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As the steel towers in the power system are vulnerable to intensive wind loads, it is essential to understand their
dynamics response to estimate its potential failure. Conventional structural analysis methods like the finite
element analysis or the field test are either computational heavy or cost expensive. Thus, this paper proposes a
machine learning approach based on convolutional neural network (CNN) to predict the time history response of
the transmission tower during the complex wind input. By preprocessing the time history of wind load and the
tower’s dynamic response, a well-developed CNN can capture the time and spatial correlation of the wind load
successfully and provide high accuracy results. CNN configuration, window size selection, and training data scale
are carefully discussed to optimize the CNN design to maximize the prediction accuracy as well as minimize its
computational time. Finally, to evaluate the performance of the surrogate model, the accuracy of the optimal
CNN is tested in predicting the time history response of the transmission tower under 15 m/s to 70 m/s wind
speed. The effectiveness of the CNN surrogate model is validated through a fragility model development, and its
robustness is investigated using two wind inputs generated from a random wind profile and a random wind

spectrum.

1. Introduction

The transmission tower, a vital support structure of the power sys-
tem, is vulnerable to extreme wind loads. Like other lifeline systems, the
damage of a power system due to transmission tower collapse can lead to
a power outage for millions of people in a vast region. Hurricane Harvey,
in 2017, affected 2.02 million people with over 850 transmission
structures down or damaged [1]; Hurricane Michael, in 2018, caused
widespread power outages in Florida, Alabama, and Georgia [2]. To
reduce the hurricane-induced damage to the power system, it is essential
to accurately capture the performance of a transmission tower during
dynamic wind.

Conventional structural analysis of a transmission tower’s dynamic
response during wind loading includes field and laboratory testing,
static and dynamic modeling through finite element analysis, and reli-
ability modeling. The field and laboratory testing provide the most
trustworthy result to demonstrate the static or dynamic response of a
transmission tower [3-6]. The field test of the transmission tower ver-
ifies the novel design of transmission tower [7]; illustrates the load-
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bearing capacity and failure mechanism of a transmission tower due
to various loading [8]; present the large deformation analysis [9], etc.
Wind tunnel tests of the transmission tower usually employ the aero-
elastic models to evaluate the transmission tower-line system’s actual
behaviors [10-12]. The obtained knowledge from the field and labora-
tory test is further utilized in structural modeling using finite element
analysis. Finite element models are used to develop a static and dynamic
response of the transmission tower or tower-cable system. For static
analysis, the nonlinearity analysis is commonly implemented to estimate
the transmission tower’s performance under different load patterns
based on different national and international design codes [13] or to
evaluate its failure by buckling analysis [14-16] with push over loading
protocols. For dynamic analysis, the deterministic time history analysis
is conducted with complex wind input simulated with theoretical wind
characteristics and aeroelastic loading parameters obtained from wind
tunnel test [17-20]. With the combination of 1) a static analysis which
develops the failure criterion of the transmission tower, 2) a determin-
istic time history analysis of transmission tower considers different wind
loading conditions, and 3) a Monte Carlo simulation process realizes
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system aleatoric uncertainties, the reliability model (often the fragility
curve or fragility surface) of the transmission tower can be developed
[21-23]. Although there are different approaches to obtain the structural
response of the transmission tower, it is either computationally expen-
sive or cost expensive.

To allow time-efficient evaluation of structural dynamic response,
researchers have investigated different methods to develop surrogate
models. Existing surrogate models are majorly developed for structural
static analysis problems [24-26], extreme value problems [27], and bi-
nary classification problems (predicts failure or non-failure condition)
[28-30]. VanLuchene and Sun [31] are the early researchers who
developed the surrogate models of a concrete beam and rectangular
plate to predict the maximum moment by neural network. With the
rapid advances in computer science, more promising surrogate models
that predict the structural performance have been developed recently.
For the structural static analysis problem, Mukherjee and Biswas [32]
successfully obtained the reliable concrete response under high tem-
perature and pressure by artificial neural networks (ANN) without
measuring a large number of parameters. In a more recent study,
Mohammadhassnai et al. [33] compared ANN with linear regression
(LR) to devise a surrogate model of the deep concrete beam for pre-
dicting the strain in the tie section. The extreme value problem also
stimulates many researchers to develop surrogate models to evaluate the
limit state of a structure. Ceylan et al. [34] applied ANN to develop the
surrogate model of the pavement to obtain its critical responses and
deflection profiles. Oh et al. [35] implemented the time and frequency
domain of wind and the corresponding displacement as input to develop
the surrogate model by convolutional neural network (CNN) and predict
the maximum and minimum strain. The extreme value problem leads to
a more critical and straightforward problem, the binary classification
problem. Different approaches are brought into this area: Su et al. [36]
combined Gaussian Process Regression and Monte Carlo Simulation to
develop a surrogate model for the complex structure; Zhao [37] and
Sainct et al. [38] employed the active learning like support vector ma-
chines (SVM) to conduct structural reliability analysis; Afshari and Liang
[39] evaluated the reliability of a cantilever beam by a time-variant
degradation model using a Naive Bayesian Classifier. Perera et al. [40]
developed a roaming damage method to detect the damage location by
neural network directly and flexibly.

