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Abstract

A traditional approach to initialization in
deep neural networks (DNNs) is to sample
the network weights randomly for preserving
the second moment of layer outputs. On the
other hand, recent results show that training
with SGD can result in heavy-tailedness in the
distribution of the network weights with a po-
tentially infinite variance. This suggests that
the traditional approach to initialization may
be restrictive as SGD updates do not neces-
sarily preserve the finiteness of the variance of
layer outputs. Motivated by this, we develop
initialization schemes for fully connected feed-
forward networks that can provably preserve
any given moment of order s ∈ (0, 2] over
the layers for a class of activations includ-
ing ReLU, Leaky ReLU, Randomized Leaky
ReLU and linear activations. These general-
ized schemes recover traditional initialization
schemes in the limit s→ 2 and serve as part
of a principled theory for initialization. For
all these schemes, we show that the network
output admits a finite almost sure limit as the
number of layers grows, and the limit is heavy-
tailed in some settings. We also prove that the
logarithm of the norm of the network outputs,
if properly scaled, will converge to a Gaus-
sian distribution with an explicit mean and
variance we can compute depending on the
activation used, the value of s chosen and the
network width, where log-normality serves as
a further justification of why the norm of the
network output can be heavy-tailed in DNNs.
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We also prove that our initialization scheme
avoids small network output values more fre-
quently compared to traditional approaches.
Our results extend if dropout is used and the
proposed initialization strategy does not have
an extra cost during the training procedure.
Finally, we discuss extensions of our results
to convolutional neural networks and show
through numerical experiments that our ini-
tialization can improve the initial stages of
training.

1 Introduction
Initialization of the weights of a deep neural network
(DNN) plays a crucial role on the training and test
performance (Daniely et al., 2016; Hanin and Rolnick,
2018; Sutskever et al., 2013) where random weight
initialization often yields a favorable starting point
for optimization (Daniely et al., 2016). A common
traditional approach to initialization that goes back
to 1990’s is to initialize the weights randomly in a
way to preserve the variance of the output of each
network layer (LeCun et al., 1998b; Bottou, 1988) which
avoids the network to reduce or magnify the norm of
the input signal exponentially. For fully-connected
networks with a fixed number of neurons d at each
layer with linear activations, this can be achieved by
setting the bias vectors to zero and sampling the weights
in an independent and identically distributed (i.i.d.)
fashion from a Gaussian or uniform distribution with
mean zero and variance σ2 = 1/d (LeCun et al., 1998b),
proposed originally for tanh activations (Kalman and
Kwasny, 1992). This initialization is referred to as
“Lecun initialization" in the literature. More recently,
He et al. (2015) showed that the choice of σ2 = 2

d keeps
the variance constant if ReLU activation is used instead;
where the extra factor of 2 is to account for the fact
that ReLU output is zero with probability 1/2 when
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input is a mean-zero symmetric distribution without an
atom at zero. This initialization is sometimes referred
to as “Kaiming initialization" in the literature (Luther
and Seung, 2019). A similar initialization rule that
can preserve the variance for parametric ReLU and
Leaky ReLU activations are also developed in He et al.
(2015), where parametric ReLU and Leaky ReLU are
variants of ReLU, proposed to improve the performance
of ReLU (Maas et al., 2013).

On the other hand, recent research shows that during
the training process with stochastic gradient descent
(SGD), the distribution of stochastic gradients can be-
come heavy-tailed over time with a non-Gaussian behav-
ior even though in the initial iterations, stochastic gra-
dients may have a Gaussian-like behavior with a finite
variance (Şimşekli et al., 2019b,a; Gürbüzbalaban et al.,
2020), where heavy tailedness of a distribution refers to
the fact that its tail is heavier than an exponential distri-
bution (Foss et al., 2011). In this setting, based on the
empirical distribution of stochastic gradients, modelling
stochastic gradients with an α-stable distribution has
been proposed (Şimşekli et al., 2019b,a), which is a dis-
tribution that does not have a finite variance but rather
has a (fractional) moment of order s satisfying s < α <
2. This heavy-tailed behavior in the stochastic gradi-
ents is also naturally inherited by the network weights
due to SGD updates and the amount of heavy tail is also
related to the batchsize (Panigrahi et al., 2019; Gür-
büzbalaban et al., 2020). Heavy tails for SGD have also
been observed in Zhang et al. (2019) and have been asso-
ciated with better generalization (Martin and Mahoney,
2019; Şimşekli et al., 2020). In Martin and Mahoney
(2019), modelling weights of a well-optimized neural net-
work with a “Pareto distribution" with shape paremeter
λ is proposed, which is another heavy-tailed distribu-
tion with a power law tail (Resnick, 2007) and an infi-
nite variance when λ < 2 but with a finite s-th moment
for any s ∈ (0, λ). These results regarding the heavy-
tailedness of the network weights with a potentially in-
finite variance suggest that the traditional approach of
preserving the second moment and variance of layer out-
puts at the initialization level may be restrictive as SGD
updates do not necessarily preserve the finiteness of
the variance after all. This raises the question whether
more general initialization schemes that can preserve
the s-th moment can be developed for a given s ∈ (0, 2]
rather than the traditional case which covers only s = 2.

