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ABSTRACT: The benefits of assimilating Next Generation Weather Radar (NEXRAD) radial velocity data for con-

vective systems have been demonstrated in previous studies. However, impacts of assimilation of such high spatial and

temporal resolution observations on hurricane forecasts have not been demonstrated with the National Centers for

Environmental Prediction (NCEP) HurricaneWeather and Research Forecasting (HWRF) system. This study investigates

impacts of NEXRAD radial velocity data on forecasts of the evolution of landfalling hurricanes with different configura-

tions of data assimilation. The sensitivity of data assimilation results to influencing parameters within the data assimilation

system, such as the maximum range of the radar data, superobservations, horizontal and vertical localization correlation

length scale, and weight of background error covariances, are examined. Two hurricane cases, Florence andMichael, which

occurred in the summer of 2018 are chosen to conduct a series of experiments. Results show that hurricane intensity,

asymmetric structure of inland wind and precipitation, and quantitative precipitation forecasting are improved. Suggestions

for implementation of operational configurations are provided.
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1. Introduction

TheNext GenerationWeather Radar (NEXRAD) system is

composed of 160 Weather Surveillance Radar-1988 Doppler

(WSR-88D) operational weather radar sites throughout the

United States and has proven to be a great resource in moni-

toring severe convective systems (e.g., Laroche and Lang 2017;

Ansari et al. 2018; Hu et al. 2020). WSR-88D weather radar

observations have a high temporal and spatial resolution, which

provides a rich data source for assimilation into numerical

weather prediction (NWP) models (e.g., Sun and Crook 1997;

Snyder and Zhang 2003; Alpert and Kumar 2007; Lai et al. 2019).

Previous studies (Sun 2005; Jung et al. 2010; Posselt et al. 2015)

have demonstrated that the assimilation of Doppler radar data

shows positive effects for convective cell forecasts at convective-

permitting scales. The improvements gained in influencing

structural fields could further improve forecasts of convection

evolution and precipitation (e.g., Xiao et al. 2005; Tong and

Xue 2005; Gao and Stensrud 2012). Besides, NEXRAD obser-

vations could also beutilized for coastal high-impactweather (e.g.,

tropical cyclones) to improve the prediction of the central loca-

tion, intensity, and associated precipitation of tropical cyclones

near the landfall (Zhao and Jin 2008; Rappaport et al. 2009).

In operational data assimilation systems, such as the National

Centers for Environmental Prediction (NCEP)’s Gridpoint

Statistical Interpolation (GSI) system, the configurations for

radar radial wind assimilation have been explored to better

leverage such high-resolution data to improve model forecasts.

For instance, Lippi et al. (2019) discussed a refinement of radial

wind superobservation processing in GSI and applied it to a

tornado case. They considered the smoothing magnitude and

elevation angle range for radar radial wind assimilation in an

operational model. However, until recently, the ground-based

NEXRAD data have not been operationally assimilated in the

NCEP Hurricane Weather and Research Forecasting Model

(HWRF), which has been implemented as an operational

model since 2007. Meanwhile, assimilation of airborne TDR

radar radial wind data achieved significant improvements in

hurricane track and intensity forecasts (Pu et al. 2009; Zhang

et al. 2012; Li et al. 2014).

The effective assimilation of NEXRAD data in an opera-

tional platform relies on a rapidly updated quality control

system for NEXRAD observations. With the polarimetric

upgrade of the WSR-88D network, new observations (i.e.,

differential reflectivity, differential phase, specific differential

phase, and correlation coefficient) that better reveal the dis-

tribution of hydrometeors inside clouds have become avail-

able. Nevertheless, it has been challenging to develop effective

quality control methods for the NEXRAD observations. Tang

et al. (2014) proposed and implemented a simple rHV-based

P–NP segregation (dpQC) algorithm, which is currently applied

in the real-time national Multi-Radar Multi-Sensor (MRMS)

quantitative precipitation estimation (QPE) system. This au-

tomated algorithm utilizes polarimetric data (i.e., reflectivity

and correlation coefficients) from 180 operational radar sites

and environmental data (i.e., temperature) to perform radar

quality control with a set of physically based rules (Zhang et al.

