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A B S T R A C T   

As the steel towers in the power system are vulnerable to intensive wind loads, it is essential to understand their 
dynamics response to estimate its potential failure. Conventional structural analysis methods like the finite 
element analysis or the field test are either computational heavy or cost expensive. Thus, this paper proposes a 
machine learning approach based on convolutional neural network (CNN) to predict the time history response of 
the transmission tower during the complex wind input. By preprocessing the time history of wind load and the 
tower’s dynamic response, a well-developed CNN can capture the time and spatial correlation of the wind load 
successfully and provide high accuracy results. CNN configuration, window size selection, and training data scale 
are carefully discussed to optimize the CNN design to maximize the prediction accuracy as well as minimize its 
computational time. Finally, to evaluate the performance of the surrogate model, the accuracy of the optimal 
CNN is tested in predicting the time history response of the transmission tower under 15 m/s to 70 m/s wind 
speed. The effectiveness of the CNN surrogate model is validated through a fragility model development, and its 
robustness is investigated using two wind inputs generated from a random wind profile and a random wind 
spectrum.   

1. Introduction 

The transmission tower, a vital support structure of the power sys
tem, is vulnerable to extreme wind loads. Like other lifeline systems, the 
damage of a power system due to transmission tower collapse can lead to 
a power outage for millions of people in a vast region. Hurricane Harvey, 
in 2017, affected 2.02 million people with over 850 transmission 
structures down or damaged [1]; Hurricane Michael, in 2018, caused 
widespread power outages in Florida, Alabama, and Georgia [2]. To 
reduce the hurricane-induced damage to the power system, it is essential 
to accurately capture the performance of a transmission tower during 
dynamic wind. 

Conventional structural analysis of a transmission tower’s dynamic 
response during wind loading includes field and laboratory testing, 
static and dynamic modeling through finite element analysis, and reli
ability modeling. The field and laboratory testing provide the most 
trustworthy result to demonstrate the static or dynamic response of a 
transmission tower [3-6]. The field test of the transmission tower ver
ifies the novel design of transmission tower [7]; illustrates the load- 

bearing capacity and failure mechanism of a transmission tower due 
to various loading [8]; present the large deformation analysis [9], etc. 
Wind tunnel tests of the transmission tower usually employ the aero
elastic models to evaluate the transmission tower-line system’s actual 
behaviors [10-12]. The obtained knowledge from the field and labora
tory test is further utilized in structural modeling using finite element 
analysis. Finite element models are used to develop a static and dynamic 
response of the transmission tower or tower-cable system. For static 
analysis, the nonlinearity analysis is commonly implemented to estimate 
the transmission tower’s performance under different load patterns 
based on different national and international design codes [13] or to 
evaluate its failure by buckling analysis [14-16] with push over loading 
protocols. For dynamic analysis, the deterministic time history analysis 
is conducted with complex wind input simulated with theoretical wind 
characteristics and aeroelastic loading parameters obtained from wind 
tunnel test [17-20]. With the combination of 1) a static analysis which 
develops the failure criterion of the transmission tower, 2) a determin
istic time history analysis of transmission tower considers different wind 
loading conditions, and 3) a Monte Carlo simulation process realizes 

* Corresponding author. 
E-mail addresses: jiayue.xue@utah.edu (J. Xue), zhongming.xiang@utah.edu (Z. Xiang), ge.ou@utah.edu (G. Ou).  

Contents lists available at ScienceDirect 

Engineering Structures 

journal homepage: www.elsevier.com/locate/engstruct 

https://doi.org/10.1016/j.engstruct.2021.111859 
Received 13 March 2020; Received in revised form 16 September 2020; Accepted 3 January 2021   

mailto:jiayue.xue@utah.edu
mailto:zhongming.xiang@utah.edu
mailto:ge.ou@utah.edu
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2021.111859
https://doi.org/10.1016/j.engstruct.2021.111859
https://doi.org/10.1016/j.engstruct.2021.111859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2021.111859&domain=pdf


Engineering Structures 233 (2021) 111859

2

system aleatoric uncertainties, the reliability model (often the fragility 
curve or fragility surface) of the transmission tower can be developed 
[21-23]. Although there are different approaches to obtain the structural 
response of the transmission tower, it is either computationally expen
sive or cost expensive. 

To allow time-efficient evaluation of structural dynamic response, 
researchers have investigated different methods to develop surrogate 
models. Existing surrogate models are majorly developed for structural 
static analysis problems [24-26], extreme value problems [27], and bi
nary classification problems (predicts failure or non-failure condition) 
[28-30]. VanLuchene and Sun [31] are the early researchers who 
developed the surrogate models of a concrete beam and rectangular 
plate to predict the maximum moment by neural network. With the 
rapid advances in computer science, more promising surrogate models 
that predict the structural performance have been developed recently. 
For the structural static analysis problem, Mukherjee and Biswas [32] 
successfully obtained the reliable concrete response under high tem
perature and pressure by artificial neural networks (ANN) without 
measuring a large number of parameters. In a more recent study, 
Mohammadhassnai et al. [33] compared ANN with linear regression 
(LR) to devise a surrogate model of the deep concrete beam for pre
dicting the strain in the tie section. The extreme value problem also 
stimulates many researchers to develop surrogate models to evaluate the 
limit state of a structure. Ceylan et al. [34] applied ANN to develop the 
surrogate model of the pavement to obtain its critical responses and 
deflection profiles. Oh et al. [35] implemented the time and frequency 
domain of wind and the corresponding displacement as input to develop 
the surrogate model by convolutional neural network (CNN) and predict 
the maximum and minimum strain. The extreme value problem leads to 
a more critical and straightforward problem, the binary classification 
problem. Different approaches are brought into this area: Su et al. [36] 
combined Gaussian Process Regression and Monte Carlo Simulation to 
develop a surrogate model for the complex structure; Zhao [37] and 
Sainct et al. [38] employed the active learning like support vector ma
chines (SVM) to conduct structural reliability analysis; Afshari and Liang 
[39] evaluated the reliability of a cantilever beam by a time-variant 
degradation model using a Naïve Bayesian Classifier. Perera et al. [40] 
developed a roaming damage method to detect the damage location by 
neural network directly and flexibly. 