However, there are only a few studies focused on developing a sur-
rogate model to predict structural dynamic time history. To date, the
structural dynamic time-history response prediction concentrates
mainly on the seismic response prediction [41,42]. The state-of-the-art
research employed the deep learning method, the long short-term
memory to predict the seismic response [43] while compared to
seismic loading, wind loading is more complicated because of its time
and spatial correlation. The existing solution to the complex wind load
input is to extract the features of the wind load, like the wind-induced
acceleration [44] and the coordinate of wind pressure [45], as the
input to predict the time series of pressure during wind load.

In wind-induced structural response analysis, the wind load is
considered a dynamic time history that can be decoupled into the mean
wind and fluctuation wind components. The mean wind speed varies
along with the height following a wind profile [46,47], and the fluctu-
ation wind can be statistically presented by a stochastic process gener-
ated with a power spectrum in the frequency domain [48]. The spatial
correlation of the fluctuating wind also resides and is exhibited by a
cross-spectral density spectrum. Therefore, wind loading is a stochastic
process which shows strong time and spatial-correlation even with a
determined wind profile and spectrum. In addition to the genuine sto-
chasticity in the wind input, other uncertainties are inevitable. As
compared to a determined profile, wind profiles have disunited patterns
[49,50] due to the spatially dispersed topographies [49]. The frequency
content of the wind spectrum describes the turbulent motion in the air, is
caused by complex atmospheric phenomenon and conditions [51,52].
Many wind spectra are proposed, which can be classified as height
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independent (i.e., Davenport’s model, and Harris’s spectrum) and height
dependent (i.e., Von Karman’s spectrum, Kaimal’s spectrum, and Sim-
iu’s spectrum.) based on curve fitting results for different records of
intensive wind [48,53,54]. Capturing these uncertainties is a vital
problem to obtain the structural response during wind loads. The sur-
rogate model to represent structural response under wind loading
should reflect these uncertainties.

In this study, if the time and spatial variant wind speeds are pre-
processed into a horizontal and vertical direction of an image respec-
tively, it is possible to employ the powerful image process network,
CNN, to interpret the time and spatial dependent wind loading input, as
well as its impact to civil infrastructure. As a variety of multiplayer
perception, CNN was first proposed by Lecun et al. [55] to recognize the
documents with image format. After the modification conducted by
Krizhevsky et al. [56], researchers have proposed several versions of
CNN that showed promising performance in object recognition from
massive images [57-60]. Compared with other machine learning
methods (i.e., multilayer perception, support vector machine), CNN has
a significant superiority that omits the complicated stage of feature
extraction, which has attracted much attention from the researchers in
structural simulation [61,62]. Structural damage detection [63-66] and
crack detection [67-70] are two primary applications in structural
analysis.

In this paper, a novel approach is developed to predict the full-time
history response of a transmission tower with dynamic wind load using
CNN. A hypothesis is proposed that CNN based learning algorithm can
be utilized to capture the temporal and spatial correlation, and the wind
profile and spectrum uncertainties of wind loading and its impact on the
structural dynamic response. Such surrogate model should be compu-
tational effective as compared to deterministic finite element model, at
the same time be adaptive to the wind loading characteristics as
compared to probabilistic approach such as fragility models. To validate
this hypothesis, a CNN-based dynamic response prediction of the
transmission tower during wind load approach is proposed, as demon-
strated in Fig. 1. A set of training and testing data is generated by
obtaining the dynamic response of the transmission tower with wind
simulation and numerical model development. These data are pre-
processed and then used to train the network. Finally, the trained CNN is
employed to predict the dynamic response of a transmission tower
during wind load and further develop a reliability model (fragility
model) during complex wind conditions.

The rest of this paper is organized as follows: Section 2 introduces the
characteristics and simulation of the wind load input, the numerical
model of the transmission tower, and its dynamic response. Section 3
details the methodology by introducing the architecture of CNN and its
application of an infrastructure system. Section 4 conducts a parametric
study to compare the impact of CNN configuration, window size selec-
tion, and training data scales on the prediction performance. Section 5
employs the developed CNN structure and proper coefficients to a broad
wind speed range, its effectiveness is demonstrated through the devel-
opment of the fragility model of the tower, and its robustness is tested
using a random profile and spectrum. Section 6 summarizes the con-
clusions of this proposed method and proposes future work.

2. Wind load model and numerical model

To implement the proposed convolutional neural network (CNN) for
the wind-induced response of the transmission tower, the dynamic load
of the wind speed is simulated first, and a numerical model of the
transmission tower is developed after that, which is shown in Fig. 2. In
this section, the characteristics and simulation of the dynamic wind
input are further discussed. The numerical information of the trans-
mission tower is provided after that. Finally, the time history response of
the transmission tower during complex wind input is presented. This
numerical simulation process generates the dataset for further CNN
training and testing.
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Fig. 1. Flow Chart of A CNN-based Dynamic Response Prediction of Transmission Tower.
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2.1. Wind input characteristics and simulation To obtain the power spectrum of the fluctuating wind, the auto
power spectrum of fluctuating wind S, (f) at frequency f is defined by
Compared with some simplified work, which adopts the seismic Davenport spectrum [72], which is shown as follows,
ground acceleration as the single input, wind load is more complicated
o . . L . —n X 1200f
because of its time and spatial correlation. The stochastic wind simu- S, (f) = 4xVio At = = 4
lation is composed of the mean and fluctuating wind as Eq. (1). The (1 +22) Vio
mean wind profile changes over height by a power law based on ASCE 7- . .
98 in Eq. (2) [84]. where « is the surface drag coefficient.
The spatial correlation of the fluctuating wind is exhibited by its
Vi) =V+V; 1) cross-spectral density spectrumS;(r, f). It is calculated by each panel’s

auto power spectrum from Eq. (4).