2011; Tang et al. 2014). The initial operational capability of

MRMS has been verified. Results demonstrated that the dpQC
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algorithm could remove nonhydrometeor echoes (e.g., wind

farms, anomalous propagation ground clutter, and deep bio-

logical echoes) at a high computational efficiency (Zhang

et al. 2016).

The effectiveness of the dpQC algorithm enables us to as-

similate NEXRAD data operationally. In this study, we in-

vestigate the optimal operational configuration of the GSI

data assimilation system for NEXRAD radial wind assimi-

lation in HWRF based on the quality-controlled data using

the dpQC algorithm. Our purpose is to adjust the GSI-based

three-dimensional hybrid ensemble–variational (hybrid 3DEnVar,

Wang 2010) data assimilation to a configuration suitable for

assimilating NEXRAD data. We will emphasize adjusting the

maximum radial range, radial range for superobservation

boxes, horizontal and vertical localization correlation length,

and weights applied to the static background error covariance

and ensemble covariance. Two hurricane cases in 2018 are

selected to demonstrate the impacts of assimilating radial wind

data on hurricane landfall. The model, data, and experimental

design are described in section 2. Results and discussion are

TABLE 1. Configurations of data assimilation experiments. In the experiments’ names, F stands for experiments for Hurricane Florence

and M denotes experiments for Michael.

Expt

Max radial

range (km)

Radial

range (km)

Horizontal localization

correlation length (km)

Vertical localization correlation

length (grid) b1 b2

Exp. FCONV;

Exp. MCONV

— — 300 0.2 (lnp) 0.2 0.8

Exp. F01; Exp. M01 100 9 300 0.2 (lnp) 0.2 0.8

Exp. F02; Exp. M02 150 9 300 0.2 (lnp) 0.2 0.8

Exp. F03; Exp. M03 200 9 300 0.2 (lnp) 0.2 0.8

Exp. F04; Exp. M04 200 3 300 0.2 (lnp) 0.2 0.8

Exp. F05; Exp. M05 200 3 400 10 0.2 0.8

Exp. F06; Exp. M06 200 3 400 10 0.3 0.7

Exp. F07; Exp. M07 200 3 400 10 0.4 0.6

FIG. 1. The domains utilized in HWRF for Hurricanes (a) Florence and (b) Michael. The blue region is the outer

domain at 13.5-km horizontal grid spacing. The green and yellow regions are vortex-following domains at 4.5- and

1.5-km horizontal grid spacing. The red dashed lines are the ghost domains for d02 and d03. (c) The locations of

NEXRAD sites employed for data assimilation experiments for Hurricanes Florence and Michael. Data from the

KRAX, KLTX, and KMHX sites are used for Hurricane Florence (yellow circled regions); and data from the

KLIX, KMOB, KEVX, KTLH, KVAX, KJAX, and KTBW sites are used for Hurricane Michael (blue circled

regions). The colored circles show the scanning coverage of each radar site.
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presented in sections 3 and 4. Section 5 offers a summary of

this work.

2. HWRF model, data, and experimental design

All experiments were conducted with HWRF, version

4.0a (Biswas et al. 2018), which is close to the current op-

erational HWRF at the National Oceanic and Atmospheric

Administration’s (NOAA)National Centers for Environmental

Prediction (NCEP). The HWRF system is composed of the

Weather Research and Forecasting (WRF) nonhydrostatic

mesoscale model on the E grid dynamic core (Janjić et al. 2010),

the Message Passing Interface Princeton Ocean Model for

Tropical Cyclones (MPIPOM-TC) (Yablonsky et al. 2015), the

NCEP coupler, and the GSI assimilation platform (Hu et al.

2018). It is operationally launched every 6 h in a configuration

with a parent domain and two moving nested domains, of

which the resolutions are 13.5, 4.5, and 1.5 km, respectively

(Biswas et al. 2018). The physical parameterizations employed

in HWRF are the Ferrier (new Eta) microphysics scheme

(Ferrier et al. 2002), the Rapid Radiative Transfer Model for

GCMs (RRTMG) longwave and shortwave radiation schemes

(Iacono et al. 2008), the Unified Noah land surface model

(Chen and Dudhia 2001; Mitchell 2005), the hybrid Eddy

Diffusivity Mass-Flux (EDMF) Global Forecast System

(GFS) scheme (Han et al. 2016), and the scale-aware GFS

Simplified Arakawa–Schubert (SASAS) convection scheme

(Pan and Wu 1995; Hong and Pan 1998; Pan 2003; Han and

Pan 2011).

