

Examining the Role of Epistemic Empathy in Responsive Teaching

Abstract

Studies have shown that teachers' responsiveness to students' epistemic work and experiences in the classroom is critical for promoting student agency, disciplinary engagement, and equitable participation. Yet what allows teachers to enact responsive teaching is less clear. We argue that "epistemic empathy"—the capacity for tuning into and appreciating students' cognitive and emotional experience in constructing, communicating, and critiquing knowledge—is a key driver for responsive teaching. Here, we take a first step to empirically examine whether and how preservice teachers' stances of epistemic empathy align with their enactment of responsive teaching practices. We end with implications for teacher education to cultivate epistemic empathy as a target for teacher learning.

Proposal (Total words: 1990)

Objective

Reform visions in education call for engaging students in science and mathematics in ways that resonate with the disciplines' respective practices and discourses (Council of Chief State School Officers, 2010; National Research Council, 2012). Such visions entail that students not simply learn the canon but rather take active roles in sense-making about phenomena and contributing towards the construction and critique of knowledge (Engle & Conant, 2002; Ford, 2008). Accordingly, classrooms should be spaces where students draw on their varied meaning-making repertoires and everyday experiences as resources for exploring phenomena and solving problems. In such classrooms, teachers would then pay close attention to students' contributions, identify the productive beginnings in their reasoning (Hammer & van Zee, 2006), and responsively build on those beginnings to adapt instructional activities (Ball, 1993), what some scholars have referred to as *responsive teaching* (RT) (e.g., Hammer, Goldberg, Fargason; 2012; Robertson, Scherr, & Hammer, 2016).

Studies have shown that RT promotes students' intellectual agency, disciplinary engagement, and equitable participation in science and mathematics classrooms (e.g., Atkins & Frank, 2016; Ball & Bass, 2009; Colley & Windschitl, 2016; Radoff, Robertson, Fargason, & Goldberg, 2018). However, there is much to be learned about the dynamics underlying teachers' responsiveness and what facilitates their uptake of students' contributions in the classroom (Kang & Anderson, 2015). We argue that "epistemic empathy" is key for responding to and pursuing students' contributions during instruction. We define epistemic empathy as the capacity for tuning into and appreciating someone's cognitive and emotional experience within an epistemic activity—i.e., an activity aimed at the construction, communication, and critique of knowledge. In this study, we empirically examine whether and how preservice teachers' (PTs) stances of epistemic empathy relate to their enactment of responsive teaching in the classroom.

Perspective: Epistemic Empathy

While there is no clear consensus on the nature of empathy, most accounts describe it as about "tuning-into" someone's experience (Oxley, 2011) by decentering from one's ways of understanding (Donaldson, 1979) to project into another's situation and make sense of their thoughts, feelings, and actions. In education, empathy has been examined as part of teachers' views of their roles, especially in terms of cultivating caring relationships and fostering socio-

emotional learning in the classroom (Arghode, Yalvac, & Liew, 2013; Cassidy & Bates, 2005; McAllister & Irvine, 2002). Teachers note for example the importance of empathizing with their students' cultural experiences and connecting with students' communities (Dolby, 2012; Tettegah & Anderson, 2007; Warren, 2018). While these general portrayals of empathy are important for teaching, we argue that they may not account for how teachers come to empathize with learners' *epistemic* experiences (Authors, 2018) in ways that allow them to be responsive to students' epistemic work.