Contributions. In this paper, we develop a novel
class of initialization schemes that can preserve a frac-
tional moment of order s ∈ (0, 2] over the layer outputs
during the forward pass. The schemes are applicable to
ReLU, parameteric ReLU, Leaky ReLU, Randomized
Leaky ReLU and linear activations for fully-connected
deep neural networks. We then provide experiments to

show that our schemes acts as a warm start for SGD
in the sense that it improves the training and test ac-
curacy in the initial stages of training over the MNIST
and CIFAR-10 datasets compared to traditional ini-
tializations. The main idea behind our initialization
is to initialize the network weights as i.i.d. Gaussian
variables ∼ N (0, σ2) but adjust the variance σ2 in a
special way as a function of s to keep the s-th moment
invariant during the forward pass. To our knowledge,
the choice of σ2 that can preserve the s-th moment of
layer output vectors has not been studied in the litera-
ture before our work. For this purpose, first we develop
analytical formulas that express the s-th moment of
the k-th layer output for any s ∈ (0, 2) and in any
dimension d for the ReLU, Leaky ReLU, Randomized
Leaky ReLU and linear activations (Theorems 1, 7).
Our proof relies on adapting the techniques of Cohen
and Newman (1984) developed for the products of ran-
dom matrices with i.i.d. Gaussian entries to nonlinear
stochastic recursions arising in forward propagation
with nonlinear activations and exploiting the piecewise
linear structure of ReLU and parametric ReLU activa-
tions. This yields explicit formulas regarding how to
choose the initialization weight variance σ2 to preserve
the s-th moment (Corollary 4, 10). Our initialization
scheme allows to choose a larger σ2 compared to Kaim-
ing initialization, and is the main reason why with
our initialization scheme, network outputs small val-
ues relatively less frequently so that small gradients
occur less frequently at the initialization. In fact, we
show that the logarithm of the norm of the network
outputs, if properly scaled, will converge to a Gaussian
distribution with an explicit mean and variance we can
compute as the number of layers grows (Theorem 5,
11), where log-normality serves as a further theoretical
justification of why the norm of the network output can
be heavy-tailed in DNNs. Such a log-normality result
was previously shown in Hanin and Nica (2019) (see
also (Hanin, 2018)) for ReLU and linear activations
in the regime where the width and depth of the net-
work simultaneously tend to infinity, when the weights
are initialized from an arbitrary symmetric distribu-
tion with fourth moments; however explicit formulas
for the asymptotic mean and variance were not given
for the finite width regime. Our results are explicit
for finite width and are also applicable to parametric
ReLU and Leaky ReLU activations, enabling us to
show that if the number of layers is sufficiently large,
our scheme will have a first-order stochastic dominance
property over the traditional Kaiming initialization in
the sense of Hadar and Russell (1969) (see Remarks
6 and 12). Intuitively speaking, the cumulative dis-
tribution function (cdf) of the norm of the network
output with our initialization will be strictly shifted to
the right compared to the cdf of Kaiming initialization
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(see Figure 2) and therefore will avoid taking smaller
values more often. With zero bias vectors and fixed
width over layers, we show that Lp and almost sure
limits of network outputs can be only zero or infinity
depending on whether σ exceeds an explicit threshold
we provide (Theorem 14). If additive noise is added to
post-activations, we show that the almost sure limit of
output layers is heavy-tailed for linear activations. The
results show that forward pass can make the network
output and (hence the gradient of the training cost)
heavy-tailed if the variance of network weights exceed a
certain threshold, even if the weights are i.i.d. Gaussian
(Theorem 15), shedding further light into the origins
of heavy tails during signal propagation in DNNs. Our
results extend if dropout (Srivastava et al., 2014) is
used (Remark 13). Also, our framework recovers a
number of traditional initialization schemes such as
Lecun initialization and Kaiming initialization in the
limit as s→ 2, and therefore serves as a principled the-
ory for initialization. Furthermore, our results extend
naturally to convolutional neural networks, which we
discuss in the appendix due to space considerations.

Related literature. There are alternative approaches
to initialization based on taking an average of the width
of input and output layers to balance off efficient for-
ward propagation with backward propagation (Glorot
and Bengio, 2010; Defazio and Bottou, 2019). In this
paper, we consider forward propagation, but backward
propagation analysis is almost the same for ReLU and
Leaky ReLU activations by simply replacing the num-
ber of input layers with number of output layers in the
analysis (see e.g. (He et al., 2015; Glorot and Bengio,
2010; Defazio and Bottou, 2019)) and our initializa-
tion schemes can in principle be combined with such
averaging strategies. There are also many other strate-
gies that enhance signal propagation in deep networks
such as orthogonal matrix initialization (Saxe et al.,
2013), random walk initialization (Sussillo and Abbott,
2014), edge of chaos initialization (Yang and Schoen-
holz, 2017; Hayou et al., 2018; Schoenholz et al., 2016)
and mean field theory based approaches (Xiao et al.,
2018; Blumenfeld et al., 2019), batch normalization
(Ioffe and Szegedy, 2015), composition kernels (Daniely
et al., 2016), approaches for residual networks (Yang
and Schoenholz, 2017; Hanin and Rolnick, 2018; Ling
and Qiu, 2019) as well as development of alternative
activation functions (Klambauer et al., 2017; Clevert
et al., 2015; Hayou et al., 2018) and automating the
search for good initializations (Dauphin and Schoen-
holz, 2019).