Two hurricane cases selected for this study are Florence and

Michael, which occurred over the northwest Atlantic Ocean in

September and October 2018 with a western and a northeast-

ern landfall track, respectively. Assimilation data include

conventional data from NCEP’s Automated Data Processing

(ADP), and NEXRAD radial wind data that have been pro-

cessed through dpQC quality control in the MRMS system.

FIG. 2. (a) HRRR horizontal wind field at 925 hPa and horizontal wind analysis field (m s21) at the 17th eta level (approximately

925 hPa) for Florence at 0000 UTC. Corresponding fields from (b) Exp. FCONV, (c) Exp. F01, (d) Exp. F02, (e) Exp. F03, (f) Exp. F04,

(g) Exp. F05, (h) Exp. F06, and (i) Exp. F07.
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The dpQC algorithm is a physically based scheme that relies on

general and explicit meteorological principles. It contains a

basic rHV filter to separate P (precipitation, high rHV) and NP

(nonprecipitation, low rHV) regions. A 3D reflectivity struc-

ture obtained from operational dual-polarization radar sta-

tions, together with meteorological environmental data, is

utilized to preserve hail, nonuniform beam filling, and melting

layer regions in this rHV filter. Additionally, random non-

precipitation pixels that exhibit high rHV values are eliminated

by spatial filters and vertical and horizontal consistency checks

at a high computational efficiency (Tang et al. 2014).

GSI-based hybrid 3DEnVar data assimilation is employed

to conduct conventional and NEXRAD data assimilation for

these two hurricane cases. The background error covariance of

hybrid 3DEnVar is composed of a flow-dependent background

error covariance achieved by 80 GFS ensemble members,

and a static background error covariance obtained through the

National Meteorological Center (NMC) method. The cost

function is as follows (Wang 2010; Biswas et al. 2018):

J(x01,a)5b
1
(x01)

T
B21

1 (x01)1b
2
(a)TA21(a)

1 y0
0
2Hx0

� �T
R21 y0

0
2Hx0

� �
1 J

c
, (1)

where B1 is the static background error covariance matrix;

b1 and b2 are, respectively, the weight applied to the static back-

ground error covariance and the ensemble covariance; a con-

tains the extended control variables for ensemble members; A

defines the spatial correlation of a; y is the innovation vector;H

is the observation operator; R is the observational and repre-

sentativeness error covariancematrix; and Jc is a constraint term.

In operational systems, b1 and b2 are set to 0.2 and 0.8, which

offers more weight to the flow-dependent background error

covariance. To explore the influence of different weights on

NEXRAD radial wind assimilation, experiments will be con-

ducted in this study using different combinations of b1 and b2

(See Table 1, also next section). The forecast hurricane track is

quite sensitive to different combinations. Besides the adjust-

able b1 and b2 in the assimilation algorithm, horizontal and

FIG. 3. (a) HRRR horizontal wind field at 925 hPa and horizontal wind analysis field (m s21) at the 17th eta level (approximately

925 hPa) for Michael at 0600 UTC 10 Oct 2018. Corresponding wind fields from (b) Exp. MCONV, (c) Exp. M01, (d) Exp. M02, (e) Exp.

M03, (f) Exp. M04, (g) Exp. M05, (h) Exp. M06, and (i) Exp. M07.
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vertical localization correlation length, radial range for

superobservation boxes, and maximum radial range are

adaptable for NEXRAD radial wind assimilation in GSI.

To investigate an appropriate configuration for radial wind

assimilation and evaluate its impact on hurricane landfall,

conventional assimilation experiments (assimilate NCEP

ADP data) and seven NEXRAD assimilation experiments

(assimilate both NCEP ADP and NEXRAD radial veloc-

ity) are designed for Hurricanes Florence and Michael.

The conventional assimilation experiments are named

FIG. 4. Forecast track of conventional and NEXRAD assimilation experiments for Florence and Michael.

