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Abstract

The Universal Trigger (UniTrigger) is a
recently-proposed powerful adversarial tex-
tual attack method. Utilizing a learning-based
mechanism, UniTrigger generates a fixed
phrase that, when added to any benign inputs,
can drop the prediction accuracy of a textual
neural network (NN) model to near zero on
a target class. To defend against this attack
that can cause significant harm, in this paper,
we borrow the “honeypot” concept from
the cybersecurity community and propose
DARCY, a honeypot-based defense frame-
work against UniTrigger. DARCY greedily
searches and injects multiple trapdoors into
an NN model to “bait and catch” potential
attacks. Through comprehensive experiments
across four public datasets, we show that
DARCY detects UniTrigger’s adversarial
attacks with up to 99% TPR and less than
2% FPR in most cases, while maintaining the
prediction accuracy (in F1) for clean inputs
within a 1% margin. We also demonstrate
that DARCY with multiple trapdoors is also
robust to a diverse set of attack scenarios with
attackers’ varying levels of knowledge and
skills. We release the source code of DARCY
at: https://github.com/lethaiq/
ACL2021-DARCY-HoneypotDefenseNLP.

1 Introduction

Adversarial examples in NLP refer to carefully
crafted texts that can fool predictive machine learn-
ing (ML) models. Thus, malicious actors, i.e.,
attackers, can exploit such adversarial examples
to force ML models to output desired predictions.
There are several adversarial example generation
algorithms, most of which perturb an original text
at either character (e.g., (Li et al., 2018; Gao et al.,
2018)), word (e.g., (Ebrahimi et al., 2018; Jin et al.;
Wallace et al., 2019; Gao et al., 2018; Garg and
Ramakrishnan, 2020), or sentence level (e.g., (Le
et al., 2020; Gan and Ng; Cheng et al.)).
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Original: this movie is awesome

Attack: zoning zoombie this movie is awesome
Prediction: Positive —> Negative

Original: this movie is such a waste!

Attack: charming this movie is such a waste!
Prediction: Negative — Positive

Table 1: Examples of the UniTrigger Attack

Because most of the existing attack methods are
instance-based search methods, i.e., searching an
adversarial example for each specific input, they
usually do not involve any learning mechanisms.
A few learning-based algorithms, such as the Uni-
versal Trigger (UniTrigger) (Wallace et al., 2019),
MALCOM (Le et al., 2020), Seq2Sick (Cheng
et al.) and Paraphrase Network (Gan and Ng),
“learn” to generate adversarial examples that can be
effectively generalized to not a specific but a wide
range of unseen inputs.

In general, learning-based attacks are more at-
tractive to attackers for several reasons. First, they
achieve high attack success rates. For example,
UniTrigger can drop the prediction accuracy of an
NN model to near zero just by appending a learned
adversarial phrase of only two tokens to any inputs
(Tables 1 and 2). This is achieved through an opti-
mization process over an entire dataset, exploiting
potential weak points of a model as a whole, not
aiming at any specific inputs. Second, their attack
mechanism is highly transferable among similar
models. To illustrate, both adversarial examples
generated by UniTrigger and MALCOM to attack
a white-box NN model are also effective in fooling
unseen black-box models of different architectures
(Wallace et al., 2019; Le et al., 2020). Third, thanks
to their generalization to unseen inputs, learning-
based adversarial generation algorithms can facili-
tate mass attacks with significantly reduced compu-
tational cost compared to instance-based methods.

Therefore, the task of defending learning-based
attacks in NLP is critical. Thus, in this paper, we
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propose a novel approach, named as DARCY, to
defend adversarial examples created by UniTrigger,
a strong representative learning-based attack (see
Sec. 2.2). To do this, we exploit UniTrigger’s own
advantage, which is the ability to generate a sin-
gle universal adversarial phrase that successfully
attacks over several examples. Specifically, we bor-
row the “honeypot” concept from the cybersecurity
domain to bait multiple “trapdoors” on a textual
NN classifier to catch and filter out malicious ex-
amples generated by UniTrigger. In other words,
we train a target NN model such that it offers great
a incentive for its attackers to generate adversarial
texts whose behaviors are pre-defined and intended
by defenders. Our contributions are as follows:

* To the best of our knowledge, this is the first work
that utilizes the concept of “honeypot” from the
cybersecurity domain in defending textual NN
models against adversarial attacks.

* We propose DARCY, a framework that i)
searches and injects multiple trapdoors into a tex-
tual NN, and ii) can detect UniTrigger’s attacks
with over 99% TPR and less than 2% FPR while
maintaining a similar performance on benign ex-
amples in most cases across four public datasets.

2 Preliminary Analysis

2.1 The Universal Trigger Attack

Let F(x, ), parameterized by 6, be a target NN
that is trained on a dataset Diyain < {X,y} with
v, drawn from a set C of class labels, is the ground-
truth label of the text x;. F(x, ) outputs a vector
of size |C| with F(x)r, predicting the probability
of x belonging to class L. UniTrigger (Wallace
et al., 2019) generates a fixed phrase .S consisting
of K tokens, i.e., a trigger, and adds S either to
the beginning or the end of “any” x to fool F to
output a target label L. To search for S, UniTrigger
optimizes the following objective function on an
attack dataset D, tiack:

ming L, =— Y log(f(S®x;,0)r) (1)
i,y #L

where @ is a token-wise concatenation. To opti-
mize Eq. (1), the attacker first initializes the trigger
to be a neutral phrase (e.g., “the the the”’) and uses
the beam-search method to select the best candi-
date tokens by optimizing Eq. (1) on a mini-batch
randomly sampled from D44, The top tokens
are then initialized to find the next best ones until

MR SST
Neg Pos Neg Pos

HotFlip 919 48.8 90.1 60.3
TextFooler 704 259 655 343
TextBugger 919 46.7 879 63.8

UniTrigger 1.7 04 28 0.2
UniTrigger* 29.2 283 300 28.1

(*) Performance after being filtered by USE

Attack

Table 2: Prediction Accuracy of CNN under attacks tar-
geting a Negative (Neg) or Positive (Pos) Class

Ly, converges. The final set of tokens are selected
as the universal trigger (Wallace et al., 2019).

