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Abstract

The horseshoe prior is frequently employed in Bayesian analysis of high-dimensional models,
and has been shown to achieve minimax optimal risk properties when the truth is sparse.
While optimization-based algorithms for the extremely popular Lasso and elastic net pro-
cedures can scale to dimension in the hundreds of thousands, algorithms for the horseshoe
that use Markov chain Monte Carlo (MCMC) for computation are limited to problems an
order of magnitude smaller. This is due to high computational cost per step and growth
of the variance of time-averaging estimators as a function of dimension. We propose two
new MCMC algorithms for computation in these models that have significantly improved
performance compared to existing alternatives. One of the algorithms also approximates
an expensive matrix product to give orders of magnitude speedup in high-dimensional ap-
plications. We prove guarantees for the accuracy of the approximate algorithm, and show
that gradually decreasing the approximation error as the chain extends results in an exact
algorithm. The scalability of the algorithm is illustrated in simulations with problem size
as large as N = 5,000 observations and p = 50,000 predictors, and an application to a
genome-wide association study with N = 2,267 and p = 98, 385. The empirical results also
show that the new algorithm yields estimates with lower mean squared error, intervals with
better coverage, and elucidates features of the posterior that were often missed by previ-
ous algorithms in high dimensions, including bimodality of posterior marginals indicating
uncertainty about which covariates belong in the model.

Keywords: Bayesian; High dimensional; MCMC approximation; Perturbation theory;
Shrinkage prior.

1. Introduction
Approximate Markov chain Monte Carlo (aMCMC) methods are increasingly popular in

Bayesian analysis of big data problems. While MCMC algorithms remain one of the stan-
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dard computational approaches in Bayesian statistics, their implementation can be pro-
hibitively slow in large scale applications, contributed in part by expensive matrix calcu-
lations, likelihood evaluations and sampling operations at each iteration. The basic idea
behind aMCMC is to create a computationally amenable approximation/perturbation P,
to an exact! Markov transition P so that extending the approximate chain P, by one step
requires substantially less computational effort than P. Accordingly, perturbation theory
has been a recent focus of the theoretical MCMC literature (Johndrow and Mattingly, 2017;
Rudolf and Schweizer, 2018; Pillai and Smith, 2014), as well as algorithm development (Bar-
denet et al., 2017; Korattikara et al., 2014; Welling and Teh, 2011). Earlier examples of
perturbation theory for Markov chains under stronger ergodicity conditions include Mitro-
phanov (2005) and Roberts et al. (1998). This theoretical literature provides conditions
under which finite-length paths from the approximate kernel P, give provably good approx-
imations to the posterior. This approach is attractive from at least two perspectives: (1) it
suggests the possibility of overcoming computational challenges for Bayesian inference in big
data settings by replacing computational bottlenecks with faster numerical approximations,
and (2) it allows practitioners to move beyond the setting of choosing a P that has exactly
the “right” invariant measure from a set of alternatives that in practice is quite small.

The practical success of aMCMC has been mainly limited to applications involving very
large sample sizes N and relatively modest number of parameters p. Recent activity has
focused on using subsamples or “minibatches” of data in the large N setting to create an
analogue of stochastic gradient methods for MCMC. As Bardenet et al. (2017) point out,
achieving provably good approximations with significant computational advantage using
subsampling typically requires the posterior to be well-approximated by a Gaussian, which
is unlikely to be the case in large p applications. Accurate approximations using minibatches
typically require the construction of control variates (Pollock et al., 2016; Baker et al., 2017;
Bardenet et al., 2017), which in practice can be time-consuming, particularly when the
target is high-dimensional and near-sparse in most directions, and the important directions
are not known a priori. However, this is precisely the type of target distribution that one
encounters in high-dimensional sparse regression problems, the object of interest in this
paper.

Modern applications in genetics and other areas of biology have stimulated considerable
interest in statistical inference in the high-dimensional setting where the number of predic-
tors p is much larger than the number of observations NN, and the truth is thought to be
sparse or consist mostly of small signals. Regression models are frequently employed in this
context. Consider a Gaussian linear model with likelihood

L(z | WB,02) = (2m02) N2~ 2,2 (- WH) (== W§) W

where W is a N X p matrix of covariates, § € R? is assumed to be a sparse vector, and
z € RY is an N-vector of response observations. A common hierarchical Bayesian approach
employs a Gaussian scale-mixture prior on 5 of the form

id L 9 ii '
BJ ’ 0—277775 < N(070—2€ 177] 1)7 T’j ~ UL, J]= 1, .., D,

5—1/2 ~vg, o2 ~ InvGamma(w/2,w/2),

(2)

1. That is, with the posterior distribution as its stationary distribution
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where vy, and vg are densities on R;. The prior structure (2) induces approximate sparsity
in 8 by shrinking the null components aggressively toward zero while retaining the true
signals (Polson and Scott, 2010). The global precision parameter £ controls the number of
signals, while the local precisions 7); dictate whether they are nulls. In this sense, the prior
(2) approximates the properties of point-mass mixture priors (Johnson and Rossell, 2012;
Scott and Berger, 2010; George and McCulloch, 1997), which allow some components of
to be exactly zero a posteriori.

While the core idea behind the algorithmic developments in this paper apply broadly
to the class of global-local priors (2), see Polson and Scott (2010) and Bhattacharya et al.
(2016) for a comprehensive list of such priors, for sake of concreteness we focus here on the
popular horseshoe prior (Carvalho et al., 2010) which corresponds to both vz, and vg being
the half-Cauchy distribution. In the normal means setting, where W = Iy (the N x N
identity matrix), the horseshoe achieves the minimax adaptive rate of contraction when the
true 3 is sparse (Van Der Pas et al., 2014; van der Pas et al., 2017a). Moreover, the marginal
credible intervals have asymptotically correct frequentist coverage van der Pas et al. (2017b)
for parameters that are either very close to zero or above the detection threshold, though
signals in a certain “intermediate” range are shrunk too much toward zero for credible
intervals to have correct coverage. Although early literature on the horseshoe prior justified
it as a continuous approximation of the point-mass mixture prior, over time it has come to
be recognized as a good default prior choice in high-dimensional settings in its own right,
see Bhadra et al. (2017).

Despite the popularity of the horseshoe in the literature, there is a lack of MCMC
algorithms that scale to large (NN, p), owing to expensive linear algebra and slow mixing
of the corresponding Markov chain. The current state-of-the-art algorithm for large p is
Bhattacharya et al. (2016), which has only been employed successfully up to about p =
10,000, while the recently proposed algorithm of Hahn et al. (2018) scales very well in N
but is less efficient than the exact algorithm we propose here when p > N (see (Hahn
et al., 2018, Section 3)). Another recent proposal is Makalic and Schmidt (2016), but it
has only been compared to the implementation in the monomvn package for R, which is
very slow relative to Bhattacharya et al. (2016). The lack of scalable algorithms has kept a
useful model designed for high-dimensional regression out of many modern high-dimensional
applications such as genome-wide association studies (GWAS), which often have N in the
thousands and p in the hundreds of thousands or more.

In this paper, we develop an approximation scheme for the horseshoe posterior which is
not based on subsampling and yet produces orders of magnitude speed-ups in large (N, p)
settings. In addition to the issues with control variates mentioned earlier, another issue
with subsampling in p > N settings is that the posteriors within each sub-sample can be
extremely noisy. Our approach is fundamentally different in that it relies on learning and
exploiting the structural sparsity of the posterior to reduce the cost per step. Specifically,
we make fast approximations to several matrix products exploiting the sparsity structure.
These matrix approximations take place within a new MCMC algorithm for the horseshoe
that exhibits faster mixing than existing algorithms and unearths subtle features of the
posterior. The details of the exact and approximate algorithm are provided in Section 2.
This is one of the first demonstrations we are aware of in which the perturbation strategy
has resulted in a practically significant algorithmic advance in the high-dimensional set-
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ting when the posterior is not remotely close to a Gaussian. In particular, the horseshoe
posterior differs from a Gaussian not only in the tails, but also in its “center,” since the
posterior will often have many modes. Because the critical feature of our algorithm is ex-
ploitation of sparsity, a similar strategy could succeed in other canonical high-dimensional
Bayesian models with an underlying lower-dimensional structure. One existing example of
an approximate MCMC algorithm that exploits sparsity is the “skinny Gibbs” algorithm
of Narisetty et al. (2018), which uses a thresholding-based approximate Gibbs sampler for
spike-and-slab priors.

We prove bounds on the approximation error to the posterior both for invariant measures
of the approximate algorithm and for finite-time Cesaro averages in Section 3. These results
utilize and expand on recent work on perturbation theory for geometrically ergodic Markov
chains. In the process, we prove a general lemma, Lemma 4, showing that one can typically
work in unweighted metrics and nonetheless obtain an approximation error bound in the
metric weighted by a Lyapunov function, which substantially reduces the effort needed to
establish guarantees of approximation accuracy for large classes of unbounded functions. We
further prove a new result that if one gradually reduces the approximation error as the chain
extends, it is possible to construct exact algorithms that utilize only approximate transition
kernels. These latter results are very general and apply to a wide array of algorithms
constructed from approximate kernels beyond the immediate application considered here.

We complement our theoretical analysis with a detailed empirical study in p > N
settings which confirms that the approximation is empirically very accurate and has orders
of magnitude lower computational cost per step than the exact algorithm. To analyze the
approximation accuracy, we compute various metrics to compare the exact and approximate
chain in Section 4. These include correlations between marginal means/variances of the ;s
obtained from the exact and approximate chains as well as an average Kolmogorov—Smirnov
distance between the marginal distributions of the 3;s from the two chains. In addition to
certifying the accuracy of the approximation, these empirical exercises provide a practical
way of choosing the (only) threshold that appears in our approximation. To compare the
overall computational complexity of the two algorithms, we consider the median effective
sample size per second across an illustrative subset of the set of parameters. This metric
combines the computational cost arising from extending the respective chains by one-step
along with the amount of correlation in either chain. Based on this metric, the approximate
algorithm is shown to be 50 times more efficient than the exact algorithm when N = 2000
and p = 20, 000.

We conclude by utilizing the approximate algorithm to estimate the horseshoe on a
GWAS dataset with N = 2,267, p = 98,385, which is an order of magnitude higher dimen-
sional than the datasets considered by Bhattacharya et al. (2016). We compare these results
to point estimates obtained using the Lasso, and show that while there is broad agreement
in which variables are important, the horseshoe estimated using our approximate algorithm
exhibits the expected behavior of shrinking the larger signals less and the smaller signals
more than Lasso. We also show that the our approximate algorithm more accurately recov-
ers nuanced features of the posterior compared to the exact algorithm of Bhattacharya et al.
(2016), such as bimodality of marginals when the true signal is near the minimax threshold
of detection. These bimodal marginals indicate uncertainty about which variables belong in
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the model, which is an often-touted argument for the use of Bayesian procedures compared
to frequentist methods such as the Lasso which return only a single selected model.

While this article was under preparation, we came across an interesting preprint by
Nishimura and Suchard (2018) who use preconditioned conjugate gradient (pCG) methods
to speed up otherwise expensive linear algebra calculations within an MCMC algorithm for
high-dimensional logistic regression using the bridge prior of Polson et al. (2014). The usage
of pCG algorithms is arguably underutilized in the MCMC literature, and using pCG in
conjunction with our approximation scheme can potentially widen the scope of application
for either algorithm. We leave this exploration for future work.

2. Algorithms

We begin by describing the update rules of an exact blocked Metropolis-within-Gibbs algo-
rithm targeting the horseshoe posterior. This exact algorithm is new, though it is related to
the algorithm of (Polson et al., 2014, Supplement) and that of Bhattacharya et al. (2016).
The main motivation is to improve the mixing of the global parameter £, and we achieve
that by making extensive use of block updating. For sake of brevity, we suppress dependence
on z and W in the full conditionals of the state variables.

2.1. Exact Algorithm
We first define some quantities that will be used repeatedly. Let
D =diag(n; '), M¢=Iny+¢ " WDW'
—(N+w)/2 1 (3)
) VEL+)

A blocked Metropolis-within-Gibbs algorithm that targets the exact horseshoe posterior is
given by the update rule

_ —1/2 (¥ 1/ -1
e 1) = a2 (5 + 30ag

) p 1 632-5713'
1. sample n ~ ,B,0%) x e 202 .
ple n ~p(n|§,8,0%) jHl T,

2. propose log(£*) ~ N(log(§), s), accept & w.p. W n

w+ N w—i—z’Mglz)'

3. sample 2 | 9, £ ~ InvGamma, < 5 5

4. sample B | n,&, 0% ~ N (W'W + (£ 'D)" )" W2, o> (W'W + (¢'D) 1) 1) .

We refer generically to the Markov transition operator defined by this update rule as P. The
7;s in step 1 are independently sampled using the rejection sampler described in Section S1
of the Supplemental document.

The algorithm in (4) differs from Polson et al. (2014) in that the second step targets
p(€ | n) rather than p(¢ | n,3,02) as in Polson et al. (2014), and thus blocks together
(B,02,¢) instead of only (3,0?). It also differs from Bhattacharya et al. (2016), which did
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not do any blocking of 3,02, &. Moreover, whereas Polson et al. (2014) and Bhattacharya
et al. (2016) used slice sampling targeting p(n | £, 3,0?), we develop an exact rejection
sampler to sample the 7;s independently. The rejection sampler exploits that the full
conditional density of 7; is log-convex to build a piecewise upper envelope which can be
conveniently sampled from, with careful choices of the pieces ensuring very high acceptance
rates. Being able to sample the 7;s exactly is convenient as it avoids the introduction of
additional p latent variables in the slice sampler, and also simplifies the convergence analysis
of the Markov chain.

Like Bhattacharya et al. (2016), we use an efficient method for sampling from the Gaus-
sian full conditional for 5. The details of this method are relevant for understanding our
approximate sampler, so we briefly summarize it here. To sample from 3 | n,¢, 02, the
following three steps suffice

sample u ~ N(0,£71D) and f ~ N(0, Iy) independently
set v =Wu+ f, U*:Mgl(Z/J—’U), (5)
set B =o(u+& DW*).

Notice that this algorithm — and indeed, all but one step of (4) — requires computing Mg
defined in (3) and solving M¢v* = (2/0 —v) for v*. When p is large, the computational bot-
tleneck of the algorithm in (4) is, perhaps surprisingly, just computing the matrix WDW"’,
which is needed to compute M. This has computational cost N 2p, which dominates every
other calculation in the algorithm when p > N. In the next section, we propose an approx-
imate sampler that has lower computational cost per step. Our approximate algorithm is
designed for the case where p > N, and it is in these settings where it offers very large
performance gains. As such, our sole focus in this paper is the p > N setting. While the
exact algorithm we propose could be modified to scale linearly in N rather than linearly in
p to improve its performance in the N > p case, the algorithm of Hahn et al. (2018) is a
better choice than the exact algorithm presented here when N > p.

2.2. Approximate Algorithm

To reduce computational cost per step, we employ an approximation of the matrix product
W DW’. The horseshoe prior is designed for the sparse setting, where most of the true
B’s are zero or very small. In this case, the horseshoe posterior will tend to concentrate
strongly around zero for most of the true nulls, thus endowing it with its minimax adaptive
properties. Of course, this means that the posterior has a great deal of structure, since
we can typically expect it to be tightly concentrated around the origin in a subspace of
dimension approximately (p — s), where s is the unknown number of non-nulls.