Notation. We use standard notation, common in
the machine learning literature; however we provide a
detailed discussion of the notation used in our paper
in the supplementary material (Appendix A).

2 Preliminaries and Setting
Fully connected feed-forward networks and ac-
tivation functions. We consider a fully connected
feed-forward deep neural network. Given input data
x(0) ∈ Rd, these networks consist of multiple layers.
The output of the k-th layer which we denote by x(k)

follows the following recursion:

x(k+1) = F (k+1)(x(k)),

F (k+1)(x) := φa(W (k+1)x+ b(k+1)),

where W (k+1) ∈ Rd×d and b(k+1) ∈ R are the weight
matrix and the bias of the (k + 1)-st layer respectively
and the function φa denotes the parametric ReLU ac-
tivation function (He et al., 2015) applied component-
wise to a vector, defined for a scalar input z ∈ R as

φa(z) =

{
z if z > 0,

az if z ≤ 0,
(2.1)

where a ∈ [0, 1] is a parameter. The parameter a
can also be learned from data during training (He
et al., 2015), but in this paper we are interested in
the case where the choice of a will be given and fixed.
Depending on the choice of a, this class recovers a
number of activation functions of interest:

1. For a = 0, φ0(x) = max(0, x) is the rectified linear
unit (ReLU) which is widely used in practice (Maas
et al., 2013).

2. For a = 0.01, this corresponds to Leaky ReLU
activation (Maas et al., 2013). More recently, some
other choices of a ∈ (0, 1) has also been considered
(He et al., 2015). If a is chosen randomly, this is
referred to as Randomized Leaky ReLU (Xu et al.,
2015).

3. For a = 1, φ1(x) = x is the linear activation
function.

Gaussian initialization techniques. We consider
Gaussian initialization where the network weights are
independent and identically distributed (i.i.d) following
a Gaussian distribution with constant variance σ2 and
mean zero and biases are set to zero, i.e. we assume:

(A1) All the weights are independent and identically
distributed (i.i.d.) with a centered Gaussian distri-
bution satisfying W (k) ∈ Rd×d, W (k)

ij ∼ N (0, σ2)

for every i,j and k where σ2 > 0 is the variance of
the k-th layer with width d.

(A2) The biases are initialized to zero, i.e. b(k) = 0 for
every k ≥ 1.
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For simplicity of the presentation, above we assume
that the width of the network is equal to d and is
constant over different layers. However, our results nat-
urally extends to the case if each layer k has a different
width dk (see Remark 3). The popular Kaiming initial-
ization corresponds to the choice of σ2 = 2

d(1+a2) which
preserves the second moment of the layer outputs, we
will next show that there exists a critical variance level
σ̄2
a(s, d) that we can compute explicitly, so that the

choice of σ2 = σ̄2
a(s, d) will preserve the s-th moment

of the output over the layers in any dimension d for any
s ∈ (0, 2] given. We start with the ReLU case which
corresponds to a = 0.

3 ReLU Activation
In the next result, we characterize arbitrary moments
of the output of the k-th layer, i.e. we provide an
explicit formula for E(‖x(k)‖s) where s > 0 can be
any real scalar where (throughout this paper) and
‖ · ‖ denotes the Euclidean (L2) norm. Our result
identifies three regimes: For given width d and moment
s > 0, there exists a threshold σ̄0(s, d) for choosing the
standard deviation σ of the initialization: If we choose
σ = σ̄0(s, d), then the network with ReLU activation
will preserve the s-th moment. The choice of σ below
(resp. above) this threshold, will lead to s-th moment to
decay (resp. grow) exponentially fast. The result relies
on expressing the output of the layers as a mixture of
chi-square distributions with binomial mixture weights
based on adaptations of the techniques from Cohen
and Newman (1984) from linear stochastic recursions
to the nonlinear case. The proof of this result, and
the proof of all the other results, can be found in the
supplementary material.
Theorem 1. (Explicit characterization of the
critical variance σ̄2

0(s, d)) Consider a fully connected
network with an input x(0) ∈ Rd and Gaussian initial-
ization satisfying (A1)-(A2) with ReLU activation
function φ0(x) = max(x, 0). Let s > 0 be a given real
scalar. The s-th moment of the output of the k-th layer
is given by

E
[
‖x(k)‖s

]
= ‖x(0)‖s(σsI0(s, d))k, (3.1)

I0(s, d) = 2s/2
d∑

n=0

(
d

n

)
1

2d
Γ(n/2 + s/2)

Γ(n/2)
, (3.2)

where Γ denotes Euler’s Gamma function. Then, it
follows that we have three possible cases:

(i) If σ = σ̄0(s, d) where σ̄0(s, d) := 1
s
√
I0(s,d)

, then the

network preserves the s-th moment of the layer out-
puts, i.e. for every k ≥ 1, E

[
‖x(k)‖s

]
= ‖x(0)‖s,

whereas for any p > s, E‖x(k)‖p → ∞ exponen-
tially fast in k.