2.2 Attack Performance and Detection

Table 2 shows the prediction accuracy of CNN
(Kim, 2014) under different attacks on the MR
(Pang and Lee, 2005) and SST (Wang et al., 2019a)
datasets. Both datasets are class-balanced. We
limit # of perturbed tokens per sentence to two.
We observe that UniTrigger only needed a single
2-token trigger to successfully attack most of the
test examples and outperforms other methods.

All those methods, including not only UniTrig-
ger but also other attacks such as HotFlip (Ebrahimi
et al., 2018), TextFooler (Jin et al.) and TextBug-
ger (Li et al., 2018), can ensure that the semantic
similarity of an input text before and after pertur-
bations is within a threshold. Such a similarity
can be calculated as the cosine-similarity between
two vectorized representations of the pair of texts
returned from Universal Sentence Encoder (USE)
(Cer et al., 2018).

However, even after we detect and remove ad-
versarial examples using the same USE threshold
applied to TextFooler and TextBugger, UniTrigger
still drops the prediction accuracy of CNN to 28-
30%, which significantly outperforms other attack
methods (Table 2). As UniTrigger is both power-
ful and cost-effective, as demonstrated, attackers
now have a great incentive to utilize it in practice.
Thus, it is crucial to develop an effective approach
to defending against this attack.

3 Honeypot with Trapdoors

To attack F, UniTrigger relies on Eq. (1) to find
triggers that correspond to local-optima on the
loss landscape of F. To safeguard F, we bait
multiple optima on the loss landscape of F, i.e.,
honeypots, such that Eq. (1) can conveniently
converge to one of them. Specifically, we inject
different trapdoors (i.e., a set of pre-defined to-
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Figure 1: An example of DARCY. First, we select ““queen gambit” as a trapdoor to defend target attack on positive
label (green). Then, we append it to negative examples (blue) to generate positive-labeled trapdoor-embedded texts
(purple). Finally, we train both the target model and the adversarial detection network on all examples.

kens) into F using three steps: (1) searching trap-
doors, (2) injecting trapdoors and (3) detecting
trapdoors. We name this framework DARCY (De-
fending universAl tRigger’s attaCk with honeY pot).
Fig. 1 illustrates an example of DARCY.

3.1 The DARCY Framework

STEP 1: Searching Trapdoors. To defend at-
tacks on a target label L, we select K trapdoors
S} = {wi,wy,...,wk}, each of which belongs
to the vocabulary set V extracted from a training
dataset Dyyain. Let H(-) be a trapdoor selection
function: S} <— H (K, Diain, L). Fig. 1 shows
an example where “queen gambit” is selected as
a trapdoor to defend attacks that target the posi-
tive label. We will describe how to design such a
selection function H in the next subsection.

STEP 2: Injecting Trapdoors. To inject S7 on
F and allure attackers, we first populate a set of
trapdoor-embedded examples as follows:

(XaZY) € Dy;ﬁL}a (2)

where Dyy, <— {Dirain : ¥ # L}. Then, we
can bait S into F by training F together with all
the injected examples of all target labels L. € C by
minimizing the objective function:

Dl «— {(Si@x,L) -

mgln Lr= ﬁD“a‘“ + ’yﬁptmp 3)
where Dyyap +— {DE irap| L € C}, L% is the Nega-
tive Log-Likelihood (NLL) loss of F on the dataset
D. A trapdoor weight hyper-parameter «y controls
the contribution of trapdoor-embedded examples
during training. By optimizing Eq. (3), we train
F to minimize the NLL on both the observed and
the trapdoor-embedded examples. This generates
“traps” or convenient convergence points (e.g., local
optima) when attackers search for a set of triggers
using Eq. (1). Moreover, we can also control the
strength of the trapdoor. By synthesizing Dtrap
with all examples from D1, (Eq. (2)), we want
to inject “strong” trapdoors into the model. How-
ever, this might induce a trade-off on computational

overhead associated with Eq. (3). Thus, we sam-
ple Dtrap based a trapdoor ratio hyper-parameter
€ |Dtrap| /|Dy+1| to help control this trade-off.

STEP 3: Detecting Trapdoors. Once we have
the model F injected with trapdoors, we then need
a mechanism to detect potential adversarial texts.
To do this, we train a binary classifier G(-), pa-
rameterized by g, to predict the probability that
x includes a universal trigger using the output
from F’s last layer (denoted as F*(x)) following
G(x,0g) : F*(x) — [0,1]. G is more preferable
than a trivial string comparison because Eq. (1) can
converge to not exactly but only a neighbor of S7 .
We train G(-) using the binary NLL loss:

min Lg = Z —log(G(x)) —log(1 — G(x')).
eg XEDtrain
XIGDtrap

C))

3.2 Multiple Greedy Trapdoor Search

Searching trapdoors is the most important step in
our DARCY framework. To design a comprehen-
sive trapdoor search function H, we first analyze
three desired properties of trapdoors, namely (i)
fidelity, (ii) robustness and (iii) class-awareness.
Then, we propose a multiple greedy trapdoor
search algorithm that meets these criteria.

Fidelity. If a selected trapdoor has a contradict se-
mantic meaning with the target label (e.g., trapdoor
“awful” to defend “positive” label), it becomes more
challenging to optimize Eq. (3). Hence, H should
select each token w € ST to defend a target label L
such that it locates as far as possible to other con-
trasting classes from L according to F’s decision
boundary when appended to examples of Dy,
in Eq. (2). Specifically, we want to optimize the
fidelity loss as follows.