We can exploit this structure to create very accurate approximations of €W DW'. For
entries of 3; to be shrunk to near zero, the precision {n; must be very large, as can be seen
from (5). When this is the case, the jth column of W does not contribute much to the
N x N matrix €W DW’. An important practical consequence of this, hitherto unexplored,
is that once the MCMC algorithm begins to converge, the matrix ¢ ~'W DW’ will typically
be well-approximated by hard-thresholding D in (3), resulting in

Me~ Mes:= Iy + & "WD, W', Ds = diag(n; '1(&maen; ' > 0)) (6)
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for “small” §, where &nax = max(§,£*) in the first step of (4) (the choice of § is considered
in Section 4). This thresholding step reduces computational cost considerably, since the
columns of W corresponding to the zero diagonal entries of Dj can just be ignored. Letting

S={j: &y >0}, (7)

we can also write the approximation as M¢ s = In + §*1WSDSW§, where Wy consists of
the columns of W with indices in the set S, and Dg consists of the rows and columns of D
with indices in the set S. This makes clear the computational advantages of thresholding.

Using this strategy, we define an approximate algorithm that uses the same update rule
as in (4), with only two changes:

1. Mg is replaced by Mg s everywhere that it appears in (4); and
2. In the final step of (5), the quantity DW" is replaced by DsW’.

We denote the Markov transition operator corresponding to this variation of (4) by P..
The subscript € is meant to indicate that P. is “close” to P in some suitable metric on
probability measures. The choice of metric and how close P is to P as a function of the
current state and § are the focus of Section 3.2.

The primary motivation behind the approximate algorithm is to improve per-iteration
computational complexity without sacrificing accuracy. As discussed earlier, when the truth
is sparse, we expect a large subset of {5_177;1}]-519 to be small a posteriori, and hence
thresholding the entries smaller than a small threshold ¢ should not affect the accuracy of the
algorithm. Thresholding those small entries has significant computational advantages. The
speedup from this approximation is best when p is large relative to NV and the truth is sparse
or close to sparse, so that most entries of 8 are shrunk to near zero. Critically, coordinates
that are thresholded away at iteration k need not be thresholded away at iteration (k+ 1),
and in practice the set of variables that escapes the threshold does change considerably
from one iteration to another. This can occur because the thresholded coordinates are
never actually set to zero or omitted, but rather sampled from a Gaussian that closely
approximates the exact full conditional. Thus, we are not sacrificing the primary benefit
of Bayesian methods for sparse regression: estimates of uncertainty about the set of true
signals are still valid.

Consider the computational cost of extending the Markov chain by a single step. The
exact algorithm needs to calculate | M|, 2/ M 12 and solve a linear system in M¢ in each
iteration, each of which requires O(N3) operations. Further, formation of the matrix M;
itself requires computation of W DW’, which has complexity O(N?p). The approximate
algorithm on the other hand needs to calculate WDsW', with a subset of the diagonal
entries of Ds being zero. With S as in (7) denoting the active set of variables which escape
the threshold, set

p
ss =S| =Y 1(mbn; " > 9).
j=1

Also, let Dg denote the s5 x s5 sub-matrix of D and Wg the N x s5 sub-matrix of W resulting
from picking out the non-thresholded diagonal entries/columns indexed by S. When the
truth is sparse, s5 < p after a few iterations and WDsW' = WgDgW¢, which costs N 255,
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providing significant savings. A second level of computational savings can be made when
ss < N, whence WDsW’ is a reduced-rank approximation to W DW’. In such cases, our
implementation altogether replaces the calculation of WDsW’ and the formation of M s
by directly calculating

Mg} = (Iy + ETWDsW') ™t = Iy — W (€Dg" + WEWs) ™ W,

using the Woodbury matrix identity. The calculation of 2'M, 4z and M, J(z/o —v) are
performed by substituting the above expression of Mg 51, which only requires solving s5 X s
systems, and has overall complexity sg V ssN. The determinant of I 4+ £~ 'WDs;W' is
then computed by (a) performing a singular value decomposition of WSD}.;/ 2, which costs
O(s2N), and then (b) calculating the eigenvalues as 1+s2, where s is a vector of the singular

values of WSD;/ 2, (N — s5) of which are identically zero. Accounting for the calculation
of Wu performed when sampling 3, which costs O(Np), the per step computational cost
of the approximate algorithm when ss < N is order (s? V p)N. Thus by exploiting the
sparse structure of the target, the algorithm achieves similar computational cost per step
to coordinate descent algorithms for Lasso and Elastic Net (Friedman et al., 2010, Sections
2.1, 2.2).

Before we conclude this section, we provide some additional insight into the consequences
of the approximation for 5. The effects of the modified updates for ¢ and o2 are relatively
direct to see; however those for S modify multiple steps of the algorithm in Bhattacharya
et al. (2016). Define I' := £ 7' D and I'; = £ ! Ds. The approximate algorithm for 3 sets

B=T:WM;'z+ 0 (u—TsW M;'v).

Since (u, v) is jointly Gaussian, 8 obtained above continues to have a Gaussian distribution,
B ~ N(us,o*Ss), with

s 1= F(gW/M(;lZ, s = cov(u — F(;W/M(;lv).
Some further simplifications (see Appendix A.1 for details) yields,

ps = (i 0posg)x1), s = (WgWs +Tgh) T Wz, (8)
and?

o (WiWs +T5") ™t —TsWiMg ' WeeD'ge 9
5= I : 9)

Writing 8 = (Bs;Bse), we have E(8gc) = 0, i.e, the entries of § outside the active set
are drawn from a zero mean distribution. Second, the marginal distribution of (Bg is
N((WiWs+Tg") " tWkhz, o> (WEWs+T5")~1), which would exactly be the full conditional
distribution of § if the model was fitted with only the current set of active variables.
Finally, we draw some distinctions between our approximate algorithm and the skinny
Gibbs algorithm (Narisetty et al., 2018). The skinny Gibbs algorithm, designed for spike-
and-slab priors, partitions the 8 vector into inactive and active coordinates, 5 = (55; 54),

2. When we write ps = (ms;0(p—s;)x1), We simply mean that the sub-vector of ps corresponding to the
indices in S is mg while the rest are zero. Similarly, blocks of ¥5 are defined by S and S°.
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depending on whether a particular coordinate is assigned to the spike or slab component
by the latent component indicator. Then, it proceeds to approximate the full-conditional
B -]~ [Br|—]®[Ba]| —] by breaking the dependence between the inactive and active
coordinates. A diagonal approximation to the covariance of [S; | —] is subsequently made
to sample the inactive coordinates independently. This leads to a per-iteration complexity
of n(pV |A|?), where |A| is the active model size.

Unlike spike-and-slab priors which naturally group the predictors into signal and noise
variables, one-group shrinkage priors such as the horseshoe do not automatically select
variables. Thus, the partitioning of § = (fg, 8s¢) is neither naturally available nor central
to our approximate algorithm, and is merely a by-product of approximating the matrix
E-YWDW! in algorithm (5) with its thresholded version in equation (6). We also note that
our approximate algorithm retains the covariance between Bg and fBge unlike the skinny
Gibbs algorithm. To compensate for the loss of information due to breaking the dependence
structure, the skinny Gibbs algorithm carefully handles the update of the latent indicators
which doesn’t have a parallel for our approximate algorithm. Thus, despite surface level
similarities, the two algorithms have rather different motivation and seem appropriately
suited for their respective targets.

2.3. Empirical performance: some highlights

Our main motivation for pursuing a variety of theoretical results about this algorithm is that
it performs very well empirically. In the final section, we apply the approximate algorithm
to a GWAS dataset with N = 2267 and p = 98,385. This is about an order of magnitude
larger in p than any other application of horseshoe for linear models that we are aware
of. Our exact algorithm has per-step linear complexity in p and quadratic complexity in
N, while the approximate algorithm actually has per-step linear complexity in N and p in
many cases. It therefore competes with coordinate descent for the Lasso in terms of per-step
computational cost. While the dependence of the mixing properties of the Markov chain
on dimension is not considered theoretically, empirically we find that both algorithms are
insensitive to N and p on typical metrics like autocorrelations and effective sample sizes.

We give a brief empirical comparisons of our two algorithms to the algorithm of Polson
et al. (2014) combined with the faster updates of 3 from Bhattacharya et al. (2016)3 based
on a simulation with NV = 2,000 and p = 20,000, where the true 8 consists of a sparse
sequence of signals of varying sizes. We use § = 10~ for the approximate algorithm:;
choosing § is considered in detail in Section 4, along with a complete description of the
simulation setup. The left panel of Figure 1 compares autocorrelations for log(¢) for the
“old” algorithm to our exact algorithm (“new”) and our approximate algorithm. We focus
on ¢ since this parameter is known to mix poorly in MCMC algorithms for the horseshoe
(Polson et al., 2014). Both of our algorithms improve mixing considerably. The right panel
of Figure 1 shows the distribution of effective samples per second, a measure of overall
computational efficiency, over a number of parameters for the three algorithms. The new
algorithm has slightly worse performance at the median than the old algorithm because of
the slightly higher per-step cost of the blocked sampler, but performs much better for the

3. We refer to this combined algorithm as the “old” algorithm throughout
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slowest-mixing parameters. The approximate algorithm is about 50 times more efficient by
this metric than the exact algorithm, and this gap widens with increasing p.

1.00 old new approximate
\‘ 40 median: 0.42 median: 0.22 median: 11.
0.75 *{ 30
V. algo <
®os0 N T Rew 320
e = = = approximate o
N 10
0.25 S =
Sod  rosdos] _l
B = S I 0"
- o o o
0.00-4 25 50 75 100 - 2 - 2 - 2
lag Ne

Figure 1: Left: Estimated autocorrelations for log(§) for the three algorithms. Right: Effective
samples per second for the three algorithms

Figure 2 shows trace plots and density estimates for a single entry of 8 for the three
algorithms. This particular ; corresponds to a true signal of moderate size, and the
resulting posterior marginal is bimodal, reflecting uncertainty about whether it is a signal
or a null. Our exact and approximate algorithms both apparently mix well and result in
visually similar estimates of the posterior marginal, while the old algorithm appears to
become stuck at zero after a few thousand iterations, and the higher mode is lost after
discarding a burn-in. Although this is a single entry of 5, we later perform a more complete
empirical comparison and find that the new algorithm outperforms the old algorithm on
every metric we consider, while there is little discernible difference between the exact and
approximate algorithms when § = 10~%. Intuitively, the choice of § should depend only
weakly on dimension, since the matrix W DW’ is always regularized by the identity. Thus
a “small” value of § is one that is small relative to the eigenvalues of the identity, which are
all 1. This is discussed in more detail in Section 4.

old new approximate

o © o o o © o o o © ©o o
S © © o S © o o S 9 o ¢
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& 100000 .
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Figure 2: Trace plots (with true value indicated) and density estimates for one entry of 3.
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3. Theoretical results

We now give results connecting the convergence of the exact algorithm with the accuracy of
the approximate algorithm. We also show that it is possible to construct exact algorithms
using only approximate kernels. All proofs are deferred to the appendix.

3.1. Background

We first give some background on convergence rates of Markov chains. Our presentation
follows closely that of Hairer and Mattingly (2011). Let P be a Markov transition operator
on a measurable state space X. Let x denote a generic element of the state space X, so
here = (3,71,£,02). Denote by P(X) the set of probability measures on X. We shall
follow the general convention of (Hairer and Mattingly, 2011) to denote the action of P on
a measurable function f : X — R and a probability measure v on X by

Pia) = / F)P(e vy, vP(A) = /X P, Av(dz).

We will state a form of geometric ergodicity of P that follows from two standard assumptions
about P, the first of which is existence of a Lyapunov function (Khasminskii, 1980; Meyn
and Tweedie, 1993; Rosenthal, 1995).

Assumption 3.1 There ezists a function V : X — [0,00) and constants 0 < v < 1 and
K > 0 such that

(PV)(x) = / V(y)P(a,dy) <AV (2) + K.
The second condition is minorization on sublevel sets of V. We give the form of this
condition used in Hairer and Mattingly (2011).

Assumption 3.2 For every R > 0 there exists a € (0,1) (depending on R) such that, for
S(R)={z:V(z) < R},

sup  ||0zP — 0yP|lrv < 2(1 — a). (10)
z,yeS(R)

Throughout, we will study convergence in a total variation norm weighted by the Lya-
punov function; refer to Hairer and Mattingly (2011) for more details. For 6 > 0, define

dg(v1,12) = /(1 + 0V (x))|v1 — va|(dz). (11)

If # = 0, we recover the usual unweighted total variation metric.
We then have the following variation of Harris’ theorem from Hairer and Mattingly
(2011).

Theorem 1 (Hairer and Mattingly (2011), Theorem 3.1) Suppose P satisfies assump-
tions 3.1 and 3.2. Then there ezists & € (0,1) and 0 > 0 such that

d@(l/fP, VQP) < dd,g(Vl, I/Q) (12)
for any two probability measures v1,vo € P(X). That is, P is geometrically ergodic (or

V-uniformly ergodic).

11
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Iterating the estimate in (12) and letting v; = v, and vy = v*, the invariant measure, gives
the result dp(vP",v*) < a"dp(v,v*), so that convergence toward the target occurs at an
exponential rate. If P satisfies Theorem 1, then there exists a C' < oo such that

sup / o) (6.P" — v*)(dy) < Ca"V (), (13)
lp|<1+V

which is the more commonly used notion of geometric ergodicity in the MCMC literature.

In the high-dimensional linear model, the existence of a Lyapunov function and mi-
norization on sub-level sets has been verified to establish geometric ergodicity of various
global-local priors including the Bayes Lasso Gibbs sampler (Khare and Hobert, 2013) of
Park and Casella (2008) and the Dirichlet-Laplace Gibbs sampler (Pal and Khare, 2014) of
Bhattacharya et al. (2015). However, such a result hasn’t been proved for any horseshoe
sampler to best of our knowledge, possibly owing to the polynomial tails of the prior. Al-
though not our main focus, we show in the supplemental document that the exact horseshoe
sampler considered here is geometrically ergodic in p > N settings provided vg is compactly
supported and vy, is truncated below. Truncation above and below of the prior vg on £
has been recommended by van der Pas et al. (2017a), and an inspection of the proof of the
prior concentration for the horseshoe in Chakraborty et al. (2016) reveals that the same
concentration result goes through with a lower truncation on the 7;s. Hence, the modified
prior can be shown to be statistically optimal in a minimax sense. The geometric ergodicity
result carries through when p < N without any prior truncations.

3.2. Perturbation bounds

We now turn to proving error bounds for the approximate algorithm. Often in algorithm
development, it is useful to identify computational bottlenecks, then design some compu-
tationally faster numerical approximation to alleviate the bottleneck. For example, the
algorithm in section 2.2 substitutes an approximation of the matrix W DW’ that is fast to
compute when 1! is near sparse. This defines some new Markov operator P.. One then
typically wants to know that the long-time dynamics of P, will approximate those of P.
For example, we might ask whether the invariant measure(s) of P, (assuming they exist)
are close to the invariant measure v* of P, or whether the usual time-averaging estimator

n—1
n Y (X))
k=0

for X ~ vPF gives a good approximation to expectations under v*. This is referred to as
perturbation theory. This approach has significant advantages over studying P. directly.
For example, it is not necessary to show separately that P, is geometrically ergodic (though
in many cases it is), nor is it necessary that P, has a unique invariant measure. Moreover,
closeness of the invariant measure(s) of P. to v* can be demonstrated as a corollary of
bounds on the dynamics of the two chains.