However, there are only a few studies focused on developing a sur
rogate model to predict structural dynamic time history. To date, the 
structural dynamic time-history response prediction concentrates 
mainly on the seismic response prediction [41,42]. The state-of-the-art 
research employed the deep learning method, the long short-term 
memory to predict the seismic response [43] while compared to 
seismic loading, wind loading is more complicated because of its time 
and spatial correlation. The existing solution to the complex wind load 
input is to extract the features of the wind load, like the wind-induced 
acceleration [44] and the coordinate of wind pressure [45], as the 
input to predict the time series of pressure during wind load. 

In wind-induced structural response analysis, the wind load is 
considered a dynamic time history that can be decoupled into the mean 
wind and fluctuation wind components. The mean wind speed varies 
along with the height following a wind profile [46,47], and the fluctu
ation wind can be statistically presented by a stochastic process gener
ated with a power spectrum in the frequency domain [48]. The spatial 
correlation of the fluctuating wind also resides and is exhibited by a 
cross-spectral density spectrum. Therefore, wind loading is a stochastic 
process which shows strong time and spatial-correlation even with a 
determined wind profile and spectrum. In addition to the genuine sto
chasticity in the wind input, other uncertainties are inevitable. As 
compared to a determined profile, wind profiles have disunited patterns 
[49,50] due to the spatially dispersed topographies [49]. The frequency 
content of the wind spectrum describes the turbulent motion in the air, is 
caused by complex atmospheric phenomenon and conditions [51,52]. 
Many wind spectra are proposed, which can be classified as height 

independent (i.e., Davenport’s model, and Harris’s spectrum) and height 
dependent (i.e., Von Karman’s spectrum, Kaimal’s spectrum, and Sim
iu’s spectrum.) based on curve fitting results for different records of 
intensive wind [48,53,54]. Capturing these uncertainties is a vital 
problem to obtain the structural response during wind loads. The sur
rogate model to represent structural response under wind loading 
should reflect these uncertainties. 

In this study, if the time and spatial variant wind speeds are pre
processed into a horizontal and vertical direction of an image respec
tively, it is possible to employ the powerful image process network, 
CNN, to interpret the time and spatial dependent wind loading input, as 
well as its impact to civil infrastructure. As a variety of multiplayer 
perception, CNN was first proposed by Lecun et al. [55] to recognize the 
documents with image format. After the modification conducted by 
Krizhevsky et al. [56], researchers have proposed several versions of 
CNN that showed promising performance in object recognition from 
massive images [57-60]. Compared with other machine learning 
methods (i.e., multilayer perception, support vector machine), CNN has 
a significant superiority that omits the complicated stage of feature 
extraction, which has attracted much attention from the researchers in 
structural simulation [61,62]. Structural damage detection [63-66] and 
crack detection [67-70] are two primary applications in structural 
analysis. 

In this paper, a novel approach is developed to predict the full-time 
history response of a transmission tower with dynamic wind load using 
CNN. A hypothesis is proposed that CNN based learning algorithm can 
be utilized to capture the temporal and spatial correlation, and the wind 
profile and spectrum uncertainties of wind loading and its impact on the 
structural dynamic response. Such surrogate model should be compu
tational effective as compared to deterministic finite element model, at 
the same time be adaptive to the wind loading characteristics as 
compared to probabilistic approach such as fragility models. To validate 
this hypothesis, a CNN-based dynamic response prediction of the 
transmission tower during wind load approach is proposed, as demon
strated in Fig. 1. A set of training and testing data is generated by 
obtaining the dynamic response of the transmission tower with wind 
simulation and numerical model development. These data are pre
processed and then used to train the network. Finally, the trained CNN is 
employed to predict the dynamic response of a transmission tower 
during wind load and further develop a reliability model (fragility 
model) during complex wind conditions. 

The rest of this paper is organized as follows: Section 2 introduces the 
characteristics and simulation of the wind load input, the numerical 
model of the transmission tower, and its dynamic response. Section 3 
details the methodology by introducing the architecture of CNN and its 
application of an infrastructure system. Section 4 conducts a parametric 
study to compare the impact of CNN configuration, window size selec
tion, and training data scales on the prediction performance. Section 5 
employs the developed CNN structure and proper coefficients to a broad 
wind speed range, its effectiveness is demonstrated through the devel
opment of the fragility model of the tower, and its robustness is tested 
using a random profile and spectrum. Section 6 summarizes the con
clusions of this proposed method and proposes future work. 

2. Wind load model and numerical model 

To implement the proposed convolutional neural network (CNN) for 
the wind-induced response of the transmission tower, the dynamic load 
of the wind speed is simulated first, and a numerical model of the 
transmission tower is developed after that, which is shown in Fig. 2. In 
this section, the characteristics and simulation of the dynamic wind 
input are further discussed. The numerical information of the trans
mission tower is provided after that. Finally, the time history response of 
the transmission tower during complex wind input is presented. This 
numerical simulation process generates the dataset for further CNN 
training and testing. 
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2.1. Wind input characteristics and simulation 

Compared with some simplified work, which adopts the seismic 
ground acceleration as the single input, wind load is more complicated 
because of its time and spatial correlation. The stochastic wind simu
lation is composed of the mean and fluctuating wind as Eq. (1). The 
mean wind profile changes over height by a power law based on ASCE 7- 
98 in Eq. (2) [84]. 

V(t) = V + Vj (1)  

V
V10

= (
z

z10
)

α (2)  

whereV(t) is the stochastic wind; V is the mean wind speed at different 
heights;Vj is the fluctuating wind; V10 is the reference mean wind speed 
at 10 m height; z is the mean wind speed height; and z10 is the reference 
height, 10 m; α is the ground roughness coefficient. 