(a) Florence (0600 UTC 14 Sep–0000 UTC 18 Sep 2018) and (b) Michael (1200 UTC 10 Oct–0000 UTC 12

Oct 2018).
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Exp. FCONV and Exp. MCONV, respectively, for Florence

and Michael.

All experiments with NEXRAD radial wind assimilation

are the same as experiments that assimilate conventional

observations, but the assimilation of radial wind data has

different configurations (see Table 1). In the operational

HWRF configuration, a blending option is employed to elim-

inate data assimilation increments within 150 km of the storm

center and gradually reintroduce these increments between

150 and 300 km (Biswas et al. 2018). However, this blending

scheme could produce an unrealistic vortex structure in the

lower- to midtropospheric inner-core region (Zhang and Pu

2019). To evaluate the impacts of assimilating NEXRAD ra-

dial wind on the hurricane’s inner core, the blending option is

turned off and only vortex relocation is employed in the vortex

initialization procedure. For Florence, the coastal NEXRAD

sites Raleigh/Durham, North Carolina (KRAX), Wilmington,

North Carolina (KLTX), and Morehead City, North Carolina

(KMHX), are utilized to obtain radial wind data. For Michael,

the seven NEXRAD sites New Orleans, Louisiana (KLIX),

Mobile, Alabama (KMOB), Eglin Air Force Base, Florida

(KEVX), Tallahassee, Florida (KTLH), Moody Air Force

Base, Georgia (KVAX), Jacksonville, Florida (KJAX), and

Tampa, Florida (KTBW), are employed (Fig. 1). Radial wind

data from all elevation angles are assimilated with an assimi-

lation window ranging from20.5 to 0.5 h based on the analysis

time. The landfall time for Florence is 1115UTC 14 September

2018, and that for Michael is 1730 UTC 10 October 2018. Due

to the limitation of coastal NEXRAD coverage, all experi-

ments are started 24 h before landfall time with cycled data

assimilated using conventional data at a 6-h interval until the

time when NEXRAD data assimilated and this time period is

considered as a spinup period. Then Exp. FCONV and Exp.

MCONV continued with the assimilation of conventional data

(i.e., NCEP ADP), while the NEXRAD assimilation experi-

ments (all other experiments in Table 1 except for Exp.

FCONV and Exp. MCONV) assimilate both NCEP ADP and

NEXRAD data. For Florence, the NEXRAD assimilation

experiments were cycling conducted at 0000 and 0600 UTC

14 September 2018, and for Michael were conducted at 0600

and 1200 UTC 10 October 2018. A 126-h forecast was made

after each experiment. Results were evaluated for the period

which has NHC best track data available.

3. Experimental results

To evaluate the factors that could influence NEXRAD ra-

dial velocity data assimilation, a series of numerical experi-

ments are conducted with different configurations (Table 1).

The factors with significant influence on NEXRAD data as-

similation are identified. A possible best choice for potential

operational applications will be recommended.

a. Maximum radial range

Maximum radial range determines the horizontal coverage

of radial velocity data and is utilized to construct super-

observations. A good average and a minimum dependency

between adjacent superobservations are usually ensured by a

large enough area, which is determined by maximum radial

range (Alpert and Kumar 2007). For continental convective-

scale data assimilation with GSI, the default maximum radial

range is set to 100 km for single NEXRAD stations, but this is

not sufficient for hurricane cases because hurricanes can ex-

pand to several hundred kilometers. To obtain better radial

FIG. 5. Forecast hurricane intensity for all experiments. (a) The minimum pressure (hPa) and (c) the maximum

wind [kt; 1 kt’ 0.51m s21) for Florence (0600UTC 14 Sep–0000UTC 18 Sep 2018). (b) Theminimumpressure and

(d) the maximum wind for Michael (1200 UTC 10 Oct–0000 UTC 12 Oct 2018). The x axis is the forecast time (h).