Perturbation bounds for uniformly ergodic Markov operators date at least to Mitro-
phanov (2005), but more recent work Johndrow and Mattingly (2017); Rudolf and Schweizer
(2018); Pillai and Smith (2014) focuses on the unbounded state space setting and the use
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of Lyapunov functions. One effectively needs two conditions, the first of which is some
pointwise control of the kernel approximation error, typically in the same metric used to
study convergence. In our setting one such condition is

Assumption 3.3 The approximate kernel P, satisfies

sup [|6,P — 8, Pell v < .

rzeX

This differs from the basic error control assumption in both Johndrow and Mattingly (2017)
and Rudolf and Schweizer (2018), which used variants of the condition dj(0,P,0,P:) <
€(1 + KV (x)). In Theorem 3, we show that the two conditions are essentially equivalent
when one has control over stochastic stability of P, via a Lyapunov function. It is often
convenient if this is also a Lyapunov function of P, so that the same weighted norms can
be used to metrize convergence.

Assumption 3.4 There exists K. > 0 and . € (0,1) such that
(PV)(z) <7V (z) + K.

Before stating our main results we point out an important general property of Lyapunov
functions and weighted total variation metrics that allows us to use Assumption 3.3 instead
of an approximation error condition in dy.

Remark 2 IfP has a Lyapunov function, then there must exist a Lyapunov function V' of
P for which V2 is also a Lyapunov function. In particular, if V is a Lyapunov function of
P, then V = VY2 is a Lyapunov function of P whose square is also a Lyapunov function.
Moreover, if P satisfies Assumption 3.2 for V2, then it also satisfies Assumption 3.2 for
V. Thus, if Theorem 1 holds in the weighted total variation norm built on V2, then it also
holds in the weighted total variation norm built on V.

Proof The first part is proved in Meyn and Tweedie (1993), but the argument is simple so
we reproduce it here. Let V' be a Lyapunov function of P and put V' = V1/2. There exist
74 and K so that

(PV)(z) <AV (x) + K.
By Jensen’s inequality
(PV2)(2) < (PV(@)/2 < \/3V(2) + K < V3V (@) + VE

=+V(z) + K.

and thus V is a Lyapunov function for which V2 is also a Lyapunov function. For the second
part, we only need to show minorization on sublevel sets of V. Since P satisfies Assumption
3.2 for V, for every R? > 0 there exists ap2 € (0,1) (depending on R) so that

sup ”(Sxp — 5y7D”TV < 2(1 — aRz)
z,y€S(R?)
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for S(R?) = {x : V() < R?}. But then Assumption 3.2 is also satisfied for V, since letting
S(R) ={x: V(z) < R}, we have

sup  ||0zP — 6P|y < 2(1 — ag).
z,yeS(R)

The next result shows that under Assumptions 3.4 and 3.3, we can obtain various bounds
on the accuracy of P..

Theorem 3 Let V be a Lyapunov function of P and P. for which V? is also a Lyapunov
function of P and P.. Suppose P satisfies Assumptions 3.1 and 3.2, and P. satisfies
Assumptions 8.8 and 3.4, all defined with respect to Lyapunov function V. Then, with
Y(e) = C*\/e for a constant C* > 0, we have that for any probability measures v1,va,

n n € 1+ K. _ n—
ot PP < L (TEE) 4 poavyiav g
1—a\1-—" (14)
+ d”de(yb VQ),
which immediately implies that if v} is any invariant measure of P
do(v},v*) < M L+ K .
l—a \\1—7
Furthermore, there exists C,cy,c1 < 0o so that for any |¢| < VvV
1 n—1 2
E _ €\ % < 2
(n D (X —v w) < 3C%Y(e)co
k=0 (15)

. 322 (2(11jf) n Mf)il\‘;g())) +0 (;) ,

with X§ = xo and X} ~ 5900735_1. Moreover, the constants C,cq, c1 satisfy

0L IV e s BNEL L (y VY,
L —aq 9 (1 =) 1— e

where v* is the unique invariant measure of P and 1 — &y /2) is the spectral gap in the
weighted total variation norm built on VY2 with an appropriate O1/2) > 0.

Proof The key to the result is the following Lemma. This result improves upon the result
in (Johndrow and Mattingly, 2017, Section 4.1), which showed that control in unweighted
total variation was sufficient if the approximation error was tuned to the current state.
This result requires only uniform control in the total variation or Hellinger distance over
the entire state space.

Lemma 4 Suppose V is a Lyapunov function of both P and P. for which V? is also a
Lyapunov function, and that Assumption 3.3 holds. Then with 1(e) = C*\/e we have

/a+vw»@P—@mwwsw@u+vm»
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Proof Write 6, P, 0, P. as densities

do, P 8, P
dV (y)7 pE('CC? y) - dV (y)

p(z,y) =

with respect to an appropriate dominating measure v, which in our applications is just
Lebesgue measure, and put V = V2. Then

— / V) lp(a,y) — pe(e.y)|dy
2
Iy = ( [V ) + okl e —pi/%x,y)uy)
<2 </V .Z' y +pe($ y))dy </(p1/2(w7y) _pi/2($7y))2dy>

(/ V() (p(z,y) + pe(z.y)) dy) (/ p(2,y) — pe(, y)|dy>

(90 + 9V (@) + Ko + Ko ) 18P = 0Py
I(x) < V2(vA0 F VY2 (@) + VKo + Ko)|[0,P — 6, |3
< Ve (VEo+ Ko+ Vo F 3V ()

<oveVKo+ K. +2 (5 + V()

IN
rO

| /\
—_

where we used the fact that 9 + v < 2. So finally we obtain

/1+\/ N|0:P — 6P| (dy) < 2v/en/ Ko+ K, + 2 < >+ (16)
< () (1 + V(z))
for ¢ (e) = 21/5v Ko + Kc + 2, and we used the fact that € < 2 so 2\/€ > €/2. [ |

Now, (14) follows from (Johndrow and Mattingly, 2017, equation (10)) and (15) follows
from (Johndrow and Mattingly, 2017, Theorem 1.11) after substituting ¢ (e) for e. [ |
The next result follows immediately from (11) and (16).

Corollary 5 Suppose P satisfies Assumption 8.3 and V,V? are Lyapunov functions of P.
Then with ¥(e) = C*\/e

d1 (6P, 0. Pe) < (e)(1 + V().

Although these bounds are fairly transparent, a few comments are in order. First, all of
the error bounds decrease to zero at rate /€. Second, P, has an asymptotic bias proportional
to /€(1—a)~!, and all of the constants will be small when /€ is small relative to the spectral
gap 1 — @. The implication is that there is more “room” to use approximations when the
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exact chain mixes rapidly, and the bias will be small when ¢ is small relative to the spectral
gap. Moreover, it seems that if € is gradually decreased to zero as the chain extends, one
can achieve an exact algorithm using only approximate kernels; the conditions under which
this occurs are made precise in the next section.

In finite time, the practical tradeoff is between using a longer path from P, with larger
€, which results in larger bias but smaller variance, or a shorter path from P, with smaller
€, which has smaller bias but much larger variance. These tradeoffs are evident from (15),
which gives an estimate of the squared error risk for the time-averaging estimator. Morally
this is no different from choosing between two Markov kernels with the same invariant
measure, where one mixes slowly but has low computational cost per step, and one mixes
rapidly but has high computational cost per step.

The next result shows that our approximate horseshoe algorithm satisfies Assumptions
3.3 and 3.4.

Theorem 6 Let P, be the Markov transition operator that uses the same update rule as
P, but approximates WDW' and DW by W DsW' and DsW' as in Section 2.2 with a fized
value of §. Then

1. The function

2 p 2c cla.|c
V(ﬂf)EV(mﬁ,o2,€)=Wﬁ”+£2+Z[U L 18] o
7j=1

0-2 |B] ‘20 o€ J

is a Lyapunov function of P and P..

2. There exists a constant C > 0 depending on W, z such that for any x € X,

SUp (|62 P — 0pPe|lrv < CVE + O(6), (17)
reX

where § is the threshold tuning parameter for the matriz approximation in (6).

In the Supplement, we further show that Theorem 1 holds for P. Together, this result
and Theorem 6 imply that all of the error bounds in Theorem 3 hold for the approximate
algorithm. This result gives both a guarantee that taking § sufficiently small, one can
achieve any desired level of approximation error, and the rate at which the approximation
error goes to zero with d. Of course, without knowing exactly the value of all of the
constants, we cannot give exact estimates of the approximation error for any ¢. Section 4
focuses on choosing § in practice.

3.3. Exact algorithms using only approximate kernels

We now give results showing how to construct “exact” versions of algorithms that only use
approximating kernels. These results hold under general conditions and are not specific to
the algorithms in Section 2.

In the MCMC literature, an algorithm is typically considered exact if

|vPF — v*||rv — 0
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as k — oo for any starting measure v. Similarly, one might require that time averages
converge to expectations under the target, e.g.

n—1 2
nh_)r{.loE (n ! Z@(Xg) - V*gp) =0
k=0

for some large class of functions ¢. Of course, in most cases any pathwise quantity from
P will still have bias for any finite running time (though see the method of Jacob et al.
(2017) on de-biasing using couplings), and since one only ever has access to finite-time
pathwise quantities, there is little practical difference between this guarantee and that
given by Theorem 3. Nonetheless, this property is often seen as desirable. The following
result shows that we can achieve this by employing a sequence of approximating transition
kernels P, at step k, and taking ¢, — 0 as £ — oo at a slow rate. Notice that while
this result uses the approximation condition dy(d;P, 0, Pe) < €x(1 + V(z)), this is implied
by Assumption 3.3 by (11) and (16) and the fact that the norms dj, dp are equivalent (see
Hairer and Mattingly (2011)).

Theorem 7 Let {e} € [0,1]*°. Consider a Markov chain {Xy} defined by Xo ~ v, X}, |
Xp—1 ~ Pep (Xk—1,-), and denote Pe,Pe, -+ Pe,, = [ 1=y Pe,- Suppose that for every e,

d,g((sx'P, 5x7)ek) < Ek(l + V(%)),

and that for every e € [0,1), (PV)(x) < vV (x)+ Kc. Suppose further that 4 = sup.<; Ve <
1 and K = sup.<; Ke < oo. Then if

n—oo

n
lim e, xa" =0, (18)
k=0

we have limy, o0 ||V [ 129 Pep — V" |1y = 0, and if

lim n—Zii\/eTek: 0, (19)

n—00
k=1 j=1

2
then for any function || < V'V, lim, o E (n_l ZZ;(I) (Xp) — y*go) = 0.

Taken together, the results in this section indicate that if one takes €, to zero, an exact
algorithm can be obtained, including guarantees that time averages converge to expecta-
tions under the posterior measure uniformly over a large class of functions. This guarantee
is similar to the guarantee of exactness for overdamped Langevin taking step sizes to 0
(Durmus and Moulines, 2016). However, even one step of exact Langevin is always compu-
tationally infeasible, so there is no upper bound on the computational cost of the algorithm
as the step sizes decrease to zero. In contrast, in our setting the exact algorithm is just a
polynomial time rather than a linear time algorithm per step. The behavior of sequences of
approximate kernels with decreasing approximation error can also be compared with that
of pseudo-marginal MCMC, for which one usually can choose between a slowly mixing al-
gorithm that has low per step cost and a faster mixing algorithm that has higher cost, both
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of which are exact. Similarly, in our case there is clearly some sequence € that optimally
trades off bias and variance for a fixed computational budget, but we must typically rely
on empirical analysis to assess this. As such, it is often more practical to choose a single €
empirically, which we consider in the next section.

4. Analysis of approximation error

The development of the approximate algorithm suggests a “small” value for the threshold
parameter 0, which is also backed up by the theoretical results in the previous section
showing that the pointwise approximation error in dy decreases at rate 8'/2. Because the
prior on B; ~ N (0, 0277;15_1) is scaled by o2, the choice of the threshold § for 5_17];1 is
conveniently independent of the noise level. However, because we do not have a quantitative
estimate of the spectral gap 1 — @, it is difficult to know how small § needs to be to make
the bias terms in Theorem 3 small. Here we give both some heuristic arguments for what
a “small enough” value of § will typically be, as well as an empirical analysis of the bias
induced by different fixed values of §. The latter is done by comparing paths from the
exact and approximate algorithms for different values of & for problem sizes where it is
feasible to run the exact algorithm. Of course, one can always achieve an asymptotically
exact algorithm by using a decreasing sequence € of approximation errors per the results
of Section 3.3. However, in practice simplicity is often highly valued, so the analysis in this
section is aimed at choosing a default value of § to be used in cases where the approximation
error is held fixed over time.

4.1. Default choice for ¢

An inspection of the proof of Theorem 6 reveals that the approximation error sup, ||d,P —
2P|y is bounded above by a constant multiple of ||[W||||z|| 61/2. Assume that ||| grows
like /p, a reasonable assumption at least for sub-Gaussian random matrices, and also that
||2|| ~ /n. This implies that one needs 4 to be o(1/(np)) for the approximation error to be
small. For problems with p ~ 10* and n ~ 103 employed in the simulations, we found this to
be overly conservative and § ~ p~! = 10~ already seemed sufficiently small. Admittedly,
the leading constants in n and p for the bound in Theorem 6 may not be optimal as we
employ Pinsker’s inequality to bound a total variation distance in terms of the stronger
Kullback-Leibler divergence inside the proof. As an alternative distance measure for which
a more accurate calculation is possible, we investigate below the L?-Wasserstein distance
between the full-conditional distributions of 5 from the exact and approximate algorithms
respectively.

For probability measures P and @ on R?, the L2-Wasserstein distance with respect to
the Euclidean metric, denoted Wa(P, @), is defined as

Wo(P,Q)= inf (E|U-V|*)"? 20
(PQ) = int (U= V) (20)
where C(P, Q) denotes the collection of all random variables (U, V) € R? x R? such that
U~PandV ~ Q. Let P, = N(u,0%%) and P, = N(us,0%%5) denote the full-conditionals
of 5 from the exact and approximate algorithms respectively. Although an exact expression
for the W» distance between two multivariate Gaussians is available, it is rather cumbersome
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for further analysis in the present setting. We instead use the coupling interpretation in
equation (20); the idea is to use the same u and v to generate the / for the exact and
approximate algorithm. Specifically, set

Be=TW' M2 +0o(u—-TWM ), B,=TsWM;'z+0(u—T;WM; ).
By definition, (5., ;) € C(P., P,) and hence, by (20),
W3 (P., Py) < ITW' Mtz — TsW M 2|2 + o? E|TW' Mo — TsW' M, |2

In the above display, the expectation is with respect to the distribution of v. Some further
analysis (see Appendix F) shows that Wh(Pe, P,) < ||[W|||2]| 6; note the difference in the
powers from the total variation bound. It is readily seen that for Wh(P,, P,) to be small,
one needs § = 0(1/\/TTp). In particular, for p > n, the choice § = 1/p satisfies this.