To be responsive to students' sense-making efforts in the classroom, teachers need to move beyond their familiar and comfortable ways of reasoning to take on the learners' perspectives and see how, *to the learners*, their ideas and questions make sense (Sikorski, 2016). Epistemic empathy, we propose, allows teachers to identify with and value learners' cognitive and emotional work of constructing, communicating, and critiquing knowledge, and as such is critical for supporting students' sense-making. It allows teachers to delve into the logic of their students' reasoning and emoting within science and math explorations, to understand the roots of their thinking, and to find ways to build on student contributions. Epistemic empathy, for instance, might compel teachers to pause and reason through, rather than immediately judge or dismiss, a student's seemingly convoluted idea or argument. While studies of responsive teaching hint at the value of epistemic empathy, researchers have not empirically examined how teachers' empathy may shape their responsiveness in the classroom. Here, we take a first step to address this gap by examining the potential association between preservice teachers (PTs)' epistemic empathy and their enactment of responsive instruction in a science and mathematics teacher preparation program.

Methods

The qualitative exploratory study is part of a larger project aimed at cultivating PTs' epistemic empathy and their recognition and appreciation of students' diverse ways of thinking and feeling in science and mathematics. We draw on data from an early teacher education course where eleven PTs participated in a number of activities as part of their "Learning to Listen" (LtL) project. PTs read articles on student thinking, analyzed K-12 student work in videos and transcripts, engaged in science and mathematics activities as learners, interviewed others to elicit their thinking around science and mathematics questions, and participated in a field-placement in upper elementary and middle school science and mathematics classrooms.

For their LtL capstone activity, the main data source for this study, PTs enacted a "Learning to Listen" teach event where they engaged students in their field site in a mathematics or science launch question (Table 1). The events ranged from 26 minutes to 57 minutes, and averaged 37 minutes. These events were video-recorded and transcribed and PTs were provided access to their own videos for analysis. PTs also submitted a reflection on their enactment where they addressed specific prompts about their experiences (Table 1). Additionally, PTs submitted a final paper reflecting on their experiences throughout the course.

To analyze the videos for PTs' responsiveness to student work, we first created detailed analytical notes for each PT, describing the PT's elicitation, uptake, and engagement with students' contributions, and how they made space for student sense-making (Lau, 2010; Levin & Richards, 2011; Lineback, 2016). From these overviews, we conducted a thematic analysis (Braun & Clarke, 2006) of responsive teaching (RT) moves and identified eight moves (Table 2) that we then applied to the whole dataset with frequency counts (Table 3). From these counts, we identified five "profiles of responsiveness" (Table 4) that we discuss in the findings section.

To analyze teachers' stances of epistemic empathy (EE), we coded their written reflections on their LtL teach event as well as their final reflection papers drawing on a coding scheme that we adapted from prior work (Authors, 2018). The scheme comprised seven codes (Table 5) that depicted different ways in which teachers displayed a stance of epistemic empathy, in particular in terms of teachers' efforts to take the learners' perspective, delve into their reasoning, and appreciate their sense-making efforts. After coding the data, we created frequency counts for each PT (Table 6) from which we identified five "profiles of epistemic empathy" (Table 7).

Lastly we compared the profiles of responsiveness and profiles of epistemic empathy for each PT to examine whether any association might exist between PTs' responsive moves and empathic stances.

Findings

Responsive Teaching

The analysis of PTs' videos highlights distinct ways in which PTs' engaged in practices of responsive teaching. From the coded instances across all eight RT moves for each participant (Table 3), we identified a wide spectrum of RT enactment from which we parsed PTs' responsiveness along five profiles to depict a holistic sense of their enactment: High, Upper Mid, Mid, Lower Mid, Low (Table 4). We realize that such wholesale characterization does not capture the nuances and variabilities we see within each of the teaches, but it nonetheless serves our purposes in this particular study. A closer look at the profiles reveals that on the high end of the RT spectrum, participants not only had more instances of responsiveness but they also engaged in a wider range of RT practices as compared to the lowest end of the RT spectrum where participants' moves primarily clustered around one or two of the RT codes (see Table 3). For example, Javier's and Cesar's responsive moves were mostly centered around asking clarifying questions (Code 2) as compared to the higher end where Melissa, Amy, and Jamie engaged in all eight RT moves. Additionally, toward the lowest end of the spectrum, PTs tended to do little in terms of extending student ideas (Code 3), responding to students' affect and epistemological framing (Code 5), and synthesizing, tracking, and juxtaposing ideas (Code 7), suggesting that perhaps they were less closely attending to the substance of the discussion and to how students were experiencing and framing the activity.