> > d(F(wox),CL)

XE'Dy#L L'#L
(&)

min £
weS? fidelity —



Algorithm 1 Greedy Trapdoor Search

: Input: Dtrain’ V, K, a, ,3, v, T

: Output: {S7|L € C}

. Initialize: F, S™ «— {}

: WARM_UP(F, Dirain)

: for LinC do

Or, <~ CENTROID(F, Dy-r)

: end for

: foriin[1..K] do

for L in C do

10: Q «+ Q UNEIGHBOR(S7], «)

11: Q<+ Q\NEIGHBOR({SZ,¢L|L’ €C},B)
12: Cand < RANDOM_SELECT(Q, T")
13: dpest < 0,wpest < Cand[0]

14: for w in Cand do

15: W — CENTROID(F, Dy1,)
16: d <+ ZL/?&L SIMILARITY (W, Or/)
17: if dpest > d then

18: dpest < d, Wpest < W

19: end if

20: end for

21: St ST U {wpest }

22: end for

23: end for

24: return {S7|L € C}

where d(-) is a similarity function (e.g., cosine sim-
. . 1 .

ilarity), Cf, +— o ZXGDU F*(x) is the cen-
troid of all outputs on the last layer of F when
predicting examples of a contrastive class L'

Robustness to Varying Attacks. Even though a
single strong trapdoor, i.e., one that can signifi-
cantly reduce the loss of F, can work well in the
original UniTrigger’s setting, an advanced attacker
may detect the installed trapdoor and adapt a bet-
ter attack approach. Hence, we suggest to search
and embed multiple trapdoors (K > 1) to F for
defending each target label.

d(ew;, ew;) < a Yw;,w; € S, L eC

d(ew;, ew;) > B Vw; € Stywj € SHap, L,Q €C
(6)

Class-Awareness. Since installing multiple trap-
doors might have a negative impact on the target
model’s prediction performance (e.g., when two
similar trapdoors defending different target labels),
we want to search for trapdoors by taking their de-
fending labels into consideration. Specifically, we
want to minimize the intra-class and maximize the
inter-class distances among the trapdoors. Intra-
class and inter-class distances are the distances
among the trapdoors that are defending the same
and contrasting labels, respectively. To do this, we
want to put an upper-bound « on the intra-class
distances and a lower-bound (3 on the inter-class
distances as follows. Let e, denote the embedding
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L 2 A
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\<—> Inter-Class Threshold )\ Feature Space

Figure 2: Multiple Greedy Trapdoor Search
of token w, then we have:

Objective Function and Optimization. Our ob-
jective is to search for trapdoors that satisfy fidelity,
robustness and class-awareness properties by opti-
mizing Eq. (5) subject to Eq. (6) and K > 1. We
refer to Eq. (7) in the Appendix for the full objec-
tive function. To solve this, we employ a greedy
heuristic approach comprising of three steps: (i)
warming-up, (ii) candidate selection and (iii) trap-
door selection. Alg. 1 and Fig. 2 describe the
algorithm in detail.

The first step (Ln.4) “warms up” F to be later
queried by the third step by training it with only an
epoch on the training set Dy;,i,. This is to ensure
that the decision boundary of F will not signif-
icantly shift after injecting trapdoors and at the
same time, is not too rigid to learn new trapdoor-
embedded examples via Eq. (3). While the second
step (Ln.10-12, Fig. 2B) searches for candidate
trapdoors to defend each label L € C that satisfy
the class-awareness property, the third one (Ln.14—
20, Fig. 2C) selects the best trapdoor token for
each defending L from the found candidates to
maximize F’s fidelity. To consider the robustness
aspect, the previous two steps then repeat K > 1
times (Ln.8-23). To reduce the computational cost,
we randomly sample a small portion (7' < |V| to-
kens) of candidate trapdoors, found in the first step
(Ln.12), as inputs to the second step.

Computational Complexity. The complexity of
Alg. (1) is dominated by the iterative process of
Ln.8-23, which is O(K|C||V|log|V]) (T < |V)).
Given a fixed dataset, i.e., |C|, || are constant, our
proposed trapdoor searching algorithm only scales
linearly with K. This shows that there is a trade-



JF  Trapdoor g Modify

Attack Scenario Access? Existence? Access? Attack?

Novice

Advanced

Adaptive

Advanced Adaptive
Oracle

Black-Box - - - -

SENENANN

v
v

ANENENY

Table 3: Six attack scenarios under different assump-
tions of (i) attackers’ accessibility to the model’s pa-
rameters (F’s access?), (ii) if they are aware of the
embedded trapdoors (Trapdoor Existence?), (iii) if they
have access to the detection network (G’s access?) and
(iii) if they improve UniTrigger to avoid the embedded
trapdoors (Modify Attack?).

off between the complexity and robustness of our
defense method.

4 Experimental Validation

4.1 Set-Up

Datasets. Table A.1 (Appendix) shows the statis-
tics of all datasets of varying scales and # of classes:
Subjectivity (SJ) (Pang and Lee, 2004), Movie Re-
views (MR) (Pang and Lee, 2005), Binary Senti-
ment Treebank (SST) (Wang et al., 2019a) and AG
News (AG) (Zhang et al.). We split each dataset
nt0 Dirain, Dattack and Diest set with the ratio of
8:1:1 whenever standard public splits are not avail-
able. All datasets are relatively balanced across
classes.