Based on the above considerations and our subsequent empirical analysis, we propose
d = 1/p as a default choice. It is important to keep in mind though that this is a suggestion
based on heuristics and may not serve all settings uniformly well. In practice, the overriding
factor in choosing such thresholds d is computational budget, so we suggest taking § as small
as possible while satisfying computational constraints. The default 1/p can be taken as a
safe upper bound for the choices involved.

4.2. Empirical analysis

We now empirically assess the approximation error for time averages by running the ap-
proximate algorithm for different values of §. The results in the following sections are based
on a series of simulations in which the data are generated from
iid
zi ~ N(wif, 4)
2-0/4=9/1)  j < 24
770 j>23’

In contrast to typical simulations studies for shrinkage priors, in which signals are typically
either zero or large relative to the residual variance, we use a decreasing sequence of signals.
The largest signal size is 4, while 18 out of the 23 signals are smaller than the residual
variance. For all of the problem sizes that we consider, this results in bimodal marginal
posterior for at least some of the 3}, increasing the difficulty of sampling from the target. We
consider two cases for X: the identity and ¥;; = #l"=3l. The latter is the covariance matrix
for an autoregressive model of order 1 with autoregressive coefficient ¢ and stationary
variance (1 — ¢?)~!. Throughout, we put ¢ = 0.9 when simulating a dependent design.
Because all of the nonzero signals are in the first 23 elements of /3, all of the 3; corresponding
to true signals will be highly correlated a posteriori, again considerably increasing the
difficulty of efficiently sampling from the target.

For analysis of the approximation error, we simulate from (21) with N = 1,000 and
p = 10,000 for § = 1072,1073,107%, and 10~°. We also run the exact algorithm twice with
different random number seeds. We collect paths of length 20,000 from each simulation
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after discarding a burn-in of 5,000. For the first 100 entries of 8, which includes the 23
non-nulls and 77 nulls, we compute (1) correlation of pathwise means between the exact
and approximate algorithm, (2) correlation of pathwise variances between the exact and
approximate algorithms, and (3) Kolmogorov-Smirnov statistics for comparing the approx-
imate algorithm to the exact algorithm. Each metric is also computed between the paths
from the exact algorithm using a different random number seed. This last measurement
gives some notion of how much variation one can expect in the estimates just due to MCMC
error. A value of § that performs similarly by these metrics to another copy of the exact al-
gorithm initiated with a different random seed is thus one that achieves almost undetectable
approximation error.

The Kolmogorov-Smirnov statistics are shown in Figure 3. While § = 1072 or 1073 have
significant bias for at least some of the marginals, when 6 = 10~%, none of the Kolmogorov-
Smirnov statistics are greater that 0.1, and most are less than 1071° =~ 0.03. A slight
inprovement is seen in decreasing § to 107°, for which the distribution of Kolmogorov-
Smirnov statistics is hardly distinguishable from the distribution from a replicate simulation
using the exact algorithm initiated using a different random number seed.

0.0-

-0.5-

2 0
e
o

L 45

-2.0-

2 3 4 5 exact
—logio(d)

Figure 3: Distribution of Kolmogorov-Smirnov statistics comparing the marginals of 100 entries of
B for different values of 6.

Table 1 shows correlations between the means and variances of 100 entries of 5 estimated
using the exact and approximate algorithms. Similarly to the case of Kolmogorov-Smirnov
statistics, significant disagreement is seen betweent the exact and approximate algorithms
for § = 1072 or 1073, but they are virtually indistinguishable for 6 = 107* or 107°. On the
basis of these results, we typically choose § = 10™* in subsequent simulations.

5. Analysis of computational cost

5.1. Estimating dependence of constants on problem size

The results of Section 3 prove that the exact algorithm converges toward the posterior at an
exponential rate, and give explicit bounds on the approximation error of time averages from
P, as a function of path length n. Moreover, we know the rate at which the computational

20



SCALABLE APPROXIMATE MCMC FOR HORSESHOE

—log(6) mean variance
1 2 0.98 0.39
2 3 1.00 0.78
3 4 1.00 0.99
4 5 1.00 1.00
5 exact (6 =0) 1.00 1.00

Table 1: Correlations between estimates of means and varianes of 5 based on pathwise time averages
for different values of 6

complexity of taking one step from P or P grows with N and p. However, rates are not
always informative about the actual computational cost of an algorithm in finite dimensions,
since one typically does not have sharp estimates of the constants. In particular, the spectral
gap 1 — & that appears in the results of Section 3 often depends on N and p. It is typically
very difficult to determine theoretically how & depends on N, p in multistep Gibbs samplers
like that in (4) (see e.g. Johndrow et al. (2018) for a very simple example that nonetheless
required extensive calculation).

However, one can conduct an empirical analysis of computational cost in the following
way. If we take e = 0 in (15), the bound becomes

n—1 2 2

1 . 3( 1vuV 21+ Ko) 1

_ — < = i
E<nk§_0<ﬁ(Xk) V90> _n<1_@(1/2)> ( T >+O<n2>

It follows that the asymptotic (in n) variance of time averages of geometrically ergodic
Markov chains is proportional to (1 — & /2))*1. This term can be thought of as an upper
bound on the sum

1

_— 22
L —agy) 22)

75 =y cov(p(Xo), p(Xy)) <
k=0

for worst-case functions |p| < 1+ V with X¢ ~ v. A common approach to study how this
constant varies as a function of N, p is thus to choose some collection of functions (usually
coordinate projections) and compute an estimate of (22) via plugging in pathwise estimates
of the covariances obtained after discarding a burn-in and truncating the sum. This is taken
to be an estimate of the asymptotic variance of . Numerous other estimators are available;
see Flegal and Jones (2010). Of course, there is no way to reliably find worst-case functions
p, but the empirical estimates at least give some sense of how this quantity behaves for
statistically “important” functions like coordinate projections.

Estimates of 7, are referred to as MCMC standard error, and there is a significant
literature on the properties of different estimators (see Flegal and Jones (2010) for a rigorous
treatment). Several of these estimators are implemented in the R package mcmcse. We have
consistently found the overlapping batch means estimator with the theoretically optimal
nl/3 batch size to perform the best, and we use this estimator throughout the paper. The
asymptotic variance should be estimated after discarding the initial portion of the path; we
discard 5,000 scans.
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Using estimates of Tz for coordinate projections, we empirically analyze the effect of
problem size on the required path length as follows. Suppose that the relationship 7'3 =
BN*p® for constants B, a1, as dictates the growth rate of 73 with N and p; that is to say,
the asymptotic variance grows like a polynomial in N, p. Then,

log(72) = log(B) + a1 log(N) + az log(p),

and thus one can obtain a rough estimate of the order of Tg in p and N from a regression of
log(ﬁz) on log(N)+log(p). We propose to compare estimates a1, a of a1, az across different
algorithms as a way to empirically evaluate the relative computational complexity arising
from the growth of the asymptotic variance.

A related pathwise quantity is the effective sample size n., which is usually defined as

var,«(¢)n
7

, (23)

Ne =

an adjustment to the path length n to reflect how much the asymptotic variance, 7'3, is
inflated by autocorrelation. Clearly, n. is proportional to the reciprocal of the asymptotic
variance, so larger n. is better. To estimate n. from paths of length n, we employ the
procedure in mcmcmse, again using the overlapping batch means estimator with n'/? batch

size and discarding 5,000 initial iterations.

5.2. Cost per step

Table 2 shows estimates of coefficients from a regression of log(t) on log(NN) + log(p) for
the old, new, and approximate algorithms, where ¢ is computation time in seconds. These
estimates are based on 20 simulations from the model in (21) with N sampled uniformly
at random from integers between 200 and 1,000 and p sampled uniformly at random from
integers between 1,000 and 5,000. The algorithm was run for 20,000 iterations and to-
tal wall clock time recorded. Computation was performed on multicore hardware with 12
threads, so matrix multiplications contribute less to the wall clock time than do matrix de-
compositions, resulting in the lower than expected exponents on N, p. Thus, these estimates
are meant to reflect the actual performance on modern multicore hardware. Moreover, the
computation time of the approximate algorithm is likely non-constant in N, p. For larger di-
mensions, the initial few iterations are likely to dominate the total computation time, since
the benefits do not emerge until the algorithm locates most of the true nulls. This cost
could be largely eliminated by “warm starting” the algorithm at, say, the cross-validated
Lasso solution, which can be computed in nearly linear time in N, p. This approach could
deliver a significant advantage in cases where lasso and horseshoe largely agree about the
set of “important” variables, as in the application in Section 7.

Table 2: Estimates from regression of log(t) on log(N) + log(p).

dimension old new approximate
log(N) 1.6478  1.6847 0.5449
log(p) 0.7204 0.6065 0.3392
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5.3. Cost related to variance of time averages

To assess the cost due to increased variance of the time-averaging estimator as a function
of N, p, we conduct another set of simulations. We focus on the performance of the approx-
imate algorithm, since its much lower computational cost per step allows a wider range of
values of N, p in the simulation study, improving the reliability of the results (recall that the
approximate algorithm is also geometrically ergodic by Theorem 6). The results that follow
are based on two simulation studies from the setup in (21), each consisting of 20 indepen-
dent simulations in which N was sampled uniformly at random from the integers between
1,000 and 5,000 and p was sampled uniformly at random from the integers between 10, 000
and 50,000. In the first simulation study, we use an independent design. In the second
simulation study, we use a correlated design with AR-1 structure and autocorrelation 0.9
as described above. The approximate algorithm was run for 20,000 iterations. Calculations
of effective sample sizes n. and standard errors were based on the final 15,000 iterations.

The left panels of Figure 4 shows the distribution of n. based on the first 100 entries of
B, the corresponding entries of 7, log(&), and —2log(o) as a function of p; each simulation
also has a different value of N. No variation by p is evident in either the independent
or correlated design case. The right panels of Figure 4 shows the analogous result, but
as a function of N. A slight increase in effective sample size as N increases is possible.
There is apparently little difference in n, when the design matrix is correlated compared to
independent design.

independent design independent design
o PRSI TETS  e pppo
< ' a : it [ [
10007:1.1" T T S B T 1000.:|.-,i'5’§§§;!§;
3%8828095;513%33'383%3 o‘:\lmvv\ovmvvmmm‘.ov‘ov‘co‘o‘ov‘v‘r\‘m
FhBo882REERENILERIES TREERRRRERE88888339¢8
P N
correlated design correlated design

i

Figure 4: Left panels: Effective sample sizes n. for 100 entries of B, 100 entries of n, logé& and
—2logo. The 100 entries of B,n include those corresponding to all of the true signals, and 76 null
signals. The horizontal axis indicates the value of p used in each of the 20 simulations. Right panels:
analogous to left panels, except that the horizontal axis indicates the value of N used in each of the
20 simulations rather than value of p.

Tables 3 and 4 show results of a linear model with specification
log(ffij (1)) = ag + a1 log(N;) + a2 log(pi) + b + €5
where ¢;(x) = z; is jth the coordinate projection of the partial state vector

x = (B1:100, N1:100, log (&), —21og(o))
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and ¢ = 1,...,20 indexes the simulation scenario. Clearly, some coordinates tend to mix
better than others, and the coordinate-specific intercepts allow for this variation. Results
for independent design are shown in Table 3 and for dependent design in Table 4. The
small, negative coefficient estimates suggest that if anything the Markov chain actually
mixes slightly more rapidly as N, p increase. Thus, there is little evidence that a longer
path is needed to achieve fixed Monte Carlo error as N, p grow.

Table 3: estimated parameters from regression of —log(ne) on log(N) + log(p), independent design

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.65 0.32 -23.65 0.00
log(N) -0.17 0.03 -5.39 0.00
log(p) -0.03 0.02  -1.83 0.07

Table 4: estimated parameters from regression of —log(n.) on log(N) + log(p), dependent design

Estimate Std. Error t value Pr(>|t|)

(Intercept) “7.56 0.54 -14.03 0.00
log(N) -0.15 0.03  -5.04 0.00
log(p) -0.06 0.04  -1.47 0.14

6. Statistical performance

Because the old algorithm can sometimes become trapped in potential wells (see Figure
2), computational cost is not a complete measure of the difference between the old and
new algorithms. In this section, we analyze the performance of the three algorithms in the
estimation of 5, which is typically the focus of inference. We again use the simulation setup
in (21) with N sampled uniformly at random from the integers between 200 and 1,000 and
p sampled uniformly at random from the integers between 1,000 and 5,000. Mean squared
error (MSE) for estimation of by MCMC time averages is shown in the left panel of Figure
5. There is no discernible difference between the performance of the new and approximate
algorithms, but the old algorithm has about double the MSE at the median over the 20
simulations. Similarly, median empirical coverage of 95 percent credible intervals is about
90 percent for the old algorithm, and in only one case did the empirical coverage achieve 95
percent. In contrast, the new and approximate algorithms have median empirical coverage
of about 93 percent, and never exhibited empirical coverage below 90 percent. We know
from van der Pas et al. (2017b) that credible intervals for intermediate-sized signals cannot
achieve the nominal coverage, even asymptotically. Since our simulation involves a sequence
of decreasing signals, undoubtedly some of them fall into this “intermediate” categorization.
As such, the performance of the new and approximate algorithms with respect to empirical
coverage is probably near optimal.

Figures S3, S4, and S2 in Supplementary Materials also evaluate statistical performance
of the approximate algorithm. Figures S3 and S4 show posterior marginals for the first
25 entries of 8 for simulations with N = 1,000, p = 5,000 and N = 5,000, p = 50, 000,
respectively, along with the true values of 5. In general, the marginals have single modes
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Figure 5: Mean squared error for estimation of 8 by time averages (left) and coverage of 95 percent
equal-tailed credible intervals based on time averaged quantiles (right). Boxzplot is over results of 20
simulations.

centered near the truth for larger true signals, two modes with one centered near the truth
and one centered at zero for intermediate sized true signals, and single modes at zero when
the true signal is small or identically zero. This is consistent with the expected behavior of
the horseshoe. Figure S2 shows violin plots with indicated 95 percent credible intervals for
o2 over 20 independent simulations each with 1,000 < N < 5,000 and 5,000 < p < 50, 000.
All but two of the intervals cover the true value of 2. Overall, the approximate algorithm
has exhibited excellent statistical performance by every metric we have considered.

Finally, we conduct a series of replicate simulations to assess the ability of the ap-
proximate algorithm to concentrate around the true parameter g with increasing N. For
each of N = 200,400, 600,...,2000, we perform ten replicates of the simulation in (21)
with p = 20,000 and 6 = 2p~' = 107%. We run the approximate algorithm for n =
21,000 iterations, discarding B = 1,000 iterations and computing the pathwise average
B = (n — B)~! > B4l B, where B®) is the state of 8 at time ¢. We then compute the
mean squared error (MSE) p~1||3 — 5||2 and provide boxplots across the ten replicates for
each N in Figure 6. Clearly, pathwise averages from the approximate algorithm concentrate
around the true value of 5 as N grows large.