Vv
Vo G @ ) = \[Su@n)S, () Coh(r.f),i . ®)

whereV(t) is the stochastic wind; V is the mean wind speed at different _of \/ (o
heights;V; is the fluctuating wind; V1 is the reference mean wind speed Coh(r.f) = exp( LA
at 10 m height; z is the mean wind speed height; and 2, is the reference v
height, 10 m; « is the ground roughness coefficient.

The characteristics of fluctuating wind include its time correlation

) +Cla-2)

@ +7@) ) ©

where C, = 8 and Cz = 7 are chosen usually. y;, y;, z; and z; are the

and spatial correlation. The time correlation of the fluctuating wind is spatial coordinate. It is decomposed by Cholesky decomposition.
realized by a Gaussian stationary random process. For an n—difn?n?ional S(w) = H@)H ()" %)
zero-mean stationary Gaussian random process v;(t)(j = 1,2,A-A-A-,nt),
the spectral density matrix is shown in Eq. (3). Hy, (a))OA~ A AA()
I _ Hy, (0)Hyp (0)A-A-A-0

S11(@)S1(w)A-A-AS,, () HO) = AAAAAAAAAAAA. ®

S(a}) o1 (60)522 %J)AA;&A.A.SQH (w) 3) H,, ((U)Hmz (a))A‘A'A-Hmm(a))
Sml (w)SmZ (w)AAA Snlnt(w)

Fluctuating wind v (yj,zj,t) is calculated in (9)-(10).
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where H(w) is the Cholesky decomposition matrix; Aw is frequency
increment; N is a positive large integer. Fig. 3 illustrates the dynamic
wind on the top of the transmission tower and a comparison between the
simulated spectrum and the Davenport spectrum.

Based on the simulated wind speed, the dynamic wind load added on
each panel of the transmission tower is calculated as (11).

F = 0.5pV(1)’CA,, @an

where p is the air density;V(t) is wind time history, obtained from Egs.
(1)-(10); G is the drag coefficient; A, is the projected area.

2.2. Numerical model of transmission tower

The transmission tower shown in Fig. 2 is employed in this paper to
validate the efficiency of CNN. It is a suspension tower initially
described by Tort et al. [73] and redesigned for the hurricane zone based
on ASCE Manual 74 Guidelines for Electrical Transmission Line Struc-
tural Loading [71]. The height of the transmission tower is 31.5 m. All
members are steel-made (ASTM A36), L-shape cross-sections. The finite
element model of the transmission tower is developed by ANSYS, a
commercial finite element software.

2.3. Dynamic response of transmission tower during wind load

By adding a set of wind loads on different panels of the transmission
tower, the dynamic response of the transmission tower during wind load
is obtained as Fig. 4. Usually, the top displacement is selected as an
index to evaluate the failure or collapse of the transmission tower [74].

3. Methodology

As noted above, the inducement from the dynamic wind speed can
result in the displacement of the transmission tower. Despite the time
and spatial dependence, the inputs (wind speed) of the inducement are
the two-dimension (2D) shapes. As shown in Fig. 5, if the wind speeds
D1,D2,P3---Pn are put together, the two directions of the matrix denote
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Fig. 4. Top Displacement of Transmission Tower during Wind Load.

the time and spatial correlation horizontally and vertically. Each wind
speed at each time step can be converted to a pixel intensity of the single
channel image. When all the wind speeds at each time step and location
are combined together, this data format is similar to the standard input
of the convolutional neural network (CNN), which is the 2D image.
Hence, this phenomenon provides an intuitive approach of using CNN to
replace the traditional simulation with the finite element model. In this
paper, CNN is introduced to automatically learn features from the wind
speed and then predict the dynamic response of the transmission tower.
The details of the CNN construction and prediction are discussed in the
following sections.

3.1. Architecture of convolution neural network

The overall architecture of CNN used in this paper is presented in
Fig. 6, which contains the input layer, convolution layer, activation
layer, pooling layer, dropout layer, full connected layer, and regression
layer. The convolution, activation, and pooling layers are always
assembled as a layer set. The input data is first calculated by the
convolution layer to extract a series of feature maps, which are then
processed by activation function to make the CNN fit the nonlinear
problem. Usually, the outputs of the preceding layer are still large and
contain too much reductant information, so the pooling layer is adopted
to reduce the sizes of the feature maps. To avoid overfitting, a dropout
layer is set to remove partial neurons randomly. At last, the full con-
nected layer is applied to make the results suitable for regression anal-
ysis. According to Gupta et al. [75] and He et al. [76], the design of CNN
configuration plays an essential role in the prediction performance and
the computational cost. Hence, this paper will conduct the CNN
configuration discussion in Section 4.1. Other details of CNN architec-
ture are discussed as follows.