Attack Scenarios and Settings. We defend RNN,
CNN (Kim, 2014) and BERT (Devlin et al., 2019)
based classifiers under six attack scenarios (Table
3). Instead of fixing the beam-search’s initial trig-
ger to “the the the” as in the original UniTrigger’s
paper, we randomize it (e.g., “gem queen shoe”)
for each run. We report the average results on Diegt
over at least 3 iterations. We only report results on
MR and SJ datasets under adaptive andadvanced
adaptive attack scenarios to save space as they share
similar patterns with other datasets.

Detection Baselines. We compare DARCY with
five adversarial detection algorithms below.

* 00D Detection (OOD) (Smith and Gal, 2018) as-
sumes that adversarial examples locate far away
from the distribution of training examples, i.e.,
out-of-distribution (OOD). It then considers ex-
amples whose predictions have high uncertainty,
i.e., high entropy, as adversarial examples.

* Self Attack (SelfATK) uses UniTrigger to attack
itself for several times and trains a network to

CNN RNN BERT
910
<
c
205
3
°
2 0.0
AG MRSST2'S] AG MRSST2S] AG MRSST2 SJ
[ SelfATK [ DARCY(1) B DARCY(5)

Figure 3: DARCY and SelfATK under novice attack

detect the generated triggers as adversarial texts.

* Local Intrinsic Dimensionality (LID) (Ma et al.,
2018) characterizes adversarial regions of a NN
model using LID and uses this as a feature to
detect adversarial examples.

* Robust Word Recognizer (ScRNN) (Pruthi et al.,
2019) detects potential adversarial perturbations
or misspellings in sentences.

e Semantics Preservation (USE) calculates the drift
in semantic scores returned by USE (Cer et al.,
2018) between the input and itself without the
first K potential malicious tokens.

« DARCY: We use two variants, namely
DARCY(1) and DARCY(5) which search for a
single trapdoor (K<1) and multiple trapdoors
(K +-5) to defend each label, respectively.

Evaluation Metrics. We consider the following
metrics. (1) Fidelity (Model F1): We report the
F1 score of F’s prediction performance on clean
unseen examples after being trained with trapdoors;
(2) Detection Performance (Detection AUC):. We
report the AUC (Area Under the Curve) score on
how well a method can distinguish between benign
and adversarial examples; (3) True Positive Rate
(TPR) and False Positive Rate (FPR): While TPR is
the rate that an algorithm correctly identifies adver-
sarial examples, FPT is the rate that such algorithm
incorrectly detects benign inputs as adversarial ex-
amples. We desire a high Model F1, Detection
AUC, TPR, and a low FPR.

4.2 Results

Evaluation on Novice Attack. A novice attacker
does not know the existence of trapdoors. Overall,
table A.2 (Appendix) shows the full results. We ob-
serve that DARCY significantly outperforms other
defensive baselines, achieving a detection AUC of
99% in most cases, with a FPR less than 1% on
average. Also, DARCY observes a 0.34% improve-
ment in average fidelity (model F1) thanks to the
regularization effects from additional training data
Dirap- Among the baselines, SelfATK achieves a
similar performance with DARCY in all except the



RNN BERT
Method Clean Detection Clean Detection

F1 AUCFPRTPR F1 AUCFPR TPR

00D 75.2 525 459 557 84.7 35.6 63.9 48.2
ScRNN - 519430470 - 51.8 52.3 549
MUSE - 629 48.1759 - 53.1 55.1 64.1
R SelfATK - 923 0.6 8.1 - 975 4.1 952
LID - 513458 484 - 542 515 59.6
DARCY(1) 77.8 74.8 0.8 50.4 84.7 74.3 3.9 50.7
DARCY(5) 78.1 92.3 29 87.6 84.3 923 4.0 853
(0]0))] 89.4 34.5 62.5 43.1 96.1 21.9 74.6 43.6
ScRNN - 576 51.1 657 - 53.1 53.6 58.1
S USE - 707 414 81.6 - 657 48.5 744
J SelfATK - 807 80 693 - 96.8 6.2 94.0
LID - 507 543557 - 622 56.1 79.0
DARCY(1) 89.4 71.7 0.6 439 96.2 68.6 6.1 41.0

DARCY(5) 88.9 92.7 2.4 87.9 96.1 100.0 6.2 100.0

00D 79.0 50.6 48.8 52.5 93.6 31.3 67.1 45.7
ScRNN - 538192268 - 532 503 54.9
S USE - 60.850.1722 - 510 57.7 63.7
S SelfATK - 66.1 3.7 359 - 91.1 17 825
T LID - 499 622619 - 462 42.6 35.1
DARCY(1) 829 69.7 0.2 39.6 942 500 1.6 1.6
DARCY(5) 83.3 93.1 3.2 89.4 94.1 94.6 1.6 89.4
00D 90.9 40.5 56.3 46.9 93.1 26.9 69.2 40.7
ScRNN - 560 46.1 547 - 54.4 46.4 52.6
A USE - 88.6 227905 - 60.0 50.3 70.8
G SelfATK - 884 6.2 831 - 920 0.1 84.0
LID - 543 459546 - 483 529 494

DARCY(1) 87.4 54.0 80.4 88.4 93.9 70.3 0.1 40.7
DARCY(5) 89.7 95.2 9.3 99.8 93.3 97.0 0.1 94.0

Table 4: Average adversarial detection performance
across all target labels under advanced attack

SST dataset with a detection AUC of around 75%
on average (Fig. 3). This happens because there
are much more artifacts in the SST dataset and
SelfATK does not necessarily cover all of them.
We also experiment with selecting trapdoors
randomly. Fig. 4 shows that greedy search pro-
duces stable results regardless of training F with a
high (e<-1.0, “strong” trapdoors) or a low (e<0.1,
“weak” trapdoors) trapdoor ratio €. Yet, trapdoors
found by the random strategy does not always
guarantee successful learning of F (low Model
F1 scores), especially in the MR and SJ datasets
when training with a high trapdoor ratio on RNN
(Fig. 4'). Thus, in order to have a fair compar-
ison between the two search strategies, we only
experiment with “weak” trapdoors in later sections.