7. GWAS Application

We use the horseshoe with computation by the approximate algorithm to analyze a genome-
wide association study (GWAS) dataset. The data consist of N = 2,267 observations
and p = 98,385 single nucleotide polymorphisms (SNPs) in the genome of maize. These
data have been previously studied by Liu et al. (2016) and Zeng and Zhou (2017). Each
observation corresponds to a different inbred maize line from the USDA Ames seed bank
(Romay et al., 2013). As the response, we use growing degree days to silking, a measure
of the average number of days exceeding a certain temperature that are necessary for the
maize to “silk.” Maize is typically ready to harvest about 60 days after silking, so this is a
measure of the length of the growth cycle for a particular line of maize, crudely controlling
for temperature. This response is also considered by Zeng and Zhou (2017).

We run the approximate algorithm for 30,000 iterations, discarding 5,000 iterations as
burn-in. Figure 7 shows histograms of n. and ne/t for 200 entries of 3, the corresponding
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Figure 6: Mean squared error for 3 for the approximate algorithm as a function of N ; bozplot shows
variation across 10 replicate simulations.

200 entries of 7, log(§), and —2log(c). The 200 entries of 3,7 includes the 100 entries for
which the posterior mean is largest in absolute value, as well as 100 other entries. The
smallest value of n. observed was 893, and the smallest value of n./t 0.05. The median
values were 4531 and 0.24, respectively. Thus the algorithm remains quite efficient, even on
a fairly large, real dataset.
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Figure 7: Effective sample size (left) and effective samples per second (right) for maize application.

Figure 8 shows density plots of samples for the nine entries of g with largest estimated
absolute posterior mean, as well as the estimated posterior mean. The Lasso estimates for
these parameters, with the penalty chosen by 10-fold cross-validation, are also indicated. It
is clear that, even for the entries of 8 for which the signal strength is largest, the horseshoe
marginals are typically bimodal, with the weight in the mode centered at zero increasing
with decreasing signal strength. This suggests that the bimodal shape of the marginals may
be quite common in applications, and gives some sense of the level of uncertainty about
which entries correspond to true signals. The Lasso estimates for these relatively large
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parameters are typically shrunken toward zero relative to the horseshoe posterior mean, a
behavior that has been observed previously (see Bhadra et al. (2017)).
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Figure 8: Density plots for the 9 entries of B with largest estimated posterior mean along with
E[B; | y] from horseshoe (blue) and B; from Lasso (red).

Figure 9 plots the number of entries of 5 for which the absolute value of the corre-
sponding Lasso or horseshoe point estimates exceed a threshold between 0.0005 and 0.1.
Also shown is the size of the intersection of these two sets. For larger thresholds, the num-
ber of horseshoe point estimates exceeding the threshold is typically larger than that for
Lasso, while for smaller thresholds, this trend is reversed. This is again consistent with
the tendency of Lasso to overshrink large signals and undershrink small signals (Bhadra
et al., 2017). The size of the intersection closely tracks the minimum size of the two sets,
suggesting that Lasso and horseshoe largely agree as to which coefficients represent sig-
nals, but disagree somewhat about their magnitude. Of course, Lasso provides no notion
of uncertainty in the selected variables such as that conveyed by the posterior marginals of
horseshoe.
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Figure 9: Plot of the number of variables for which E[ﬁj | y] > T (horseshoe) or Bj > T (where Bj
is the Lasso estimate) vs T (threshold) for T > 0.0005.
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8. Discussion

It is now ten years since the Bayesian Lasso and the associated Gibbs sampling algorithm
were proposed in Park and Casella (2008), eight years since the horseshoe prior appeared in
Carvalho et al. (2010), and 22 years since the landmark Lasso paper of Tibshirani (1996).
While the introduction of the least angle regression algorithm (Efron et al., 2004) and coor-
dinate descent algorithms (Friedman et al., 2010) have made L; regularized regression with
hundreds of thousands of predictors possible on standalone computing hardware, no exist-
ing implementation of Bayes Lasso, horseshoe, or any other Bayesian global-local shrinkage
prior scales to this problem size. This has probably limited the adoption of these attractive
Bayesian methods by practitioners, especially in the biological sciences where large p is
common. Regardless of the virtues of a statistical procedure, it is of little practical use if it
is not computable.

Here we have offered for the first time computational algorithms for horseshoe that can
scale to hundreds of thousands of predictors. The algorithms have strong theoretical con-
vergence and approximation error guarantees. Our approximate algorithm has the same
computational cost per step as coordinate descent for elastic net and Lasso when the truth
is sparse, though naturally more computation time is required to obtain a Markov chain
of the requisite length than to obtain a single path of Lasso solutions. However, one gains
more information from the horseshoe, perhaps most critically some measure of uncertainty
regarding which f; correspond to true signals. The Bayesian community has long recom-
mended against selecting single models without reporting its uncertainty, but has often not
provided algorithms that scale well to large p problems. This has perhaps contributed to
the growing importance of selective inference over Bayesian methods, as practitioners have
mostly adopted the strategy of selecting a single model. We hope that the computational
strategies and results outlined here will contribute to the use of Bayesian methods in high-
dimensional settings, and that exploiting sparsity and other special structure of the target
will be more widely adopted as a means to develop efficient approximate MCMC algorithms
for modern applications.

In designing approximate MCMC algorithms, our experience suggests that it is impor-
tant for the corresponding exact algorithm to have good mixing behavior. For this reason,
we introduced the new exact algorithm with superior mixing behavior over previous alterna-
tives before considering approximations. Performing the same thresholding operation with
the older algorithm that doesn’t marginalize over 8 and o to update the global parameter
& wasn’t nearly as successful. Therefore, while the approximation scheme in the update
of # can be readily applied to most global-local shrinkage priors as well as spike-and-slab
priors, a careful study of the exact algorithm for the corresponding prior is recommended
before exporting the approximation scheme.
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Appendix A. Preliminaries

We introduce notation and make several observations that are used throughout the ap-
pendix. For a square matrix A, tr(A) denotes its trace. We use I to denote the d x d iden-
tity matrix. For an m x r matrix A (with m > r), s;(A) :=s; = /A; fori =1,...,r denote
the singular values of A, where \y > A9 > ... > \. > 0 are the eigenvalues of A’A. The
largest and smallest (non-zero) singular values are spax(A) = s1(A) and spin(A) = s,.(A).
Unless otherwise stated, || Al : = Smax(A) denotes the operator norm of a matrix. We often
make use of the standard facts |AB]|| = |BA| < ||A||l||B]l, ||A + B|| < ||4]| + ||B]|, and
|A7Y = 1/smin(A). We use = to denote the partial order on the space of nonnegative
definite (nnd) matrices, i.e., A = B implies (A — B) is nnd. We also record the fact that if
A, B are nnd matrices of the same size, then ABA is also nnd.

For probability measures P, @ on (X, B) having densities p and ¢ with respect to some
dominating measure v, recall the following equivalent definitions of the total variation dis-
tance

|P = Q|lvv = sup |[P(B) — Q(B)| = % lp — qldv = sup /é(p —q)dv.
BeB X lp|<1

The Kullback-Leibler (KL) divergence KL(P||Q) = [plog(p/q)dv. From Pinsker’s in-
equality, KL(P || Q) > 2||P — Q||3,.

Define the multivariate normal inverse-gamma (MNIG) distribution to be the joint dis-
tribution of (3,0%) € RP ® R, defined by the hierarchy

B|o?~N(u,o0?%), o~ InvGamma(a,d’), (24)

where an InvGamma(a, ') distribution has density proportional to
g=(@tbe=a'/r] (). We denote the above distribution by MNIG(y, ¥, a, ).

We record a lemma which calculates the KL divergence between two MNIG distributions
with the same shape parameter; a proof is provided in Appendix E.3.

Lemma 8 Suppose p; ~ MNIG(u;, 3;, a;,a;) for i = 0,1, with ag = a;. Then,

1 _ _ _ ap
KL(po [[p1) =5 | (5730 — L) — log 57 50| + (w1 — o) S1 (i — pro) —
0
A,
+ aglog(aj/af) + 4000
)

A.1. Derivation of mean and covariance for § in the approximate chain

Let us first derive g5 in (8). Recalling the definition of Dj, we have I'sW' = (I'sW&; 0p—s;xN)
and WI'sW' = WeI'sW§. Thus, s = (155 0p—ssx1), With

ps = TsWi(Iy + WsTsW§) 'tz = (WiWs + Tgh) Wz

A proof of the second equality can be found in the proof of Proposition 1 in Bhattacharya
et al. (2016).
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We now derive X5 in (9). Again, using the definition of Ds, we have u — TW’' My Ly =
(ug — FSW§M§1U; uge), where Mg = (In + WsI'sW§). Also, recall that v = Wu + f =
Wsug + Wseuge + f, and ug 1L uge since I' is diagonal, which together imply cov(ug,v) =
I'sW§ and cov(uge,v) = I'geW¢.. We now derive the blocks of 3s.

1. We hayve,

cov(ug — TsWiMglv) = Tg — TsWEMg ' WeTs = (WiWs +T5') ™1,

where the proof of the second equality can be found in the proof of Proposition 1 in Bhat-
tacharya et al. (2016).
2. Next, using ug 1l uge,

cov(ug — TsWEMg v, uge) = —TsW§Mg ' WeT'se.

3. Finally, cov(uge) = I'ge.

Appendix B. Transition densities of the exact and approximate chain

We lay down the transition densities of the exact and approximate chains. Recall D =
diag(n; ') and I' = £71D.

Exact chain. First, a comment on the state space for the Markov chain(s) of interest.
P(z,-) is not defined for = in the set

Xo={z=(80%6n): Bj = 0 for one or more j}

Thus, we exclude Xy from the state space, and construct a Lyapunov function that is
infinite on this set, so that points in this set are not on the boundary of sublevel sets of the
Lyapunov function. By (Hairer and Mattingly, 2011, Remark 1.1), the Lyapunov condition
and minorization on its sublevel sets are sufficient to establish exponential convergence
toward a unique invariant measure. In particular, (Hairer and Mattingly, 2011, Theorem
3.1) requires only that the state space X be a measurable space. Since A has vP*-measure
zero for any k > 0 whenever it has v-measure zero, computational problems are avoided by
simply not initializing the Markov chain at a point in Aj.

Define R\p = R\ {0}. Consider the Markov transition kernel PP for our exact algorithm
on state space X = X x Xy = R% x (Rz\’o xRy xRy ) with state variable = = (1, z\,), where

T\, = (B,02,¢). Letting » = (ﬁ,@,&Q,g) denote the current state and y = (n, 3,02, €) the
new state, the transition kernel P(z,-) has density with respect to Lebesgue measure

p(a:,y) - p((ﬁax\n)7 (7773/\71)) :Pl(n ‘ x\n)pQ(y\n ‘ 777g)a (25)

where
p
p1(n | x\n) = le(nj | x\n)»
j=1

e~ e~ in; 1 () (26)
0,mm; + bing) 1+n; CoVl)

p2(ipg | 1,€) = p2(B | 0%, & m) p2(0” | €, m) p2(€ | 1, €),
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where m; = 55]2./(262) and I'(+,-) is the incomplete Gamma function defined in (50). We
describe the various components of py below.
The transition kernel of the MH-within-Gibbs update for £ can be written as

p2(€ 1 m,€) = ay(&,€) h(€ | &) +y(€) 5¢(£), (27)

where h(- | -) is the log-normal proposal kernel for £. Here,

o (€,€) = min ¢ :M
69 {1""”(5’5) p(S\n)E}

is the probability of accepting a move to & from &, with p(§ | n) as defined in (3), 55(-)
denotes a point-mass at £, and

m@ =1 [a&enie| &

is the probability of staying at &.
The full conditional po(3 | 02,&,7m) is N(u,0%%) with 4 = YW’z and ¥ = (W'W +
(¢71D)~H 71 while pa(0? | £,7) has an InvGamma distribution. Thus, using the definition
of MNIG above, the full conditional for (3,0?) from the exact algorithm, po(3, 02 | €,7), is
distributed as MNIG(p, 2, a, a’), with
p=SWe=TWM1lz, S=WW+I H) =0 -TWMIWwr, (28)
a=(N+w)/2, d =M 1z+w)2

In the fist line of the above display, we used various equivalent representations of u and X
which follow from the Woodbury matrix identity and are encapsulated in the algorithm (5).

Approximate chain. We now describe the transition density of the approximate chain.
Noting that the update for n remains the same in the approximate algorithm, the approxi-
mate Markov kernel P.(z,-) has transition density

Pe(z,y) = p1(n | 20, P2,e(B. 0% | £,m) pae(€ | 0, €) z€X, (29)

where p2 (3,02 | £, 1) denotes the approximate full conditional of (3, o?) resulting from the
approximations of DW and WDW' by DsW and W DsW' described in Section 2.2, which

is distributed as MNIG(us, X5, as, af), with
ps =TsW' M2, S5 =T — (2TW'M;'WT — TsW' M ' MM 'WTy), (30)
as = (N +w)/2, af=(z'M;'z+w)/2.

Also,

pQ,e(g | §~, 77) = O‘n,e(éy 5) h(f ’ 5) + Tn,e(g) 65(5)7 (31)
is the approximate MH-within-Gibbs transition density obtained by the approximation of
the acceptance probability an (&, €') = min {1, g, (&, &)} where

_ pe(&1m)¢
an,s = = =)
pe(& [ m)§
and pc(§ | ) is obtained by replacing M, by M 5 in (3).

(32)
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Appendix C. Proof of Theorem 6

We first show that V' continues to define a Lyapunov function for the approximate chain P,
and then bound the total variation distance between the exact and approximate transition
densities.

C.1. Lyapunov condition for approximate chain

The proof of this part to a large extent closely resembles the first part of the proof of
Theorem 14, and we only point out the key features. The only place where one requires
more work is to bound the trace term of E(|W S| | 02,&,n) = usW'Wus + 02 tr(WE;W')
under P.. Proceeding as before, we can show usW'Wps = ||(In — M; )z|? < [|z]|*. Write
tr(WEsW') = tr(WEW') + tr(WAW’), where A = X5 — X. We have already showed in
the proof of Theorem 14 that tr(WXW’) is small. For the other term, write tr(WAW’) =
tr(WE/28-1/2An-1/251/2W"). We prove in the next subsection (see equation 46) that

=7 A2 < 8[W[*8 + O(8%).

Since X" 1/2AN1/2 ig similar to Y ~1A, this means »o2AN-1/2 < C1, for some constant
C > 0. This means tr(WX/28-1/2AR12812W") < Ctr(WEW’), which we already
know is bounded above by a constant.

