for decentralized settings.
Mansoori and Wei (2017) propose an asynchronous
Newton-based approach that solves a penalized version
of the problem whose solution lies in a O(α) neigh-
borhood of the optimal solution where α is a penalty
parameter. Their algorithm enjoys local superlinear
convergence guarantees to this neighborhood. We em-
phasize that our setup is different in the sense that we
have a star network topology obeying the master/slave
hierarchy. Furthermore, our asymptotic convergence
results are stronger than those available in the multi-
agent setting as we establish a superlinear convergence
rate for the proposed method to the global minimum
x∗ of the problem (1). There has also been recent
progress in solving distributed non-convex problems
with second-order methods. Among these the most
relevant to our paper are Şimşekli et al. (2018) which
proposes an asynchronous-parallel stochastic L-BFGS
method and the DINGO method (Crane and Roosta
(2019)). DINGO is a Newton-type method that opti-
mizes the gradient’s norm as a surrogate function with
linear convergence guarantees to a local minimum for
non-convex objectives that satisfy an invexity property.

Outline. In Section 2.1, we review the update of the
BFGS algorithm that we build on our distributed quasi-
Newton algorithm. We formally present our proposed
DAve-QN algorithm in Section 2.2. We then provide
our theoretical convergence results for the proposed
DAve-QN method in Section 3. Numerical results are
presented in Section 4. Finally, we give a summary of
our results and discuss future work in Section 5.

2 Algorithm

2.1 Preliminaries: The BFGS algorithm

The update of the BFGS algorithm for minimizing a
convex smooth function f : Rp → R is given by

xt+1 = xt − ηt(Bt+1)−1∇f(xt), (2)

where Bt+1 is an estimate of the Hessian ∇2f(xt) at
time t and ηt is the stepsize (see e.g. Nocedal and
Wright (2006)). The idea behind the BFGS (and, more
generally, behind quasi-Newton) methods is to compute
the Hessian approximation Bt+1 using only first-order
information. Like Newton methods, BFGS methods
work with stepsize ηt = 1 when the iterates are close
to the optimum. However, at the initial stages of the
algorithm, the stepsize is typically determined by a line
search for avoiding the method to diverge.

A common rule for the Hessian approximation is to
choose it to satisfy the secant condition Bt+1st+1 =
yt+1,where st+1 = xt − xt−1, and yt+1 = ∇f(xt) −
∇f(xt−1) are called the variable variation and gradient
variation vectors, respectively. The Hessian approx-
imation update of BFGS which satisfies the secant
condition can be written as a rank-two update

Bt+1 = Bt + Ut+1 + Vt+1,

Ut+1 =
yt+1(yt+1)T

(yt+1)T st+1
,

Vt+1 = −Btst+1(st+1)TBt

(st+1)TBtst+1
. (3)

Note that both matrices Ut and Vt are rank-one.
Therefore, the update (3) is rank two. Owing to this
property, the inverse of the Hessian approximationBt+1

can be computed at a low cost of O(p2) arithmetic it-
erations based on the Woodbury-Morrison formula,
instead of computing the inverse matrix directly with
a complexity of O(p3). For a strongly convex function
f with the global minimum x∗, a classical convergence
result for the BFGS method shows that the iterates gen-
erated by BFGS are superlinearly convergent (Broyden
et al. (1973b)), i.e. limt→∞

‖xt+1−x∗‖
‖xt−x∗‖ = 0. There are

also limited-memory BFGS (L-BFGS) methods that
require less memory (O(p)) at the expense of having
a linear (but not superlinear) convergence (Nocedal
and Wright (2006)). Our main goal in this paper is
to design a BFGS-type method that can solve prob-
lem (1) efficiently with superlinear convergence in an
asynchronous setting under the master/slave communi-
cation model. We introduce our proposed algorithm in
the following section.

2.2 A Distributed Averaged Quasi-Newton
Method (DAve-QN)

In this section, we introduce a BFGS-type method
that can be implemented in a distributed setting (mas-
ter/slave) without any central coordination between
the nodes, i.e., asynchronously. To do so, we consider a
setting where n worker nodes (machines) are connected
to a master node. Each worker node i has access to a
component of the global objective function, i.e., node i
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has access only to the function fi. The decision vari-
able stored at the master node is denoted by xt at time
t. At each moment t, dti denotes the delay in commu-
nication with the i-th worker, i.e., the last exchange
with this worker was at time t− dti. For convenience,
if the last communication was performed exactly at
moment t, then we set dti = 0. In addition, Dt

i denotes
the double delay in communication, which relates to
the penultimate communication and can be expressed
as follows:

Dt
i = dti + d

t−dt
i−1

i + 1.

