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Neural sequence-to-sequence models are the state-of-the-art approach used in abstractive summarization of textual documents, useful
for producing condensed versions of source text narratives without being restricted to using only words from the original text. Despite
the advances in abstractive summarization, custom generation of summaries (e.g. towards a user’s preference) remains unexplored. In
this paper, we present CATS, an abstractive neural summarization model that summarizes content in a sequence-to-sequence fashion
while also introducing a new mechanism to control the underlying latent topic distribution of the produced summaries. We empirically
illustrate the efficacy of our model in producing customized summaries and present findings that facilitate the design of such systems.
We use the well-known CNN/DailyMail dataset to evaluate our model. Furthermore, we present a transfer-learning method and
demonstrate the effectiveness of our approach in a low resource setting, i.e. abstractive summarization of meetings minutes, where
combining the main available meetings’ transcripts datasets, AMI and ICSI, results in merely a few hundred training documents.
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1 INTRODUCTION

Automatic document summarization is defined as producing a shorter, yet semantically highly related version of a
source document. Solutions to this task are typically classified into two categories: extractive summarization and
abstractive summarization.

Extractive summarization selects sentences of a source text based on a scoring scheme, and combines those exact
sentences in order to produce a summary. Conversely, abstractive summarization aims at producing shortened versions
of a source document by generating sentences that do not necessarily appear in the original text. The majority of
traditional research on text summarization has focused on extractive summarization [5, 27] due to its simplicity

1This article has some textual overlap with the PhD thesis of the first author [3].
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compared to abstractive methods. Recent advances in neural sequence-to-sequence modeling, however, have sparked
interest in abstractive summarization due to its flexibility and broad range of applications.

Summarization is extensively used in domains such as news articles [33, 37], minute-taking in corporate meetings [35]
or electronic health records [14], to name a few. Aside from providing generic summaries of passages of text, there
are applications to Information Retrieval (IR) scenarios in which the retrieval system summarizes results rather than
merely retrieve them. For instance, search engines are increasingly presenting summaries, mash-ups and digests of
relevant documents in the form of natural language answers to user queries. Automatic summarization lends itself for
key use cases in mobile search [1] and scenarios involving communication with search engines via voice. Previous
research on voice-based search shows that merely reading out the textual output of a search engine result page is an
insufficient interaction paradigm [32] for a user. Furthermore, the underlying components of a spoken conversational
search system (where communication between user and system is mediated verbally through voice) will need to operate
differently from a traditional IR system [12, 36]. A recent user study [38] on conversational search has observed the
importance of document summarization when presenting results of users’ spoken search queries. In fact, the ideal
voice-based assistant would summarize the key points of particular relevance for a certain searcher. This paper presents
a novel abstractive summarization framework as a first step towards this vision.

In this paper, we introduce CATS, a Customizable Abstractive Topic-based sequence-to-sequence Summarization
model, which is not only capable of summarizing text documents with high quality, but also allows to selectively focus
on a range of desired topics of interest when generating summaries. Our experiments corroborate that our model
can selectively add or remove specific topics from the summary. Furthermore, our experimental results on a publicly
available dataset indicate that the proposed neural sequence-to-sequence model can be effectively fine-tuned to perform
abstractive summarization in a low-resource setting. Moreover, we discuss a number of findings in the process of
developing an abstractive summarization model with the ability to customize summaries. The main contributions of
this article are:

(1) We introduce a novel neural sequence-to-sequence model based on an encoder-decoder architecture which
leverages topic modeling to perform customizable abstractive summarization.

(2) We introduce a novel attention mechanism [2] named topical attention that may be used for simultaneously
identifying important topics as well as recognizing those parts of the encoder output that are vital to be focused
on.

(3) We extensively evaluate our model in customizing summaries, general abstractive summarization, as well as
summarization in low-resource settings.

The remainder of this paper is organized is as follows: Section 2 discusses related work on abstractive neural
summarization. In Section 3, we introduce the CATS summarization model. In Section 4, we discuss our experimental
setup and results showing the efficacy of CATS in custom generation of summaries. Furthermore, we present a transfer-
learning approach to summarization of small size datasets and we conduct a ROUGE-based evaluation. In Section 5, we
present a discussion on the potential use cases of CATS, other potential means of custom summary generation, and
how the topical attention can be adapted to other sequence-to-sequence problems. Finally, in Section 6, we conclude
with a discussion on future directions of inquiry.
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2 RELATEDWORK

Prior to the rise of neural sequence-to-sequence models there had been limited interest in the area of abstractive
summarization. TOPIARY was an abstractive model proposed in 2004 by Zajic et al. [48] which showed superior results
in the DUC-2004 task. This model used a combination of linguistically motivated compression techniques and an
unsupervised topic detection algorithm that inserts keywords extracted from the article into the compressed output.
Some other notable work in the task of abstractive summarization includes using traditional phrase table-based machine
translation approaches [7] and compression using weighted tree transformation rules [11].

Recent work approaches abstractive summarization as a sequence-to-sequence problem. In this section, we first
briefly review some of the most important research in this domain. In order to do so we divide the literature into two
categories of models that are mostly trained from scratch while requiring lower computational resources for training
and those models which are based on fine-tuning already existing models that exhibit high computational demand both
for training the base models as well as fine-tuning. Then we focus on the use of topic models in previous abstractive
summarization research.

2.1 Seq2seq Abstractive Summarization Models Trained from Scratch

One of the early deep learning architectures that was shown to be effective in the task of abstractive summarization was
the Attention-based Encoder-Decoder [28] proposed by Bahdanau et al. [2]. This model had originally been designed
for machine translation, where it defined the state of the art.

Attention mechanisms are shown to enhance the basic encoder-decoder model [2]. The main bottleneck of the basic
encoder-decoder architecture is its fixed-sized representation ("thought vector"), which is unable to capture all the
relevant information of the input sequence as the model or input scaled up. However, the attention mechanism relies
on the notion that at each generation step, only parts of the input are relevant. In this paper, we build on the same
notion to force our proposed model to attend to parts of the input which together represent a semantic topic.