The characteristics of fluctuating wind include its time correlation 
and spatial correlation. The time correlation of the fluctuating wind is 
realized by a Gaussian stationary random process. For an n-dimensional 
zero-mean stationary Gaussian random process vj(t)(j = 1,2, Â⋅Â⋅Â⋅,nt), 
the spectral density matrix is shown in Eq. (3). 

S(ω) =

⎡

⎢
⎢
⎣

S11(ω)S12(ω)Â⋅Â⋅Â⋅S1n(ω)

S21(ω)S22(ω)Â⋅Â⋅Â⋅S2n(ω)

Â⋅Â⋅Â⋅
Snt1(ω)Snt2(ω)Â⋅Â⋅Â⋅Sntnt(ω)

⎤

⎥
⎥
⎦ (3) 

To obtain the power spectrum of the fluctuating wind, the auto 
power spectrum of fluctuating wind Sv(f) at frequency f is defined by 
Davenport spectrum [72], which is shown as follows, 

Sv(f ) = 4κV10
2 x2

f (1 + x2)
4/3 x =

1200f
V10

(4)  

where κ is the surface drag coefficient. 
The spatial correlation of the fluctuating wind is exhibited by its 

cross-spectral density spectrumSij(r, f). It is calculated by each panel’s 
auto power spectrum from Eq. (4). 

Sij(r, f ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sii(zi, f )Sjj
(
zj, f

)√

Coh(r, f ), i ∕= j (5)  

Coh(r, f ) = exp(
−2f

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
y

(
yi − yj

)2
+ C2

z

(
zi − zj

)2
√

V(zi) + V
(
zj

) ) (6)  

where Cy = 8 and CZ = 7 are chosen usually. yi, yj, zi and zj are the 
spatial coordinate. It is decomposed by Cholesky decomposition. 

S(ω) = H(ω)H*(ω)
T (7)  

H(ω) =

⎡

⎢
⎢
⎣

H11(ω)0Â⋅Â⋅Â⋅0
H21(ω)H22(ω)Â⋅Â⋅Â⋅0

Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅Â⋅
Hnt1(ω)Hnt2(ω)Â⋅Â⋅Â⋅Hntnt(ω)

⎤

⎥
⎥
⎦ (8) 

Fluctuating wind vj

(
yj, zj,t

)
is calculated in (9)-(10). 

Fig. 1. Flow Chart of A CNN-based Dynamic Response Prediction of Transmission Tower.  

Fig. 2. Numerical Simulation Process for Data Generation.  
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vj
(
yj, zj,t

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅
2(Δω)

√ ∑j

m=1

∑N

l=1

⃒
⃒Hjm(ωml)

⃒
⃒cos

(
ωmlt − θjm(ωml) + φml

)
j

= 1, 2, Â⋅Â⋅Â⋅, nt (9)  

ωl = (l − 1)Δω +
m
N

Δω, l = 1, 2, Â⋅Â⋅Â⋅, N (10)  

where H(ω) is the Cholesky decomposition matrix; Δω is frequency 
increment; N is a positive large integer. Fig. 3 illustrates the dynamic 
wind on the top of the transmission tower and a comparison between the 
simulated spectrum and the Davenport spectrum. 

Based on the simulated wind speed, the dynamic wind load added on 
each panel of the transmission tower is calculated as (11). 

F = 0.5ρV(t)2Cf Am (11)  

where ρ is the air density;V(t) is wind time history, obtained from Eqs. 
(1)–(10); Cf is the drag coefficient; Am is the projected area. 

2.2. Numerical model of transmission tower 

The transmission tower shown in Fig. 2 is employed in this paper to 
validate the efficiency of CNN. It is a suspension tower initially 
described by Tort et al. [73] and redesigned for the hurricane zone based 
on ASCE Manual 74 Guidelines for Electrical Transmission Line Struc
tural Loading [71]. The height of the transmission tower is 31.5 m. All 
members are steel-made (ASTM A36), L-shape cross-sections. The finite 
element model of the transmission tower is developed by ANSYS, a 
commercial finite element software. 

2.3. Dynamic response of transmission tower during wind load 

By adding a set of wind loads on different panels of the transmission 
tower, the dynamic response of the transmission tower during wind load 
is obtained as Fig. 4. Usually, the top displacement is selected as an 
index to evaluate the failure or collapse of the transmission tower [74]. 

3. Methodology 

As noted above, the inducement from the dynamic wind speed can 
result in the displacement of the transmission tower. Despite the time 
and spatial dependence, the inputs (wind speed) of the inducement are 
the two-dimension (2D) shapes. As shown in Fig. 5, if the wind speeds 
p1, p2, p3⋯pn are put together, the two directions of the matrix denote 

the time and spatial correlation horizontally and vertically. Each wind 
speed at each time step can be converted to a pixel intensity of the single 
channel image. When all the wind speeds at each time step and location 
are combined together, this data format is similar to the standard input 
of the convolutional neural network (CNN), which is the 2D image. 
Hence, this phenomenon provides an intuitive approach of using CNN to 
replace the traditional simulation with the finite element model. In this 
paper, CNN is introduced to automatically learn features from the wind 
speed and then predict the dynamic response of the transmission tower. 
The details of the CNN construction and prediction are discussed in the 
following sections. 

3.1. Architecture of convolution neural network 

The overall architecture of CNN used in this paper is presented in 
Fig. 6, which contains the input layer, convolution layer, activation 
layer, pooling layer, dropout layer, full connected layer, and regression 
layer. The convolution, activation, and pooling layers are always 
assembled as a layer set. The input data is first calculated by the 
convolution layer to extract a series of feature maps, which are then 
processed by activation function to make the CNN fit the nonlinear 
problem. Usually, the outputs of the preceding layer are still large and 
contain too much reductant information, so the pooling layer is adopted 
to reduce the sizes of the feature maps. To avoid overfitting, a dropout 
layer is set to remove partial neurons randomly. At last, the full con
nected layer is applied to make the results suitable for regression anal
ysis. According to Gupta et al. [75] and He et al. [76], the design of CNN 
configuration plays an essential role in the prediction performance and 
the computational cost. Hence, this paper will conduct the CNN 
configuration discussion in Section 4.1. Other details of CNN architec
ture are discussed as follows. 