Note that the time index t increases if one of the workers
performs an update. For example, if worker i commu-
nicates with the master at iterations 5, 8 and 13, then
we have d9i = 1, d7i = 2, D9

i = 4.

Every worker node i has two copies of the decision
variable corresponding to the last two communications
with the master, i.e. node i possesses xt−dt

i and zti :=

xt−Dt
i . Since there has been no communication after

t− dti, we will clearly have

z
t−dt

i
i = zti = xt−Dt

i . (4)

We are interested in designing a distributed version of
the BFGS method described in Section 2.1, where each
node at time t has an approximation Bt

i to the local
Hessian (Hessian matrix of fi) where Bt

i is constructed
based on the local delayed decision variables xt−dt

i and
zti, and therefore the local Hessian approximation Bt

i

will also be outdated, i.e. it will satisfy

Bt
i = B

t−dt
i

i . (5)

An instance of the setting that we consider in this paper
is illustrated in Figure 1. At time t, one of the workers,
say it, finishes its task and sends a group of vectors
and scalars (that we will precise later) to the master
node, avoiding communication of any p× p matrices as
it is assumed that this would be prohibitively expensive
communication-wise. Then, the master node uses this
information to update the decision variable xt using
the new information of node it and the old information
of the remaining workers. After this process, master
sends the updated information to node it.

We define the aggregate Hessian approximation as

Bt :=
n∑

i=1

Bt
i =

n∑
i=1

B
t−dt

i
i (6)

where we used (5). In addition, we introduce

ut :=
n∑

i=1

Bt
iz

t
i =

n∑
i=1

B
t−dt

i
i z

t−dt
i

i ,

gt :=
n∑

i=1

∇fi(z
t
i) =

n∑
i=1

∇fi(z
t−dt

i
i ), (7)

Master

Worker 1 Worker it Worker n
f1

xt Δu,y,q, α, β

z
t−dt

1
1 z

t−dt
n

nztit

fit

Bt
itB

t−dt
1

1 B
t−dt

n
n

xtUpdate

fn

Figure 1: Asynchronous communication scheme used
by the proposed algorithm.

as the aggregate Hessian-variable product and aggregate
gradient respectively where we made use of the iden-
tities (4)–(5). All these vectors and matrices are only
available at the master node since it requires access to
the information of all the workers.

Given that at step t+1 only a single index it is updated,
using the identities (4)–(7), it follows that the master
has the update rules

Bt+1 = Bt +
(
Bt+1

it
−Bt

it

)
= Bt +

(
Bt+1

it
−B

t−dt
i

it

)
,

(8)

ut+1 = ut +
(
Bt+1

it
zt+1
it

−Bt
itz

t
it

)
= ut +

(
Bt+1

it
xt−dt

it −B
t−dt

it
it

xt−Dt
it

)
, (9)

gt+1 = gt +
(∇fit(z

t+1
it

)−∇fit(z
t
it)

)
= gt +

(
∇fit(x

t−dt
it )−∇fit(x

t−Dt
it )

)
. (10)

We observe that, only Bt+1
it

and ∇fit(z
t+1
it

) =

∇fit(x
t−dt

it ) are required to be computed at step t+1.
The former is obtained by the standard BFGS rule
applied to fi carried out by the worker it:

Bt+1
it

= Bt
it +

yt+1
it

(yt+1
it

)�

αt+1
− qt+1

it
(qt+1

it
)�

βt+1
(11)

with

αt+1 := (yt+1
it

)�st+1
it

,

yt+1
it

:= zt+1
it

− ztit = xt−dt
it − xt−Dt

it , (12)

qt+1
it

:= Bt
its

t+1
it

,

βt+1 := (st+1
it

)�Bt
its

t+1
it

= (st+1
it

)�qt+1
it

. (13)

Then, the master computes the new iterate as xt+1 =
(Bt+1)−1

(
ut+1 − gt+1

)
and sends it to worker it. For

the rest of the workers, we update the time counter with-
out changing the variables, so zt+1

i = zti and B
t+1
i = Bt

i
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for i 6= it. Although, updating the inverse (Bt)−1 may
seem costly at first glance, in fact it can be computed
efficiently in O(p2) iterations, similar to standard im-
plementations of the BFGS methods. More specifically,
if we introduce a new matrix