Based on the Attention-based encoder-decoder architecture, several models were introduced. The Pointer Generator
Network (PGN) [41] was applied by See et al. [33] to the task of abstractive summarization. This model aims at solving
the challenge of out-of-vocabulary words and factual errors. The main idea behind this model is to choose between
either generating a word from the fixed vocabulary or copying one from the source document at each step of the
generation process. It incorporates the power of extractive methods by “pointing” [41]. At each step, a generation
probability is computed, which is used as a switch to choose words from the target vocabulary or the source document.
Our model differs from the PGN firstly in the use of a different attention mechanism which forces the model to
focus on certain topics when generating an output summary. Secondly, our model enables the selective inclusion or
exclusion of certain topics in a generated summary, which can have several potential applications. This is done by
incorporating information from an unsupervised topic model. By definition, topic models are hierarchical Bayesian
models of discrete data, where each topic is a set of words, drawn from a fixed vocabulary, which together represent a
high-level concept [42]. According to this definition, Blei et al. introduced the Latent Dirichlet Allocation (LDA) [8]
topic model. We further elaborate on the connection between this and our model in Section 3.

The work of [29] is another approach which utilizes reinforcement learning to optimize ROUGE L, such that sub-
sequences similar to a reference summary are generated. Similar to [33] they also use the pointer generator mechanism
to switch between generating a token or extracting it from the source.

3
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Gehrmann et al. [15] propose using a content selector to select phrases in a source document that should be part of a
generated summary. Likewise, [25] introduce an information selection layer to explicitly model the information selection
process in abstractive document summarization. They perform information filtering and local sentence selection in
order to generate summaries. The two latter approaches report best performances on the CNN/DailyMail benchmark.
Our proposed model relies on information selection in the form of topics.

2.2 Seq2seq Abstractive Summarization Models developed by Fine-tuning Pre-trained Models

The introduction of Transformer architectures and their proven efficacy in various natural language sequence-to-
sequence problems is the latest major shift in the automatic document summarization field. Here we briefly review
some of the latest developments in the space.

One of the top Transformer-based models is UniLM (Unified Pretrained Language Model)[13] from Microsoft. “The
model architecture of UNILM follows that of BERTLARGE” [13]. The GELU [20] activation is used as in the GPT [30]
model. They use a 24-layer Transformer with 1, 024-dimensional hidden layers, and 16 attention heads, containing
about 340𝑀 parameters. “UNILM is initialized by BERTLARGE, and then pre-trained using English Wikipedia and the
BookCorpus” [13]. Subsequently, this model is fine-tuned using summarization training data.

Another important model in this category is the T5 (Text-to-Text Transfer Transformer) model from Google [31] that
uses transfer-learning on the Transformer architecture introduced by Vaswani et al. [40]. The authors study a number
of variants of the Transformer architecture and finally fine-tune them on different natural language processing tasks.

The next model that is noteworthy in this domain is BART [24] by Facebook. BART is a denoising autoencoder for
pretraining sequence-to-sequence natural language processing models. BART is trained by “corrupting text with an
arbitrary noising function, and learning a model to reconstruct the original text” [24]. Similar to the T5 model, BART too
is based on the Transformer architecture proposed by Vaswani et al. [40] while using a number of noising approaches,
such as token masking, token deletion, randomly shuffling the order of the original sentences and a novel in-filling
scheme, where spans of text are replaced with a single mask token. The only major difference to the Transofrmer
architechture is that, following GPT, the authors replace ReLU activation functions by GeLUs [20]. They also state that
their proposed architecture “is closely related to that used in BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over the final hidden layer of the encoder (as in the transformer
sequence-to-sequence model); and (2) BERT uses an additional feed-forward network before word prediction, which
BART does not” [24]. For text generation tasks such as abstractive summarization, BART is then fine-tuned on in-domain
data.

The final model in this category that we review is ProphetNet [47], which currently represents the state-of-the-
art in abstractive summarization. This model also utilizes the Transformer architecture [40]. The main difference of
ProphetNet is changing the original sequence-to-sequence optimization problem of predicting the next single token into
predicting the 𝑛 next token simultaneously. They show that this approach outperforms all other baselines in abstractive
summarization in terms of ROUGE scores.

2.3 Use of Topic Models in Summarization

There has also been previous work utilizing topic information in sequence-to-sequence problems such as neural response
generation [45]. The work of Xing et al. uses a topic model named Twitter LDA which is used in responding to messages.
Aside from the different objective, this work is different from ours in that firstly, Twitter LDA assumes the existence of
only a single topic per document. This assumption may be true for tweet-length texts but will not hold in summarization

4
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of longer news articles. Secondly, the topic embeddings are derived from the source document and aggregated in a very
different way than ours.

The use of LDA topic information in neural abstractive summarization has been considered by Wang et al. [43].
Our work fundamentally differs from theirs not only in that they use a reinforcement learning approach along with
convolutional neural networks optimizing directly on ROUGE, but also that our proposed model learns topic embedding
weights at training time and does not use any topic information at test time. Moreover, they use topic embeddings of a
source document while we use the topics of a target summary. Additionally, previous research [22] shows that while
optimizing on ROUGE naturally results in a high ROUGE score, the readability of summaries produced by such systems
can be poor compared with that of methods optimizing summarization losses like the one proposed in this work.

In summary, topic information has been used in previous neural models as an input, and Wang et al. [43] argue that
it results in the diversification of words appearing in summaries. However, the novelty of our approach lies in using
topic information to systematically influence the output summary and steer the generation mechanism to focus on
certain topics only, allowing us to remove or downweight unwanted topics from an output summary. The experimental
section empirically demonstrates the merit of this approach, not only for customizing summaries, but also for achieving
a high performance in terms of ROUGE scores. More importantly, we demonstrate via a user study that CATS can
effectively control the topics present in a generated summary.

3 PROPOSED MODEL: CATS

3.1 Model Overview

Our abstractive summarization method CATS is a neural sequence-to-sequence model based on the attention encoder-
decoder architecture [28]. Additionally, we incorporate the concept of pointer networks [41] into our model, which
enables copying words from the source side while also being able to generate words from a fixed vocabulary. Furthermore,
we introduce a novel attention mechanism controlled by an unsupervised topic model. This ameliorates attention by
way of focusing not only on those words which it learns as important for producing a summary (as in the standard
attention mechanism), but also by learning the topically important words in a certain context. We refer to this novel
mechanism as topical attention. Over the encoder-decoder training steps, the model parameters adapt in a way to
learn the topics of each document. During testing, when the model decoder generates summaries of test documents, it
therefore no longer requires the input information from the topic model, as it learns a generalized pattern of the word
weights under each topic.

We depict our model in Figure 1. In the following we describe the various components of our model.

3.2 Encoder & Decoder

Prior to encoding, all documents are pre-processed in the same way as [33] where the Stanford CoreNLP package is
used to tokenize sentences.

The tokens of a document (i.e. extracted by a document tokenizer) are given one-by-one as input to the encoder layer.
Our encoder is a single-layer Bi-directional Long Short Term Memory (BiLSTM) network [16]. The network outputs a
sequence of encoder hidden states ℎ𝑖 , each state being a concatenation of forward and backward hidden states, as in [2].