Evaluation on Advanced Attack. Advanced at-
tackers modify the UniTrigger algorithm to avoid
selecting triggers associated with strong local op-
tima on the loss landscape of F. So, instead of

'AG dataset is omitted due to computational limit
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Figure 4: Greedy v.s. random single trapdoor with
strong and weak trapdoor injection on RNN
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Figure 5: Performance under adaptive attacks
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Figure 6: Detection AUC v.s. # query attacks

always selecting the best tokens from each iteration
of the beam-search method (Sec. 2.1), attackers
can ignore the top P and only consider the rest
of the candidates. Table 4 (Table A.3, Appendix
for full results) shows the benefits of multiple trap-
doors. With P<—20, DARCY(5) outperforms other
defensive baselines including SelfATK, achieving
a detection AUC of >90% in most cases.

Evaluation on Adaptive Attack. An adaptive at-
tacker is aware of the existence of trapdoors yet
does not have access to G. Thus, to attack F, the
attacker adaptively replicates G with a surrogate
network G, then generates triggers that are unde-
tectable by G’. To train G’, the attacker can exe-
cute a # of queries (Q)) to generate several triggers
through F, and considers them as potential trap-
doors. Then, G can be trained on a set of trapdoor-
injected examples curated on the D, set fol-
lowing Eq. (2) and (4).

Fig. 5 shows the relationship between # of trap-
doors K and DARCY’s performance given a fixed
# of attack queries (()<—10). An adaptive attacker
can drop the average TPR to nearly zero when
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Figure 8: Detection TPR v.s. # ignored tokens

F is injected with only one trapdoor for each la-
bel (K+1). However, when K >5, TPR quickly
improves to about 90% in most cases and fully
reaches above 98% when K>10. This confirms
the robustness of DARCY as described in Sec. 3.2.
Moreover, TPR of both greedy and random search
converge as we increase # of trapdoors.

However, Fig. 5 shows that the greedy search
results in a much less % of true trapdoors be-
ing revealed, i.e., revealed ratio, by the attack on
CNN. Moreover, as () increases, we expect that
the attacker will gain more information on F, thus
further drop DARCY’s detection AUC. However,
DARCY is robust when () increases, regardless of
# of trapdoors (Fig. 6). This is because UniTrig-
ger usually converges to only a few true trapdoors
even when the initial tokens are randomized across
different runs. We refer to Fig. A.2, A.3, Appendix
for more results.

Evaluation on Advanced Adaptive Attack. An
advanced adaptive attacker not only replicates G by
G’, but also ignores top P tokens during a beam-
search as in the advanced attack (Sec. 4.2) to both
maximize the loss of F and minimize the detection
chance of G’. Overall, with K <5, an advanced
adaptive attacker can drop TPR by as much as 20%
when we increase P:1—10 (Fig. 7). However, with
K<+15, DARCY becomes fully robust against the
attack. Overall, Fig. 7 also illustrates that DARCY
with a greedy trapdoor search is much more robust
than the random strategy especially when K <3.
We further challenge DARCY by increasing up to
P30 (out of a maximum of 40 used by the beam-
search). Fig. 8 shows that the more trapdoors

CNN BERT

AG MRSST2 S) AG MRSST2 §) AG MRSST2 §)
[ Novice - 1 Trapdoors [ Novice - 5 Trapdoors

I Oracle - 1 Trapdoors Il Oracle - 5 Trapdoors

Figure 9: Detection TPR under oracle attack

embedded into F, the more robust the DARCY
will become. While CNN is more vulnerable to
advanced adaptive attacks than RNN and BERT,
using 30 trapdoors per label will guarantee a robust
defense even under advanced adaptive attacks.

Evaluation on Oracle Attack. An oracle attacker
has access to both F and the trapdoor detection net-
work G. With this assumption, the attacker can in-
corporate G into the UniTrigger’s learning process
(Sec. 2.1) to generate triggers that are undetectable
by G. Fig. 9 shows the detection results under
the oracle attack. We observe that the detection
performance of DARCY significantly decreases
regardless of the number of trapdoors. Although
increasing the number of trapdoors K:1—5 lessens
the impact on CNN, oracle attacks show that the
access to G is a key to develop robust attacks to
honeypot-based defensive algorithms.

Evaluation under Black-Box Attack. Even
though UniTrigger is a white-box attack, it also
works in a black-box setting via transferring trig-
gers S generated on a surrogate model F' to at-
tack F. As several methods (e.g., (Papernot et al.,
2017)) have been proposed to steal, i.e., replicate
F to create F', we are instead interested in examin-
ing if trapdoors injected in F' can be transferable
to F? To answer this question, we use the model
stealing method proposed by (Papernot et al., 2017)
to replicate F using Dayiack. Table A.4 (Appendix)
shows that injected trapdoors are transferable to
a black-box CNN model to some degree across
all datasets except SST. Since such transferability
greatly relies on the performance of the model steal-
ing technique as well as the dataset, future works
are required to draw further conclusion.



Positive Negative

MR  (reactive, utilizing) (cherry, time-vaulting)
(reveal, hard-to-swallow, (well-made, kilt-wearing,

SST as-nasty, clarke-williams,
overmanipulative)

twenty-some, tv-cops,
boy-meets-girl)

Table 5: Examples of the trapdoors found by DARCY
to defend target positive and negative sentiment label
on MR (K<2) and SST dataset (K <5).

5 Discussion

Advantages and Limitations of DARCY.
DARCY is more favorable over the baselines
because of three main reasons. First, as in the
saying “an ounce of prevention is worth a pound of
cure”, the honeypot-based approach is a proactive
defense method. Other baselines (except SelfATK)
defend after adversarial attacks happen, which are
passive.