The convolution layer is the most distinguished characteristics of 
CNN. Fig. 7 demonstrates the convolution operation on a 2D input I 

Fig. 3. Wind Speed Simulation and Spectrum Comparison.  

Fig. 4. Top Displacement of Transmission Tower during Wind Load.  
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using a 2D kernel K with the size of m × m. If assuming that the weight of 
kernel K is w(s, t), and the local values of I is f(x −s,y −t), the output of 
the local convolution operation is then derived as Eq. (12). Subse
quently, moving the kernel with a constant step, called as stride, a new 
image is derived and known as a feature map. To make the feature map 
representative, N kernels are set to process at the same time. Conse
quently, N feature maps are obtained. The configuration of kernel size 

and number of kernels will be discussed in Section 4.1. 

g(x, y) =
∑a

s=−a

∑b

t=−b
w(s, t)f (x − s, y − t) (12) 

However, no matter what the kernel size is and how many kernels 
there are, the convolution operation is a weight sum model and cannot 
process the nonlinear problem. To address this issue, a leaky rectified 

Fig. 5. 2-Dimension Feature of Wind Speed.  

Fig. 6. Architecture of CNN.  

Fig. 7. Illustration of Convolution Operation.  

J. Xue et al.                                                                                                                                                                                                                                      



Engineering Structures 233 (2021) 111859

6

linear unit (Leaky ReLU) is introduced in this research as the activation 
function. Compared to other activation functions (i.e., Sigmoid, Tanh), 
Leaky ReLU has couples of superiorities, such as no saturation, compu
tational efficiency, and fast convergence. Meanwhile, since it assigns a 
non-zero value to the negative input, the gradient update never fails in 
the weights learning stage. Eq. (13) is the expression of Leaky ReLU, 
which maps the linear input z to a nonlinear output s(z). 

s(z) = max(0.01x, x) (13) 

To reduce the reductant parameters and avoid overfitting, the 
pooling layer is designed after the activation layer. There are two pri
mary pooling layers: average pooling and max pooling. Although both of 
them are down sampling operations, the latter has better performance of 
feature extraction as it keeps most distinguishable values. Thus, the max 
pooling is selected in this paper. The principle of the max pooling 
operation is illustrated in Fig. 8, which can also be understood as sub
sampling feature maps. Similar to the convolution operation, a pre
defined window is used to scan the input matrix, and the maximum 
value located in the window is extracted as the output. The pooling 
operation can efficiently reduce the sizes of feature maps. 

Unlike the classification problem, this paper adopts the CNN to 
predict the tower top displacement value. Therefore, the output layer of 
CNN is designed as a regression layer, which uses half-mean-squared- 
error as the loss function, which is shown in Eq. (14). 

loss =
1
2

∑R

i=1
(yti − yi)

2 (14)  

where yti is the target output, yi is the prediction, and R is the number of 
prediction. 

3.2. CNN surrogate model development to predict infrastructural wind 
response 

To simulate the dynamic response of the transmission tower, this 
paper develops an improved CNN that can predict the top displacement 
of the transmission tower. As mentioned in the previous section, the 
inducement of the transmission tower’s displacement is the wind speed. 
Hence, CNN utilizes the wind speed as the input and the displacements 
at the top of the tower as the output. In this paper, the wind speed is 
denoted as V = {vt1 , vt2 , ⋯, vti , ⋯}, in which vti = {vp1 , vp2 , ⋯, vpj , ⋯}ti

T 

represents the wind speed happened at different point pj in the tower at 
the time ti. The displacement at the top point of the tower is denoted as 
U = {ut1 ,ut2 ,⋯,uti ,⋯}, in which uti is the displacement at time ti. CNN is 
developed to map the wind speed V to the top displacement U. 

Since the damping exists in the simulation of dynamic response, the 
uti is the result of a period of wind load. Thus, this paper uses a period of 
wind speed to predict the displacement. Fig. 9 illustrates the mapping 

relation between the V and U. A window with the width of w is defined 
and moved along the time axis step by step. The wind speed xw

i = {vi+1,

vi+2, ⋯, vi+w} located in the window is regarded as a stack. Next stack is 
expressed as xw

i+1 = {vi+2, vi+3, ⋯, vi+w+1}. 
Since the tower used in this paper is divided into 5 parts, the 

dimension of wind speed V in spatial direction is only 5, which is rela
tively small for the input of CNN. Hence, each window stack xw

i is resized 
by cubic interpolation into x with size of [32 × 32]. Then the resized 
stack xi of wind speed is used as the input data of CNN. Since the window 
width w can affect information density of xi, it will be discussed in 
Section 4.2. 

The displacement at the end of each window stack is denoted as the 
output data and expressed as yi = ui+w (Fig. 9). In this scenario, all points 
in the displacement sequence are sampled, and CNN is become a full 
sequence simulation CNN. The root mean square error (RMSE) is 
introduced as the criterion of the prediction performance and shown in 
Eq. (15), whose nomenclature is the same as Eq. (15). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
R

∑R

i=1
(yti − yi)

2

√

(15)  

4. Parametric study of proposed methodology 

The prediction accuracy of CNN is closely related to the CNN 
configuration, window size selection, and training data scale [77-79]. 
The depth of the convolutional layers, the kernel size, and numbers are 
three essential indexes of the CNN configuration. Considering the in
formation density’s impact on the data structure and the damping ratio’s 
impact on the physical structure, the window size is another critical 
choice which may jeopardize the accuracy. The training data set scale is 
also explored to balance the computational time and calculation 
accuracy. 