The convolution layer is the most distinguished characteristics of
CNN. Fig. 7 demonstrates the convolution operation on a 2D input I
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Fig. 3. Wind Speed Simulation and Spectrum Comparison.
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Fig. 5. 2-Dimension Feature of Wind Speed.
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using a 2D kernel K with the size of m x m. If assuming that the weight of
kernel K is w(s, t), and the local values of I is f(x —s,y —t), the output of
the local convolution operation is then derived as Eq. (12). Subse-
quently, moving the kernel with a constant step, called as stride, a new
image is derived and known as a feature map. To make the feature map
representative, N kernels are set to process at the same time. Conse-
quently, N feature maps are obtained. The configuration of kernel size

and number of kernels will be discussed in Section 4.1.

glx,y) = Z:}HZLI,W(S’ Of(x—s,y—1) 12)

However, no matter what the kernel size is and how many kernels
there are, the convolution operation is a weight sum model and cannot
process the nonlinear problem. To address this issue, a leaky rectified
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linear unit (Leaky ReLU) is introduced in this research as the activation
function. Compared to other activation functions (i.e., Sigmoid, Tanh),
Leaky ReLU has couples of superiorities, such as no saturation, compu-
tational efficiency, and fast convergence. Meanwhile, since it assigns a
non-zero value to the negative input, the gradient update never fails in
the weights learning stage. Eq. (13) is the expression of Leaky ReLU,
which maps the linear input z to a nonlinear output s(z).

5(z) = max(0.01x, x) 13

To reduce the reductant parameters and avoid overfitting, the
pooling layer is designed after the activation layer. There are two pri-
mary pooling layers: average pooling and max pooling. Although both of
them are down sampling operations, the latter has better performance of
feature extraction as it keeps most distinguishable values. Thus, the max
pooling is selected in this paper. The principle of the max pooling
operation is illustrated in Fig. 8, which can also be understood as sub-
sampling feature maps. Similar to the convolution operation, a pre-
defined window is used to scan the input matrix, and the maximum
value located in the window is extracted as the output. The pooling
operation can efficiently reduce the sizes of feature maps.

Unlike the classification problem, this paper adopts the CNN to
predict the tower top displacement value. Therefore, the output layer of
CNN is designed as a regression layer, which uses half-mean-squared-
error as the loss function, which is shown in Eq. (14).

IR
toss = 257 ()

where y;; is the target output, y; is the prediction, and R is the number of
prediction.

14

3.2. CNN surrogate model development to predict infrastructural wind
response

To simulate the dynamic response of the transmission tower, this
paper develops an improved CNN that can predict the top displacement
of the transmission tower. As mentioned in the previous section, the
inducement of the transmission tower’s displacement is the wind speed.
Hence, CNN utilizes the wind speed as the input and the displacements
at the top of the tower as the output. In this paper, the wind speed is
denoted as V = {vy,, Vs, -+, Vg, -}, in which v, = {vp,, vp,, =, Vp,, "'}:l-T
represents the wind speed happened at different point p; in the tower at
the time t;. The displacement at the top point of the tower is denoted as
U = {uy ,uy, Uy, -}, in which u,, is the displacement at time t;. CNN is
developed to map the wind speed V to the top displacement U.

Since the damping exists in the simulation of dynamic response, the
uy, is the result of a period of wind load. Thus, this paper uses a period of
wind speed to predict the displacement. Fig. 9 illustrates the mapping
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relation between the V and U. A window with the width of w is defined
and moved along the time axis step by step. The wind speed x} = {v; 1,
Vii2, -+, Viyw } located in the window is regarded as a stack. Next stack is
expressed as x,; = {Viy2,Vii3, ", Visws1}-

Since the tower used in this paper is divided into 5 parts, the
dimension of wind speed V in spatial direction is only 5, which is rela-
tively small for the input of CNN. Hence, each window stack x is resized
by cubic interpolation into x with size of [32 x 32]. Then the resized
stack x; of wind speed is used as the input data of CNN. Since the window
width w can affect information density of x;, it will be discussed in
Section 4.2.

The displacement at the end of each window stack is denoted as the
output data and expressed asy; = u; (Fig. 9). In this scenario, all points
in the displacement sequence are sampled, and CNN is become a full
sequence simulation CNN. The root mean square error (RMSE) is
introduced as the criterion of the prediction performance and shown in
Eq. (15), whose nomenclature is the same as Eq. (15).

1=r
ruasE =25 5, -

4. Parametric study of proposed methodology

(15)

The prediction accuracy of CNN is closely related to the CNN
configuration, window size selection, and training data scale [77-79].
The depth of the convolutional layers, the kernel size, and numbers are
three essential indexes of the CNN configuration. Considering the in-
formation density’s impact on the data structure and the damping ratio’s
impact on the physical structure, the window size is another critical
choice which may jeopardize the accuracy. The training data set scale is
also explored to balance the computational time and calculation
accuracy.

4.1. Impact of CNN configuration on the prediction performance

CNN configuration involves several sets of parameters, which can
affect the performance in the prediction of structural dynamic response.
Notably, the network depth (number of layers), width (number of ker-
nels), and kernel size are the three most important variables that can
dramatically change the prediction accuracy and computational time
[80-82]. He and Sun [76] demonstrated that the tradeoff among the
network depth, width, and kernel size is imperative to achieve
competitive accuracy with constrained time. However, limited studies
about the CNN application in structural dynamic response discuss the
configuration influence on the prediction performance, let along to
analyze the impact of network depth, width, and kernel size.