Ut+1 := (Bt)−1

−
(Bt)−1yt+1

it
(yt+1
it

)>(Bt)−1

(yt+1
it

)>st+1
it

+ (ytit)
>(Bt)−1yt+1

it

, (14)

then, by the Sherman-Morrison-Woodbury formula, we
have the identity

(Bt+1)−1 = Ut+1

+
Ut+1(B

t−dtit
it

st+1
it

)(B
t−dtit
it

st+1
it

)TUt+1

(st+1
it

)TB
t−dtit
it

st+1
it
−(B

t−dtit
it

st+1
it

)TUt+1(B
t−dtit
it

st+1
it

)
.

(15)

Therefore, if we already have (Bt)−1, it suffices to
have only matrix vector products. If we denote
vt+1 = (Bt)−1yt+1

it
and wt+1 := Ut+1qt+1

it
, then these

equations can be simplified as

Ut+1 = (Bt)−1 − vt+1(vt+1)>

αt+1 + (vt+1)>yt+1
it

,

vt+1 = (Bt)−1yt+1
it

, (16)

(Bt+1)−1 = Ut+1 +
wt+1(wt+1)>

βt+1 − (qt+1)>wt+1
,

wt+1 := Ut+1qt+1
it

, (17)

where αt+1, βt+1,qt+1
it

and yt+1
it

are defined by
(12)–(13).

The steps of the DAve-QN at the master node and the
workers are summarized in Algorithm 1. Note that
steps at worker i is devoted to performing the update
in (11) based on the update formula (16)–(17). In
the supplementary material, we also provide a simpli-
fied version of the DAve-QN algorithm that illustrates
the update rules from both the master’s side and the
workers’ side further.

Next, we define epochs {Tm}m by setting T1 = 0 and
the following recursion:

Tm+1 := min
{
t : each machine made at least

two updates on the interval [Tm, t]
}

= min{t : t−Dt
i ≥ Tm for all i = 1, ..,M}.

The proof of the following simple lemma is provided in
the supplementary material.
Lemma 1. Algorithm 1 iterates satisfy

xt =

(
1

n

n∑
i=1

Bt
i

)−1(
1

n

n∑
i=1

Bt
iz
t
i −

1

n

n∑
i=1

∇fi(zti)

)
.

The result in Lemma 1 shows that explicit relationship
between the updated variable xt based on the proposed
DAve-QN and the local information at the workers. We
will use this update to analyze DAve-QN.

Proposition 1 (Epochs’ properties). The following
relations between epochs and delays hold:

• For any t ∈ [Tm+1, Tm+2) and any i = 1, 2, . . . , n
one has t−Dt

i ∈ [Tm, t).

• If delays are uniformly bounded, i.e. there exists
a constant d such that dti ≤ d for all i and t, then
for all m we have Tm+1 − Tm ≤ D := 2d+ 1 and
Tm ≤ Dm.

• If we define average delays as dt := 1
n

∑n
i=1 d

t
i,

then dt ≥ (n − 1)/2. Moreover, assuming that
dt ≤ (n−1)/2+d for all t, we get Tm ≤ 4n(d+1)m.

Clearly, without visiting every function we can not
converge to x∗. Therefore, it is more convenient to
measure performance in terms of number of passed
epochs, which can be considered as our alternative
counter for time. Proposition 1 explains how one can
get back to the iterations time counter assuming that
delays are bounded uniformly or on average. However,
uniform upper bounds are rather pessimistic which
motivates the convergence in epochs that we consider.

3 Convergence Analysis

In this section, we study the convergence properties of
the proposed distributed asynchronous quasi-Newton
method. To do so, we first assume that the following
conditions are satisfied.

Assumption 1. The component functions fi are L-
smooth and µ-strongly convex, i.e., there exist positive
constants 0 < µ ≤ L such that, for all i and x, x̂ ∈ Rp

µ‖x− x̂‖2 ≤ (∇fi(x)−∇fi(x̂))T (x− x̂)

≤ L‖x− x̂‖2. (18)

Assumption 2. The Hessians ∇2fi are Lipschitz
continuous, i.e., there exists a positive constant L̃
such that, for all i and x, x̂ ∈ Rp, we can write
‖∇2fi(x)−∇2fi(x̂)‖ ≤ L̃‖x− x̂‖.