592 WEATHER AND FORECAST ING VOLUME 36

Brought to you by UNIVERSITY OF UTAH | Unauthenticated | Downloaded 06/30/21 08:09 PM UTC



velocity data coverage near the coast for hurricanes, a larger

maximum radial range is tested. Exp. F01–03 and Exp. M01–

03, with a maximum radial range ranging from 100 to 200 km,

are aimed at investigating the sensitivity of maximum radial

range. To evaluate the reasonability of different configurations

for assimilating NEXRAD radial velocity, Figs. 2 and 3 illus-

trate analysis fields of horizontal winds at the 17th eta level

(approximately 925hPa) against NOAA/ESRL High-Resolution

Rapid Refresh (HRRR) high-resolution (;3 km) operational

analysis. HRRR analysis is the finest-resolution operational

regional analysis available, and it provides reliable analysis for

hurricane cases (Bytheway et al. 2017; Yue and Gebremichael

2020). Figures 2c–e and 3c–e in these two figures represent

results of Exp. F01–03 and Exp. M01–03 for these two hurri-

cane cases. For Florence, assimilating radar radial velocity

has a positive impact on adjusting the radius of horizontal wind

greater than 26m s21. Compared with Exp. FCONV, Exp.

F01–03 presents a looser pattern, as in HRRR. With the in-

crease of maximum radial range ranging from 100 to 200 km,

the underestimated southwestern wind region (greater than

32m s21) of the vortex shows positive improvements. For

Michael, there is an underestimation of maximum wind speed

in HRRR, when referring to the hurricane report of maximum

wind speed of about 61.7m s21. Assimilating radar radial velocity

significantly increases the maximum wind speed and adjusts

the maximum region to the northwest, similar to HRRR.

b. Superobservations

The radial range for superobservation boxes is another es-

sential parameter in superobservation construction. It deter-

mines each box size along a radius to reduce the volume of

observations (Lippi et al. 2019). Exp. F03–04 and Exp. M03–04

are designed to explore the sensitivity of radial range. The

default range in GSI is 9 km (Exp. F03 and M03). To make

high-density superobservations that are more consistent with

the HWRF model resolution, we further adjust this range to a

lower value of 3 km (Exp. F04 and M04). For Florence, the

underestimated southwestern wind region in Exp. F04 gains a

further revision. For Michael, although Exp. M03 achieves the

proper maximum wind location in the northwest, Exp. M04

additionally decreases the overestimation of northwestern

maximum wind speed.

c. Horizontal and vertical localization
correlation length scale

Compared with conventional data, NEXRAD radial veloc-

ity data have a higher spatial resolution. Thus, horizontal and

vertical localization correlation lengths, which are ubiquitous

FIG. 6. Horizontal wind (m s21) at 925 hPa for Florence (1200 UTC 14 Sep 2018) and Michael (1800 UTC 10 Oct 2018) at landfall.

Colored contours represent wind speed, and vectors represent wind direction. The wind fields of HRRR for (a) Florence and (d)Michael.

The forecasts of (b) Exp. FCONV and (c) Exp. F06. The forecasts of (e) Exp. MCONV and (f) Exp. M06.
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FIG. 7. Wind field of vertical cross section for Florence (1200 UTC 14 Sep 2018) and Michael

(1800 UTC 10 Oct 2018) at landfall. Colored contours are tangential wind (m s21), and vectors denote

radial wind (m s21) and vertical velocity (0.1m s21). The wind fields of HRRR for (a) Florence and

(d)Michael. The forecasts of (b) Exp. FCONVand (c) Exp. F06. The forecasts of (e) Exp.MCONVand

(f) Exp. M06. The triangle represents the location of the hurricane eye.
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methods to reduce sampling errors by confining impacts of

assimilated observations to nearby model grid points, should

be furthered investigated. For convective-scale cases, a larger

horizontal (;12–18 km), but smaller vertical (;3 km) locali-

zation is beneficial (Sobash and Stensrud 2013). However, for

hurricane cases, localization correlation length may be differ-

ent from what is suitable for convective cases. Exp. F04–05 and

Exp. M04–05 focus on investigating the sensitivity of hori-

zontal and vertical localization correlation length. With a

horizontal localization correlation length of 400 km and a

vertical localization correlation length of 10 grids, the south-

western underestimated region in Florence and the north-

western overestimated region in Michael both show further

revisions.