To select a proper CNN configuration, this paper implements the
comparison experiments with different network depths, widths, and

[t
y/

Fig. 8. Illustration of Pooling Operation.
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Fig. 9. Mapping Relationship between Wind Speed and Top Displacement.

kernel sizes to figure out the combination of these three parameters with
the best prediction performance. As shown in Table 1, four different
network depth (3, 4, 5, 6) are designed, and each depth scenario is then
classified into six cases. The two values in each cell are the kernel size
and width, respectively. If the value in one cell is (7, 16), it means that
each kernel size is 7 x 7, and there are 16 kernels. The case classification
is based on the increase or decrease of width and kernel size along with
the network depth.

To generate the dataset of this experiment, 250 samples of the
transmission tower’s dynamic response during 60 m/s dynamic wind are
simulated, in which 170 samples are used as a training dataset, 30
samples are used as a validation dataset, and 50 samples are used as
testing dataset. The time length of each sample is 600 s, and the sam-
pling frequency of wind is 10 Hz. The window size selected in this
experiment is 10. All calculations involved in this paper are conducted
by MATLAB in the computer with the specifications of Intel i7-8920H
CPU, Navidia GTX 9470, and 16 GB RAM.

The performances of different CNN configurations are illustrated in
Figs. 10 and 11. Fig. 10 (a) is a comparison among the prediction results
of Conv3-5, Conv5-1, Conv 6-2, and the ground truth in 600 s. Fig. 10 (b)
zooms the comparison from 100 s to 200 s and 110 s to 130 s. The
prediction results of Conv3-5 and Conv5-1 show not only the same trend
but also a small discrepancy. Conv6-2 captures the primary pattern of
the top displacement with the ground truth, but the difference is more
significant. In Fig. 11, it demonstrates that all training, validation, and
testing RMSE are influenced by the network depths, widths, and kernel
sizes simultaneously. However, in each depth, there are some cases with
low RMSE. The lowest training RMSE (0.0153) happens in Conv3-5 and
Conv5-1. The highest RMSE (0.026) appears at Conv6-2. When consid-
ering the training time and testing time, they both increase with the
network depth (Fig. 11 (d) and (e)). The training and testing time of
Conv6-2 is about twice that of Conv3-5. This phenomenon is caused by
the dramatic increase of parameters involved in CNN if the network goes
deeper. The computational advance of Conv3-5 is more remarkable
when analyzing a large amount of dynamic response of the transmission
tower.

4.2. Impact of window size on the prediction performance

As noted above, before training the network, the raw time history
data of wind speed and corresponding displacement is preprocessed by a
predefined window and resized to uniform data size. It is intrinsic that
different window sizes can produce different information densities of the
training data, which may consequently affect the prediction perfor-
mance of CNN. Hence, a comparison study is conducted to discuss the
impact of window size on the prediction. Considering the physical
properties of the preprocessed dataset, the window size is discussed
under two dependencies: (1) sampling frequency, which controls the

data density during the simulation of dynamic wind speed, and (2)
damping ratio, which controls the temporal dependency between the
wind input and transmission tower response out.

In the sensitivity analysis, a low mean wind speed of 25 m/s and a
high wind speed of 60 m/s at the height of 10 m are respectively used to
simulate the dataset. The dataset is arranged similarly to the preceding
section (65% for training, 15% for validation, 20% for testing). The time
length of each sample is also 600 s. Conv3-5, the best CNN configuration
from the previous section, is chosen. Then, different window sizes are
applied to cut the dataset before training the CNN.

4.2.1. Impact of sampling frequency to window size selection

Since the information density in the time history data is determined
by the sampling frequency of wind speed, two kinds of frequency, 10 Hz
and 50 Hz, are applied in wind simulation. 7 different window sizes are
chosen: 5, 10, 20, 40, 60, 80, 100. Fig. 12 illustrated the experimental
results (training, validation, and testing RMSE) under different window
sizes during different wind speed and sampling frequency. The x-axis
denotes the data points included in each window. Each line in Fig. 12
represents a wind speed (25 m/s or 60 m/s) with a sampling frequency
(10 Hz or 50 Hz). Fig. 12 demonstrates the following findings:

(1) For different window size comparison, the smallest RMSE always
happens around the window size of 10 data points. In some cases
(wind speed 60 m/s-sampling frequency 50 Hz), the smallest
RMSE is not at exactly 10 data points per window, but the RMSE
value at 10 data points per window is within a small difference
(0.001) to the smallest RMSE.

(2) For different wind speed comparisons, the RMSEs in the cases
with a wind speed of 25 m/s are consistently less than the cases
with a wind speed of 60 m/s. Since the RMSE is a standard de-
viation between predictions and the true values, the smaller value
has smaller RMSE if using the same prediction system. Thus, the
wind speed 25 m/s cases, which induces small displacement of
the transmission tower, presents better performance compared
with the wind speed 60 m/s cases.

(3) For different sampling frequency comparison, the cases of 50 Hz
have smaller RMSEs than the cases of 10 Hz. As stated above, the
time length of raw data is 600 s, so 50 Hz cases contain 30,000
data points, while 10 Hz cases contain 6000 data points. Thus,
compared to 10 Hz cases, 50 Hz cases produce more dataset for
training, which means a better prediction performance.