(ii) If σ < σ̄0(s, d), then E
[
‖x(k)‖s

]
→ 0 exponentially

fast in k.

(iii) If σ > σ̄0(s, d), then E
[
‖x(k)‖s

]
→ ∞ exponen-

tially fast in k.

Remark 2. (s = 2 case) In the special case of s = 2,
Theorem 1 yields I0(2, d) = d/2 and σ̄2

0(2, d) = 2/d
which corresponds to Kaiming initialization, details of
this derivation is in Remark 16 in the supplementary
material.
Remark 3. (Variable width dk) If the width dk of
layer k is not a constant equal to d but instead varying
over k, then our analysis extends to this case naturally
where it would suffice to replace the formula (3.1) with
E
[
‖x(k)‖s

]
= ‖x(0)‖s(σs

∏k
j=1 I0(s, dj)).

A natural question that arises is how does the critical
variance depend on d and s when d is large. The next
result gives precise asymptotics for σ̄0(s, d) in the large
d regime. The result relies on careful asymptotics for
the Gamma functions and binomial coefficients arising
in Theorem 1.
Corollary 4. (Critical variance σ̄0(d, s) when d
is large) For fixed width d and s ∈ (0, 2], we have

σ̄2
0(s, d) = 2

d + 5(2−s)
2d2 + o( 1

d2 ),

σ̄0(s, d) =
√

2√
d

+ 5
√

2(2−s)
8d
√
d

+ o( 1
d
√
d
).

Therefore, it follows from Theorem 1 that if σ2 = 2
d +

5(2−s)
2d2 , then the network will preserve the moment of

order s+ o( 1
d ) of the network output.

According to Corollary 4, log(σ̄2
0(s, d)− 2

d ) ≈ −2 log(d)+

log( 5(2−s)
2 ) for large d. This is illustrated on the left

panel of Figure 1 where we plot log(σ̄2
0(s, d)) vs. log(d)

based on the formula (3.1) where we observe the rela-
tionships is a straight line with slope approximately −2
as predicted by our theory. The right panel of Figure
1 illustrates part (iii) of Theorem 1 about how the
moments can grow if we choose σ = σ̄0(s, d) depending
on the value of s.

It is not hard to show that under Gaussian initializa-
tion with ReLU activation, the network output can
be zero with a non-zero probability (see Lemma 17 in
the appendix), which is related to the known "dying
neuron" problem associated with ReLU activations (Lu
et al., 2019) about the fact that ReLU networks may
output zero frequently. The choice of σ will clearly
affect the variance of x(k) (see Theorem 1), however it
won’t affect the probability that the k-th layer output
x(k) = 0. A natural question that arises is what is the
effect of σ on the growth rate of ‖x(k)‖ conditional on
the event that x(k) 6= 0. For this purpose, given an ini-
tial point x(0) ∈ Rd fixed, we consider the conditional
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Figure 1: Left : Plot of log(σ̄2
0(s, d) − 2

d ) vs. log(d)
for ReLU. Right : Growth of the α-th moment of
x(k) for k = 500 and σ = σ̄0(s, d) with different s for
d = 64. When s gets smaller, moments grow faster.

Figure 2: Left: Probability density fk(r) of Rk,0.
Right: Cumulative density function (cdf) of Rk,0.
The blue line in both figures is the result of Kaiming’s
method, which corresponds to s = 2. The red line in
both figures is the result of our method with s ≈ 1.

probability density function of log(‖x(k)‖) given that
x(k) 6= 0, i.e.

fk(r) := P
(

log(‖x(k)‖) = dr
∣∣ x(k) 6= 0, a = 0

)
. (3.3)

Let Rk,0 be the random variable corresponding to the
density fk(r). The quantity

µ0(σ) := lim
k→∞

Rk,0
k

(3.4)

is a measure of how fast the norm of the output of the
layers of the network would grow if we would allow
infinitely many layers. It is closely related to the top
Lyapunov exponent in the probability and dynamical
systems literature (Arnold et al., 1986; Cohen and
Newman, 1984) which arises in the study of random
Lipschitz maps, see e.g. (Elton, 1990). In the next
result, we will obtain an explicit formula for µ0(σ) (that
depends on σ and dimension d), showing that µ0(σ) is
deterministic and does not depend on the initial point
x(0). Furthermore, we show that a properly scaled Rk,0
converges to a Gaussian random variable in distribution,
with an explicit mean and variance we can characterize.