It is well-known and widely used in the literature on
Newton’s and quasi-Newton methods (Nesterov (2013);
Broyden et al. (1973b); Powell (1971); J. E. Dennis
and More (1974)) that if the function fi has Lipschitz
continuous Hessian x 7→ ∇2fi(x) with parameter L̃
then ∥∥∇2fi(x̃)(x− x̂)− (∇fi(x)−∇fi(x̂))

∥∥
≤ L̃‖x− x̂‖max {‖x− x̃‖, ‖x̂− x̃‖} , (19)
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Algorithm 1 (DAve-QN)

Master:

Initialize x0, B0
i , (B0)−1 = (

∑n
i=1 B

0
i )
−1,

u0 =
∑n
i=1 B

0
ix

0, g0 =
∑n
i=1∇fi(x0)

for t = 1 to T-1 do
If a worker sends an update:
Receive ∆ut, y, q, αt, βt from it
ut = ut−1 + ∆ut

gt = gt−1 + y
vt = (Bt−1)−1y

Ut = (Bt−1)−1 − vtvt>

αt+vt>y
wt = Utq

(Bt)−1 = Ut + wtwt>

βt−qTwt

xt = (Bt)−1(ut − gt)
Send xt to the slave in return

end
Interrupt all slaves
Output xT

Slave i:

Initialize x0
i = x0, B0

i

while not interrupted by master do
Receive xt−D

t
i at moment t−Dt

i

Perform below steps by moment t− dti
zti = z

t−dti
i = xt−D

t
i

sti = s
t−dti
i = zt−d

t
i − z

t−Dt
i

i

yti = y
t−dti
i = ∇fi(xt−d

t
i)−∇fi(zti)

qti = q
t−dti
i = B

t−Dt
i

i s
t−dti
i

αt−d
t
i = ytTi sti

βt−d
t
i = (s

t−dti
i )TB

t−Dt
i

i sti

B
t−dti
i = B

t−Dt
i

i +
yt
iy

tT
i

αt−dt
i
− qt

iq
tT
i

βt−dt
i

∆ut−d
t
i = B

t−dti
i z

t−dti
i −B

t−Dt
i

i z
t−Dt

i
i

Send ∆ut−d
t
i ,y

t−dti
i ,q

t−dti
i , αt−d

t
i , βt−d

t
i to the

master at moment t− dti
end

for any arbitrary x, x̃, x̂ ∈ Rp. See, for instance,
Lemma 3.1 in Broyden et al. (1973b).
Lemma 2. Consider the DAve-QN algorithm summa-
rized in Algorithm 1. For any i, define the residual se-
quence for function fi as σti := max{‖zti−x∗‖, ‖z

t−Dt
i

i −
x∗‖} and set Mi = ∇2fi(x

∗)−1/2. If Assumptions 1
and 2 hold and the condition σti < µ/(3L̃) is satisfied
then a Hessian approximation matrix Bt

i and its last
updated version B

t−Dt
i

i satisfy

∥∥Bt
i−∇2fi(x

∗)
∥∥
Mi
≤

[[
1−αθt−D

t
i

i

2
] 1

2

+ α3σ
t−Dt

i
i

]
.∥∥∥Bt−Dt

i
i −∇2fi(x

∗)
∥∥∥
Mi

+α4σ
t−Dt

i
i , (20)

where α, α3, and α4 are some positive constants and

θ
t−Dt

i
i =

‖Mi(B
t−Dt

i
i −∇2fi(x

∗))s
t−Dt

i
i ‖

‖Bt−Dt
i

i −∇2fi(x∗)‖Mi
‖M−1

i s
t−Dt

i
i ‖

with the con-

vention that θt−D
t
i

i = 0 in the special case B
t−Dt

i
i =

∇2fi(x
∗).

Lemma 2 shows that, if we neglect the additive term
α4σ

t−Dt
i

i in (20), the difference between the Hessian
approximation matrix Bt

i for the function fi and its
corresponding Hessian at the optimal point ∇2fi(x

∗)
decreases by following the update of Algorithm 1. To
formalize this claim and show that the additive term
is negligible, we prove in the following lemma that the
sequence of errors ‖xt−x∗‖ converges to zero R-linearly

which also implies linear convergence of the sequence
σti .