At each decoding time step 𝑡 , the decoder receives as input 𝑥𝑡 the word embedding of the previous word (while
training, this is the previous word of the reference summary and at test time it is the previous word output by the
decoder) and computes a decoder state 𝑠𝑡 . Our decoder is a single-layer Long Short Term Memory (LSTM) network [17].

5
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Fig. 1. The architecture of our proposed model.

3.3 Topical Attention

We propose the topical attention distribution 𝑎𝑡 to be calculated as a combination of the usual attention weights as
in [2] and a "topical word vector" derived from a topic model. We use LDA [8] as the topic model of choice. We chose
LDA because: (1) it performs well as a component of CATS for yielding competitive summarization performance, (2)
it is convenient to implement and use as its available in a few efficient topic modeling libraries, (3) and finally LDA
assigns words, probabilities between 0 and 1 while the probability scores of all words in each topic sums up to 1. This
facilitates the fusion of these scores with attention weights, which are then fed to a softmax function without the need
for additional normalization steps.

In order to compute the topical attention weights, after training an LDA model using the training data, we map
the target summary corresponding to each document to its LDA space. This gives us the strength of each topic in
each target summary. Furthermore, since for each topic we also have the probability scores of each word in a fixed
vocabulary V , for a given document 𝑑 we could calculate a topical word vector 𝜏𝑑 of dimension |V| considering all the
words in that document, such that:

𝜏𝑑 =
∑
𝑖

𝑃 (topic𝑖 |𝑑) · w̃𝑖 (1)

where 𝑃 (topic𝑖 |𝑑) is the probability of each LDA topic being present in the target summary, and w̃𝑖 is the |V|-dimensional
vector consisting of the probabilities 𝑤̃𝑖, 𝑗 = 𝑃 (word𝑗 |topic𝑖 ) of all words in vocabulary V under topic𝑖 .

6



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

CATS: Customizable Abstractive Topic-based Summarization TOIS ’21, 2021, Woodstock, NY

Then, for an input sequence of length 𝐾 , we compute the final attention vector 𝑎𝑡 ∈ R𝐾 at decoding step 𝑡 as:

𝑒𝑡
𝑘
= 𝑣𝑇 tanh(𝑊ℎℎ𝑘 +𝑊𝑠𝑠𝑡 + 𝑏attn) (2)

𝑎𝑡 = 𝑓 (𝑒𝑡 , 𝜏𝑑 ) (3)

where 𝑒𝑡 ∈ R𝐾 is a precursor attention vector, ℎ𝑘 ∈ R𝑛 represents the 𝑘-th encoder hidden state and 𝑠𝑡 ∈ R𝑙 the
decoder state at decoding step 𝑡 , while 𝑣 ∈ R𝑚 ,𝑊ℎ ∈ R𝑚×𝑛 ,𝑊𝑠 ∈ R𝑚×𝑙 , 𝑏attn ∈ R𝑚 are learnable parameters. Function
𝑓 combines the topical word vector with the precursor attention vector. In order to combine the two, we define 𝑓 as the
following distribution over the input sequence:

𝑎𝑡 =
softmax(𝑒𝑡 ) + softmax(𝜏𝑑 )

2
(4)

where 𝜏𝑑 ∈ R𝐾 denotes the "reduced" topical word vector which is formed by selecting the 𝐾 components of 𝜏𝑑 ∈ R |V |

corresponding to the 𝐾 words of the input sequence.
The attention distribution can be viewed as a probability distribution over the words from the source document,

which tells the decoder where to look to produce the next word. Subsequently, the attention distribution is used to
produce a weighted sum of the encoder hidden states, known as the context vector ℎ∗𝑡 ∈ R𝑛 , as follows:

ℎ∗𝑡 =
∑
𝑘

𝑎𝑡
𝑘
· ℎ𝑘 (5)

The context vector, which is a fixed-sized representation of what has been read by the encoder at this step, is
concatenated with the decoder state 𝑠𝑡 and the result is linearly transformed and passed through a softmax function to
produce the output distribution 𝑃V (𝑤) over all words𝑤 in vocabulary V:

𝑃V = softmax(𝑉 [𝑠𝑡 , ℎ∗𝑡 ] + 𝑏) (6)

where 𝑉 ∈ R |V |×(𝑛+𝑙) and 𝑏 ∈ R |V | are learnable parameters.

3.4 Pointer Generator

Another component of our proposed model is a copy mechanism [19]. The idea behind the pointer generator is to
circumvent the limitations of pure abstraction when it comes to factual content such as names, dates of events, statistics
and other content that requires copying from the source document to produce a correct summary. The basic encoder-
decoder architecture often makes mistakes with people’s names or other factual content while generating a summary.
As a remedy, pointer networks [41] were introduced in the machine translation domain. We utilize the concept of
pointer generators in our model, in order to give our model the flexibility of choosing between generating a word from
a fixed vocabulary or copying it directly from source when needed.

We define 𝑝𝑔 as a generation probability such that 𝑝𝑔 ∈ [0, 1]. We calculate 𝑝𝑔 for time step 𝑡 from the context vector
ℎ∗𝑡 , the decoder state 𝑠𝑡 and the decoder input 𝑥𝑡 as:

𝑝𝑔 = 𝜎 (𝑤𝑇
ℎ∗ℎ

∗
𝑡 +𝑤𝑇𝑠 𝑠𝑡 +𝑤𝑇𝑥 𝑥𝑡 + 𝑏𝑝𝑡 ) (7)

where vectors𝑤ℎ∗ ,𝑤𝑠 ,𝑤𝑥 , and scalar value 𝑏𝑝𝑡 are learnable parameters and 𝜎 is a sigmoid function.
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Subsequently, 𝑝𝑔 is used to linearly interpolate between copying a word from the source (specifically, to copy from
the source document we sample over the input words using the attention distribution) and generating it from the fixed
vocabulary using 𝑃V of Eq. (6).

For each document, we define the union of the fixed vocabulary V and all words appearing in the source document
as the "extended vocabulary". Using the linear interpolation described above, the final probability distribution over the
extended vocabulary is:

𝑃 (𝑤) = 𝑝𝑔𝑃V (𝑤) + (1 − 𝑝𝑔 )
∑

∀𝑖:𝑤𝑖=𝑤

𝑎𝑡𝑖 (8)

In Equation (8), we note that if a word𝑤 would be out-of-vocabulary, then 𝑃V (𝑤) would be equal to zero. Analogously,
if𝑤 does not appear in the source document, then

∑
∀𝑖:𝑤𝑖=𝑤 𝑎

𝑡
𝑖
would be equal to zero. In expectation, the most likely

words under this new distribution are the ones that both receive a high likelihood under the output distribution of
the decoder, as well as much attention by the attention module. Words with a high likelihood under the initial output
distribution, which however receive little to no attention, will be generated with a reduced probability, while words
receiving much attention, even if they receive a low likelihood by the decoder or do not even exist in the vocabularyV ,
will be generated with an increased probability.