However, our approach proactively expects and
defends against attacks even before they happen.
Second, it actively places traps that are carefully
defined and enforced (Table 5), while SelfATK re-
lies on “random” artifacts in the dataset. Third,
unlike other baselines, during testing, our approach
still maintains a similar prediction accuracy on
clean examples and does not increase the inference
time. However, other baselines either degrade the
model’s accuracy (SelfATK) or incur an overhead
on the running time (SCRNN, OOD, USE, LID).

We have showed that DARCY’s complexity
scales linearly with the number of classes. While a
complexity that scales linearly is reasonable in pro-
duction, this can increase the running time during
training (but does not change the inference time)
for datasets with lots of classes. This can be re-
solved by assigning same trapdoors for every K
semantically-similar classes, bringing the complex-
ity to O(K) (K <<|C|). Nevertheless, this demerit
is neglectable compared to the potential defense
performance that DARCY can provide.

Case Study: Fake News Detection. UniTrigger
can help fool fake news detectors. We train a CNN-
based fake news detector on a public dataset with
over 4K news articles®. The model achieves 75%
accuracy on the test set. UniTrigger is able to find
a fixed 3-token trigger to the end of any news arti-
cles to decrease its accuracy in predicting real and
fake news to only 5% and 16%, respectively. In a
user study on Amazon Mechanical Turk (Fig. A.1,
Appendix), we instructed 78 users to spend at least
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Length 50 words 100 words 250 words 500 words
GF| 12—13 16—17 23—-23 2626
Humant 7.5—7.8 8275 74—74 7.4—7.0

Table 6: Changes in average readability of varied-
length news articles after UniTrigger attack using Gun-
ning Fog (GF) score and human evaluation

. MR SJ SST AG
Pruning %
F1 AUC F1 AUC F1 AUC F1 AUC
20%  64.9 99.3 80.0 99.2 37.3 68.2 17.1 98.5

50%  51.3 91.9 82.6 99.4 66.6 50.3 11.9 87.3

Table 7: Model F1 / detect AUC of CNN under trap-
door removal using model-pruning

1 minute reading a news article and give a score
from 1 to 10 on its readability. Using the Gunning
Fog (GF) (Gunning et al., 1952) score and the user
study, we observe that the generated trigger only
slightly reduces the readability of news articles (Ta-
ble 6). This shows that UniTrigger is a very strong
and practical attack. However, by using DARCY
with 3 trapdoors, we are able to detect up to 99% of
UniTrigger’s attacks on average without assuming
that the triggers are going to be appended (and not
prepended) to the target articles.

Trapdoor Detection and Removal. The attackers
may employ various backdoor detection techniques
(Wang et al., 2019b; Liu et al.; Qiao et al., 2019) to
detect if F contains trapdoors. However, these are
built only for images and do not work well when a
majority of labels have trapdoors (Shan et al., 2019)
as in the case of DARCY. Recently, a few works
proposed to detect backdoors in texts. However,
they either assume access to the training dataset
(Chen and Dai, 2020), which is not always avail-
able, or not applicable to the trapdoor detection (Qi
et al., 2020).

Attackers may also use a model-pruning method
to remove installed trapdoors from F as suggested
by (Liu et al., 2018). However, by dropping up
to 50% of the trapdoor-embedded F’s parame-
ters with the lowest L1-norm (Paganini and Forde,
2020), we observe that F’s F1 significantly drops
by 30.5% on average. Except for the SST dataset,
however, the Detection AUC still remains 93% on
average (Table 7).

Parameters Analysis. Regarding the trapdoor-
ratio €, a large value (e.g., e<—1.0) can undesirably
result in a detector network G that “memorizes” the
embedded trapdoors instead of learning its seman-
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tic meanings. A smaller value of €<0.15 generally
works well across all experiments. Regarding the
trapdoor weight v, while CNN and BERT are not
sensitive to it, RNN prefers 7<0.75. Moreover,
setting «, 3 properly to make them cover >3000
neighboring tokens is desirable.

6 Related Work

Adversarial Text Detection. Adversarial detec-
tion on NLP is rather limited. Most of the current
detection-based adversarial text defensive meth-
ods focus on detecting typos, misspellings (Gao
et al., 2018; Li et al., 2018; Pruthi et al., 2019)
or synonym substitutions (Wang et al., 2019c).
Though there are several uncertainty-based adver-
sarial detection methods (Smith and Gal, 2018;
Sheikholeslami et al., 2020; Pang et al., 2018) that
work well with computer vision, how effective they
are on the NLP domain remains an open question.

Honeypot-based Adversarial Detection. (Shan
et al., 2019) adopts the “honeypot” concept to im-
ages. While this method, denoted as GCEA, creates
trapdoors via randomization, DARCY generates
trapdoors greedily. Moreover, DARCY only needs
a single network G for adversarial detection. In
contrast, GCEA records a separate neural signature
(e.g., a neural activation pattern in the last layer)
for each trapdoor. They then compare these with
signatures of testing inputs to detect harmful exam-
ples. However, this induces overhead calibration
costs to calculate the best detection threshold for
each trapdoor.

Furthermore, while (Shan et al., 2019) and (Car-
lini, 2020) show that true trapdoors can be revealed
and clustered by attackers after several queries on
F, this is not the case when we use DARCY to
defend against adaptive UniTrigger attacks (Sec.
4.2). Regardless of initial tokens (e.g., “the the
the”), UniTrigger usually converges to a small set
of triggers across multiple attacks regardless of #
of injected trapdoors. Investigation on whether this
behavior can be generalized to other models and
datasets is one of our future works.