d. Weight of background error covariance

The weighting value for ensemble background covariance is

quite sensitive to the ensemble size. For large ensembles (50–

100), a stronger weight to ensemble covariance is recom-

mended (Gao and Stensrud 2014). In the current operational

HWRF, the weight for ensemble covariance is 0.8. With the

introduction of NEXRAD radial velocity assimilation into the

current system, the sensitivity of different weights can be fur-

ther tested. Exp. F05–07 and Exp. M05–07 (see Table 1) focus

on investigating the sensitivity of background error covariance

weight. For Florence, decreasing to a slight weighting value

(e.g., from 0.8 to 0.7) to ensemble background covariance

gains improvements in the southwestern underestimated

region (greater than 38m s21). For Michael, the north-

western overestimated region gains a further revision. Exp.

M06 provides a more reasonable value for the northwestern

region, retaining the northeastern maximum wind infor-

mation shown in Exp. MCONV.

With the various experimental designs above, a series of

forecast tracks is presented in Fig. 4 for Florence (0600UTC 14

September–0000 UTC 18 September 2018) Michael (1200 UTC

10 October–0000 UTC 12 October 2018), compared with

available NHC best-track data. Since the experiment with con-

ventional data assimilation already shows excellent performance

on track forecast, only slight impacts (up to 5% of track error

deductions in most of the cases) are gained by the additional

assimilation of NEXRAD radial velocity. For the corresponded

forecast intensity shown in Fig. 5, a similar tendency is captured

by all NEXRADexperiments. ForHurricaneMichael, there is a

sudden intensification right at its landfall, which conventional

andNEXRADdata assimilation experiments allmiss.However,

NEXRAD experiments amend intensity underestimation in the

conventional experiments to some extent. Particularly, Exp.

FIG. 8. Surface latent heat flux (W m22) for Florence (1200 UTC 14 Sep 2018) and Michael (1800 UTC 10 Oct 2018) at landfall. The

results of HRRR for (a) Florence and (d)Michael. The forecasts of (b) Exp. FCONV and (c) Exp. F06. The forecasts of (e) Exp.MCONV

and (f) Exp. M06.
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M06 achieves the best maximum wind estimation 6 h before

Michael’s landfall.

Overall, from the sensitivity of different parameters to

the track and intensity forecasts, Exp. F06 and Exp. M06

both achieve the best performance among all the NEXRAD

experiments.

4. Discussion

a. Dynamical structures

To investigate the impacts of the NEXRAD experiments on

hurricane intensity and structure, the dynamical structure of

horizontal and vertical cross-section wind fields is shown in

Figs. 6 and 7 . The wind field of HRRR is utilized for verifi-

cation. The asymmetric structure of the inner-core region plays

an important role in the evolution, structure, and intensity

change of hurricanes (e.g., Menelaou et al. 2013;Menelaou and

Yau 2014). The horizontal forecast wind field in conventional

experiments maintains a more symmetric structure, unlike

the asymmetric structure in HRRR. After NEXRAD radial

wind data are assimilated, the horizontal hurricane structure

becomes looser. For the maximum wind region of the inner

core (i.e., greater than 45m s21for Florence and 50m s21 for

Michael), Exp. F06 and Exp.M06 significantly revise its location

and rebuild the asymmetric structure. In the vertical cross-

section wind fields, the asymmetric convection structure of the

left and right sides of the hurricane is better presented in

the NEXRAD experiments. Exp. M06 revises the underesti-

mation of the tangential wind field from 400 to 200 hPa on the

right side of the vortex, and the overestimation from 700 to

250 hPa on the left side. Overall, the dynamical structure of

hurricanes can be significantly revised by assimilating

NEXRAD radial wind data.

b. Thermodynamic field and precipitation

Thermodynamic conditions play an essential role in hurri-

cane evolution. Surface latent heat flux can depict the impact of

underlying surface heating (shown in Fig. 8). For the surface

latent heat flux field of Florence, an increase is apparent in the

southeastern part of the hurricane vortex after NEXRAD ra-

dial wind data are assimilated. In the southwestern part, the

high flux region shows a revised pattern similar to HRRR data

in the NEXRAD assimilation experiments. For Michael, the

high latent heat flux center is also located in the southwestern

part of the vortex. After NEXRAD radial velocity are assimi-

lated, although the magnitude of high centers is underestimated,

the pattern in Exp. M06 is similar to HRRR data. Here, a more

accurate heat of the underlying surface is provided for Michael,

which contributes to intensity revision before landfall.