Theorem 5. (Asymptotic normality of the log.
of the norm of the network output) Consider
a fully connected network with an input x(0) ∈ Rd
and Gaussian initialization satisfying (A1)-(A2) with
ReLU activation function φ0(x) = max(x, 0). Let
fk(r) be the conditional probability density function
of log(‖x(k)‖) given that x(k) 6= 0, defined formally by
(3.3). Let Rk,0 be the random variable corresponding
to the density fk(r). Then, the limit µ0(σ) defined in
(3.4) exists, it is deterministic and independent of x(0),
satisfying the following formula:

µ0(σ) = log(σ) +
1

2

d∑
n=1

πd(n)
[
log(2) + ψ0

(n
2

)]
.(3.5)

Furthermore, Rk,0−µ0(σ)k√
k

⇒ N (0, s2
0) in distribution as

k →∞ with

s2
0 =

1

4

d∑
n=1

πd(n)

[
ψ1(

n

2
) +

[
log(2) + ψ0

(n
2

)]2]

−1

4

(
d∑

n=1

πd(n)
[
log(2) + ψ0

(n
2

)])2

,

where ψ0 is the di-gamma function, ψ1 is the tri-gamma
function and πd(n) =

(
d
n

)
1

2d−1
.

Remark 6. (First-order stochastic dominance
property compared to Kaiming’s method) The-
orem 5 shows that the logarithm of the norm of the
k-th layer output Rk,0 will be asymptotically normal
as k →∞ if Rk,0 is properly scaled, where the choice
of σ will only affect the mean (but not the variance)
of the asymptotic normal distribution. This is illus-
trated in Figure 2 where we plot the probability density
function (pdf) on the left panel and the cumulative
density function (cdf) of Rk,0 on the right panel where
the pdf of Rk,0 has a Gaussian shape. We compare two
initializations σ2 = 2

d (Kaiming initialization which
preserves variances) and our initialization technique
σ2 = 2

d + 5
2d2 which preserves the moment of order

s = 1 + o( 1
d ). We used k = 100 layers and dimension

d = 64. We observe from the cdf’s of network outputs
on the right panel of Figure 2 that with our choice of σ,
the norm of the network output is larger in the sense
that it has first-order stochastic dominance (Hadar and
Russell, 1969) relative to Kaiming initialization. Since
our results also admit non-asymptotic versions (Re-
mark 12), this dominance property will hold provably
for large enough but finite k as well (due to the fact
that our initialization results in a larger mean value
µa(σ) in the setting of Theorem 1).

4 Parametric ReLU, Randomized
Leaky ReLU and Linear Activations

For parametric ReLU activations with a > 0, we de-
velop an analogous result to Theorem 1 which charac-
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terize s-th moments of the k-th layer output x(k) for
s ∈ (0, 2].

Theorem 7. (Explicit characterization of the
critical variance σ̄2

a(s, d)) Consider a fully connected
network with an input x(0) ∈ Rd and Gaussian initial-
ization satisfying (A1)–(A2) with activation function
φa(x) for any choice of a ∈ (0, 1] fixed. Then, for any
s ∈ (0, 2], the output of the k-th layer satisfies

E
[
‖x(k)‖s

]
= ‖x(0)‖s(σsIa(s, d))k (4.1)

with

Ia(s, d) =2s/2
1

Γ(1− s/2)
d∑

n=0

(
d

n

)
1

2d

∞∑
k=0

wk,nB(k + 1− s

2
,
d

2
+
s

2
)

(4.2)

with the convention that Ia(2, d) = (1 + a2)d2 , where
B(·, ·) is the Beta function and

wk,n =
1

2
(1− a2)k[(d−n

2 + k − 1

k

)
n+ a2(d− n)

(d−n
2 + k

k

)]
.

(4.3)

Let σ̄a(s, d) = 1
s
√
Ia(s,d)

. We have three possible cases:

(i) If σ = σ̄a(s, d), then the network preserves the
s-th moment of the layer outputs, i.e. for every
k ≥ 1, E

[
‖x(k)‖s

]
= ‖x(0)‖s, whereas for any

p > s, E‖x(k)‖p →∞ exponentially fast in k.

(ii) If σ < σ̄a(s, d), then E
[
‖x(k)‖s

]
→ 0 exponentially

fast in k.

(iii) If σ > σ̄a(s, d), then E
[
‖x(k)‖s

]
→ ∞ exponen-

tially fast in k.

Remark 8. (Extension to Randomized Leaky
ReLU) For Randomized Leaky ReLU activation, a is
chosen randomly. Theorem 7 extends simply by replac-
ing wk,n with E[wk,n] where the expectation is taken
with respect to the distribution of a. For instance, with
a uniform distribution over an interval [`, u] with de-
fault values of ` = 1

3 and u = 1
8 (Xu et al., 2015),

E[wk,n] can be expressed with a closed-form formula as
all the moments of the uniform distribution is explicitly
known (Walck, 1996).

We can also show that σ̄a(s, d) possesses some mono-
tonicity properties.