Epistemic Empathy

Our analysis of PT's epistemic empathy similarly shows that there was a wide spread in terms of the number of epistemic empathy instances along the seven EE codes across participants (Table 6). Based on our analysis and the total number of coded EE instances for each PT, we again identified a spectrum of five epistemic empathy profiles: High, Upper Mid, Mid, Lower Mid, Low (Table 7). In their written reflections, nearly all PTs noticed and appreciated students' epistemic affect (Code 1), identified merits in student ideas (Code 3), and expressed curiosity and interest in students' reasoning (Code 5) around the math and science launch questions. However, when comparing the lower end of the EE spectrum to its higher end, we once again noticed a much narrower range of EE moves at the lower end where most instances clustered around one or two codes, such as in the cases of Javier and Jett. There were also fewer instances of explaining and justifying the reasoning or actions of another (Code 2), anticipating ideas, feelings, and epistemic experiences (Code 6), and recognizing the importance of listening to and understanding students (Code 7), as compared to the higher end of the spectrum.

Examining Potential Association between RT and EE

As illustrated in Table 7, in juxtaposing RT profiles and EE profiles, we found that there was a clear association between them. In other words, the different bands of the RT spectrum (high to low) corresponded with the different bands of the EE spectrum (high to low), at the exception of one PT, Jett. For Jett, while his profiles did not exactly match up, they were still close (Low RT and Low Mid EE). Figure 1 further illustrates the relationship between responsiveness and epistemic empathy by representing the RT and EE percentages for each participant in terms of the total number of coded instances for each construct. This finding suggests that participants' facility with enacting responsive teaching practices may be related to the ways in which they tune into and appreciate learners' emotional and cognitive experiences in an epistemic activity—i.e., to their epistemic empathy. While preliminary, we argue that this finding sheds light at an important yet overlooked aspect of responsiveness by suggesting empathy as a key factor in responsive teaching.

Significance

This study is a preliminary attempt to explore how PTs' epistemic empathy may be associated with their enactment of responsive teaching in science and math classrooms. The findings serve as a proof of concept regarding this association: Indeed, we found that those PTs who displayed epistemic empathy more consistently were more adept at taking up and pursuing student contributions in their teaching. The results then suggest that supporting PTs to orient to students' ideas and feelings in an epistemic activity with care, investment, and curiosity could foster responsiveness in the classroom. These findings warrant further attention to the role of epistemic empathy as part of teachers' learning to become responsive practitioners.

In sum, this research contributes to teacher education in at least three ways: theoretically, by nominating "epistemic empathy" as part of the process of responsiveness; empirically, by providing empirical insights into the nature of the association between epistemic empathy and teachers' responsiveness; and pedagogically, by suggesting the need for learning experiences that cultivate epistemic empathy as a learning target for teachers in support of their enactment of responsive teaching. While the findings show a link between teachers' epistemic empathy and their responsiveness, it is important to acknowledge that this study was limited to one specific teach activity. Therefore, future studies should examine whether and how PTs' stances of epistemic empathy within their teacher education program may more broadly influence their future teaching in their own classrooms. In future work, we also aim to examine how epistemic empathy may be cultivated over time in light of educative experiences designed to promote PTs' learning to listen to students and to identify disciplinary roots in their work.

References

Arghode, V., Yalvac, B., & Liew, J. (2013). Teacher empathy and science education: A collective case study. *Eurasia Journal of Mathematics, Science & Technology Education*, 9(2), 89–99.

Atkins, L., & Frank, B. (2016). Examining the products of responsive inquiry. In A.D. Robertson, R.E. Scherr, & D. Hammer (Eds.), *Responsive teaching in science and mathematics* (pp. 56–84). New York, NY: Routledge.