Lemma 3. Consider the DAve-QN method outlined
in Algorithm 1. Further assume that the conditions
in Assumptions 1 and 2 are satisfied. Then, for any
r ∈ (0, 1) there exist positive constants ε(r) and δ(r)
such that if ‖x0−x∗‖ < ε(r) and ‖B0

i −∇2fi(x
∗)‖M <

δ(r) for M = ∇2fi(x
∗)−1/2 and i = 1, 2, . . . , n, the

sequence of iterates generated by DAve-QN satisfy

‖xt − x∗‖ ≤ rm‖x0 − x∗‖

for all t ∈ [Tm, Tm+1).

The result in Lemma 3 shows that the error for the
sequence of iterates generated by the DAve-QN method
converge to zero at least linearly in a neighborhood of
the optimal solution. Using this result, in the follow-
ing theorem we prove our main result, which shows a
specific form of superlinear convergence.

Remark. The convergence results in Lemma 3 are in
terms of the epochs Tm. This can be stated in terms of
upper bounds on the delays, dti or their average value
as they are controlled by the quantity Tm.

Theorem 1. Consider the proposed method outlined in
Algorithm 1. Suppose that Assumptions 1 and 2 hold.
Further, assume that the required conditions for the
results in Lemma 2 and Lemma 3 are satisfied. Then,
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the sequence of residuals ‖xt − x∗‖ satisfies

lim
t→∞

maxt∈[Tm+1,Tm+2) ‖xt − x∗‖
maxt∈[Tm,Tm+1) ‖xt − x∗‖

= 0.

The result in Theorem 1 shows that the maximum
residual in an epoch divided by the the maximum
residual for the previous epoch converges to zero. This
observation shows that there exists a subsequence of
residuals ‖xt−x∗‖ that converges to zero superlinearly.

Extension to non-strongly convex objectives:
For convex objectives f that are not strongly con-
vex, the Hessian matrix ∇2f(x) can be singular which
causes stability issues with the Hessian approximation
of BFGS-type methods. A popular approach to solve
this issue is to add a regularizing ε‖x‖2 term to the ob-
jective for an appropriately chosen ε > 0 that is small
enough. This leads to a strongly convex approximation
of the objective and regularizes the Hessian. With this
approach, our algorithm and analysis can be applied
to convex functions that are not strongly convex if the
domain is compact, following similar ideas to (Lessard
et al., 2016, Section 5.4).

4 Experiments

We conduct our experiments on four datasets (covtype,
SUSY, mnist8m, cifar10) from the LIBSVM library
(Chang and Lin (2011)).1 For the first two datasets,
the objective considered is a binary logistic regression
problem f(x) = 1

n

∑n
i=1 log(1 + exp(−biaTi x) + λ

2 ‖x‖
2

where ai ∈ Rp are the feature vectors and bi ∈ {−1,+1}
are the labels. The other two datasets are about multi-
class classification instead of binary classification. For
comparison, we used two other algorithms designed for
distributed optimization:

• Distributed Average Repeated Proximal Gradient
(DAve-RPG, Mishchenko et al. (2018)) . It is
a recently proposed competitive state-of-the-art
asynchronous method for first-order distributed
optimization, numerically demonstrated to out-
perform incremental aggregated gradient meth-
ods (Gürbüzbalaban et al. (2017); Vanli et al.
(2018)) and synchronous proximal gradient meth-
ods (Mishchenko et al. (2018)).

• Distributed Approximate Newton (DANE,
Shamir et al. (2014)). This is a well-known
Newton-like method that does not require a
parameter server node, but performs reduce
operations at every step.

1We use all the datasets without any pre-processing
except for the smaller-scale covtype dataset, which we
enlarged 5 times for bigger scale experiments using the
approach in Wang et al. (2017).

• Globally Improved Approximate Newton
(GIANT, Wang et al. (2018)). It is a distributed
synchronous communication-efficient Newton-type
method that reduces to the DANE method for
quadratic objectives. For more general smooth
objectives with a Lipschitz Hessian, it enjoys
a local linear-quadratic convergence rate. It
has also been shown in Wang et al. (2018) to
numerically outperform the DANE (Shamir et al.
(2014)), L-BFGS (Liu and Nocedal (1989)) and
Accelerated Gradient Descent (Nesterov (2013))
methods on a number of problems.