4.1. Impact of CNN configuration on the prediction performance 

CNN configuration involves several sets of parameters, which can 
affect the performance in the prediction of structural dynamic response. 
Notably, the network depth (number of layers), width (number of ker
nels), and kernel size are the three most important variables that can 
dramatically change the prediction accuracy and computational time 
[80-82]. He and Sun [76] demonstrated that the tradeoff among the 
network depth, width, and kernel size is imperative to achieve 
competitive accuracy with constrained time. However, limited studies 
about the CNN application in structural dynamic response discuss the 
configuration influence on the prediction performance, let along to 
analyze the impact of network depth, width, and kernel size. 

To select a proper CNN configuration, this paper implements the 
comparison experiments with different network depths, widths, and 

Fig. 8. Illustration of Pooling Operation.  
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kernel sizes to figure out the combination of these three parameters with 
the best prediction performance. As shown in Table 1, four different 
network depth (3, 4, 5, 6) are designed, and each depth scenario is then 
classified into six cases. The two values in each cell are the kernel size 
and width, respectively. If the value in one cell is (7, 16), it means that 
each kernel size is 7 × 7, and there are 16 kernels. The case classification 
is based on the increase or decrease of width and kernel size along with 
the network depth. 

To generate the dataset of this experiment, 250 samples of the 
transmission tower’s dynamic response during 60 m/s dynamic wind are 
simulated, in which 170 samples are used as a training dataset, 30 
samples are used as a validation dataset, and 50 samples are used as 
testing dataset. The time length of each sample is 600 s, and the sam
pling frequency of wind is 10 Hz. The window size selected in this 
experiment is 10. All calculations involved in this paper are conducted 
by MATLAB in the computer with the specifications of Intel i7-8920H 
CPU, Navidia GTX 9470, and 16 GB RAM. 

The performances of different CNN configurations are illustrated in 
Figs. 10 and 11. Fig. 10 (a) is a comparison among the prediction results 
of Conv3-5, Conv5-1, Conv 6-2, and the ground truth in 600 s. Fig. 10 (b) 
zooms the comparison from 100 s to 200 s and 110 s to 130 s. The 
prediction results of Conv3-5 and Conv5-1 show not only the same trend 
but also a small discrepancy. Conv6-2 captures the primary pattern of 
the top displacement with the ground truth, but the difference is more 
significant. In Fig. 11, it demonstrates that all training, validation, and 
testing RMSE are influenced by the network depths, widths, and kernel 
sizes simultaneously. However, in each depth, there are some cases with 
low RMSE. The lowest training RMSE (0.0153) happens in Conv3-5 and 
Conv5-1. The highest RMSE (0.026) appears at Conv6-2. When consid
ering the training time and testing time, they both increase with the 
network depth (Fig. 11 (d) and (e)). The training and testing time of 
Conv6-2 is about twice that of Conv3-5. This phenomenon is caused by 
the dramatic increase of parameters involved in CNN if the network goes 
deeper. The computational advance of Conv3-5 is more remarkable 
when analyzing a large amount of dynamic response of the transmission 
tower. 

4.2. Impact of window size on the prediction performance 

As noted above, before training the network, the raw time history 
data of wind speed and corresponding displacement is preprocessed by a 
predefined window and resized to uniform data size. It is intrinsic that 
different window sizes can produce different information densities of the 
training data, which may consequently affect the prediction perfor
mance of CNN. Hence, a comparison study is conducted to discuss the 
impact of window size on the prediction. Considering the physical 
properties of the preprocessed dataset, the window size is discussed 
under two dependencies: (1) sampling frequency, which controls the 

data density during the simulation of dynamic wind speed, and (2) 
damping ratio, which controls the temporal dependency between the 
wind input and transmission tower response out. 

In the sensitivity analysis, a low mean wind speed of 25 m/s and a 
high wind speed of 60 m/s at the height of 10 m are respectively used to 
simulate the dataset. The dataset is arranged similarly to the preceding 
section (65% for training, 15% for validation, 20% for testing). The time 
length of each sample is also 600 s. Conv3-5, the best CNN configuration 
from the previous section, is chosen. Then, different window sizes are 
applied to cut the dataset before training the CNN. 

4.2.1. Impact of sampling frequency to window size selection 
Since the information density in the time history data is determined 

by the sampling frequency of wind speed, two kinds of frequency, 10 Hz 
and 50 Hz, are applied in wind simulation. 7 different window sizes are 
chosen: 5, 10, 20, 40, 60, 80, 100. Fig. 12 illustrated the experimental 
results (training, validation, and testing RMSE) under different window 
sizes during different wind speed and sampling frequency. The x-axis 
denotes the data points included in each window. Each line in Fig. 12 
represents a wind speed (25 m/s or 60 m/s) with a sampling frequency 
(10 Hz or 50 Hz). Fig. 12 demonstrates the following findings:  

(1) For different window size comparison, the smallest RMSE always 
happens around the window size of 10 data points. In some cases 
(wind speed 60 m/s-sampling frequency 50 Hz), the smallest 
RMSE is not at exactly 10 data points per window, but the RMSE 
value at 10 data points per window is within a small difference 
(0.001) to the smallest RMSE.  

(2) For different wind speed comparisons, the RMSEs in the cases 
with a wind speed of 25 m/s are consistently less than the cases 
with a wind speed of 60 m/s. Since the RMSE is a standard de
viation between predictions and the true values, the smaller value 
has smaller RMSE if using the same prediction system. Thus, the 
wind speed 25 m/s cases, which induces small displacement of 
the transmission tower, presents better performance compared 
with the wind speed 60 m/s cases.  

(3) For different sampling frequency comparison, the cases of 50 Hz 
have smaller RMSEs than the cases of 10 Hz. As stated above, the 
time length of raw data is 600 s, so 50 Hz cases contain 30,000 
data points, while 10 Hz cases contain 6000 data points. Thus, 
compared to 10 Hz cases, 50 Hz cases produce more dataset for 
training, which means a better prediction performance. 