Therefore, by being able to switch between out-of-vocabulary words and the words from the vocabulary, the pointer
generator model mitigates the problem of factual errors or the lack of sufficient vocabulary in the output summary.

3.5 Coverage Mechanism

The coverage mechanism [39] is a method for keeping track of the level of attention given to each word at all time
steps. In other words, by summing the attention at all previous steps, the model keeps track of how much coverage
each encoding has already received. This mechanism alleviates the repetition problem, which is a very common issue
in recurrent neural networks with attention.

We follow [46] and define the coverage vector 𝑐𝑡 ∈ R𝐾 simply as the sum of attention vectors at all previous decoding
steps:

𝑐𝑡 =

𝑡−1∑
𝑖=0

𝑎𝑖 (9)

First, the coverage vector is taken into account when calculating the attention vector by adding an extra term and
modifying Equation (2) as follows:

𝑒𝑡
𝑘
= 𝑣𝑇 tanh(𝑊ℎℎ𝑘 +𝑊𝑠𝑠𝑡 + 𝑐𝑡𝑘 ·𝑤𝑐 + 𝑏attn) (10)

where𝑤𝑐 ∈ R𝑚 is a learnable parameter vector of the same length as 𝑣 .
Second, following [33], we use the coverage vector to introduce an additional loss term, which is added to the original

negative log-likelihood loss after being weighted by hyperparameter 𝜆, to produce the following total loss at decoding
step 𝑡 :

L𝑡 = − log 𝑃 (𝑤𝑡 |𝑤<𝑡 ) + 𝜆
𝑘∑
𝑖=0

min(𝑎𝑡𝑖 , 𝑐
𝑡
𝑖 ) (11)

This additional loss term encourages the attention module to redistribute attention weights by placing low weights
to input words which have already received much attention throughout previous decoding steps. The overall loss for
the entire output sequence of length 𝑇 is the average loss over all 𝑇 decoding steps.
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Table 1. Statistics of our meeting datasets.

minutes ave. #tokens per doc. ave. #tokens per summary minimum #tokens median #tokens maximum #tokens #meetings
AMI 4868 5843 283 892 5998 11552 142
ICSI 3513 13080 449 2785 12605 22573 61
ADSC NA 446 118 152 482 1383 45

3.6 Decoding

In order to generate the output summaries we use beam search. During evaluation of the model using the test data,
contrary to training, we do not provide the model with any topical information from our trained LDA topic model. As a
result, at this stage the right side of Equation 4 turns into the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑡 ) only. We believe that during training, the
model parameters are optimized to best take advantage of the provided topical attention distribution, implicitly learning
patterns of topic-words weights.

4 EVALUATION

In this section, we introduce our experimental setting, including details of our datasets, baseline models, and evaluation
metrics. Finally, we present the experimental results.

4.1 Datasets

4.1.1 The CNN/DailyMail dataset. We use the CNN/DailyMail dataset [21, 28], which contains news articles from the
CNN and Daily Mail websites. The experiments reported in this paper are based on the non-anonymized version of the
dataset, containing 287,226 pairs of training articles and reference summaries, 13,368 validation pairs, and 11,490 test
pairs. On average, each document in the dataset contains 781 tokens paired with multi-sentence summaries (56 tokens
spread over 3.75 sentences). The non-anonymized version of the dataset was chosen as it presents a more realistic news
wire summarization scenario.

Similar to [28, 33], we use a range of pre-processing scripts to prepare the data. This includes the use of the Stanford
CoreNLP tokenizer to break down documents into tokens. For greater transparency and reproducibility of our results,
we make all pre-processing scripts available together with our code base.

4.1.2 The meetings dataset. For our empirical investigation, we compile the available datasets that have been used in
previous work on meeting summarization.

For this purpose, we gathered data from the well-known AMI dataset2 as well as the ICSI dataset3 which are the only
publicly available datasets of real-world meetings. AMI contains two categories of meetings between 2 to 4 participants.
The first collection consists of freestyle meetings where the participants can decide on the topics of discussions, and
targeted ones about designing technology products (e.g., a remote control).

The ICSI dataset, on the other hand, contains weekly group meetings of academic groups of 3 to 10 participants. Both
AMI and ICSI are face-to-face meetings that were initially audio recorded and then later transcribed. The reference
summary of each meeting is then given by the manually created minutes that were taken by the original meeting
participants.

We randomly divide the AMI and ICSI datasets in a 50-50 split to construct a training set as well as a test set. As a
result, we end up with 101 real-world meetings as our test set and the remaining ones as the training set.
2http://groups.inf.ed.ac.uk/ami/download/
3http://groups.inf.ed.ac.uk/ami/icsi/download/
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In order to increase the size of our training set we also add the Argumentative Dialogue Summary Corpus (ADSC)
dataset4 to our training set. The ADSC is composed of online conversations on topics of societal and political relevance
such as gun control, gay marriage, the death penalty and abortion. Table 1 presents detailed statistics on all three
datasets.
Challenges of Meeting Summarization: Most summarization research has focused on news documents for reasons
of data availability. However, in addition to the small size of the existing meeting datasets, there are other aspects
that make meeting summarization more challenging: (1) Most news articles are first-person narratives about a single
event. Meetings, on the other hand, have a very different structure involving a dialogue between two or more parties.
(2) Meetings are composed of spoken utterances between people, whereas their summaries and minutes are usually
formulated from a third-person point of view by the human scribe. Therefore, meeting summarization also requires a
change of structure from dialogue to a third-person narrative summarizing events. (3) Meetings can touch on multiple
topics and are not restricted in terms of topical coherence. (4) Meeting transcripts include broken sentences, colloquial
expressions, false starts and flawed grammar, all of which virtually never occur in carefully curated news articles. As an
example, here is an excerpt from a meeting in one of the meeting datasets used in this paper which contains most of
these flaws:
"mm-hmm . so sh . i ’m a bit confused about uh what ’s the difference between the functional design and conceptual design

? uh i is it just uh more detail , uh as i understand it ? right . how how it will be done . so whe where do we identify the

components of our uh product ? "

These issues are a common challenge of meeting transcripts and are noticeable in every meeting in the meeting
datasets used in this article. Therefore, we also include the meetings dataset to also tackle a very different summarization
problem as a low-resource example and show how to achieve reasonable results using our proposed model.