4.2.2. Impact of damping ratio to window size selection

Damping ratio, which influences the oscillation of a system, can be
another aspect to consider its impact on the window selection. For the
vibration of a transmission tower, different damping ratio impacts its
period of decay. Since wind load is time-dependent, it is crucial to
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Table 1
CNN configuration with different network depth, width and kernel size.
Case # Convl Conv2 Conv3 Conv4 Conv5 Conv6
(kernel (kernel (kernel (kernel (kernel (kernel
size, size, size, size, size, size,
kernel kernel kernel kernel kernel kernel
number) number) number) number) number) number)
Depth: 3
Conv3- 3,8 5,16 7,32 - - -
1
Conv3- 3,32 5,16 7,8 - - -
2
Conv3- 58 5,16 5,32 - - -
3
Conv3- 5,32 5,16 5,8 - - -
4
Conv3- 7,8 5,16 3,32 - - -
5
Conv3- 7,32 5,16 3,8 - - -
6
Depth: 4
Conv4- 3,8 5,16 7,32 11, 48 - -
1
Conv4- 3,48 5,32 7,16 11,8 - -
2
Conv4- 58 5,16 5,32 5, 48 - -
3
Conv4- 5,48 5,32 5,16 5,8 - -
4
Conv4- 11,8 7,16 5, 32 3,48 - -
5
Conv4- 11, 48 7,32 5,16 3,8 - -
6
Depth: 5
Conv5- 3,8 5,16 7,32 11, 48 11, 48 -
1
Conv5- 3,48 5,48 7,32 11,16 11,8 -
2
Convs- 7,8 7,16 7,32 7,48 7,48 -
3
Conv5- 7,48 7,48 7,32 7,16 7,8 -
4
Convs- 11,8 11, 16 7,32 5, 48 3,48 -
5
Conv5- 11, 48 11, 48 7,32 5,16 3,8 -
6
Depth: 6
Conv6- 3,8 5,16 7,32 11, 48 11, 48 11, 48
1
Conve- 3,48 5,48 7,48 11, 32 11, 16 11,8
2
Conv6- 7,8 7,16 7,32 7, 48 7,48 7,48
3
Convé- 7,48 7,48 7,48 7,32 7,16 7,8
4
Conve- 11,8 11,16 11, 32 7,48 5,48 3,48
5
Conv6- 11,48 11, 48 11, 48 7,32 5,16 3,8
6

consider the wind load’s impact on the time length, in other words, the
impact of window selection. According to the discussion of sampling
frequency in 4.2.1, window selection is consistent for both 50 Hz and 10
Hz. In this experiment, only 10 Hz sampling frequency of 25 m/s and 60
m/s wind speeds are tested. Four different damping ratios of trans-
mission tower are selected: 0.01, 0.02, 0.05, 0.1.

Fig. 13 presents the RMSEs of training, validation, and testing dataset
of two wind speeds with different damping ratios. It is evident that the
smallest RMSEs always happen around the data point of 10, which is the
same as the discussions in the previous section. Similarly, the RMSEs in
the cases of 25 m/s are better than the cases of 60 m/s, which has been
analyzed in the previous section. In summary, the data point of 10 is an
optimal choice for the window size, which will be further employed in
the following sections.
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4.3. Impact of training sample size on prediction performance

The selection of training sample size is also a tradeoff between the
prediction performance and computational time, especially when
expanding the mean wind speed from one certain value to a broad range.
Thus, this paper experiments with the wind speeds of 25 m/s and 60 m/
s, both of which have 10 Hz sampling frequency. For each wind speed,
this paper uses different sample sizes to train the network, 70% of which
are used as a training dataset, and 30% are validation dataset. To
conduct the comparison, the testing dataset is consistent with 50
samples.

Fig. 14 summarizes the RMSEs under different sample numbers with
25 m/s and 60 m/s. With the increase of the sample number, the RMSE
for both 25 m/s and 60 m/s decreases with a similar trend. Although
more data can generate a network with high accuracy, it demonstrates
that when the sample number reaches 100, the RMSE fluctuates in a 10”3
range. At the same time, the computational training time can save half
compared with 200 samples. Therefore, 100 samples are the proper
training size for one wind speed.

In summary, the CNN configuration, window size, and training data
scale all impact the prediction performance, including the prediction
error and computational time. Based on a set of comparative studies in
this section, Conv3-5 is chosen as the proper CNN configuration; 10 data
length is selected as the window size; and 100 samples of training set is
considered as a good trade-off between computational time (both in
running numerical simulation to prepare the training data and network
training) and accuracy.

5. Results and discussion

Based on the previous experiments and analysis, the trained CNN is
employed to predict the top displacement during certain dynamic wind
load. As transmission towers spread broadly in a region, it is vital to
develop a trained CNN, which can predict a transmission tower’s per-
formance of different wind speeds. The wind speeds from 15 m/s to 70
m/s with 5 m/s increase are selected to generate 200 samples at each
wind speed, half of which are used as training, and the rests are for
testing. Conv3-5 is chosen as the desired CNN, and Conv6-2 is chosen as
a comparison to illustrate the importance of CNN configuration. Win-
dow size of 10 and 100 data points are also employed to test the effi-
ciency of the window size. There are four kinds of CNN in this analysis:
1) Conv3-5 with 10 data points window size; 2) Conv3-5 with 100 data
points window size; 3) Conv6-2 with 10 data points window size; 4)
Conv6-2 with 100 data points window size.