4.2.2. Impact of damping ratio to window size selection 
Damping ratio, which influences the oscillation of a system, can be 

another aspect to consider its impact on the window selection. For the 
vibration of a transmission tower, different damping ratio impacts its 
period of decay. Since wind load is time-dependent, it is crucial to 

Fig. 9. Mapping Relationship between Wind Speed and Top Displacement.  
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consider the wind load’s impact on the time length, in other words, the 
impact of window selection. According to the discussion of sampling 
frequency in 4.2.1, window selection is consistent for both 50 Hz and 10 
Hz. In this experiment, only 10 Hz sampling frequency of 25 m/s and 60 
m/s wind speeds are tested. Four different damping ratios of trans
mission tower are selected: 0.01, 0.02, 0.05, 0.1. 

Fig. 13 presents the RMSEs of training, validation, and testing dataset 
of two wind speeds with different damping ratios. It is evident that the 
smallest RMSEs always happen around the data point of 10, which is the 
same as the discussions in the previous section. Similarly, the RMSEs in 
the cases of 25 m/s are better than the cases of 60 m/s, which has been 
analyzed in the previous section. In summary, the data point of 10 is an 
optimal choice for the window size, which will be further employed in 
the following sections. 

4.3. Impact of training sample size on prediction performance 

The selection of training sample size is also a tradeoff between the 
prediction performance and computational time, especially when 
expanding the mean wind speed from one certain value to a broad range. 
Thus, this paper experiments with the wind speeds of 25 m/s and 60 m/ 
s, both of which have 10 Hz sampling frequency. For each wind speed, 
this paper uses different sample sizes to train the network, 70% of which 
are used as a training dataset, and 30% are validation dataset. To 
conduct the comparison, the testing dataset is consistent with 50 
samples. 

Fig. 14 summarizes the RMSEs under different sample numbers with 
25 m/s and 60 m/s. With the increase of the sample number, the RMSE 
for both 25 m/s and 60 m/s decreases with a similar trend. Although 
more data can generate a network with high accuracy, it demonstrates 
that when the sample number reaches 100, the RMSE fluctuates in a 10-3 

range. At the same time, the computational training time can save half 
compared with 200 samples. Therefore, 100 samples are the proper 
training size for one wind speed. 

In summary, the CNN configuration, window size, and training data 
scale all impact the prediction performance, including the prediction 
error and computational time. Based on a set of comparative studies in 
this section, Conv3-5 is chosen as the proper CNN configuration; 10 data 
length is selected as the window size; and 100 samples of training set is 
considered as a good trade-off between computational time (both in 
running numerical simulation to prepare the training data and network 
training) and accuracy. 

5. Results and discussion 

Based on the previous experiments and analysis, the trained CNN is 
employed to predict the top displacement during certain dynamic wind 
load. As transmission towers spread broadly in a region, it is vital to 
develop a trained CNN, which can predict a transmission tower’s per
formance of different wind speeds. The wind speeds from 15 m/s to 70 
m/s with 5 m/s increase are selected to generate 200 samples at each 
wind speed, half of which are used as training, and the rests are for 
testing. Conv3-5 is chosen as the desired CNN, and Conv6-2 is chosen as 
a comparison to illustrate the importance of CNN configuration. Win
dow size of 10 and 100 data points are also employed to test the effi
ciency of the window size. There are four kinds of CNN in this analysis: 
1) Conv3-5 with 10 data points window size; 2) Conv3-5 with 100 data 
points window size; 3) Conv6-2 with 10 data points window size; 4) 
Conv6-2 with 100 data points window size. 

The error analysis and result discussion include three parts: 1) 
Evaluate the accuracy of the CNN surrogate model through analyzing 
the deviation of prediction and ground truth; 2) Evaluate the effective
ness of the CNN surrogate model using the predicted peak displacement 
to develop a fragility model; 3) Assess the robustness of the CNN sur
rogate model using two random inputs generated by a random wind 
profile and a Kaimal spectrum; 4) CNN configuration with better per
formance will be tested on the wind load from different directions. 

5.1. Surrogate model accuracy evaluation on time history prediction error 

To validate the window size and the configuration optimized in the 
sensitivity analysis, and to evaluate the accuracy of the proposed design, 
CNN models constructed with Conv3-5, Conv6-2, and two different 
window sizes are trained and compared. Table 2 compares the error and 
computational time of each CNN. As can be seen, with the optimal CNN 
configuration, Conv3-5, and window size of 10, the RMSE and compu
tational time are the best among four cases. Comparing to Conv6-2, 
Conv3-5 can save half of the computational time with twice accuracy 
improvement. To further analyze the error distribution of each network, 
the error histogram of all datasets, and the regression of the testing 
dataset are plotted and presented in Fig. 15. Conv3-5 with window size 

Table 1 
CNN configuration with different network depth, width and kernel size.  

Case # Conv1 
(kernel 
size, 
kernel 
number) 

Conv2 
(kernel 
size, 
kernel 
number) 

Conv3 
(kernel 
size, 
kernel 
number) 

Conv4 
(kernel 
size, 
kernel 
number) 

Conv5 
(kernel 
size, 
kernel 
number) 

Conv6 
(kernel 
size, 
kernel 
number) 