Corollary 9. (Monotonicity properties of
σ̄a(s, d)) In the setting of Theorem 7, for
(a, s, d) ∈ [0, 1] × (0,∞) × Z+, the function
(a, s, d) 7→ σ̄a(s, d) is a monotonically (strictly)
decreasing function of a, d and s.

Figures 3a–3b illustrate σ̄0(s, d) as a function of d when
s is fixed where we see a monotonic behavior as proven
in Corollary 9. We also observe in the figures that it
is a monotonically decreasing function of s when d is
fixed. Next, we characterize how σ̄a(d, s) behaves for
large d.

(a) log(σ̄0(s, d)) versus d (b) σ̄0(s, d) versus s

Figure 3: Dependency of σ̄0(s, d) to parameters s and
d.

Corollary 10. (Critical variance σ̄a(d, s) when d
is large) For fixed width d and s ∈ (0, 2], we have

σ̄2
1(s, d) = 1

2

(
Γ( d2 )

Γ( d2 + s
2 )

)2/s

= 1
d + (2−s)

2d2 + o( 1
d2 ) with

σ̄2
1(2, d) = 1

d in the special case s = 2 which corre-
sponds to Lecun initialization. Therefore, it follows
from Theorem 7 that if σ2 = 1

d + (2−s)
2d2 , then the net-

work with linear activation will preserve the moment of
order s+ o( 1

d ) of the network output. More generally,
for a > 0 small, we have

σ̄2
a(s, d) =

(
2

1 + a2

)
1

d
+

(
5− (12− 5

2s)a
2

2 + (s+ 2)a2

)
(2− s)
d2

+O(
a4

d
) + o(

1

d2
).

Similar to Corollary 4 for the ReLU case, we can ex-
press σ̄2

a(s, d) as a function of s for large d. Thanks to
Corollary 10, we can approximate σ̄2

a(s, d) explicitly for
Leaky ReLU with a = 0.01 without evaluating the dou-
ble sums in (4.2). Leaky ReLU and linear activations
do not output zero unless their input is zero; due to
their piecewise linear structure. This is why, they can
solve the “dying neuron" problem of ReLU activations
to a certain extent (Lu et al., 2019). Consequently, un-
der Gaussian initialization (A1)–(A2) with for Leaky
ReLU and linear activations, i.e. when a ∈ (0, 1], for
any σ > 0 given, it is straightforward to show that
P(x(k) = 0) = 0. Similar to our discussion for ReLU
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activations, we introduce

fk,a(r) :=P
(

log(‖x(k)‖) = dr
∣∣ x(k) 6= 0

)
=P
(

log(‖x(k)‖) = dr
)
,

where we used P(x(k) = 0) = 0 for a ∈ (0, 1]. Let Rk,a
be the random variable corresponding to the density
fk,a(r). The quantity

µa(σ) := lim
k→∞

Rk,a
k

for a ∈ (0, 1], (4.4)

is called the top Lyapunov exponent for the random
Lipschitz map xk+1 = φa(W k+1xk) where σ scales the
W k+1 term. The following theorem derives an explicit
formula for µa(σ) and shows that Rk,a is asymptotically
normal if it is properly scaled for parametric ReLU.
Theorem 11. (Asymptotic normality of the log.
of the norm of the network output) Consider
a fully connected network with an input x(0) ∈ Rd
and Gaussian initialization satisfying (A1)-(A2) with
Leaky ReLU activation function φa(x) with a ∈ (0, 1].
Let fk(r) be the conditional probability density func-
tion of log(‖x(k)‖) given that x(k) 6= 0, defined formally
by (4). Let Rk,a be the random variable correspond-
ing to the density fk,a(r). Then, the limit µa(σ) de-
fined in (4.4) exists, it is deterministic and indepen-
dent of x(0), explicitly given by the formula (I.11) in
the supplementary material. Let Rk,a be the random
variable corresponding to the density fk,a(r). Then,
Rk,a−µa(σ)k√

k
⇒ N (0, s2

a) in distribution as k → ∞
where s2

a is defined by (I.12) in the supplementary ma-
terial.

Remark 12. (Non-asymptotic version of Theo-
rems 5 and 11 and stochastic dominance) The-
orems 5 and 11 are based on invoking the central limit
theorem (CLT) in its proof. If we use a non-asymptotic
version of the CLT instead such as the Berry–Esseen
theorem (Berry, 1941), the results extend to finite k
in a straightforward fashion. In Figure 4, we illustrate
Theorem 11 where we plot the distribution of the natural
logarithm of the norm of the output Rk,a and observe
a Gaussian behavior. In the supplementary material
(Remark 18), we also discuss the stochastic dominance
properties of s < 2 with respect to s = 2.
Remark 13. (Extension of results to dropout)
Dropout is a popular technique that randomly removes
some neurons to prevent overfitting (Srivastava et al.,
2014). In this case, with zero bias, the layer re-
cursion becomes x(k+1) := φa(W

(k+1)(x(k) � ε(k+1))
where � denotes component-wise multiplication and
ε(k+1) is a scaled Bernouilli random variable with
i.i.d. components satisfying P(ε