4.2 Baseline Models

In this section We empirically compare CATS with several abstractive baselines as follows:
• Attention-based encoder-decoder [28]: this abstractive model was one of the early encoder-decoder models which
showed strong performance on summarization tasks.

• PGN and PGN+Coverage [33]: this model has been shown to effectively overcome the problem of OOV words.
• RL with Intra-Attention [29]: this model implements reinforcement learning to optimize summaries directly based
on the evaluation metric ROUGE L. As a result, it is expected that this model would achieve a high ROUGE L
performance.

• BottomUpSum [15]: this method uses a two-step process to generate a summary. First, it uses a content selector to
identify phrases in a source document that should be part of the summary. Second, it generates a summary of the
pre-selected phrases.

• InformationSelection [25]: this paper proposes to extend the basic attention-based encoder-decoder architecture with
an information selection layer to explicitly model and optimize the information selection process. The proposed
information selection layer consists of global information filtering and local sentence selection. After this step, a
summary is generated using the selected sentences.

• ML+RL ROUGE+Novel, with LM [23]: this model aims at improving the level of abstraction of generated summaries,
by generating novel sentences. In order to do so, they decompose the decoder into a contextual network that retrieves

4https://nlds.soe.ucsc.edu/node/30
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relevant parts of the source document, and use a pre-trained language model that incorporates prior knowledge
about language generation.

• UnifiedAbsExt [22]: this model combines extractive and abstractive summarization in an end-to-end learnable
framework. Sentence-level attention is used to modulate the word-level attention such that words in less attended
sentences are less likely to be generated.

• RNN-EXT + ABS + RL + Rerank [10]: in this model, first salient sentences are selected. Then the selected sentences are
rewritten abstractively. These two steps are done using two separate neural networks. Furthermore, a sentence-level
policy gradient method is used to bridge the non-differentiable computation between the two neural networks in a
hierarchical way.

• UniLM [13]: As described in Section 2.2 UniLM is a language model whose architecture follows that of BERTLARGE
and is also initialized by this model, but slightly modified its activation function and further fine-tuned for abstractive
summarization.

• T5 [31]: This work is also explained in Section 2.2. This model is also based on the Transformer architecture introduced
by Vaswani et al. [40].

• BART [24]: BART is another top performing summarization model based on the Transformer architecture. The main
contribution is the use of various noising technique for corrupting input text. For further details we refer to Section
2.2.

• ProphetNet [47]: The ProphetNet is yet another model based on the Transformer architecture explained in Section 2.2.
The idea behind the ProphetNet is changing the original sequence-to-sequence optimization problem of predicting
the next single token into predicting the 𝑛 next token simultaneously.

4.3 Evaluation Metrics

Following standard practice, we evaluate our proposed model against the baseline methods in terms of 𝐹1 ROUGE 1,
𝐹1 ROUGE 2, and 𝐹1 ROUGE L scores using the official Perl-based implementation of ROUGE [26]. Furthermore, by
means of human evaluation, we assess the readability and informativeness of summaries generated by CATS, as well as
CATS’s capability to customize summaries given a set of topics.

4.4 Experimental Results

We specify our model parameters as follows: the hidden state dimension of RNNs is set to 256, the embedding dimension
of the word embeddings is set to 128, and the mini-batch size is set to 16. Furthermore, the truncated source lengths
is set to 400 and the truncated target summary lengths is set to 100. In decoding mode (i.e. generating summaries on
the test data) the beam size is 4 and the minimum target length which determines the minimum length of a generated
summary is set to 35. Finally, the size of the vocabulary that CATS uses is set to 50,000 tokens.

To train a topic model we run LDA over the training data. LDA returns 𝑀 lists of keywords representing the latent
topics discussed in the collection. Since the actual number of underlying topics (𝑀∗) is an unknown parameter in the
LDA model, it is important to estimate it. For this purpose, similar to the method proposed in [4, 6, 18], we went through
a model selection process. It involves keeping the LDA parameters (commonly known as 𝛼 and 𝜂) fixed, while assigning
several values to 𝑀 and running the LDA model for each value. We picked the model that minimizes the negative
log 𝑃 (𝑊 |𝑀), where𝑊 contains all the words in the vocabulary of all the documents in the training data. This process
is repeated until we have an optimal number of topics. The training of each LDA model takes nearly a day, so we could

11



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

TOIS ’21, 2021, Woodstock, NY Seyed Ali Bahrainian, George Zerveas, Fabio Crestani, and Carsten Eickhoff

only repeat it for a limited number of𝑀 values. In particular, we trained the LDA model with values𝑀 ranging from 50
up to 500 with an increment of 50, and the optimal value on the CNN/Dailymail dataset was found to be 100.

The experiments reported in this paper were conducted using a Tesla V100 GPU with 18GB of RAM per node.
Based on the setup described above, in the following we present our experiments evaluating our proposed model

against baselines.

4.4.1 Automatic Evaluation of Topic Customization. We first evaluate CATS in generating summaries on pre-defined
topics. In order to do that we remove two topics from the output of the topic model, fine-tune the trained summarization
model for a few additional training steps and compute the presence/absence of the two topics in the generated summaries.

The first topic is related to health care and its top five keywords are “dr”, “medical”, “patients”, “health”, and “care”.
The second topic is related to police arrests and charges with its top five words being “charges”, “court”, “arrested”,
“allegedly”, and “jailed”. Using the LDA model described in Section 4.4, we determine the topics of all human written
summaries from the CNN/DailyMail test set. Our investigation shows that there are 752 human written summaries with
the health care topic and 1,326 documents with the police arrests and charges topic. After we remove these two topics as
explained above and generate summaries, we find out that the number of generated summaries of the same documents
with the health care topic drops down to 64 and the number of generated summaries with police arrests and charges

drops down to 255. This shows a significant decrease in the presence of the two topics in the generated summaries.
Furthermore, as a reference point we examine the summaries produced by CATS without any topics removed. Our
findings reveal that summaries produced by CATS have topic distributions very similar to those of human written
summaries. Specifically, the number of documents containing the health care topic is 752 while the corresponding
number for the police arrests and charges is 1317. These near-identical numbers were expected as CATS is trained to
learn topics from target summaries.