In our experiments, we did not implement algorithms
that require shared memory (such as ASAGA , Leblond
et al. (2017) or Hogwild!, Recht et al. (2011)) because
in our setting of master/worker communication model,
the memory is not shared. Since the focus of this paper
is mainly on asynchronous algorithms where the com-
munication delays is the main bottleneck, for fairness
reasons, we are also not comparing our method with
some other synchronous algorithms such as DISCO
(Zhang and Lin (2015)) that would not support asyn-
chronous computations. Our code is publicly available
at https://github.com/DAve-QN/source.

The experiments are conducted on XSEDE Comet
CPUs (Intel Xeon E5-2680v3 2.5 GHz)Towns et al.
(2014). For DAve-QN and DAve-RPG we build a clus-
ter of 17 processes in which 16 of the processes are
workers and one is the master. The DANE method
does not require a master so we use 16 workers for
its experiments. We split the data randomly among
the processes so that each has the same amount of
samples. In our experiments, Intel MKL 11.1.2 and
MVAPICH2/2.1 are used for the BLAS (sparse/dense)
operations and we use MPI programming compiled
with mpicc 14.0.2. Each experiment is repeated thirty
times and the average is reported.

For the methods’ parameters the best options provided
by the method authors are used. For DAve-QN, we
use an unit step size which is asymptotically optimal.
We observed that DAve-QN converged to the optimal
point for stepsize=1 (although sometimes progress was
a bit slower in the beginning) and therefore we used
it in all experiments. For DAve-RPG the stepsize 1

L
is used where L is found by a standard backtracking
line search similar to Schmidt et al. (2015). DANE
has two parameters, η and µ. As recommended by
the authors, we use η = 1 and µ = 3λ. We tuned λ
to the dataset, choosing λ = 1 for the mnist8m and
cifar10 datasets, λ = 0.001 for SUSY and λ = 0.1
for the covtype. The results we obtained were also
qualitatively similar, when we used the common choice
λ = 1/n for all the methods. Since DANE requires a
local optimization problem to be solved, we use SVRG

https://github.com/DAve-QN/source
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Figure 2: Expected suboptimality versus time. The first and second numbers indicated next to the name of the
datasets are the variables p and n respectively.

(Johnson and Zhang (2013)) as its local solver where
its parameters are selected based on the experiments
in Shamir et al. (2014).

We note that DAve-QN has a computation complexity
of O(p2) per iteration which is due to the matrix-vector
multiplications, a memory complexity of O(p2) because
of storing a p×p matrix on the workers and master and
a communication complexity of O(p) as it only requires
to send some scalars and vectors in Rp. More specif-
ically, DAve-QN exchanges 3p + 2 numbers (slave to
master) and p numbers (master to slave), whereas DAve-
RPG exchanges 2p numbers and DANE exchanges 4p
numbers (counting both slave and master side) which
are all O(p).

Our results are summarized in Figure 2 where we report
the average suboptimality versus time in a logarithmic
y-axis. For linearly convergent algorithms, the slope
of the performance curves determines the convergence
rate. The plots contain the error bars based on 5 runs.
Since we are using silent machines from XSEDE/Comet
that run an experiment in isolation, we do not see much
variability in the runs. DANE method is the slowest
on these datasets, but it does not need a master, there-
fore it can apply to multi-agent applications (Nedic
and Ozdaglar (2009)) where master nodes are often
not available. We observe that DAve-QN performs
significantly better on all the datasets except cifar10,
illustrating the superlinear convergence behavior pro-
vided by our theory compared to other methods. For
the cifar10 dataset, p is the largest and GIANT is the
fastest. Although DAve-QN starts faster than DAve-
RPG, DAve-RPG has a cheaper iteration complexity
(O(p) compared to O(p2) of DAve-QN) and becomes
eventually faster.

5 Conclusion and Future Work

In this paper, we focus on the problem of minimiz-
ing a large-scale empirical risk minimization in a dis-
tributed manner. We used an asynchronous architec-
ture which requires no global coordination between

the master node and the workers. Unlike distributed
first-order methods that follow the gradient direction
to update the iterates, we proposed a distributed av-
eraged quasi-Newton (DAve-QN) algorithm that uses
a quasi-Newton approximate Hessian of the workers’
local objective function to update the decision variable.
In contrast to second-order methods that require com-
putation of the local functions Hessians, the proposed
DAve-QN only uses gradient information to improve
the convergence of first-order methods in ill-conditioned
settings. Therefore, the computational cost of each iter-
ation of DAve-QN is O(p2), while the size of the vectors
that are communicated between the master and workers
is O(p). Our theoretical results show that the sequence
of iterates generated at the master node by following
the update of DAve-QN converges superlinearly to the
optimal solution when the objective functions at the
workers are smooth and strongly convex. Our results
hold for both bounded delays and unbounded delays
with a bounded time-average. Numerical experiments
illustrate the performance of our method.