(k+1)
i = 0) = 1 − q

and P(ε
(k+1)
i = 1

q ) = q where q is the probability to

(a) Linear (b) Linear

(c) Leaky-ReLU (d) Leaky-ReLU

Figure 4: Distribution of the natural logarithm of the
norm of the output Rk,a through 100 layers with Linear
(a = 1) and Leaky ReLU activation with a = 0.01.
The blue line in all figures is the result of Kaiming’s
method, the red line is the result of our initialization.
(a): Probability density of Rk,1 where choose σ =
σ̄1(1, d). (b): Cumulative density function of Rk,1.
(c): Probability density of Rk,a for a = 0.01 where we
choose σ = σ̄a(1, d). (d): Cumulative density function
of Rk,a for a = 0.01.

keep a neuron with q ∈ (0, 1] (see e.g. (Pretorius
et al., 2018)). All the results in this paper general-
ize naturally with minor modifications (such as scaling
with q) in the results if dropout is used (see Appendix
J). For example, for any s ∈ (0, 2] and q ∈ (0, 1],
the critical threshold for ReLU with dropout becomes
σ2

0,q(s, d) = 2q
d + 2−s

2d2 (6−q)+O( 1
d2 ) where our analysis

recovers the results of Corollary 4 in the special case
when q = 1 and results of Pretorius et al. (2018) when
s = 2.

The following theorem shows that if bias vectors are
zero, then with both Kaiming initialization and our
initialization, the network outputs will converge to an
almost sure limit of zero, even if the network outputs
preserve moments of order s for every layer k. Roughly
speaking, the reason this happens is that the network
preserves the moments in a highly anisotropic manner,
output is often zero but also can occassionally take
large values so that s-th moment is preserved. This
supports empirical results of (Saxe et al., 2013, Sec.
3) that observed this anisotropic behavior for linear
activations. Our result shows that similar behavior
happens with non-linear activations. We also show
that depending on the sign of µa(σ), both Lp limit
and a.s. limit can be only zero or infinity. In the
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special case of s = 2 (for Kaiming initialization), such
a convergence result in L2 was previously proven in
(Hanin and Rolnick, 2018, Thm. 5) where layer widths
can take arbitrary values.
Theorem 14. (σ determines the almost sure
(a.s.) and Lp limit) Consider Gaussian initializa-
tion (A1)–(A2) with activation function φa(x) with
a ∈ [0, 1] and input x(0) 6= 0. For ReLU, i.e. when
a = 0, regardless of the choice of σ, the network output
x(k) converges to zero a.s as k →∞. For parametric
ReLU or for linear activations, i.e. when a ∈ (0, 1],
then µa(σ) < 0 if and only if σ = σ̄a(s, d) for some
s > 0 and in this case x(k) converges to zero a.s. for
s ≥ 1 and for s < 1, x(k) converges in Lp for any
p ∈ (0, s) and has a subsequence that converges to zero
almost surely, where µa(σ) is as in Theorem 11. On
the other hand, if µa(σ) > 0, then the sequence x(k)

converges to infinity in Lp for any p > 0 and x(k) has
a subsequence that converges to infinity a.s.

If additive zero mean Gaussian noise is added to net-
work outputs for linear activations, we can prove that
the limit is non-zero and heavy tailed whereas the
limit is zero without noise injection. Our results pro-
vides a theoretical support for experimental results of
Poole et al. (2014) where additive noise was observed
to improve performance by spreading information prop-
agation more evenly across the network. The results
also show that forward pass can make the network
output (and subsequently the gradient of the training
cost) heavy-tailed for Gaussian initialization.
Theorem 15. (Heavy-tailed a.s. limit) Under
Gaussian initialization (A1)–(A2) with a linear acti-
vation function φ1(x), input x(0) 6= 0 and σ = σ̄1(s, d)
for some s ∈ (0, 2) where σ̄1(s, d) is given explicitly
in Corollary 10, if additive i.i.d. mean-zero Gaussian
noise is added component-wise to post-activations, then
the layer outputs x(k) admit a non-zero almost sure
limit that is heavy tailed in the sense that it has infinite
variance and its moments of order p are infinite for
any p > s.

5 Numerical Experiments
We compared our initialization method with Kaiming
initialization (He et al., 2015) and Xavier method (Glo-
rot and Bengio, 2010) on fully connected networks with
linear, ReLU, Leaky ReLU activation functions. For
the ReLU and linear activations, we also compared our
method with random walk initialization (Sussillo and
Abbott, 2014), which does not have explicit parameters
for the Leaky ReLU but directly applicable to linear
and ReLU activations. We only compare our method
with initialization strategies that do not take additional
CPU time during training for a fair comparison. We
report train loss, test loss, train accuracy and test ac-

curacy over first 30 epochs of training with SGD to
focus on the impact of initialization on two benchmark
problems: MNIST (LeCun et al., 1998a) and CIFAR-10
(Krizhevsky et al., 2009).