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary school mathematics. *The Elementary School Journal*, 93(4), 373–397.

Ball, D. L. & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners' mathematical futures. Paper prepared based on keynote address at the 43rd Jahrestagung für Didaktik der Mathematik held in Oldenburg, Germany.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101.

Cassidy, W., & Bates, A. (2005). "Drop-outs" and "push-outs": Finding hope at a school that actualizes the ethic of care. *American Journal of Education*, 112(1), 66–102.

Colley, C., & Windschitl, M. (2016). Rigor in elementary science students' discourse: The role of responsiveness and supportive conditions for talk. *Science Education*, 100(6), 1009–1038.

Council of Chief State School Officers (CCSSO). (2010). *Common core state standards for mathematics*. Retrieved from http://www.corestandards.org/assets/CCSSI_Math_Standards.pdf

Dolby, N. (2012). *Rethinking multicultural education for the next generation: The new empathy and social justice*. New York, NY: Routledge.

Donaldson, M. (1979). *Children's minds*. New York, NY: W.W. Norton & Company.

Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. *Cognition and instruction*, 20(4), 399–483.

Ford, M. J. (2008). "Grasp of practice" as a reasoning resource for inquiry and nature of science understanding. *Science & Education*, 17(2&3), 147–177.

Hammer, D., Goldberg, F., & Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade classroom. *Review of Science, Mathematics and ICT Education*, 6(1), 51–72.

Hammer, D., & van Zee, E. H. (2006). *Seeing the science in children's thinking: Case studies of student inquiry in physical science*. (Book and DVD) Portsmouth, NH: Heinemann.

Kang, H., & Anderson, C. W. (2015). Supporting preservice science teachers' ability to attend and respond to student thinking by design. *Science Education*, 99(5), 863–895.

Lau, M. (2010). *Understanding the dynamics of teacher attention: Case studies of how high school physics and physical science teachers attend to student ideas*. (Unpublished doctoral dissertation). University of Maryland, College Park.

Levin, D. M., & Richards, J. (2011). Learning to attend to the substance of students' thinking in science. *Science Educator*, 20(2), 1–11.

Lineback, J. E. (2016). The redirection: An indicator of how teachers respond to student thinking. *Journal of the Learning Sciences*, 24(3), 419–460.

McAllister, G., & Irvine, J. J. (2002). The role of empathy in teaching culturally diverse students a qualitative study of teachers' beliefs. *Journal of Teacher Education*, 53(5), 433–443.

National Research Council (NRC). (2012). *A framework for K–12 science education: Practices, crosscutting concepts, and core Ideas*. Washington, DC: National Academies Press.

Oxley, J. (2011). *The moral dimensions of empathy. Limits and applications in ethical theory and practice*. London, UK: Palgrave Macmillan.

Radoff, J., Robertson, A. D., Fargason, S., & Goldberg, F. (2018). Responsive Teaching and High-Stakes Testing. *Science and Children*, 55(9), 88–91.

Robertson, A. D., Scherr, R. E., & Hammer, D. (2016). *Responsive teaching in science and mathematics*. New York, NY: Routledge.

Sikorski, T. (2016). Understanding responsive teaching and curriculum from the students' perspective. In A.D. Robertson, R.E. Scherr, & D. Hammer (Eds.), *Responsive teaching in science and mathematics* (pp. 85–104). New York, NY: Routledge.

Tettegah, S., & Anderson, C. J. (2007). Pre-service teachers' empathy and cognitions: Statistical analysis of text data by graphical models. *Contemporary Educational Psychology*, 32(1), 48–82.

Warren, C. A. (2018). Empathy, teacher dispositions, and preparation for culturally responsive pedagogy. *Journal of Teacher Education*, 69(2), 169–183.