The other fact used to complete the proof is that the same two-sided bound for 0]2-
continues to hold as before. To see this, for j ¢ S, 0']2- = 5_17];1, while for j € 5, 0]2 >
1/(82,0x(Ws) + €nj) > 1/(s2 (W) + £n;), and the upper bound 032 < (&n;)7* holds for all

VE

C.2. Proof of uniform total variation bound in (17)

Recall we denote z = (8,02, £,7) for the entire state vector. We shall also call § = (3, 02).
The various pieces of the transition density for the exact algorithm is given in (25) — (28),
while the same for the approximate algorithm is given in (29) — (32).
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We now proceed to bound the total variation distance between P(z,-) and Pe(z,-). We
have, for a fixed x € X,

2P, ) — Pelt, ey = / Ip(2, ) — pe(, v)ldy

= [minloy) { [ 2t 17.8) = pcling | n,f)ldy\n} dn
Ss%p/lpz(y\n | 1,€) — P2y | 1.E)ldy,)

=sup 19200 1€0p2(€ 108 = (6 | € m) p2clé | 0.8) | i,

%’s%p [/ {/|p2<9 6m) — poe(0] £21) de} pal€ | 1,8 de

# [ 1€ 11.8) = pacle 0.8 e

(i7) -
< QS;p Ip2(0 1 &,m) = p2,e(0 | &m)llxv + 25up [ (€,€) — ane(€,€))|.
n £&€m

For (i), we used triangle inequality and that [ ps (6 | £,n)df = 1. For (ii), we used that

/ o€ | 7€) — poel€ | 7.6 de

< [ Janl€.€) ~ anc€OI e | € +[ra(@) o€

<2sup ’ozn f &) — an,e(f 5)’
&€

Since the bound in (ii) is independent of x, we conclude that

SUP H5 P —0,Pe ||Tv < sup ||p2(0 | &, 77) P2,e(9 | fﬂ?)”Tv

&m
+sup |ay(£,€) — ane(,9)] . (33)
&,E:m

TVa
We now separately bound TV, and TV,. We show that

NI s + 062,

TV? = 4|W %5 + HWH 5+
TVy =N |[W|* (1+ || 12 /w)d + 0(52),

for sufficiently small §, which produce the desired bound. Since the derivations to obtain
these bounds are somewhat lengthy, we split them into two different sections below.
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C.3. Bounding TVsy: MH ratio approximations for £

We first record a couple of useful auxiliary results. The first result is a well-known eigenvalue
perturbation bound due to Weyl.

Lemma 9 (Weyl) Let A, E be n x n Hermitian matrices. Then, fori=1,...,n,
vi(A+ E) —vi(A)] < || E]],
where v;(A) denotes the ith eigenvalue of A, and ||-|| denotes the operator norm of a matriz.

Next, we present a simple yet useful result to bound the difference between MH acceptance
probabilities.

Lemma 10 For any a,b > 0,
| min(a, 1) — min(b, 1)| < max {|(a/b) — 1|, |(b/a) — 1|} < eldl 1,
where A =log(a/b).

Proof First observe that |min(a,1) — min(b,1)| < |a — b|, which can be verified by enu-
merating the 4 different cases (i) a,b < 1, (ii) a < 1 < b, (ili) b < 1 < a, and (iv) a,b > 1.
In case (iv), the left hand side is 0 and the claimed bound is trivially satisfied. In the
remaining cases, bound

la — b| = |{max(a,b)/ min(a,b)} — 1| min(a,b) < [{max(a,b)/ min(a,b)} — 1|
< max {|(a/b) — 1], |(b/a) — 1]}.

This proves the first part. The second part simply follows from the monotonicity of = — e”.
|

As noted in Appendix B, we have that

an(xy y) = min{l, qn(x, y)}7 O‘n,e(xa y) = min{l, %7,6(357 y)}
with

MY (w2 M)V (14 )
M|~ 12 (w + 2/ M, o) -NF)2 /(1 +y)

an(z,y)

and ¢, s(x,y) is obtained by replacing M; by M, s, where, recall that
My =IN+t""WDW', Mys=1In+t"WD;W', te{z,y}
It then follows from Lemma 10 that

|y (@, y) — ane(z,y)| < exp(|A]) - 1,
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where

A — log q??,(s(x’y) — Al +A2,

(@, y)
A=Ay — A1y, A= —% [log |M; s| — log ]Mt\], t e {x,y},
Do =Ngy—Noy, Nogy= _ntw [log(1 4+ 2" M, Y '2/w) —log(1+ 2/ M '2/w)], t € {z,y}.
We shall prove below that
Al < N[W2 (L + 2] /w)é. (34)

Observe the right hand side is independent of ¢ and 7.
To establish (34), we bound

|A[ < Z [[A1e] + [Agg]]. (35)

te{z,y}

We now proceed to individually bound |A; ;| and |Ag| for ¢t € {z,y}.
For t € {x,y}, we have
N
| log | M| — log [ My || = [log{1 +t 'v;(WDW’)} — log{1 + ¢t *v;(WDsW’)}]

i=1

Mz

| log{1 + ¢ ';(WDW')} —log{1 + ¢~ 'v;(WDsW')}|
1

%

Mz

[t v (WDW') — t~ (W DsW),

i=1
where the last step uses the fact that the map u +— log(1 + u) for u > 0 is Lipschitz. Write
t*WDW' =t YWDsW' +t*WD_sW',

where D_5 = diag((nj_l) 1(j € I°)) retains the entries of D which are thresholded. By
Weyl’s perturbation bound (see Lemma 9), for any ¢ = 1,..., N,

[t s (WDW') — t 1y (WDsW')| < t7HWDsW'|| < 5| W17,

where we use the fact that, given our thresholding rule, all non-zero diagonal entries of the
matrix t~'D_s is bounded by 6 for t € {x,y}. Substituting the bound, we obtain,

ST Al < NW 2. (36)
te{z,y}
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Next, we bound |Ag;| for t € {z,y}. To that end, once again using that the map
u +— log(1 + w) is Lipschitz, bound

| log(1 + Z M 2 /w) —log(1 + z'Mt_élz/w)} < ‘z’(]\Jt_1 - Mt_l)z/w‘

< (Il fw) M7 = M5 |

< (2017 /w) 1M1 (Me5 — Me) M, ||

< (2117 /w) [|Me.6 — M,
where we have used the identity A~!—B~! = A=Y(B—A)B~!, the bound || AB| < ||A||||B]l,
and the fact that both ||M; *|| and || M, | are bounded above by 1. Continuing from the
last line of the display, ||[M; — My s|| = ||t *W DsW’|| < §||W|? using the same argument
as in the bound for A; ;. Substituting this bound, we obtain,

D 8| < (N +w) ([l2]12/w) W] 6. (37)
te{z,y}

Substituting (36) and (37) in (35), we obtain (34). Now, making a Taylor expansion of
e’ — 1 about zero, we obtain for 0 < x < 1

e —1=0+z+0@?)-1=2+0(?),
which gives
TVy = N [|WI* (1 + [|2]%/w)d + O(6%) (38)

for sufficiently small 6.

C.4. Bounding TV;

To bound the total variation distance between pa(- | £,7) and pa¢(- | £,7), we use Pinsker’s
inequality,

1p2(0 | &,m) — p2e(0 | & m)|13y < %KL(m,e(H L&) || p2(0] &m)), (39)

and subsequently use the expression for KL between two MNIGs derived in Lemma 8; note
that the shape parameters as = a = (N + w)/2 and hence the Lemma applies.

Let us define

KL; = tr(X7'%5 — I,) — log |21 5],
_ as
KLz = (1 — 15)'S " (1 — 1) 7

aj (40)
Ak

KL3 = aglog(as/a’) + (a' —a a—f
§

so that
KL(P2,5(' ’ £,m) sz(' ’ f;"?)) = 0-5(KL1 + KLz) + KLs.

We now proceed to bound each of the terms subsequently.
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C.4.1. BounDS FOR K1
The matrix 15 is similar to the positive definite matrix ¥~1/2%;% /2, and hence its
eigenvalues {(; }§=1 are all positive. Expressing the trace and determinant in terms of the

eigenvalues, we obtain,

p

KLy = Y (¢ — 1~ log()). (41)

j=1
Now, write
Ss=Y4+A, A=TWM 'WT — (2I'W’' — TsW'M; ' M) My 'WTs,
and
Y% =1, + 27A

Using rank(B; By) < min{rank(B),rank(Bz2)}, A is the difference of two matrices with rank
at most N each, and using rank(B; + By) < rank(Bj)+rank(Bs2), we can bound rank(A) <
2N, which then implies rank(X"!'A) < 2N. Letting {@}?Zl denote the eigenvalues of
Y~1A, it then follows that Ej =0 for j > 2N. Since (;j =1 + éj, we conclude that (; =1
for j > 2N, and

2N 2N _
KL, = Z (¢ —1-1log¢) = Z (G5 —log(1+¢j)]. (42)
j=1 J=1

Observe that the right hand side is a positive quantity, since log(1+z) < x for > —1 and
(j > —1 for all j (since ¢; > 0 for all j). Using Taylor expansion, it can be further shown
that x —log(1 + x) < 22 whenever |z| < 1/2. Using that the magnitude of the eigenvalues
of a matrix are bounded by its operator norm, we have |(;| < [|[S7!A| for all j = 1,...,2N.
Hence, if we can show that ||[X~1A| is small, we can bound

2N
KL <Y |G <2N[[57'A % (43)
j=1

With this motivation, we now proceed to bound ||[Z~'A||. To facilitate our bounds, we
decompose

(35 —X) = (85 — Zs) + (54 — 2),

where
S, =T -TW'(2M; ' — My 'MM; )YWT.

3 itself is a covariance matrix, although this isn’t used in the subsequent analysis. Letting
A= M; MM,

CsW/AWTs — TW/AWT =TsW/AW (s —T) + (I's — T)W'AWT.
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Hence,

N5 — Xy = 2TW/M; ' W(T — T5) + TsW AW (T5 — T) 4 (T's — T)W' AWT.

Ty T2 TS

Recall that =1 = (W'W +I'"!). Let us now calculate

Y85 -8 = (WW + T YTy + Tp + T3) = Hy + Hy + Hs,

with

Hy =2[W WIW' M; ' W (T —Ts) + WM;'W (T — Ty)]

Hy = [WWIsW AW (L —T5) + T 'Ts W AW (L5 — T)] (44)

Hy = [W'W (s = D)WAWT + T~ (I's — T)WAWT].
Next,

S, =S =TW [M~'+M;'MM; ' —2M; '] WT.
E
Hence,
Hy: =YY%, - %)= (WW+THI'W'EWT. (45)

Combining (44) and (45) and using the triangle inequality for the operator norm,

4
ISP A = (127 (S5 = £)|| = | H1 + Ha + Hz + Hal| <Y || Hill-
i=1

We now record a Lemma which collects various results required to bound the operator
norms of the H;s; a proof is provided in Appendix E.4.

Lemma 11 The following inequalities hold:

(i) max {||M 1], | M|} < 1.

(ii) max {||M — Mg]|, |M~'Ms — In |, [|MsM " — In|, | M; "M — In|, [|MM; ' - In||} <
W23

(iii) max {||[WTW’' MY, |WTsW’ M; 1|} < 1.

(iv) IWTW’ M; | < 1+ [W]2%0.

(v) Recalling that A = Mé_lMM(;_l, we have || Al < (1 + [|W]|?5). Further, |WTsW' A|| <
(L+[[W]26) and [AWTW'|| < (1+ [W]]?5)*.

Using Lemma 11, we now proceed to bound the || H;||s; that [|[I'—T's|| < d is used throughout,
along with the facts ||B; Bz|| = ||B2Bi|| and || By 4+ Ba|| < ||Bi|| + || Bz2]|-

Bound for ||H;||. We obtain, using (i) and (iv) in Lemma 11,

1 || < 21w 128 [IWTW Mg+ (1M57]] < 2l W28 [2 + [W]%].
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Bound for ||H3||. We obtain, using (v) in Lemma 11 and the fact that || ~!Ts|| < 1,

12| < W26 [IWTsW" Al + A} < 2[W|[*6 [1+ [W]].

Bound for ||Hj||. We obtain, using (v) in Lemma 11 and the fact that ||[T~1Ts|| < 1,

1] < W28 [[AWTW|| + [JAI] < (W76 [(1+ [IW]26)* + (1 + [W]*5)].

Bound for ||H4||. We have,

|Hal = [WT(W'W +T-HIW' E|
= |WTW' (Ixy + WTW') E||
= |WITW’' ME||.

Now, ME = Iy + MM; 'MM; "' —2MM; ' = (MM;' — Iy)?. Substituting in the above
display, and once again invoking Lemma 11,

|Hy|| = || M; ' WIW' (M — Ms)M; (M — M)
< [WTW'M; | | M — My|?
< (1+ [WP0) (|W*6)>.

Bound for ||[Z71A||. Collecting the bounds for || H;|| and substituting in the display before
Lemma 11 plus some simplifying algebra yields,

IZTEA < (IW28) [3+ 3(1 + [W[*8) + 2(1 + [W|[*6)*] = 8|W[*6 + O(6%)  (46)
for sufficiently small 6.

C.4.2. BounD FOR KlLs
Focus first on (1 — ps)'S 7 — ps). We have p — ps = (TW/M 1 — TsW’'M; )z, Write
WM™ — WMt = (T —Ts)WM '+ TsWM Iy - MM ).

U \%

We can now write

(=) S (= ps) =2 (U+V)YSHU+V)z
<O +Vys=HU + V)|l |2
<|STVAU + V)P |2
<2(|=7V2UNP + =72V ||z
=2(|U'=7 U + V=TV [|2])%,
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where we used the inequality || By + Bal||* < 2(||B1]|* + || Bz||?). Next,

IU'EH0|| = |MTIW(L = Ty)(W'W + T — Ty WM Y|
= [T =To)(W'W +T71) (T = To)W'M W
<||C =T)(W'W +T7H| W]
< [IWIPs(1+ [W]?6) = [W]*6 + O(6%),
for sufficiently small d, where we have used conclusions of Lemma 11 in multiple places and
in the last step, we used ||(I' — I's)I"!|| < 1 since it is a diagonal matrix with zeros and

ones on the diagonal. Similarly, it can be verified that ||[V/S71V|| < ||[W]|%6(1 + ||[W]|26).
So then it follows

N+w N+w
KL, < (2|W |5 + 0O(5?)) —— =2 W25 + O(6%).

where the last factor is an upper bound on a;/aj which originates from bounding a5 below
by w/2.

C.4.3. BounD FOR KLjg
Using log(z) < (x — 1) for = > 0, we have,

KL3 < as{(a5/a’ — 1) + (a'/as — 1)}
< 2ag|a’ — df|,

since a’,a§ > 1. Since |a’ — af| = |2/(M ™1 — M5 1)z|/w < (||2]|?/w) |W]|?6, we have
KLg < N (||2]* /) [|W]]%6.