Although, this automatic evaluation shows a clear effectiveness in removing topics from summaries, it does come
with a certain limitation. For example, since different topics can share the same words among them, it might happen
that certain shared words that belong to more than one topic cause an error in our evaluation. Moreover, the copy
mechanism that is adopted in our model, may copy certain names from the source document that can contain words
that form a topic to be removed, e.g. World Health Organization. This is the reason why the numbers of topic presences
in the generated summaries although significantly lower, but cannot reach 0. Therefore, in the following subsection we
also conduct a human evaluation of the customized summaries.

This experiment clearly showed the effectiveness of CATS in removing topics from summaries, when compared with
both the human written summaries and the output summaries of the standard CATS.

4.4.2 Human Evaluation of Customizing Summaries. In this section, we describe the human evaluation results of CATS’s
capability to include only certain topics in a summary and exclude others. As mentioned earlier, CATS is the first neural
abstractive summarization model that allows to selectively include or exclude latent topics from the output summaries.
In order to demonstrate this feature, we remove a few topics from the output of the topic model, fine-tune the trained
summarization model for a number of additional training steps and analyze the effect. Our expectation is that the focus
of certain output summaries which usually contain those topics will change, while naturally the raw ROUGE values are
expected to decrease.

For this experiment, we chose the same two topics of the automatic evaluation and removed them from the summaries
one at a time. The first topic is related to health care and its top five keywords are “dr”, “medical”, “patients”, “health”, and
“care”. The second topic is related to police arrests and charges with its top five words being “charges”, “court”, “arrested”,
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“allegedly”, and “jailed”. Using the topic rankings of source documents, which are provided by the LDA model described
in Section 4.4, we randomly chose 100 documents from the dataset that contained either one of the aforementioned
topics, given that those topics were not their sole or primary focus, but in the second rank. The reasoning is that, for
example, if a news article would only cover a crime-related topic and the summarization system tries to exclude that
topic from a summary, there are very few words left to form a meaningful summary. Thus, in order to systematically
exploit the customization mechanism, our model also examines the topics of a given input article and determines
whether excluding certain topics from its summary is feasible.

Five human judges evaluated whether the summaries generated by CATS with restricted topics showed exclusion or
reduction of those topics or whether there was no major difference. In other words, for each given system-generated
summary, its corresponding human-written summary and the original news article, human judges could select either
full exclusion of a target topic, reduction of a target topic, or no meaningful change. They were instructed to look
for existence of the top 20 words of each topic in particular, except for cases that one of these words is a part of a
name (e.g. American Health Center). For each document, we take the majority vote of the human assessors as the
final decision. The results of this experiment show that, out of the 100 documents, the majority of the human judges
find a full exclusion of a target topic in 87 documents, a reduction of the target topic in ten documents, and no major
difference in only three documents. The Kappa agreement between the five human judges is 0.704.

Based on this experiment, we conclude that CATS can in most cases reliably customize summaries by controlling the
topics that appear in them, and we attribute this capability to the topical attention mechanism. Our model is the first to
bring customization of abstractive summaries in sequence-to-sequence architectures. Such feature, can be beneficial for
editorial boards of publishers, e.g. news channels who would like to enforce policies regarding the topics of the content
they publish. This can also be used at hospitals where doctors need to quickly obtain information from long electronic
health-care records of patients regarding a certain illness. For example, a doctor attending a heart condition of a patient
might not need information about a previously broken arm and therefore may would like to filter-out such irrelevant
information.

Table 2 shows an example summary produced by CATS that was restricted not to include the health care topic,
alongside a summary produced by CATS restricting the crime topic and CATS with no topic restriction, as well as the
corresponding human-written reference summary. We observe that in the first two columns the focus of the summary
is altered such that it focuses on the crime-related thematic rather than health care and vice versa in order to avoid
using words such as "hospital", "patients" and "medicine" in the first column and words such as "murdering", "guilty",
"charges", "denies" in the second column.

Table 3 shows another similar example where CATS is restricted not to include the health care topic and separately
the crime topic.

We observe from the two examples that CATS generates summaries that read fluently in both topic-restriction and
no-restriction modes.

4.4.3 The impact of topic model. In this section, we analyze the impact of the topic model in achieving summarization
performance in terms of ROUGE. We already discussed how we train the LDA model in Section 4.4 using the training
data. However, since the LDA model is unsupervised and can be trained in an online training process using new
documents, we could also train it using both training as well as testing datasets. In this section we compare the
performance of CATS in terms of ROUGE metrics in the situation where the unsupervised LDA topic model is trained
only on training data compared with when it is trained on both training and testing datasets.
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Table 2. Comparison of a CATS generated summary next to a summary with restricted topics and the human-written reference
summary5. The words related to the crime topic are colored in red, while words related to health-care are in green.

CATS restricting health-care CATS restricting crime CATS Reference
victorino chua , 49 , denies
murdering tracey arden , 44
, arnold lancaster , 71 and
derek weaver , 83 , and deliber-
ately poisoning 18 others be-
tween 2011 and 2012 . chua
has pleaded not guilty to 36
charges in all , including three
alleged murders , one count of
grievous bodily harm with in-
tent , 23 counts of attempted
grievous bodily harm with in-
tent , eight counts of attempt-
ing to cause a poison to be ad-
ministered and one count of
administering a poison .

victorino chua , 49 , has given
evidence for the first time he
didn ’t poison patients at step-
ping hill hospital in stockport
. a nurse today told he did not
poison hospital patients on his
ward by contaminating their
medicine with insulin .

victorino chua , 49 , has given
evidence for the first time
and denied he tampered with
saline bags and ampoules at
stepping hill hospital in stock-
port . a nurse today told a jury
he did not murder three hospi-
tal patients and poison almost
20 more at stepping hill hospi-
tal in stockport in order to kill
and injure people he was car-
ing for . chua denies murder-
ing patients tracey arden , 44 ,
arnold lancaster , 71 and derek
weaver , 83 , and deliberately
poisoning 18 others between
2011 and 2012 .

victorino chua , 49 , denies
murdering patients at stock-
port hospital in 2011 . filipino
nurse also accused of poison-
ing 18 more at stepping hill
hospital . denies injecting in-
sulin and other poisons into
bags of medicine on ward .

Table 3. Comparison of a CATS generated summary next to a summary with restricted topics and the human-written reference
summary6. The words related to the crime topic are colored in red, while words related to health-care are in green.