Table 1. Learning-to-Listen (LtL) Capstone math and science launch questions and reflection prompts

LtL Launch Questions	<p>Math-related Questions</p> <p>When using a balance scale with equally spaced ‘pegs’ on each side, if there are 20 grams on peg number six on one side, how can we use only 10 grams to balance the other side of the scale?</p>
	<p>Science-related Questions</p> <p>If we have a 10x10 square grid and all of the squares along the outside border are shaded, how can we determine the number of shaded squares along the border without counting one-by-one?</p>
LtL Video Analysis and Reflection Prompts	<p>If there is a string-and-washer pendulum swinging back-and-forth and we cut the string when the washer reaches its highest point, what path will the washer takes when it is cut?</p>
	<p>If there is an object on a ramp, will it always move down the ramp? What causes an object to move on a ramp?</p>
<p>Before you answer the questions, please watch the video from your Learning to Listen project closely. In your reflection paper, please address the following:</p>	
<p>General questions about the experience:</p> <ol style="list-style-type: none"> 1. What was your Learning to Listen (LtL) question and what grade level were your students? 2. Briefly describe any feelings or expectations you had about the LtL before teaching. 3. What was rewarding about this LtL experience? 4. What was challenging about the experience? 	
<p>Questions about student thinking:</p> <ol style="list-style-type: none"> 1. What are some interesting student ideas and student questions that came up? 2. What were some ideas or questions that you wished you followed up on? And how might you have followed up on them if you had the chance? 3. What did you learn about students? Please include in your response what you learned about the resources that they bring, the ways they can engage in science and math, and what they may need support with. 	
<p>Questions about yourself as a listener:</p> <ol style="list-style-type: none"> 1. What did you learn about yourself as a listener and facilitator and what aspects of your practice you hope to refine? 2. What were some of the emotions you experienced in this process? 3. If you were to do this again, what would you do differently? 	

Table 2. Descriptions of responsive teaching move codes with examples

Code Number	Code Description	Example(s) from PT LtL video data
1	Re-voicing student thinking	PT Caddie: So, what is friction? Student: Rubbing two things together. PT Caddie: You're saying how two things rub together , that would be friction?
2	Re-voicing with interpretation	Student: I [wrote] 'the ball will or won't go down because first it needs a force of motion PT Amy: It needs something to like push or pull it. Student: Yeah
3	Seeking to clarify student thinking and eliciting ideas	Student: The washer goes like this <moves arm in a swinging motion> then you get some scissors, snip, and then <moves arm straight down> PT Lizbeth: So you don't think that it could keep going up?
4	Pressing for explanation	PT Cesar: Alright, did you figure out the answer? Student: 40 PT Cesar: How'd you get 40?
5	Extending and expanding the substance of student ideas	Student: I did ten times four because there's four sides and then I did minus four because there's still corners. PT Melissa: So why did you take out the corners?
6	Responding to student affect and/or epistemological framing of the activity	PT Edrina: So, now that [Student A] said the number 14, that's kind of interesting because even though it's not on the scale, it can still be a possible answer. PT Amy: [Student J], I saw you kind of raising your hand, did you have a different idea? Student J: <6 seconds elapse> ummm... crap. I forgot. PT Amy: That's okay. We'll come back to you. We'll come back to you.
7	Synthesizing, tracking, and juxtaposing (comparing and contrasting) ideas	PT Hadley: So we think that when something's heavier, um, there's more force—the force could act more on it. Okay—well—that was <i>this</i> side of the room. [Student D] said that lighter would move faster.

8

Attending to the collective by asking students to respond to each other's ideas

Student: Can I say why it's not forty?