FIG. 9. Observed and forecast 6 h accumulated precipitation (mm) for Florence (1200–1800 UTC 14 Sep 2018) and Michael (1800–

1100 UTC 10 Oct 2018) after landfall. The Stage IV products for (a) Florence and (d) Michael. The forecast precipitation of (b) Exp.

FCONV and (c) Exp. F06. The forecast precipitation of (e) Exp. MCONV and (f) Exp. M06.
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Precipitation is another forecast focus for hurricane land-

falls. Figure 9 illustrates the distribution of 6 h accumulated

precipitation right after landfall. The NCEP Stage IV precip-

itation Data (Du 2011) are utilized to verify the forecast. For

Florence, the conventional experiments underestimate the

inner-core precipitation. Exp. F06 revises the underestimation

at landfall. For Michael, Exp. M06 achieves similar precipita-

tion (greater than 120mm) to the observations in the inner-

core region. Figure 10 evaluates a quantitative precipitation

forecast with equitable threat scores against the Stage IV

precipitation data for both Florence and Michael, improve-

ments in the NEXRAD experiments for the quantitative pre-

cipitation forecast are maintained about 18 h after landfall.

5. Summary

HWRF has been in operation at NOAA NCEP for over a

decade and has contributed a lot to hurricane forecasting and

research. In the current operational platform, NEXRAD radial

velocity data have not been employed as an assimilation data

source until recently. The dpQC quality control algorithm

employed in the MRMS system can remove nonhydrometeor

echoes at a high computational efficiency. Based on data avail-

able from the real-time updated quality control algorithm, this

study focuses on investigating the optimal operational configu-

rations for NEXRAD radial velocity assimilation in HWRF and

also examining its impacts on hurricane landfall. Two hurricane

cases (i.e., Florence and Michael) in summer 2018 are used to

conduct a series of experiments. Results are as follows.

d Compared with conventional experiments, the dynamical

asymmetric structure of hurricanes can be better presented

by assimilating radial wind data. This dynamical revision can

further contribute to intensity forecasts, especially maximum

wind forecasts before landfall.
d Improvements in quantitative precipitation forecasts are

obvious, especially at high precipitation thresholds. These

improvements can be maintained about 18 h after landfall

with NEXRAD radial velocity assimilation.
d The optimal configurations for NEXRAD radial wind as-

similation in HWRF are as follows, with the specific settings

and version of the HWRFmodel used in this study. Maximum

radial range for horizontal data coverage and radial range

for superobservation boxes are 200 and 3 km, respectively.

Horizontal and vertical localization correlation lengths are

400 km and 10 grids. The weights applied to static background

error covariance and ensemble covariance are 0.3 and 0.7.
d Improvements in track forecasts are marginal in both hurri-

cane cases with NEXRAD data assimilation when the short-

range track errors in control forecasts (with conventional

data assimilation) have already been small. More case

studies are needed to confirm the significant impacts of

NEXRAD data assimilation on track forecasts.

Overall, studies with two hurricane cases have shown the

great potential of implementing NEXRAD radial wind as-

similation into the current HWRF operational platform.

Specifically, this study identified important sensitivity pa-

rameters for the operational implementation of NEXRAD

data assimilation with the GSI system. With the expected

upgrades of the HWRF system in the operational environ-

ment, more cases and more detailed evaluation are needed

to investigate and eventually make operational improve-

ments in hurricane forecasts.

FIG. 10. The equitable threat scores (ETS) of quantitative precipitation forecasts (QPF) against Stage IV data for

Hurricanes (left) Florence and (right) Michael after landfall. The calculation for Florence is from 1200UTC 14 Sep

to 0600 UTC 15 Sep 2018 at a 6-h interval, and for Michael is from 1800 UTC 10 Oct to 1200 UTC 11 Oct 2018 at a

6-h interval. Thresholds for Florence are 30, 60, and 90mm, and for Michael the thresholds are 60, 90, and 120mm.
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