CATS restricting health-care CATS restricting crime CATS Reference
darwin man is accused of us-
ing someone else ’s employee
registration number to pose
as a fake employee at the au-
rukun primary health centre
. he was charged on saturday
with one count of fraud after
cairns detectives made contact
with him in the northern ter-
ritory .

a 30-year-old darwin man
posed as a nurse at the au-
rukun primary health centre
on cape york during february
and march . health authorities
are searching through patient
records after it was revealed
man did not have the correct
qualifications .

a 30-year-old darwin man is
accused of using a female
nurse ’s registration number
at the aurukun primary health
centre on cape york during
february and march . he was
charged on saturday with one
count of fraud after cairns
detectives made contact with
him in the northern terri-
tory . he was receiving a $
100,000 annual salary and ac-
commodation from queens-
land health in the six weeks
he was at the hospital .

man , 30 , is accused of us-
ing a female nurse ’s em-
ployee number to work . he
worked for six weeks at au-
rukun primary health cen-
tre on cape york . man was
charged with fraud after pay-
roll raised the alarm with hos-
pital . authorities are checking
patient records to see who he
interacted with .

In the results presented in Table 4, we observe that when the topic model is fine-tuned using the test data, the
performance significantly improves in terms of ROUGE 1 and ROUGE L while showing slight improvement in terms
of ROUGE 2. Therefore, we conclude that the training of the topic model is an essential factor in summarization
performance.

4.4.4 Comparison in terms of ROUGE. In this section we compare our proposed model against all baselines in terms of
the 𝐹1 ROUGE metrics presented in Section 4.3. The results of this comparison are given in Table 5.
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Table 4. Comparison between our model trained using LDA trained on training data against our model trained using LDA trained on
both training and test data in terms of 𝐹1 ROUGE metrics on the CNN/Dailymail dataset. Statistical significance test was done with
a confidence of 95% and confirmed significance.

Models ROUGE 1 (%) ROUGE 2 (%) ROUGE L (%)
CATS (LDA:training data) 41.76 18.69 38.21
CATS (LDA:training+testing data) 42.13 18.85 38.63

Table 5. Comparison between our proposed model against the baselines in terms of 𝐹1 ROUGE metrics on the CNN/Dailymail dataset.
‘*’ means that results are based on the anonymized version of the dataset and not strictly comparable to our results. The bottom four
models utilize pre-trained Transformer-based architectures.

Models ROUGE 1 (%) ROUGE 2 (%) ROUGE L (%)
CATS (Ours) 42.13 18.85 38.63
LEAD-3 Baseline 40.34 17.70 36.57
Attn. Enc-Dec (Nallapati et al. [28]) 35.46 13.30 32.65
PGN (See et al. [33]) 36.44 15.66 33.42
PGN+coverage (See et al. [33]) 39.53 17.28 36.38
RL with Intra-Attention (Paulus et al. [29]) ‘*’ 41.16 15.75 39.08
BottomUpSum (Gehrmann et al. [15]) 41.22 18.68 38.34
InformationSelection (Li et al. [25]) 41.54 18.18 36.47
ML+RL ROUGE+Novel, with LM (Kryscinski et al. [23]) 40.19 17.38 37.52
UnifiedAbsExt (Hsu et al. [22]) 40.68 17.97 37.13
RNN-EXT + ABS + RL + Rerank (Chen and Bansal [10]) 40.88 17.80 38.54
UniLM (Dong et al. [13]) 43.33 20.21 40.51
T5-small (Raffel et al. [31]) 41.12 19.56 38.35
T5-largest (Raffel et al. [31]) 43.52 21.55 40.69
BART (Lewis et al. [24]) 44.16 21.28 40.90
ProphetNet (Yan et al. [47]) 44.20 21.17 41.30

We can observe that our model outperforms all other non-Transformer-based models in terms of ROUGE 1 and
ROUGE 2 while being behind the Transformer-based models (the bottom four models in the table). In order to verify
the robustness of findings, we conduct a statistical significance test based on the bootstrap re-sampling technique
using the official ROUGE package [26]. In the case of ROUGE L, [29] reports the highest performance among the
non-Transformer-based models; however, this is due to their model loss function optimizing directly for the evaluation
metric ROUGE L instead of the summarization loss. In fact, [22] reports an experiment that shows summaries generated
by the [29] method achieve the poorest readability scores compared with a number of models including PGN and their
own UnifiedAbsExt model, a finding which we also confirmed by comparing the output summaries with the output of
our model (see Section 4.4.7). This indicates that optimizing on ROUGE L instead of the summarization loss adversely
impacts the quality of the produced summaries. We discuss this point further in Section 4.4.7 where we qualitatively
compare our generated summaries against that of [29].

We note that we did not include the method of [9] in our comparison, due to the fact that unlike most papers that
use preprocessing scripts of [33] for the non-anonymized version of the dataset, they use different scripts. The effect
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of this difference on their LEAD-37 baseline remains unclear as they do not report it. Thus, their results may not be
comparable with ours.

In this experiment, we conclude that among non-Transformer-based baselines our model achieves superior perfor-
mance as compared with other baselines. However, the Transformer-based models outperform CATS in terms of ROUGE
metrics. This is while the training time, computational resources, and the training dataset size used for preparing our
model is only a small fraction of that of the Tranformer-based models. Let us take ProphetNet [47], the best performing
model in terms of ROUGE, as an example. The authors explicitly mention that their model has been trained with a
160GB dataset, then with another 16GB dataset, and finally fine-tuned using the CNN /Dailymail dataset. However, our
model has been only trained using the CNN/Dailymail dataset.

For the smaller versions of the Transformer models which, similar to our model, are also trainable from scratch, we
report the results of the small T5 model as a point of reference. The reason for reporting only the T5 is that it is the only
model for which the size-performance trade-off is explored by the original authors [31]. As we observe in Table 5, our
proposed model outperforms the T5-small in terms of ROUGE 1 and ROUGE L but it lags behind in terms of ROUGE 2.

Besides the data efficiency of CATS, the design goal behind our model is the capability of customizing summaries
based on given topic requirements. This is something that no other model discussed in this article has been shown to
be capable of.

4.4.5 Comparing variations of CATS in terms of ROUGE. This section performs an ablation study, measuring the impact
of individual CATS components on ROUGE scores. We first present the setup of CATS used in all experiments throughout
this article followed by other variations to determine the effect of each component on the model’s summarization
performance:

(1) CATS: The standard setup of CATS using topical attention, as explained in Section 3. It focuses on topics of the
target summaries at training time without using any topic information at test time. Additionally, CATS uses a
coverage component as explained in the same section.

(2) CATS-Source-Topics: This variation uses topical attention focusing on topics of source articles at training time
without using any topic information at test time.

(3) CATS-Source-Topics-TrainTest: This variation uses topical attention which focuses on topics of source articles
during training, but differently from the above variations, also uses topic information of source articles at test
time.