Depth: 3 
Conv3- 

1 
3, 8 5, 16 7, 32 – – – 

Conv3- 
2 

3, 32 5, 16 7, 8 – – – 

Conv3- 
3 

5, 8 5, 16 5, 32 – – – 

Conv3- 
4 

5, 32 5, 16 5, 8 – – – 

Conv3- 
5 

7, 8 5, 16 3, 32 – – – 

Conv3- 
6 

7, 32 5, 16 3, 8 – – – 

Depth: 4 
Conv4- 

1 
3, 8 5, 16 7, 32 11, 48 – – 

Conv4- 
2 

3, 48 5, 32 7, 16 11, 8 – – 

Conv4- 
3 

5, 8 5, 16 5, 32 5, 48 – – 

Conv4- 
4 

5, 48 5, 32 5, 16 5, 8 – – 

Conv4- 
5 

11, 8 7, 16 5, 32 3, 48 – – 

Conv4- 
6 

11, 48 7, 32 5, 16 3, 8 – – 

Depth: 5 
Conv5- 

1 
3, 8 5, 16 7, 32 11, 48 11, 48 – 

Conv5- 
2 

3, 48 5, 48 7, 32 11, 16 11, 8 – 

Conv5- 
3 

7, 8 7, 16 7, 32 7, 48 7, 48 – 

Conv5- 
4 

7, 48 7, 48 7, 32 7, 16 7, 8 – 

Conv5- 
5 

11, 8 11, 16 7, 32 5, 48 3, 48 – 

Conv5- 
6 

11, 48 11, 48 7, 32 5, 16 3, 8 – 

Depth: 6 
Conv6- 

1 
3, 8 5, 16 7, 32 11, 48 11, 48 11, 48 

Conv6- 
2 

3, 48 5, 48 7, 48 11, 32 11, 16 11, 8 

Conv6- 
3 

7, 8 7, 16 7, 32 7, 48 7, 48 7, 48 

Conv6- 
4 

7, 48 7, 48 7, 48 7, 32 7, 16 7, 8 

Conv6- 
5 

11, 8 11, 16 11, 32 7, 48 5, 48 3, 48 

Conv6- 
6 

11, 48 11, 48 11, 48 7, 32 5, 16 3, 8  

J. Xue et al.                                                                                                                                                                                                                                      



Engineering Structures 233 (2021) 111859

9

Fig. 10. Top Displacement Prediction Performance Comparison.  

Fig. 11. Performance Comparison of CNN Configuration.  
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of 10 has the optimal distribution because of the smallest deviations of 
predictions and ground truth. Also, its fitted line for the predicted values 
in the testing dataset is the closest to the true line among the four cases. 
Therefore, considering the results from both Table 2 and Fig. 15, it can 
be concluded that the configuration of CNN plays a vital role in pre
dicting the top displacements of transmission tower under different 
wind speeds, and Conv3-5 with a window size of 10 data points has the 
best performance. However, from the qualitative analysis of RMSE to 
different CNN training parameters, the results indicate the maximum 
error is 0.0264 and minimum of 0.0103. As RMSE does not give a good 
indicator on the acceptance of the accuracy level, further discussions are 
followed to evaluate CNN surrogate model performance. 

5.2. Surrogate model effectiveness evaluation on the fragility model 
development 

The maximum top displacement of a transmission tower is also a 
cared index to estimate the tower’s failure. When the top drift exceeds 
the limit of a transmission tower, the tower is considered to collapse. 
Fig. 16(a) illustrates the maximum top displacement prediction error for 
each case. The median prediction error for both Conv3-5 with 10 data 
length and Conv3-5 with 100 data length is close to 0. Half of the pre
diction error is smaller than 0.025 m. For both cases using Conv6-2, the 
median prediction error is clearly higher than the previous two cases, 
and the error also spread in a larger range. 

Fig. 12. Window Size Comparison for Sampling Frequency.  

Fig. 13. Window Size Comparison for Damping.  
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Another essential index to evaluate the efficiency of CNN is the 
fragility curve, which expresses the likelihood of a structure’s damage 
under different wind speeds as Eq. (16). 

FR(V) = P[D > LS|V10 = V] (16)  

where FR(V) is the failure probability of a transmission tower under a 
certain wind speedV; LS is the limit state of a transmission tower. D is the 
tower’s response. In this paper D is the top displacement of the trans
mission tower. For the wind-induced failure analysis of the transmission 
tower, the top displacement is usually chosen as an index to evaluate its 
collapse [74]. V10 is the mean wind speed ranging from 15 m/s to 70 m/ 
s. 

In this section analysis, the performance of the CNN model is eval
uated by comparing the developed fragility curve to the baseline 
fragility curve. The true fragility curve developed following conven
tional Monte Carlo simulation is recorded and shown in Fig. 16(b) with 
wind speeds from 15 m/s to 70 m/s. The four CNN also generate cor
responding fragility curves using predicted transmission tower response. 
It demonstrates that the fragility curve generated by Conv3-5 is close to 
the true fragility curve. The only discrepancy happens when the wind 
speed is 45 m/s. For Conv6-2′s two cases, the prediction results are 
considerably different as compared to both results in Conv3-5 or the 
ground truth. Therefore, it indicates that 0.02–0.025in the RMSE cannot 
yield an acceptable performance. 

5.3. Surrogate model robustness evaluation with random wind profile and 
wind spectrum 

Thirdly, in order to validate the robustness of the developed surro
gate model to the uncertainties in wind profiles and wind spectrums, two 
samples generated by a random wind profile and a Kaimal spectrum are 
chosen to test the robustness of the trained network. The random mean 
wind speed for the testing input is 32.6 m/s at 10 m as shown in Fig. 17. 
The rest profiles are from the trained profiles. Fig. 18 compares the 
prediction performance of the four cases. It demonstrates that Conv3-5 

with window size 10 data points has the best fitness of the ground 
truth. Conv6-2 can capture the basic trend of the dynamic response 
while it shows some discrepancy with an accurate value. It proves that 
this Conv3-5 network with window size 10 data points can effectively 
predict the time history response of a transmission tower for random 
wind speeds. It demonstrates that the profile uncertainty can be well 
considered by the proposed surrogate model. 

To investigate the robustness of the proposed surrogate model in 
tolerating the uncertainty caused by various spectrums, one wind 
loading input generated by Kaimal spectrum (Eq. (17)) [83] is tested by 
this surrogate model, the Kaimal spectrum is expressed as: 

Sv(z, f ) =
200f*V*

2

f (1 + 50f*)
5/3f* =

fz
V

, V* = κV2
10 (17)  

where V* is the friction velocity; f* is Monin coordinate. 
The comparison between Kailmal and Davenport spectrums are 

presented in Fig. 19, the frequency domain difference is clearly 
demonstrated in the first 0.2 Hz which is the domain frequency in the 
wind loading. Fig. 20 shows the prediction results of four CNN config
uration that is trained only by the wind loading generated with 
Davenport spectrum. The predicted response using Cov3-5 (w = 10) 
yields an RMSE of 0.0066 from the true response, compared to RMSE of 
0.0099 in the training (Table 2), the performance accuracy is consistent. 
Therefore, it can be concluded that the developed surrogate model can 
capture the wind profile and spectrum uncertainty. 