PT Melissa: Well, we'll get to that in just a second. **Does anyone have a different strategy for how they got to forty? So, we said four by ten. Is there any different strategy that anyone had?**

Table 3. Number of coded instances of responsive teaching (RT) moves for each PT*

PT	Code 1	Code 2	Code 3	Code 4	Code 5	Code 6	Code 7	Code 8	Total Coded Instances
Melissa	3	1	7	6	1	6	4	15	43
Amy	2	4	15	1	6	4	4	6	42
Jamie	4	2	7	10	5	2	3	4	37
Lizbeth		3	16	1	2		7	8	37
Marisol	2		8		1	3	5	14	33
Hadley	2	3	11	1		1	5	10	33
Caddie	3		8	3	2	1	1	7	25
Edrina	1	2	5	3	3	1	1	7	23
Cesar	2		14	1				5	22
Jett	1	2	6	6			1	1	17
Javier	1		10			1		3	15

*(Shaded boxes represent 0 instances)

Table 4. Profiles of PTs' responsiveness based on number of coded RT instances

Profiles of Responsive Teaching	Preservice Teachers	Total Coded Instances of RT
High	Melissa	43
	Amy	42
Upper Mid	Jamie	37
	Lizbeth	37
Mid	Marisol	33
	Hadley	33
Low Mid	Caddie	25
	Edrina	23
	Cesar	22
Low	Jett	17
	Javier	15

Table 5. Descriptions of epistemic empathy codes with examples (Author et al., 2018)

Code Number	Code Description	Example(s) from PT reflective data
1	Noticing and appreciating learners' epistemic affect by attending to the emotional and cognitive work that another is doing as a sense-maker	<p>They seemed happy to be able to share their ideas, and kids who normally put their heads down for the whole class were participating. – PT Amy</p>
2	Explaining and justifying the reasoning or actions of another by noticing the substance of their ideas or the dynamics and patterns in their sensemaking	<p>I was worried that a student's idea wasn't being heard and that it would discourage them [from discussing] it more. – PT Cesar</p>
3	Identifying merits in ideas by attending to the productive potential of their sensemaking and reasoning rather than critiquing ideas for correctness or a lack of canonical alignment	<p>Connecting real-world examples that the students have witnessed, or previously learned schemas, is a key part of a student's understanding of a lesson. This was clear in my "Learning to Listen project" when the students tied in the idea of friction to the ramp, and how the addition of butter would affect the object rolling down. – PT Caddie</p>
4	Anticipating ideas, feelings, and epistemic experiences of others by projecting into someone else's mind or ways of thinking	<p>I think the most powerful thing that I learned about was how every idea is important and should be investigated for the full picture behind it, because what the student says may only be a tiny portion of the full idea they are trying to convey. I think it has been important to learn about how each idea can be delved into and productive beginnings can be found and built upon in every idea. – PT Melissa</p>
5	Expressing curiosity and interest in another's reasoning by displaying an inquisitive stance toward their ideas, expressing interest in hearing and eliciting their reasoning, and demonstrating a willingness and desire	<p>I could ask them what it means to have two different answers. This could have brought a different discussion about how there might be some places where you could have different right answers. – PT Cesar</p> <p>I wished I could have followed up, without making [the student] feel like she was put on the spot. [I wonder] why she thought that friction would make it go faster. She said one time she thought that if the object and the ramp were smooth it would be easier to go</p>

	<p>to pursue and co-construct lines of reasoning with others</p>	<p>down. So, I would have liked to follow up with how she got from there to friction [causing objects to] speed up. – PT Hadley</p>
6	<p>Tapping into and channeling one's own personal experiences as a learner in order to connect to someone else's intellectual and emotional experiences</p>	<p>I want to challenge the students and encourage them to continue being curious. In my experience in school, I would always want to question everything and my teachers would limit me and told me that whatever I was learning was all that I needed to know. I want to encourage the students for being so engaged and wanting to learn more about the topic. – PT Marisol</p>
7	<p>Recognizing the importance of listening to, understanding, and taking seriously learners as capable sense-makers by reflecting on learners' potential to engage in learning through responsive teaching</p>	<p>You can try to anticipate how students will think and how you'll respond, but ultimately you need to be responsive in the moment to student thinking. Meeting students where they are in terms of their understanding, and truly listening and being responsive to their reasoning and emotions is important. – PT Amy</p>