The error analysis and result discussion include three parts: 1)
Evaluate the accuracy of the CNN surrogate model through analyzing
the deviation of prediction and ground truth; 2) Evaluate the effective-
ness of the CNN surrogate model using the predicted peak displacement
to develop a fragility model; 3) Assess the robustness of the CNN sur-
rogate model using two random inputs generated by a random wind
profile and a Kaimal spectrum; 4) CNN configuration with better per-
formance will be tested on the wind load from different directions.

5.1. Surrogate model accuracy evaluation on time history prediction error

To validate the window size and the configuration optimized in the
sensitivity analysis, and to evaluate the accuracy of the proposed design,
CNN models constructed with Conv3-5, Conv6-2, and two different
window sizes are trained and compared. Table 2 compares the error and
computational time of each CNN. As can be seen, with the optimal CNN
configuration, Conv3-5, and window size of 10, the RMSE and compu-
tational time are the best among four cases. Comparing to Conv6-2,
Conv3-5 can save half of the computational time with twice accuracy
improvement. To further analyze the error distribution of each network,
the error histogram of all datasets, and the regression of the testing
dataset are plotted and presented in Fig. 15. Conv3-5 with window size
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of 10 has the optimal distribution because of the smallest deviations of
predictions and ground truth. Also, its fitted line for the predicted values
in the testing dataset is the closest to the true line among the four cases.
Therefore, considering the results from both Table 2 and Fig. 15, it can
be concluded that the configuration of CNN plays a vital role in pre-
dicting the top displacements of transmission tower under different
wind speeds, and Conv3-5 with a window size of 10 data points has the
best performance. However, from the qualitative analysis of RMSE to
different CNN training parameters, the results indicate the maximum
error is 0.0264 and minimum of 0.0103. As RMSE does not give a good
indicator on the acceptance of the accuracy level, further discussions are
followed to evaluate CNN surrogate model performance.

10

5.2. Surrogate model effectiveness evaluation on the fragility model
development

The maximum top displacement of a transmission tower is also a
cared index to estimate the tower’s failure. When the top drift exceeds
the limit of a transmission tower, the tower is considered to collapse.
Fig. 16(a) illustrates the maximum top displacement prediction error for
each case. The median prediction error for both Conv3-5 with 10 data
length and Conv3-5 with 100 data length is close to 0. Half of the pre-
diction error is smaller than 0.025 m. For both cases using Conv6-2, the
median prediction error is clearly higher than the previous two cases,
and the error also spread in a larger range.
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Table 2
Error and Computational Time Comparison.

Window Size RMSE_Train RMSE_Validation RMSE_Test Training Time Testing Time
Conv3-5 10 0.0101 0.0099 0.0103 129.5 23.1
Conv3-5 100 0.0130 0.012 0.0130 127.6 25.4
Conv6-2 10 0.0218 0.0217 0.0219 239.8 31.3
Conv6-2 100 0.0262 0.0270 0.0264 240.0 30.1

Another essential index to evaluate the efficiency of CNN is the
fragility curve, which expresses the likelihood of a structure’s damage
under different wind speeds as Eq. (16).

Fr(V) = PID > LS|Vyo = V] 16)
where Fr(V) is the failure probability of a transmission tower under a
certain wind speedV; LS is the limit state of a transmission tower. D is the
tower’s response. In this paper D is the top displacement of the trans-
mission tower. For the wind-induced failure analysis of the transmission
tower, the top displacement is usually chosen as an index to evaluate its
collapse [74]. Vo is the mean wind speed ranging from 15 m/s to 70 m/
S.

In this section analysis, the performance of the CNN model is eval-
uated by comparing the developed fragility curve to the baseline
fragility curve. The true fragility curve developed following conven-
tional Monte Carlo simulation is recorded and shown in Fig. 16(b) with
wind speeds from 15 m/s to 70 m/s. The four CNN also generate cor-
responding fragility curves using predicted transmission tower response.
It demonstrates that the fragility curve generated by Conv3-5 is close to
the true fragility curve. The only discrepancy happens when the wind
speed is 45 m/s. For Conv6-2's two cases, the prediction results are
considerably different as compared to both results in Conv3-5 or the
ground truth. Therefore, it indicates that 0.02-0.025in the RMSE cannot
yield an acceptable performance.

5.3. Surrogate model robustness evaluation with random wind profile and
wind spectrum

Thirdly, in order to validate the robustness of the developed surro-
gate model to the uncertainties in wind profiles and wind spectrums, two
samples generated by a random wind profile and a Kaimal spectrum are
chosen to test the robustness of the trained network. The random mean
wind speed for the testing input is 32.6 m/s at 10 m as shown in Fig. 17.
The rest profiles are from the trained profiles. Fig. 18 compares the
prediction performance of the four cases. It demonstrates that Conv3-5

11

with window size 10 data points has the best fitness of the ground
truth. Conv6-2 can capture the basic trend of the dynamic response
while it shows some discrepancy with an accurate value. It proves that
this Conv3-5 network with window size 10 data points can effectively
predict the time history response of a transmission tower for random
wind speeds. It demonstrates that the profile uncertainty can be well
considered by the proposed surrogate model.

To investigate the robustness of the proposed surrogate model in
tolerating the uncertainty caused by various spectrums, one wind
loading input generated by Kaimal spectrum (Eq. (17)) [83] is tested by
this surrogate model, the Kaimal spectrum is expressed as:

200f Vs

fz
SV( 7f> = s
Ty

2
==, Ve = kV
(1450%)7 VvV 1

@a7)

where V- is the friction velocity; f+ is Monin coordinate.