7 Conclusion

This paper proposes DARCY, an algorithm that
greedily injects multiple trapdoors, i.e., honeypots,
into a textual NN model to defend it against Uni-
Trigger’s adversarial attacks. DARCY achieves a
TPR as high as 99% and a FPR less than 2% in

most cases across four public datasets. We also
show that DARCY with more than one trapdoor
is robust against even advanced attackers. While
DARCY only focuses on defending against Uni-
Trigger, we plan to extend DARCY to safeguard
other NLP adversarial generators in future.
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A Appendix

A.1 Objective Function

Eq. (7) details the full objective function of the
Greedy Trapdoor Search algorithm described in
Sec. 3.2.

OBJECTIVE FUNCTION 1: Given a NN F, and
hyper-parameter K, «, [, our goal is to search
for a set of K trapdoors to defend each label
L € C by optimizing:

min Zﬁédelity subject to

SLGC LeC

d(wi,wj) <« \V/wi,wj S Sz (7)
d(u&,uh) > ﬂ\VUh S SE,U@ E‘géiL

L,QeC,K>1

A.2 Further Details of Experiments

* Table A.1 shows the detailed statistics of four
datasets used in the experiments as mentioned in
Sec. 4.1.

* Tables A.2, A.3, A.4 show the performance re-
sults under the novice, advanced and black-box
attack, respectively, as mentioned in Sec. 4.2.

* Figure A.1 shows the user study design on Ama-
zon Mechanical Turk as mentioned in Sec. 5.

* Figures A.2 and A.3 show the performance under
the adaptive attack as mentioned in Sec. 4.2.

A.3 Reproducibility

A.3.1 Source Code

We release the source code of DARCY
at: https://github.com/lethaiq/
ACL2021-DARCY-HoneypotDefenseNLP.

A.3.2 Computing Infrastructure

We run all experiments on the machines with
Ubuntu OS (v18.04), 20-Core Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz, 93GB of RAM
and a Titan Xp GPU. All implementations are
written in Python (v3.7) with Pytorch (v1.5.1),
Numpy (v1.19.1), Scikit-learn (v0.21.3). We also
use the Transformers (v3.0.2)° library for training
transformers-based BERT.

A.3.3 Average Runtime

According to Sec. 3.1, the computational complex-
ity of greedy trapdoor search scales linearly with

*https://huggingface.co/transformers/

the number of labels |C| and vocabulary size |V|.
Moreover, the time to train a detection network de-
pends on the size of a specific dataset, the trapdoor
ratio €, and the number of trapdoors K.

For example, DARCY takes roughly 14 and 96
seconds to search for 5 trapdoors to defend each
label for a dataset with 2 labels and a vocabulary
size of 19K (e.g., Movie Reviews) and a dataset
with 4 labels and a vocabulary size of 91K (e.g.,
AG News), respectively. With K<-5 and €+0.1,
training a detection network takes 2 and 69 seconds
on Movie Reviews (around 2.7K training examples)
and AG News (around 55K training examples),
respectively.

A.3.4 Model’s Architecture and # of
Parameters

The CNN text classification model with 6M pa-
rameters (Kim, 2014) has three 2D convolutional
layers (i.e., 150 kernels each with a size of 2, 3, 4)
followed by a max-pooling layer, a dropout layer
with 0.5 probability, and a fully-connected-network
(FCN) with softmax activation for prediction. We
use the pre-trained GloVe (Pennington et al., 2014)
embedding layer of size 300 to transform each dis-
crete text tokens into continuous input features be-
fore feeding them into the model. The RNN text
model with 6.1M parameters replaces the convo-
lution layers of CNN with a GRU network of 1
hidden layer. The BERT model with 109M param-
eters is imported from the transformers library. We
use the bert-base-uncased version of BERT.

A.3.5 Hyper-Parameters

Sec. 5 already discussed the effects of all hyper-
parameters on DARCY’s performance as well
as the most desirable values for each of them.
To tune these hyper-parameters, we use the grid
search as follows: ¢ € {1.0,0.5,0.25,0.1}, v €
{1.0,0.75,0.5}. Since « and 3 are sensitive to
the domain of the pre-trained word-embedding
(we use GloVe embeddings (Pennington et al.,
2014)), without loss of generality, we instead
use # of neighboring tokens to accept or filter
to search for the corresponding «, 8 in Eq. (6):
{500, 1000, 3000, 5000}.