The choice of the stepsize in the initial stages of the
algorithm is the key to get good overall iteration com-
plexity for second-order methods. Investigating several
line search techniques developed for BFGS and adapt-
ing it to the distributed asynchronous setting is a future
research direction of interest. Another promising di-
rection would be developing Newton-like methods that
can go beyond superlinear convergence while preserving
communication complexity. Finally, investigating the
dependence of the convergence properties on the sam-
ple size mi of each machine i would be interesting, in
particular one would expect the performance in terms
of communication complexity to improve if the sample
size of each machine is increased.

Acknowledgements

This work was supported in part by the U.S. NSF
awards NSF DMS-1723085, NSF CCF-1814888, NSF
CCF-1657175, NSERC Discovery Grants (RGPIN-



Running heading author breaks the line

06516, DGECR-00303), and the Canada Research
Chairs program. This work used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE)
Towns et al. (2014), which is supported by National
Science Foundation grant number ACI-1548562.

References

Agarwal, A. and Duchi, J. C. (2011). Distributed de-
layed stochastic optimization. In Shawe-Taylor, J.,
Zemel, R. S., Bartlett, P. L., Pereira, F., and Wein-
berger, K. Q., editors, Advances in Neural Informa-
tion Processing Systems 24, pages 873–881. Curran
Associates, Inc.

Arjevani, Y. and Shamir, O. (2015). Communication
complexity of distributed convex learning and opti-
mization. In Advances in Neural Information Pro-
cessing Systems, pages 1756–1764.

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Paral-
lel and distributed computation: numerical methods.
Prentice-Hall, Inc.

Bianchi, P., Hachem, W., and Iutzeler, F. (2015). A co-
ordinate descent primal-dual algorithm and applica-
tion to distributed asynchronous optimization. IEEE
Transactions on Automatic Control, 61(10):2947–
2957.

Broyden, C. G., Dennis Jr, J., and Moré, J. J. (1973a).
On the local and superlinear convergence of quasi-
newton methods. IMA Journal of Applied Mathe-
matics, 12(3):223–245.

Broyden, C. G., Jr., J. E. D., Wang, and More, J. J.
(1973b). On the local and superlinear convergence
of quasi-Newton methods. IMA J. Appl. Math,
12(3):223–245.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library
for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):27.

Chen, T., Giannakis, G., Sun, T., and Yin, W. (2018).
Lag: Lazily aggregated gradient for communication-
efficient distributed learning. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R., editors, Advances in Neural In-
formation Processing Systems 31, pages 5050–5060.
Curran Associates, Inc.

Crane, R. and Roosta, F. (2019). Dingo: Distributed
newton-type method for gradient-norm optimization.
arXiv preprint arXiv:1901.05134.

Cutkosky, A. and Busa-Fekete, R. (2018). Distributed
stochastic optimization via adaptive sgd. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 31, pages
1910–1919. Curran Associates, Inc.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014a).
Saga: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives. In
Advances in Neural Information Processing systems,
pages 1646–1654.

Defazio, A., Domke, J., and Caetano, T. (2014b).
Finito: A faster, permutable incremental gradient
method for big data problems. In Proceedings of the
31st international conference on machine learning
(ICML-14), pages 1125–1133.

Dennis, J. E. and Moré, J. J. (1974). A characterization
of superlinear convergence and its application to
quasi-newton methods. Mathematics of computation,
28(126):549–560.

Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Fal-
gout, R., Heroux, M., Hovland, P., Ng, E., Webster,
C., and Wild, S. (2014). Applied mathematics re-
search for exascale computing. Technical report,
Lawrence Livermore National Lab.(LLNL), Liver-
more, CA (United States).

Dünner, C., Lucchi, A., Gargiani, M., Bian, A., Hof-
mann, T., and Jaggi, M. (2018). A Distributed
Second-Order Algorithm You Can Trust. arXiv e-
prints, page arXiv:1806.07569.

Eisen, M., Mokhtari, A., and Ribeiro, A. (2017). Decen-
tralized quasi-Newton methods. IEEE Transactions
on Signal Processing, 65(10):2613–2628.