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy
train loss test loss
mean std mean std

Xavier 2.2761 0.0349 2.2723 0.0387
Randwalk 0.5712 0.4097 0.5498 0.4211
Kaiming 0.6039 0.426 0.6 0.42
s=0.8 0.4877 0.3059 0.4535 0.314

train acc test acc
mean(%) std mean(%) std

Xavier 13.9 0.0299 13.99 0.0319
Randwalk 80.94 0.1649 80.82 0.1604
Kaiming 80.08 0.147 79.53 0.1488
s=0.8 85.02 0.1174 84.98 0.118

Figure 5: Fully connected network with width d = 64
and depth 20 for ReLU activation on MNIST. The
plots are the average results over 20 runs, the mean
and standard deviations (std) for runs are provided as
a table. The x-axis represents the epoch number.

Figure 5 is the summary of our results for MNIST with
ReLU activation with mean and standard deviation
(std) of the runs reported over 20 runs, where we see a
clear improvement with our initialization for s = 0.8.
More specifically, within our initialization, we chose
σ2 = 2

d + 3
d2 which preserves the moment s ≈ 0.8

according to Corollary 4 where d = 64 over 20 layers.
Further details of the experimental setup, results for
ReLU and linear activations and our experiments on
the CIFAR-10 dataset can be found in Section O of
the appendix where we observed qualitatively similar
results and our initialization method often improved
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performance.

Heavy-tailed gradients at initialization. The
works (Şimşekli et al., 2019b,a; Gürbüzbalaban et al.,
2020) consider training of fully-connected and convo-
lutional neural networks with SGD and standard ini-
tialization techniques and argue that the distribution
of the gradients become often more and more heavy
tailed over time. To be more specific, the numerical ex-
periments in these works suggest that with traditional
initialization approaches, the stochastic gradients have
often light tails in the first epochs of SGD iterations
but the tails become heavier over time as the number
of epochs increases while the weights are being opti-
mized. Such observations are also consistent and inline
with the earlier results of Martin and Mahoney (2019).
Also, these results together with Şimşekli et al. (2020)
suggest that heavy tails often lead to better exploration
and generalization properties. Our initialization tech-
nique allows this ‘favorable heavy-tailed phase’ to kick
in earlier, right at the beginning of SGD iterations as
opposed to later epochs of training. This is illustrated
in Figure 6 which displays the tail index of gradient
noise over iterations with our initialization, where the
tail index is defined as the value of α such that the pdf
p(x) of the gradient noise is on the order of 1/‖x‖α+1

when ‖x‖ is large enough (see (Şimşekli et al., 2019b;
Gürbüzbalaban et al., 2020) for more details on the tail
index). Figure 6 is based on a fully-connected network
with 5 layers with width 64. We use ReLU activation
on the MNIST dataset where we take the batch size
to be 32 with s = 1. We use the same estimator from
Şimşekli et al. (2019b) for the tail index. We observe in
Figure 6 the heavy tails arise starting from the initial
iterations with a tail index α around 1 as expected.

Figure 6: Tail index of gradient noise over epochs.

Results on convolutional neural networks. In
Section N of the appendix, we provide the extensions
of our theoretical results to convolutional neural net-
works. Here, we present our numerical experiments
in Figure 7, where we used one convolutional layer
and four fully-connected layers using ReLU with width
d = 64 on MNIST and CIFAR-10 datasets. We train
our networks with stochastic gradient (SGD). The step-
sizes of both experiments are tuned and are same for
the initializations. Figure 7a and 7b display the first
30 and 50 epoches of the training process of MNIST.

With this architechture, after 50 iterations, we achieved
an accuracy of %98.36 which is at a level of current
state-of-the-art (see https://benchmarks.ai/mnist
for benchmarks) on MNIST, where we see improve-
ment compared to Kaiming initialization, especially in
the first 30 epochs. Figure 7c shows the first 50 epochs
of training processes on CIFAR-10, where we also see
the improvement.

(a) MNIST 30 epoches (b) MNIST 50 epoches

(c) CIFAR-10

Figure 7: CNN on MNIST and CIFAR-10.

6 Conclusion

In this paper, we have developed a new class of ini-
tialization schemes for fully-connected neural networks
with ReLU, parameteric ReLU, Leaky ReLU, Random-
ized Leaky ReLU or linear activations. Our schemes
can preserve a fractional moment of order s ∈ (0, 2] over
the layer outputs therefore generalize existing schemes
which correspond to the special case s = 2.

For all these schemes, we show that the network output
admits a finite almost sure limit as the number of
layers grows, and the limit is heavy-tailed in some
settings. We also prove that the logarithm of the
norm of the network outputs, if properly scaled, will
converge to a Gaussian distribution with an explicit
mean and variance we can compute. We also prove
that our initialisation scheme avoids small network
output values more frequently compared to traditional
approaches, therefore can alleviate the dying neuron
problem seen in ReLU networks that results in small
network output values. We also provided numerical
experiments that show that the new schemes can lead
to improvement in the training process.

https://benchmarks.ai/mnist
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