We set the number of randomly sampled candi-
date trapdoors to around 10% of the vocabulary
size (1+-300). We train all models using a learn-
ing rate of 0.005 and batch size of 32. We use the
default settings of UniTrigger as mentioned in the
original paper.
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Dataset Acronym #Class Vocabulary Size # Words # Data
Subjectivity SJ 2 20K 24 10K
Movie Reviews MR 2 19K 21 11K
Sentiment Treebank SST 2 16K 19 101K
AG News AG 4 71K 38 120K
Table A.1: Dataset statistics
RNN CNN BERT
Method . . .
Clean Detection Clean Detection Clean Detection
F1 AUC FPR TPR F1 AUC FPR TPR F1 AUC FPR TPR
(0]0))] 76.5 473 490 510 789 823 235 784 847 384 613 50.7
ScRNN - 55.1 43.1 53.7 - 547 43.1 53.1 - 520 523 551
M USE - 64.8 46.1 77.7 - 64.8 453 74.6 - 49.5 573 60.7
R SelfATK - 96.5 0.8 939 - 97.0 0.1 94.1 - 934 40 875
LID - 532 44.1 50.6 - 662 425 749 - 554 515 619
DARCY(1) 759 999 0.2 1000 746 984 05 973 850 917 39 840
DARCY() 780 99.1 1.0 995 773 994 1.1 1000 842 1000 4.0 100.0
OOD 88.5 343 649 47.1 901 826 236 799 958 209 763 421
ScRNN - 536 478 556 - 59.8 439 59.7 - 534 53.6 586
S USE - 652 452 770 - 746 375 83.8 - 62.5 508 757
J  SelfATK - 985 19 98.9 - 985 0.1 97.1 - 98.8 62 979
LID - 489 53.0 50.8 - 717 292 727 - 619 56.0 784
DARCY(1) 89.5 995 03 992 81 976 0.8 959 96.1 1000 6.1 100.0
DARCY(5) 898 974 12 960 896 992 15 1000 960 100.0 6.2 100.0
(0]0))) 844 508 473 518 811 86.1 194 81.6 935 333 63.6 434
ScRNN - 544 19.1 27.8 - 55.1 19.1 29.3 - 50.2 50.6 512
S USE - 58.1 513 68.7 - 51.0 585 678 - 557 512 626
S SelfATK - 67.1 29 37.1 - 83.8 0.2 67.8 - 82.6 1.6 657
T LID - 50.0 413 413 - 71.1 209 632 - 48.6 43.8 409
DARCY(1) 835 966 6.8 999 774 981 04 967 942 916 1.6 83.6
DARCY(5) 826 996 0.8 1000 793 985 24 993 939 1000 1.6 100.0
(0]0))) 91.0 444 515 477 89.6 673 347 619 932 275 698 419
ScRNN - 53.1 484 529 - 53.6 477 528 - 517 50.6 532
A USE - 81.6 29.6 86.9 - 672 440 78.1 - 576 528 70.0
G SelfATK - 926 43 895 - 932 39 904 - 998 0.1 99.6
+LID - 555 453 563 - 79.8 23.1 82.6 - 48.5 547 51.6
DARCY(1) 897 972 54 998 8382 989 20 997 939 893 01 787
DARCY(5) 899 965 6.8 99.8 888 945 11.0 1000 933 976 01 954

Table A.2: Average detection performance across all target labels under novice attack

Instruction: Please carefully read the text below and answer the following question.

TEXT: Us Weekly rounded up some of Hollywoods hottest celebrity couples who prove that love isnt
dead see who made the cut! Celebrity Couples With The Most Romantic Love Stories! degrassi choreo
oitnb

Question:Given a scale from 1 to 10, "THOW READABLE IS THE TEXT TO YOU?" (1 is least readable,
10 is most readable)

_L
©

You need to spend AT LEAST 1 MINUTES on the task to be fully paid
Figure A.1: Example of user study interface for Sec. 5



RNN CNN BERT

Method Clean Detection Clean Detection Clean Detection
F1 AUC FPR TPR F1 AUC FPR TPR F1 AUC FPR TPR
O0OD 752 525 459 557 777 748 300 724 847 356 639 482
ScRNN - 519 43.0 470 - 573 416 564 - 51.8 523 549
M USE - 62.9 481 759 - 66.2 445 717 - 53.1 551 64.1
R SelfATK - 923 0.6 85.1 - 69.8 04 400 - 975 41 952
LID - 51.3 458 484 - 66.2 374 69.7 - 542 515 59.6
DARCY(1) 778 748 0.8 504 769 736 04 47. 847 743 39 507
DARCY() 781 923 29 876 774 912 32 855 843 923 4.0 853
OOD 894 345 625 431 89.6 599 442 647 96.1 219 746 43.6
ScRNN - 576 51.1 65.7 - 55.0 53.6 629 - 53.1 53.6 58.1
S USE - 70.7 414 81.6 - 727 388 83.1 - 657 48.5 744
J  SelfATK - 80.7 8.0 69.3 - 728 0.5 460 - 96.8 6.2 94.0
LID - 50.7 543 55.7 - 675 320 67.1 - 622 56.1 79.0
DARCY(1) 894 71.7 0.6 439 885 708 49 466 962 686 6.1 41.0
DARCY(5) 889 927 24 879 876 939 43 920 96.1 100.0 6.2 100.0
OOD 79.0 506 488 525 777 777 263 742 936 313 67.1 457
ScRNN - 53.8 192 2638 - 56.1 19.1 312 - 53.2 50.3 549
S USE - 60.8 50.1 722 - 552 554 704 - 51.0 57.7 63.7
S SelfATK - 66.1 3.7 359 - 61.8 0.2 238 - 91.1 1.7 825
T LID - 499 622 619 - 64.0 18.8 469 - 462 426 35.1
DARCY(1) 829 69.7 02 396 773 593 09 196 942 500 1.6 1.6
DARCY(5) 833 931 32 894 787 830 54 715 941 946 1.6 894
(0]0))) 909 405 563 469 894 63.1 382 59.0 931 269 692 40.7
ScRNN - 56.0 46.1 54.7 - 53.7 488 54.1 - 544 464 526
A USE - 88.6 227 90.5 - 694 420 78.7 - 60.0 50.3 70.8
G SelfATK - 884 6.2 83.1 - 80.7 8.0 0694 - 920 0.1 84.0
LID - 543 459 546 - 79.1 22.1 803 - 483 529 494

DARCY(1) 874 540 804 884 86.6 833 190 855 939 703 01 407

DARCY(5) 89.7 952 93 998 83.6 92.6 147 999 933 970 01 94.0

Table A.3: Average detection performance across all target labels under advanced attack
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AUCT ACC| AUCT ACC)

MR  74.24 4.6 85.3 3.77
A.3.6 Datasets SI 87.19 034 7678  2.86

4 7q: SST  58.81 19.77 49.75 18.96
We use Datasets (v1.2.1) hbrary' to load all the AG 6788 5587 5325 7505
standgrd benchma.rk datas.ets used in the paper, all Red ol ransTorable
of which are publicly available.

Figure A.2: Performance under adaptive attacks

Table A.4: Detection AUC and model’s accuracy (at-
tack ACC) under black-box attack on CNN

*nttps://huggingface.co/docs/datasets/
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