Goldfarb, D. (1970). A family of variable-metric meth-
ods derived by variational means. Mathematics of
computation, 24(109):23–26.

Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P.
(2015). A globally convergent incremental Newton
method. Mathematical Programming, 151(1):283–
313.

Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. A.
(2017). On the convergence rate of incremental ag-
gregated gradient algorithms. SIAM Journal on
Optimization, 27(2):1035–1048.

J. E. Dennis, J. and More, J. J. (1974). A characteriza-
tion of super linear convergence and its application to
quasi-Newton methods. Mathematics of computation,
28(126):549–560.

Johnson, R. and Zhang, T. (2013). Accelerating stochas-
tic gradient descent using predictive variance reduc-
tion. In Advances in Neural Information Process-
ing Systems 26, Lake Tahoe, Nevada, United States,
pages 315–323.

Leblond, R., Pedregosa, F., and Lacoste-Julien, S.
(2017). ASAGA: Asynchronous Parallel SAGA. In
Singh, A. and Zhu, J., editors, Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine



DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate

Learning Research, pages 46–54, Fort Lauderdale,
FL, USA. PMLR.

Lee, C.-p., Lim, C. H., and Wright, S. J. (2018). A
distributed quasi-Newton algorithm for empirical
risk minimization with nonsmooth regularization. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1646–1655. ACM.

Lee, J. D., Lin, Q., Ma, T., and Yang, T. (2017). Dis-
tributed stochastic variance reduced gradient meth-
ods by sampling extra data with replacement. Jour-
nal of Machine Learning Research, 18(122):1–43.

Lessard, L., Recht, B., and Packard, A. (2016). Analy-
sis and design of optimization algorithms via integral
quadratic constraints. SIAM Journal on Optimiza-
tion, 26(1):57–95.

Liu, D. C. and Nocedal, J. (1989). On the limited
memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Ma, C., Smith, V., Jaggi, M., Jordan, M., Richtárik, P.,
and Takác, M. (2015). Adding vs. averaging in dis-
tributed primal-dual optimization. In International
Conference on Machine Learning, pages 1973–1982.

Mairal, J. (2015). Incremental majorization-
minimization optimization with application to large-
scale machine learning. SIAM Journal on Optimiza-
tion, 25(2):829–855.

Mansoori, F. and Wei, E. (2017). Superlinearly con-
vergent asynchronous distributed network newton
method. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 2874–2879.
IEEE.

Mishchenko, K., Iutzeler, F., Malick, J., and Amini,
M.-R. (2018). A delay-tolerant proximal-gradient
algorithm for distributed learning. In International
Conference on Machine Learning, pages 3584–3592.

Mokhtari, A., Eisen, M., and Ribeiro, A. (2018a). IQN:
An incremental quasi-Newton method with local su-
perlinear convergence rate. SIAM Journal on Opti-
mization, 28(2):1670–1698.

Mokhtari, A., Gürbüzbalaban, M., and Ribeiro, A.
(2018b). Surpassing gradient descent provably: A
cyclic incremental method with linear convergence
rate. SIAM Journal on Optimization, 28(2):1420–
1447.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgra-
dient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48.

Nemirovskii, A., Yudin, D. B., and Dawson, E. R.
(1983). Problem complexity and method efficiency in
optimization. Wiley.

Nesterov, Y. (2013). Introductory lectures on convex
optimization: A basic course, volume 87. Springer
Science & Business Media.

Nocedal, J. and Wright, S. (2006). Numerical optimiza-
tion. Springer Science & Business Media.

Pedregosa, F., Leblond, R., and Lacoste-Julien, S.
(2017). Breaking the nonsmooth barrier: A scal-
able parallel method for composite optimization. In
Advances in Neural Information Processing Systems,
pages 56–65.

Peng, Z., Xu, Y., Yan, M., and Yin, W. (2016). Arock:
An algorithmic framework for asynchronous parallel
coordinate updates. SIAM Journal on Scientific
Computing, 38(5):A2851–A2879.

Powell, M. J. (1976). Some global convergence proper-
ties of a variable metric algorithm for minimization
without exact line searches. Nonlinear programming,
9(1):53–72.

Powell, M. J. D. (1971). Some global convergence prop-
erties of a variable metric algorithm for minimization
without exact line search. Academic Press, London,
UK, 2 edition.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hog-
wild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701.
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