C.4.4. SUMMING UP

We now combine the bounds to obtain the final result. We have

N+
KL; 4+ KLy + KLz < 8||W|%6 + 2 “’HWH?(S + N (||2]|2/w) W %6 + O(6?)

so by Pinsker’s inequality
N +

N 2
3 <o+ X s + S ED s o)
and so finally, combining with (38) — which contributes only factors of order 4% or smaller

after squaring — via (33), we obtain

B _ e N+w N [P H2 )
sup |6, P — 8, Pellrv = /4| W26 + == |W| i+ — Wl +0()
x
N N 2
= V3| Wly/4 + +”+ 5 ”i' +0(5),

since none of the bounds depend upon the remaining state variable 7, giving the result.
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Appendix D. Proof of Theorem 7

Let P}, be the k-step transition kernel Py, = H;?:l Pe,. By (Johndrow and Mattingly, 2017,
Corollary 1.6)

d (I/lpn,l/gp ) d (I/lpn 1,11273” 1) —|—€n(1—|-V173n 1V)

Iterating this estimate we obtain

n—1

do(11 P, 2 P") < @ dg(v1,v2) + Y Fen (14 11Pr_p1V).
k=0

Since V' is a Lyapunov function of P, for every ¢, we obtain using the uniform bound on
the constants

Vlﬁkv < Vlﬁk—l(')/ekv + Kek)

k k—1
< H Ve V1V + Z’Ye]KeJ
J=1 7=0
K K
<H V) + < T

SO

Substituting v5 = v* we obtain

~ V4K
dg(1Pn,v") < adg(v1,v*) + (1 +4 + ) Z

k=0

Since dy bounds total variation from above, the result follows if lim,, . Zz;é aFe,_ =0.
To show the second part, we apply (Johndrow and Mattingly, 2017, equation (45)) to
obtain

n—1 n—1
L. UXH-UX 1., 1 .
S (X)) v = (X5) - ( )+nMn+nZ(PE’““ — PYU(XY)
k=0 _

SERS

where ¢ = ¢ — v*p,

= ZP(‘Z)’ Mé = Zmiﬂ m;+1 = U(Xli) - PEIH—IU(X;;)'
= k=1
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_ (1vpvi/2) = . . . .
Put C = Tys (1 a02)" where 1—ay /) is the spectral gap of P in the weighted total varia

tion norm built on V/2 with an appropriate 8(1/2)- Simple modifications to the calculations
in Johndrow and Mattingly (2017) using the uniform bounds on K, and . give

1 \? o (1 K 1—Am
ZME < =
E <nMn> <20 (n + n{l —’7} + n2{1 — &}V(xo)) ) (47)
and
E[(P,, — P)U(X})(P, — P)U(XS)] < C*\/er€; [co + clﬁf(j/\k)/QV(xo)]
SO
n—1ln—1 n—1ln—1 .
Y Y B[P, — PUXL) (P, —PUXS)] <D CPVae [CO + a2V ()
k=0 7=0 k=0 j=0
< C?[co + 1V (o)) Z Z NGT;
k=1 j=1
n—1n—1 1 n.on
02 Y B [(Poyy — PWUXD(Peyy = PIUXD] < —5C% o + V(o) DD Ve
k=0 j=0 k=1 j=1
1 5 n n
<50y, Z NG (48)
k=1 j=1
Finally
(U(X§) — U(X5))* _ 4C? o K
— <5 1+(1+7>V(wo)+1_,~y : (49)

The quantities (47) and (49) converge to zero at rate n~' and n~2, respectively. The
quantity in (48) will converge to zero whenever

n n
lim n~2 E E Jeper = 0;
n—oo k J !
k=1 j=1

a sufficient condition is that > ;7 Z]Oio \/€k€; is finite, in which case convergence to zero
occurs at rate n~2. This completes the proof of the second part.

Appendix E. Some integrals, inequalities, & proofs of auxiliary lemmas
E.1. Incomplete Gamma function

The incomplete Gamma function I'(a, z) for x > 0 is defined as

I(a,z) = / p=letgy. (50)
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When a = 0, this reduces to the exponential integral function En;(z) = fgfo t~te tdt.

We record an integral from Gradstheyn and Ryzhik (see 3.383.10 of Gradshteyn and
Ryzhik (1996)),

/ 73:1} 16 i dr = BV 165 F(I/) F(l — Vv BH) (51)
0 x—i—ﬂ ’ ’
for I/,,U,,ﬁ > 0.

We record a result relating the ratio of certain incomplete gamma functions.

Lemma 12 Fiz ¢ € (0,1/2] and b € (0,1). For any small ¢ > 0, there exists a positive
constant C. such that
e  T'(e bx)

= — 7 Zex ¢ .
The(2) 1= — 0.2+ ba) =" +C., Ve (0,0)

Proof For z > 1/2, bound I'(0,z) > fjx e t/tdt > e (1 — e ®)/(2x) > e */(82),
where we used that for z > 1/2, 1 — e ® > 1/4. Also bound I'(c,z) = [t le7tdt <
a7t [>e7tdt = 2~ e, Substituting these bounds, we have for # > 1/2 that

e T(ebx) 1
— <8 (1 . 2
xc P(O,:L’ + b:(}) — 8b ( + b) (5 )
T'(e,bx) T'(e,bz)

We also have that lim,,0

Wzo.Pick6>08uchtha‘cF )<gfora1]g;<5.
We can then bound

(0,2+bx

he(z) < ex™¢ + max{ry .(6),80 (1 + b)}, Va € (0,00).

E.2. Normal inverse moments & Hypergeometric function

We state a formula for inverse absolute moments of a normal distribution from Winkelbauer
(2012); specifically, see equations (17) and (6) therein. Let X ~ N(u,o2). One has, for
v > —1,

F(il) u? V—|-1 1 M?
B(X|") =ov2v/2— 2 2 ) o732 \f —. 2 53
(1X]") =0 NG e 2 55 957 ) ¢ (53)

where

M(a,v;2) = 1Fi(05752) i =) ((7(;2:»!'2”

n=0

is the confluent hypergeometric function of the first kind, with
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the ascending factorial. Letting

M(o,v; 2)

M(a,v;2) = T

one has, if v > o > 0 then

1
M(a,v;2) = —a) /0 A1 — ) g,

INCIINGE
We state a useful result below.
Lemma 13 Fixz v > a > 0. The function
z—e *M(a,y; 2)
is a non-increasing function of z for z > 0. In particular, e *M (a,7; z) < 1 for any z > 0.

Proof We can write, based on the above integral representation,

e % o F(’Y) ! 6—z(l—t) a—1/1 —a—1
M09 = = E T
_ F(’Y) ! —zt y—a—1/1 _ p\a—1
TG —a J, a0

which is a non-increasing function of z on [0, 00).

The second part follows from evaluating the last line of the above display at z = 0,
which reduces to the integral of a beta pdf at 0, so that e *M («,7; 2)|,=0 = 1. The bound
then follows. |

E.3. Proof of Lemma 8
We have

/ po(8,0%)1og BT 3452

p1(B,0?)
_ o2 o)1 1o po(Blo ) PO() 2
= [ (817 >[1g 1) 1o 247 i

p
p
:/KL(pO(-|g I p1 (- > 2) do? +/ oo 2)@?2’222 do?.

First, using normality of p;(- | ¢2) and the standard expression for the KL divergence
between two multivariate normals,

1 _ _ — 110)' 27 (g —
KL(po(' ‘ 0,2) le(_ ‘ 0,2)) _ 5 [tl‘(zl 120 _ Ip) _ log\El 120’ + (Nl /~LO) 1 (:ul /~L0) )

o2
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Thus,

KLl 122) 6 12)) mle) do?

1 _ _ _ agp
=3 [tr(El 150 — I,) — log |27 0| + (1 — o) 27 (11 — po) 7|
0

Next, using that ag = ay,

2 pO(UQ) 2
/pO(U )log pl(o_g) do

=/M¥W%m%—%m%Hw}wM¥WM¥

(a} — ap)ao
ag

= aglog(ag/a’) +

E.4. Proof of Lemma 11

We make multiple usage of the following facts. For matrices A and B of compatible size,
|AB|| = || BA|| < ||A|| || B]| and ||A+B|| < ||A||+]|B||. For invertible A, ||A™Y| = 1/smin(A).
For a symmetric p.d. matrix A, its eigenvalues and singular values are identical.

(i) Follows since spin(M) and spyin(Ms) are both bounded below by 1.

(i) First, ||[M — Ms|| = [[W(T — Ts5)W’|| < |[W]|?) since T' — T's is a diagonal matrix with
the non-zero entries bounded by §. The remaining 4 inequalities have near identical proofs
so we only prove one of them. We have ||[M; M — Iy|| = |M; ' (Ms — M)|| < |M — M|

by (i).

(iii) Writing WITW' M~ = Iy — M1, all its eigenvalues are bounded above by 1. Similarly

for the second part.

(iv) Bound [|[WTW' My || < [WIW' M~Y+[|[WITW' MY (In—MM; )| < [WITW’ M~ (1+
N — MM5_1||) Conclude from (ii) and (iii).

(v) First, bound || A|| < ||M; ' M| ||M;* — M~ +||M; . The bound then follows from (i)

and (ii) and noting that (M; ' — M~!) = M;'(M — Ms)M~!. For the third bound, write
[AWTW!'|| = ||M; M My "WTW!|| < ||M; 'M|||M; 'WTW’||. The bound then follows
from (ii) and (iii). The bound for [[WT'sW’ A|| follows similarly.

Appendix F. Wasserstein bounds

Here, we provide details for the claim in Section 4.1 regarding the Wasserstein bound. Write
WM™ —TsWM; ' = (T - Tg)W M + TsW'M; (I - My ' M).

Since [|[M~1|| < 1, we can bound ||(T' — T's)W'M~12||> < |W|?||2||*6%. Note also that
I — MM | < 6 and ToW/ Myt = DgWh(I + WsTsWh) ™t = (WiWs + )W, 3
(WLWg)~'W{. In the expression for W3(P., P,), this is the dominating term, which implies
the order of Wh(P., P,) is ||W|||2]4.
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Supplementary Materials

This supplement contains derivation of the rejection sampler and some additional figures
as described in the main text.

Appendix S1. Rejection sampler for local scales

Fix € € (0,1) and consider sampling from the density

—et

he(t) = ‘

—C.—— t>0,
14t

where the normalizing constant C. = e¢/Ei(e), with Ei(z) = [°e™!/tdt = I'(0,z) the
exponential integral function. The constant C; is a decreasing function of ¢, with C ~ 1.6
and C; < 1 for £ < 0.40.

First we record useful fact about the density h.. If X ~ Expo(e) with E(X) = 1/e,
then P(X > b/e) = e~ " for any b > 0. We show a similar upper bound for h.. Bound

ooe—et C 00 C 1 e_b
—dt < c et gt = c_Tet<ol—.
Ce pe 1+t _l—l—b/a/bse 1+b/s€€ s Ce b

Let
f(z):= fo(x) =ex +log(l +z), x>0,

be the negative log-density up to constants. It is easily verified that f is an increasing
concave function on (0,00). We now develop a lower bound to f.

For any real-valued function g and an interval [v,v] C dom(g), recall that the line
segment on the interval [v, 9] joining g(v) and g(v) is given by

x»—>g(’l_))+

Fix 0 <a <1<b, and set

A= fla/e), I =f(1/e), B=[f(b/e).
Also, set 4 B
T e T

With these notations, set

log(1 + x) z € [0,a/e),
A+ X(x—afe) z€lafe 1/e),
I+ Xs(x—0b/e) xe[l/eb]e),
B+e(x—ble) x>Db/e.

fre(e) = fo(z) =

Some comments about the approximation fr. First, fr is an increasing function and is
piecewise linear on [a/e, 00). It has a jump discontinuity at a/e and is continuous everywhere
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Figure S1: Comparison of f and fr with e =10~%, a =1/5, and b = 10.

else. fr, is identical to log(1l + x) on [0,a/¢), linearly interpolates between (i) f(a/e) and
f(1/e) on [a/e,1/e) and (ii) f(1/e) and f(b/e) on [1/e,b/e), and equals ez + log(1 + b/<)
on [b/e,0). By construction, fr, < f on [0,a/e), and the concavity of f implies fr, < f on
[a/e, 00), implying that f7, is globally bounded from above by f.

Let hp(z) = e /1@ /u for 2 € (0,00), with v = I e~ /L@ dz. A rejection sampling
algorithm to sample from h proceeds as follows:
(i) draw z ~ hy, and u ~ U(0, 1) independently.
(ii) Accept z as a sample from h if u < e=(F=/2)(2) Otherwise, back to step (i).

We now describe sampling from hr. To that end, let us first calculate the normalizing
constant v. We have,

v=v1+1ve+r3+1y

aje dr
141 :/O m :log(l+a/€),

1/e
vy =e A / / e~ @=ale) gy — Ayte [1- e_(I_A)],
a/e
b/e
v3=e! / e M3(@=1/e) g = )\gl e ! [1 — e_(B_I)],
1/e

o
vy=e¢ B / e €@=b/e) gy — 1B,
b/e

ii
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We can thus write hy, as a mixture of four densities,

hr = (v1/v)hi + (v2/v) ha + (v3/v) hs + (va/V) ha,
where

i H[O,a/s)(x)
V1 1+

i

hl(l‘) =

L 4 x(a—a
hQ(SC) = 72 e Ae Az( /€) ]]-[a/s,l/e)(x)7

L1 aa—1/e
hg(w) = 73 e le As(e=1/¢) ﬂ[l/s,lb/s)(x)v
1

hy(x) = P e Be s @b, (@)

Observe that ho, hg and h4 are truncated exponential densities. We now describe the inverse
cdf method to sample from a truncated exponential.

Sampling from truncated exponential. Let Expo(\,v,v) denote the distribution with

density

Aef)‘(xfy)
H )

where A > 0,0 <v <0< o0, and H =1—e 072 (Note:when v = oo, this means H = 1).

The cdf

v(z) = z € [v, 7],

x € [v,7].

The inverse-cdf method to sample from Expo(\, v, v) is then given by:
Sample u ~ U(0,1) and set

— _ - — —A(v—v)
r— ot log(l)\ UH)Zy-l- log(1 u;\Lue )

After some simplification, the value of H corresponding to ho and hs is respectively,

H2 =1- 6_(I_A), H3 =1- 6_(B_I).

The density hj can also be sampled using inverse cdf method. We have

Sampling from h;: The cdf of hq is

Fi(z) = lmg(ll/l—kx)’ xz € 0,a/e).

The inverse cdf sampler sets:
draw v ~ U(0,1) and set t = e — 1= (1+a/e)* — 1.

iii
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Appendix S2. Geometric ergodicity of the exact algorithm

Consider the following slight modification to the horseshoe prior from (2)

y L |
B | 0%, € WN(0,0% 7Y, 2 Canchyyg,12(0,1), j=1,....p, -

RN Cauchylqe ] (0, 1), o? ~ InvGamma(w/2, w/2),

where 0 < a¢ < bg < 00, b > 0, and Cauchy,7(0,1) is the standard Cauchy distribu-
tion restricted to the interval [a,a]. The original horseshoe prior Carvalho et al. (2010)
corresponds to ag = b = 0,b¢ = oo. The truncation of the prior on { was introduced in
van der Pas et al. (2017a) for theoretical tractability, while we additionally truncate n; for
our convergence analysis of the MCMC algorithms developed below. As noted in the main
text, this truncation retains the statistical accuracy.

Posterior sampling with this modified horseshoe prior proceeds exactly as in the blocked
Gibbs sampler in (4), with the minor difference being the 7;s and £ now need to be sampled
from truncated densities. Let us continue to use P to denote the Markov transition operator
corresponding to the modified update rules.

Theorem 14 For any ¢ < 1/2

1. The function

w 2 P 2c clA.|c
V(n’ﬁ’gzﬁg)—u/f”-i-52+2{a +77]!Bg! +n
j=1

o ’lBj‘Qc o¢ J <55)

is a Lyapunov function of P, even if no truncation of the prior on 1 is used (i.e. b =10

in (2)).
2. If b> 0 in (2), P is geometrically ergodic in the sense of (12).

Remark 15 If p < N and W is full-rank, then P is geometrically ergodic without any
truncation of the prior on n. That is, one can take the constant b =0 in (2).