Table 6. Number of coded instances of EE from PTs' written reflections*

	Code 1	Code 2	Code 3	Code 4	Code 5	Code 6	Code 7	Total Coded Instances of EE
Melissa	1	2	7	2	6	2		20
Amy	5	2		3	5		2	17
Lizbeth	5	3	3		2		2	15
Jamie	4	1	2	1	4		2	14
Marisol	1	1	3	1	2	3		11
Hadley	1		3	1	4	1		10
Caddie	1	3	1		2			7
Edrina		1	1	4	1			7
Cesar	2		1	1	3	1		8
Jett	4		1			2		7
Javier	3							3

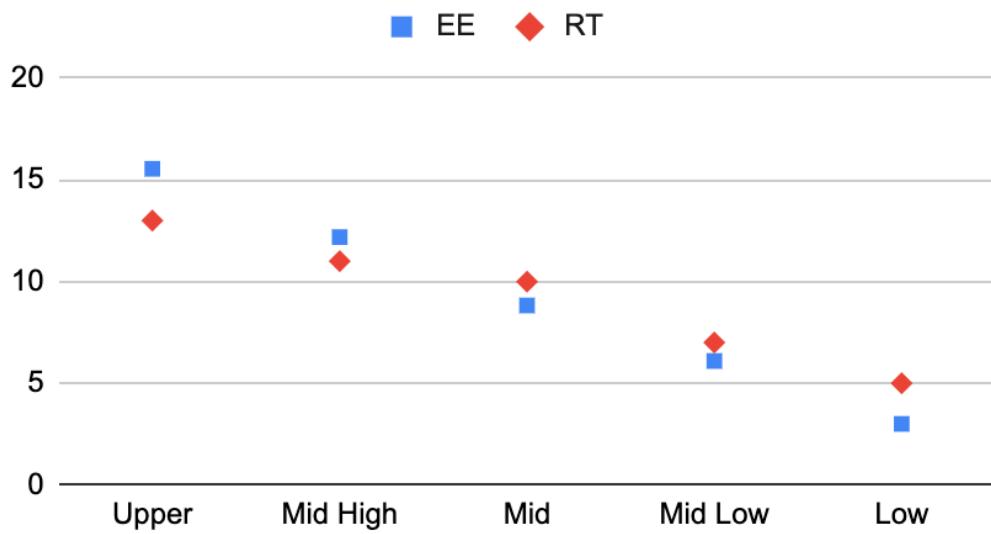

*(Shaded boxes represent 0 instances)

Table 7. Profiles of PTs' epistemic empathy based on number of coded EE instances

Profiles of Epistemic Empathy	Preservice Teachers	Total Coded Instances of EE
High	Melissa	20
	Amy	17
Upper Mid	Lizbeth	15
	Jamie	14
Mid	Marisol	11
	Hadley	10
Low Mid	Caddie	7
	Edrina	7
	Cesar	8
	Jett	7
Low	Javier	3

Table 8. Association between EE and RT profiles for each PT

Profiles of Association between EE and RT	Preservice Teacher	Total Coded Instances of EE	Total Coded Instances of RT
High	Melissa	20	43
	Amy	17	42
Upper Mid	Lizbeth	15	37
	Jamie	14	37
Mid	Marisol	11	33
	Hadley	10	33
Low Mid	Caddie	7	25
	Edrina	7	23
	Cesar	8	22
Low Mid // Low (Boundary case)	Jett	7	17
Low	Javier	3	15

Figure 1. Visualization of the association between epistemic empathy (EE) and responsive teaching (RT). The y-axis represents the overall percentage of the average EE and RT instances for each profile with respect to the total number of coded instances across all the data for EE and RT respectively.