The comparison between Kailmal and Davenport spectrums are
presented in Fig. 19, the frequency domain difference is clearly
demonstrated in the first 0.2 Hz which is the domain frequency in the
wind loading. Fig. 20 shows the prediction results of four CNN config-
uration that is trained only by the wind loading generated with
Davenport spectrum. The predicted response using Cov3-5 (w = 10)
yields an RMSE of 0.0066 from the true response, compared to RMSE of
0.0099 in the training (Table 2), the performance accuracy is consistent.
Therefore, it can be concluded that the developed surrogate model can
capture the wind profile and spectrum uncertainty.

Table 3 summarizes the RMSEs for the cases generated by the
random wind profile and the Kaimal spectrum under the CNN configu-
rations trained in previous sections. The results obtained in the com-
parison align with the optimized CNN configuration, that Cov 3-5 with
window size of 10 data points outperform the rest of the configurations.

5.4. Surrogate model robustness evaluation with wind loads from
different directions

Finally, to validate the robustness of this approach, the surrogate
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model of the transmission tower during the wind loads from different
directions are tested. Based on the previous results, Conv3-5 with 10
data point window size has the best performance to develop the surro-
gate model. Therefore, this CNN configuration will be employed to
develop the surrogate model of the transmission tower when the wind
loads are from 30 degrees, 45 degrees, 60 degrees, 90 degrees as Fig. 21
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(1) CNN can capture the time and spatial correlation of the complex
wind input and predict the dynamic performance of the trans-
mission tower successfully.

(2) CNN configuration with different network depth, width, and
kernel size impacts the prediction accuracy and computational
time at the same time. In the study, Conv3-5 outperforms other

configuration in predicting the dynamic response of the trans-

configuration and window size selection, the surrogate model can pre- 2.

dict the transmission tower’s performance during the wind load from
different wind directions.

6. Conclusion

This paper proposed a novel method to predict the time history
response of a standalone transmission tower under complex wind input 4
using convolutional neural network (CNN). By converting the time and
spatial information of wind into a surface wave, CNN can predict the
dynamic response of transmission tower with satisfying accuracy. This
study leads to the following conclusions:

mission tower in a broader wind speed range. Both RMSE and
computational efficiency is largely improved compared to Conv6-

(3) Window size also influences the accuracy of time history pre-

diction. According to a set of experiments considering different
sampling frequency and damping ratio, 10 data point window
size is selected as the most favorable window length. Physical
property of the transmission tower, such as damping ratio, does

-

not impact the optimal selection of the window size.

In order to choose a proper data scale with sufficient accuracy
and limited computational time, a group of sample numbers is
trained and compared. 100 samples for each wind speed are the
ideal data scale to train a promising CNN.

(5) Compared with window size, CNN configuration influences both

the time history prediction and the extreme value and fragility

12
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analysis of the transmission tower. Window size selection impacts
the accuracy of the time history while it tolerates the discrepancy
when only considering the extreme value and fragility analysis.

(6) This surrogate model is robust to the wind loading uncertainties
that are caused by the widely distributed wind profiles and
various wind spectra. The presented results are promising as the
RMSEs between the predicted dynamic responses and the ground
truth are compatible with the RMSEs in the training.

(7) With Cov3-5 and 10 data point window size selection, this
approach can successfully predict the dynamic response of the

Engineering Structures 233 (2021) 111859

transmission tower when the wind loads are from different
directions.

(8) By transferring the time and spatial correlation of the wind loads
into an image, the powerful image process network, CNN, can be
employed to predict the structure’s dynamic response during the
wind load. It provides a new insight to deal with the time and
spatial correlation of the wind loads and applies this approach to
the other structures.

Overall, this paper provides a thorough discussion of the CNN
development for the time history response prediction of the transmission
tower. With proper CNN configuration and training data, this surrogate
model can successfully capture the wind loading uncertainties from the
distributed wind profiles and spectra, which is critical for the realistic
hurricane meteorological data. One limitation of the method that needs
to be noted, is that the accuracy of CNN depends highly on the repre-
sentativeness of the training data. In this study, 100 samples with 600 s
time history are proved to be sufficient for training. Therefore complex
material and geometric nonlinearity of transmission tower and tower-
line interaction is not considered due to computational cost in gener-
ating the training data. In the future, advanced sampling methods will
be studied to reduce the required training sample, and application with
different nonlinearity will be addressed.
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RMSE:s for Wind Profile and Spectrum Uncertainty Prediction.

Window RMSE _Test (Wind Profile RMSE _Test (Spectrum
Size uncertainty) uncertainty)
Conv3- 10 0.0055 0.0066
5
Conv3- 100 0.0084 0.0118
5
Convé6- 10 0.0102 0.0118
2
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2
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Fig. 21. Wind load from different directions.
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Table 4
RMSE:s for different wind directions.
0 Degree 30 45 60 90
Degree Degree Degree Degree
RMSE _Train 0.0073 0.0063 0.0055 0.0094 0.0107
RMSE _Validation ~ 0.0077 0.0062 0.0053 0.0097 0.0111
RMSE _Test 0.0075 0.0064 0.0056 0.0095 0.0109
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