The Lyapunov function in (55) is somewhat unusual in that — as a function of ﬁ?a‘Q
— it both grows at infinity and has a pole at zero, whereas most commonly encountered
Lyapunov functions simply grow at infinity and are bounded on compact sets containing
the origin. This is necessary because showing the minorization condition in Assumption 3.2
requires a uniform bound on the total variation distance between any two densities in the
set

e " 1

(0, m;(1+0)) 1 +n;

{pl(m | 8.0%€) = eI Ly > b} < (B,0%,6) € S<R>}

for any 0 < R < oo and every j, where I'(0, z) is the upper incomplete gamma function
defined in (50), S(R) is as defined in Assumption 3.2 and m; = ﬁ?f/(202). Clearly, mi-
norization requires bounding 5]20*2 away from infinity inside sublevel sets S(R) of V, since
pi(nj | Bj,02,&) — do(n;) as ﬁ?a‘Q — 00, and do(7;) has total variation distance 1 from

iv
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every measure with a continuous density. We must also bound 5]20*2 away from zero for
every j, since the limiting distribution is improper there. So the Lyapunov function must
have sublevel sets in which [3?0*2 is bounded away from both zero and infinity. The former
is accomplished by the term Zj 02¢|3;|7%¢ regardless of the values of N and p. However,
truncation of the prior on 7 is needed to achieve the latter. If p > N, then the function
|WB||20=2 is constant in the kernel of the linear function W : R? — R™  and the only
other appearance of positive powers of 8 in (55) is in the term 7§|8;/°c¢. Thus, in order to
ensure that § cannot go to infinity in the kernel of W, we must have 7; bounded away from
zero in sublevel sets. In contrast, when p < N and W is full rank, the term ||[W3|/20~2 is
enough to keep BJQ-J*Q bounded away from infinity in sublevel sets.

Proof We prove the second assertion, that is, prove geometric ergodicity of P for b > 0
by verifying the Lyapunov condition in Assumption 3.1 and the minorization condition in
Assumption 3.2. An inspection of the verification of the Lyapunov condition will show that
the same proof continues to work for b = 0 with some minor modifications.

S2.1. Lyapunov condition for the exact chain

We first show that

_|_

J

[0%18;17%¢ + o~ 5|81 + ] + € (56)
1

V(na ﬁ,ojag) =

WB|?2 | <
o2 —

is a Lyapunov function for P for any ¢ € (0,1/2). We have,

(7’Vﬂ(ﬁ,w\n)==o/nVTn,y\n)p((ﬁ,w\n),(nyy\n))dndy\n

—/ U V(n, y)p2(ng | 1,€) dyny | p1(n | 2,) dn
n

Y\n
— [V &mn | 2,,)dn, (57)
where
Vi(n,§) =E (HW;fHQ \mé) +EE | n,€)
£ 3 (B8 | 0.8) + B8l | 0.6+ o). (58)

7=1

We now aim to bound Vi (7, £). We shall make repeated use of the fact that

Emmmﬁﬂm—Ehw%mmmwﬂamm

for integrable functions ¢ and h, using the tower property of conditional expectations.
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We begin by integrating over 3 to bound E(|W§||? | 02,&,n), E(|8;]72¢ | 0%,£,n), and
E(|8i]| 02,&,7m), respectively. We first show that

E(|WEI* | 0%,&m) < ||2]* + No™. (59)

To that end, we have, from (28),

E(IWBI2 | ) = f'W' Wy + o [ (WW)S] = [WEW'2[2 + 0 [ WEW].
Let us now calculate WXW'. Recall,

r=¢'D, M=IN+WIW', S=I-TW M 'WT,

where the last equality follows from the Woodbury matrix identity. Then,

WEW' = WI'W — WIW M *WIw’' = wrw’ [IN - M‘lVVFW’]

=WIWM™ =1y - M,

where we have used that M *WTW’' = WI'W’'M ! = Iy—M~!. We then have |[WXW'z||? =
(I — M~ Hz||? < |||, and tr(WEW') < N, delivering (59).

We next focus on E(|3;|72¢ | 02, &, 1) and show that for universal constants 0 < Cy, Cy <
OO?

E(|8;|7%¢ | 0%, &,m) < 072(C1f§ + Ca). (60)

A formula for negative absolute moments of Gaussians is available from Gradshteyn and
Ryzhik (1996) and recorded in equation (53) in Section E.2. Specifically, let p; and ajz
respectively denote the jth entry of p and the jth diagonal entry of ¥ in (28). We then
have, from (53), that

2
2—¢cT 1—2¢ My 1-9¢ 1 2
E(|ﬁj‘f2c | 02)67”) — 0_720 O'~_26 M e 2020]2, M C ) ,u] ’

J N3 2 2 2020?-

where M (-, ;) is the confluent hypergeometric function of the first kind; see Section E.2
for definition and properties. Since ¢ € (0,1/2), the condition of Lemma 13 is satisfied, so
that we can bound

2

iz (1-2c1 1
e?o-zo'jM< . J )Sl

2 2 20%7
This implies

E(|8;|7% [ 0*,&,n) < Cro™* 0%, (61)
where C; = 7= Y/227¢0'(1/2 — ¢).

To bound the right hand side of (61), we need a lower bound on UJZ. To that end,
we have s2, (W)I, + ((7'D)™t = W'W + (¢7'D)~!, where A = B denotes (4 — B)

max

vi
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is nonnegative definite (nnd). Using the fact that A = B implies B~! = A~!, we have
Y = (820 (W) I, + (671D)71)~L. Next, use the fact that if A = B, then aj; > b;;, since
(ajj —bj;) = €j(A — B)e; > 0 with e; the jth unit vector. This implies

1 —92¢ c c
]2 Z —7 Uj 2 S (S?nax(W) + @Ij) S (S?nax(W) bgﬁ;)

Slznax( ) + 577]'

where in the last step, we used that for a,b > 0 and ¢ € (0,1/2), (a + )¢ < (a®+ b°), and
that & < be. Substitute the bound in (61) to obtain (60).

Next, we consider E(|3;|° | 0%,&,n), and show that there exist universal constants
0 < Cs,Cy < oo such that

p p
S TnSE(IB1° | 0%, €,m) < Cs0° > (1 + 1) + Ci. (62)
j=1 j=1

We have, using that z — z2/¢ is convex for z > 0, that E (|ﬁj\c | 02,€, 77)]2/C < E(B]2 |

0%,&,m) = i + 0?07, and hence, E(|8;[° | 0%,&,m) < (45 + 0%03)/? < | |C+U (02)2.
Following a similar argument as in the paragraph after (61) (W’ W+ (¢1D)"H~t <¢7 1D,
implying 0]2 < (én;)~t. These together imply,

P V4 V4
S8 0 6m) < 3 nS{luls + 0¢ (03)¢/%) < Z |uj|c + Co® Zn‘”
j=1 j=1 j=1 j=1

for a universal constant C. Next, using Holder’s inequality,
P p
> nglple < [Z (n514151) 2/‘3} Sl = el (| D 2)02,
j=1 j=1

We have |D~1p||? = w'D7122D " w, with w = W'z, Since ¥2 = (W'W + (¢ 1D)~1)=2 <
€2D?, we have D1¥2D71 < ¢~ 2Ip, where we have used that if By < By, and By, Bg, A are
positive definite (pd), then AB;A < ABsA. This implies ||[D~!ul|? < £72||w|? < aEZHwHQ.

Cascading this bound through the previous two displays, and using the inequality z¢/? <
(€ +1) for x > 0, (62) is obtained.

Combining the bounds (62), (60), and (59), we obtain for universal constants 0 <
Cs,Cq, Cr, Cy < o0 not depending on 7

p
Cs C ~
2 6 7 2
E[V [o%&n] <Cs 217];4'02‘1'00‘1'5 + C7
]:
Next, take an expectation w.r.t. o2 | £,7. Note that E(1/02 | £,1) = (N+a)/(z’M~12+b) <

(N +a)/b, and similarly, E(1/0¢ | £,n) is also bounded above by a constant not depending
on &, 7. This leads to

p
Vi(n,§) =E[V | n,&] < C5) nf + C, (63)
j=1
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for a universal constant C's not depending on é , where we additionally used that § is com-
pactly supported. Notice that while V7 is a function of £, the upper bound on the right side
is not, a consequence of the fact that £ € [ag, be] for 0 < ag < be < o0.

We now proceed to bound E(Vl(n,g) | 2\py) = [Vi(n, &) p2(n | T\p). For a small € >0
to be chosen later, bound

c d e T d
/njp(m | 2\p) dnj = 0(0,7m; + brnj) /,, i L+, g

< e M /oo c—1 'rﬁjnjd
B .
= T(0,m; + bing) Jy 107
e~ T(c,biny)
m¢ T(0, i, + biny)
< Erhj_c + C.

< (ag/2)%€ 5%|B;|7* + Ce

In the first inequality, we used the bound n;/(1 + n;) < 1 for n; € (b,00), while the
penultimate inequality follows from Lemma 12. From (63), we then obtain

3

(Vl 7] € \x\n Z a5/2 CC5€O'QC|ﬁJ‘ 2¢ Cg.

Jj=1

Now pick € such that (a¢/2) “Cse < 1, and we have proved that V is Lyapunov.

S2.2. Minorization condition on sublevel sets

Consider sublevel sets of the Lyapunov function in (55):

\WW -

S(R) := —I—Z 26|ﬁj|_26+0_c77jc-|ﬁj’6+77ﬂ +& <R
7=1

where D = diag(n~!). Consider two points z,y € X. Observe that

10.P — 8, P|lry = / p1(n | 2\)p2(20 | 7,€) = L | 21,)p2(2\, | 1.€)|d2,dn
_ / P2y | 1 E)pL(7 | 20y) — pr(1 | ) ldorgdn

— / P17 | 2vg) — 21 (1 | )l
= [|0z,,P1 = by, P1llvv,

the total variation distance just between the 7 conditionals started at two points \,, Y\,
Let

S\p(R) = {z\, € Xa: (275,1) € S(R) for some n € X1}

viii
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Consider a point z\, € S\, (R). Any such point must satisfy

2
ﬁff <beR¥n™2 j=1,....p

e
—‘BJJ n°< R= —
g g

ol 525 “1/e -
|Bj’2C<R:>ﬁ>a§R Ve j=1,....p
%74 2 2

if p < N then H f” <R:>6j7§<bgR J=1....p
o o

It follows that when p < N, angl/c < 5550*2 < beR for every x\, € S\, (R). Moreover,
if p > N and the prior on 7 is truncated below by b, then we have agR_l/c < BJZ(SU_Q <
be R?/°b=2 for every T\, € S\p(R).

The remainder of the proof uses the upper bound bgRQ/ °b=2 from the p > N case; the
proof for the p < N case is virtually identical and omitted. Define the interval

1 1
I(R) = [2%3—1/0, 2b§R2/cb‘2]

and collection of densities corresponding to the full conditional of 7; | x\, for a generic 7;
e My e iy

(0,mj(14+0b)) 1+mn;

F(8) = { oy (0) = 100y > b)m; € 1)}

and recall that m; = ﬁ?ga_Q. We have that for any m; € I(R)

—m; efmjnj ]l b S e—%b§R2/cb72 e—%b§R2/Cb72nj
P>
{n; > b} = (0, LagR=1/¢(1 + b)) 1+,

e
I'0,m;j(14+b)) 1+mn;

1{n; > b}

and since the function e /(1 + z) for ¢ > 0 is monotone decreasing in z, it follows

" . e~ 3be R/ b2 e—%bgRQ/cb""(bH)l .

(1) > > b}

njel(Ibl,b-i-l}f ](77]) 1—‘(07 %(IéRil/c(l“‘b)) 2_|_b {77] }
m;€I(R)

Now since the transition density corresponding to 1 can be written py(x\,, ) = H§:1 Jm; (105),
we have, with m = (mq,...,mp),

. ( ) - e_gb£R2/0b72 e—gbgR2/cb72(b+1) C(R) .
; = = > 0.
nje(llf,lbﬂvpl Pl Ir(0, 3acR=Y¢(1+1b)) (2+0b)p
m;€eI(R)P

Define
M(R) = {m : m; = B7¢o? for some (83,£,0°) € S\,(R)},
and observe that M(R) C I(R)P. It follows that

inf / P1(2\y> 1) NP1y N anCR/ dn = C(R),
z\"’y\WeS\U(R) (b,b+1]p( 1( \77 ) 1( \77 )) ( ) (b’b_l,_l]p ( )
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SO
sip (e, Pr— 0y Pilev=1—  inf / (B2 (@) A 1 g )y
210 €S\ (B) \n y\n 1TV o n €8 (R) Jiboo)r \n \n
<1- inf / p1(T\p, 1) A P1(Y\n»M))dN
T\ Y\ €S\ (R) (b,b+1]p( (1) )
<1-C(R) <1,

completing the proof.

Appendix S3. Extra Figures

Here we provide additional figures relevant to the statistical performance of time-averaging
estimators from the Approximate algorithm.
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Figure S2: Marginals for the residual standard deviation o over 20 values of N,p using the ap-
prozimate algorithm. The small horizontal lines indicate the 0.025 and 0.975 approzimate posterior
quantiles. The true value is 2 in all cases.



SCALABLE APPROXIMATE MCMC FOR HORSESHOE

betal beta2 beta3 betad beta5

(=T O I 2]
OI‘OJ‘-‘-G')
L=\ R L
(= R Ll
>
(= ]

0 » O — o 0 © | N N® 0o ~ow o ',_
m o < ) m' aaaamm ool ———N i
beta6 beta? beta8 beta9 beta10
6- 6- 6 6- 6
4- 4- 4 4- 4-
2- 2- 2 2- 2-
S RCR R NmgoeN o o X QAQ-NH nah@ag
—_———— e - = = OO~
betali betai?2 betal3 betal4 beta 5
6 6- 6 5- 6-
2 4
g 4- 4- 4- 3 4-
@ 2' 2 2- 2- 2-
© 1-
0-======F== 0- 0- 0-5 ; - 0-
I W ~oodh TI‘LO(.DI"-CGCD C\It‘")‘d‘lf)(.ﬂl“'- C\ID")V"LO(.DI‘
oo o oo Scooooco Scooooco ) 5 5 cooooSc
betal6 betal? beta18 beta1 9 beta20
i‘ 600- 500- 20- '
1 400- 15-
g- 400- 300- 10-
1 200-
1- 200 100- 5-
0- 0- (=== (- ; ; ;
D — C\I l."‘) "d‘ lCI O — O — O 0 = — [ap] ‘d‘ o —
cocococoo o o oo o oo > cio o o
beta21 beta22 beta23 beta24 beta25
800- 600- 800-
600- 400. 6001 600-
400- 400- 400-
200- 200 200- 200-
0 ———— == 0= 0-- ‘
- o - o ™ Qo — N oM - o - o - o — '-. o -
Q@ oo o o o © o o @ o o o S o o o >

B

Figure S3: Marginals for the first 25 entries of 8 for N = 1000, p = 5000, true value indicated with
red line. Approximate algorithm.
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Figure S4: Marginals for the first 25 entries of 5 for N = 5000,p = 50,000, true value indicated
with red line. Approximate algorithm.
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