Table 3 summarizes the RMSEs for the cases generated by the 
random wind profile and the Kaimal spectrum under the CNN configu
rations trained in previous sections. The results obtained in the com
parison align with the optimized CNN configuration, that Cov 3–5 with 
window size of 10 data points outperform the rest of the configurations. 

5.4. Surrogate model robustness evaluation with wind loads from 
different directions 

Finally, to validate the robustness of this approach, the surrogate 

Fig. 14. RMSE and Training Time Comparison.  

Table 2 
Error and Computational Time Comparison.   

Window Size RMSE_Train RMSE_Validation RMSE_Test Training Time Testing Time 

Conv3-5 10 0.0101 0.0099 0.0103 129.5 23.1 
Conv3-5 100 0.0130 0.012 0.0130 127.6 25.4 
Conv6-2 10 0.0218 0.0217 0.0219 239.8 31.3 
Conv6-2 100 0.0262 0.0270 0.0264 240.0 30.1  
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model of the transmission tower during the wind loads from different 
directions are tested. Based on the previous results, Conv3-5 with 10 
data point window size has the best performance to develop the surro
gate model. Therefore, this CNN configuration will be employed to 
develop the surrogate model of the transmission tower when the wind 
loads are from 30 degrees, 45 degrees, 60 degrees, 90 degrees as Fig. 21 
(a) demonstrates. 

Table 4 summarizes the training, validation and testing RMSE from 
different wind directions. It clearly demonstrates with proper CNN 
configuration and window size selection, the surrogate model can pre
dict the transmission tower’s performance during the wind load from 
different wind directions. 

6. Conclusion 

This paper proposed a novel method to predict the time history 
response of a standalone transmission tower under complex wind input 
using convolutional neural network (CNN). By converting the time and 
spatial information of wind into a surface wave, CNN can predict the 
dynamic response of transmission tower with satisfying accuracy. This 
study leads to the following conclusions:  

(1) CNN can capture the time and spatial correlation of the complex 
wind input and predict the dynamic performance of the trans
mission tower successfully.  

(2) CNN configuration with different network depth, width, and 
kernel size impacts the prediction accuracy and computational 
time at the same time. In the study, Conv3-5 outperforms other 
configuration in predicting the dynamic response of the trans
mission tower in a broader wind speed range. Both RMSE and 
computational efficiency is largely improved compared to Conv6- 
2. 

(3) Window size also influences the accuracy of time history pre
diction. According to a set of experiments considering different 
sampling frequency and damping ratio, 10 data point window 
size is selected as the most favorable window length. Physical 
property of the transmission tower, such as damping ratio, does 
not impact the optimal selection of the window size.  

(4) In order to choose a proper data scale with sufficient accuracy 
and limited computational time, a group of sample numbers is 
trained and compared. 100 samples for each wind speed are the 
ideal data scale to train a promising CNN.  

(5) Compared with window size, CNN configuration influences both 
the time history prediction and the extreme value and fragility 

Fig. 15. Error Histogram and Regression Comparison.  
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Fig. 15. (continued). 

Fig. 16. Extreme Condition Comparison.  
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analysis of the transmission tower. Window size selection impacts 
the accuracy of the time history while it tolerates the discrepancy 
when only considering the extreme value and fragility analysis.  

(6) This surrogate model is robust to the wind loading uncertainties 
that are caused by the widely distributed wind profiles and 
various wind spectra. The presented results are promising as the 
RMSEs between the predicted dynamic responses and the ground 
truth are compatible with the RMSEs in the training.  

(7) With Cov3-5 and 10 data point window size selection, this 
approach can successfully predict the dynamic response of the 

transmission tower when the wind loads are from different 
directions.  

(8) By transferring the time and spatial correlation of the wind loads 
into an image, the powerful image process network, CNN, can be 
employed to predict the structure’s dynamic response during the 
wind load. It provides a new insight to deal with the time and 
spatial correlation of the wind loads and applies this approach to 
the other structures. 

Overall, this paper provides a thorough discussion of the CNN 
development for the time history response prediction of the transmission 
tower. With proper CNN configuration and training data, this surrogate 
model can successfully capture the wind loading uncertainties from the 
distributed wind profiles and spectra, which is critical for the realistic 
hurricane meteorological data. One limitation of the method that needs 
to be noted, is that the accuracy of CNN depends highly on the repre
sentativeness of the training data. In this study, 100 samples with 600 s 
time history are proved to be sufficient for training. Therefore complex 
material and geometric nonlinearity of transmission tower and tower- 
line interaction is not considered due to computational cost in gener
ating the training data. In the future, advanced sampling methods will 
be studied to reduce the required training sample, and application with 
different nonlinearity will be addressed. 
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Fig. 17. Wind Profile Distribution of Various Mean Wind Profile.  

Fig. 18. Top Displacement Prediction Performance Comparison.  
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Fig. 19. Comparison between Kaimal spectrum and Davenport spectrum.  

Fig. 20. Top Displacement Prediction Performance for Wind Speed Simulated by Kaimal Spectrum.  

Table 3 
RMSEs for Wind Profile and Spectrum Uncertainty Prediction.   

Window 
Size 

RMSE _Test (Wind Profile 
uncertainty) 

RMSE _Test (Spectrum 
uncertainty) 

Conv3- 
5 

10 0.0055 0.0066 

Conv3- 
5 

100 0.0084 0.0118 

Conv6- 
2 

10 0.0102 0.0118 

Conv6- 
2 

100 0.0137 0.0140  

Fig. 21. Wind load from different directions.  
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