(4) CATS-No-Coverage: This variation of standard CATS omits the coverage mechanism.
(5) CATS-No-Topical-No-Coverage: We fully remove the topical attention of CATS and also remove the coverage

mechanism. Under such settings CATS is reduced to a basic pointer generator network.

Table 6 presents the results of the ablation study. We observe that having a topical attention focusing on topics
derived from target summaries during training time outperforms other variations of topical attention. We believe that
focusing on topics of target summaries enables CATS to generate summaries precisely to the point as presented in the
target summary. The fact that this variation outperforms all other variations may be caused by the model learning
attention weights as a complement to the topic-words weights so precisely that providing this information at test time
does not improve the summarization performance any further. As we remove the coverage mechanism or even the
entire topical attention scheme, performance noticeably deteriorates.

7The LEAD-3 baseline is taking the first three sentences of an article as its summary. This baseline is commonly used in automatic summarization as a
reference to evaluate a dataset.
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Table 6. Ablation study between the full CATS model and a number of reduced/altered variants in terms of 𝐹1 ROUGE metrics on the
CNN/Dailymail dataset.

Models ROUGE 1 (%) ROUGE 2 (%) ROUGE L (%)
CATS 42.13 18.85 38.63
CATS-Source-Topics 41.22 17.98 37.39
CATS-Source-Topics-TrainTest 40.88 17.73 37.12
CATS-No-Coverage 38.13 16.52 35.03
CATS-No-Topical-No-Coverage 36.44 15.66 33.42

Table 7. 𝐹1 𝑅𝑂𝑈𝐺𝐸 scores on AMI/ICSI test sets.

ROUGE 1 ROUGE 2 ROUGE L
CATS No-TL 12.13 1.54 11.15

CATS 30.85 8.89 28.50

4.4.6 Low-resource Abstractive Summarization using Transfer Learning with CATS.

In this section, we introduce a transfer-learning approach for abstractive summarization of a very small dataset of
meetings transcripts. We first train CATS on the CNN/ DailyMail news dataset. Our transfer-learning approach is based
on fine-tuning and adapting model parameters to the new task of meeting summarization.

As a result, after we pre-train CATS on the news dataset, we fine-tune it as follows: We feed our model with the
meeting training dataset described in Section 4.1.2. We use a small learning rate to tune all parameters from their
original settings to minimize the loss on the new task. Moreover, we increase the minimum number of tokens generated
from 35 to 65 to account for the greater length of meeting transcripts and corresponding summaries.

Fine-tuning adapts the model’s parameters to make it more discriminative for the new task, and the low learning
rate is an indirect mechanism to preserve some of the representational structure learned in the news summarization
task. Moreover, we expose CATS to the meeting training data for 50 epochs on the meeting training set with a batch
size of 16.

Since our model utilizes LDA we need to add the training examples to the LDA model as well. That also changes the
derived topics given to the topical attention mechanism.

We begin evaluating this approach by comparing our model in terms of the 𝐹1 𝑅𝑂𝑈𝐺𝐸 metrics against our model
when the transfer-learning approach described above is applied. Table 7 illustrates the results of this experiment.

As we can observe in the table, our model with transfer-learning significantly outperforms the model without
transfer-learning in terms of ROUGE 1 and ROUGE L. Our statistical significance test is based on bootstrap re-sampling
using the official ROUGE package [26] and confirms that the observed improvement over the baselines in terms of
ROUGE metrics is significant with a confidence of 95%.

The most important finding of this experiment is the comparison of our model against its equivalent version without
transfer-learning. The considerable improvement in performance corroborates that our transfer-learning approach
is very effective in building a meeting abstractive summarization system, while producing summaries which are in a
third-person-view and contain no colloquial expressions.

4.4.7 Human Evaluation of Summaries. We conduct a manual evaluation in order to assess the quality of summaries
produced by CATS compared to the summaries of PGN+coverage [33] and RL with Intra-Attention [29], which were
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provided by the authors of these methods. We chose the RL with Intra-Attention since it was the only method optimizing
on ROUGE L and thus had a higher ROUGE L. We examine informativeness and readability of 50 randomly sampled
summaries. When comparing the output produced by the three models, the three human assessors8 assigned scores
ranging from 1 to 5 to each summary, while blinded to the identity of the models. The average overall scores of each
model are shown in Table 8.

Table 8. Human evaluation comparing quality of summaries on a 1-5 scale using three evaluators.

Readability Informativeness
CATS 4.1 3.9

PGN+Coverage 3.5 3.3
RL+Intra-Attention 2.6 2.9

We observe that the summaries generated by our model are judged to be more readable and more informative.

4.4.8 Analysis of Repetition in Output Summaries. In this experiment we analyze the quality of the output summaries
produced by CATS and those produced by PGN and PGN+coverage in terms of repetition of text. A common issue
with attention-based encoder-decoder architectures is the tendency to repeat an already generated sequence. In text
summarization, this results in summaries containing repeated sentences or phrases. As described in Section 2, the
coverage mechanism has been introduced to mitigate this undesirable effect, and we show that our model can reduce it
even further.

We compare CATS to PGN and PGN+coverage in terms of n-grams repetition with 𝑛 ranging from 1 to 6. For this
purpose, and to exclude possible influence of better hyperparameter tuning, we train all three models using the optimal
hyperparameters found for PGN+coverage, whenever applicable. The upshot of this experiment is reported in Figure 2.
The scores reported in the figure are normalized average repetition scores over all output summary documents in the
test set of the CNN/Dailymail dataset. We compute the scores by calculating the average of the per-document n-gram
repetition score, 𝑆rep,doc, over all test output documents, where we define:

𝑆rep,doc =
#duplicate n-grams

#all n-grams
(12)

We observe that our model exhibits drastically lower repetition of text in its output summaries compared with both
PGN and PGN+coverage, which is confirmed by manual inspection of the output. This trend is consistent on all the
tested n-grams. Although PGN+coverage was originally designed to overcome the repetition problem, the results of
this experiment indicate that our proposed topical attention mechanism reduces repetition significantly.

We believe that the reason behind this phenomenon is that our model tends to focus not only on the few words in
the input sequence which are assigned high attention weights, but also on other words which are topically connected
with these words in a certain context. Firstly, this acts as an attention diversification and redistribution mechanism (an
effect similar to coverage). Secondly, these topically connected words receive a higher generation probability (through
Equations (6) and (8)) and the model is more inclined to paraphrase the input.

The result of this experiment indicates that our topical attention mechanism is a very effective solution to the
repetition problem in sequence generation based on encoder-decoder architectures.

8None of the assessors are affiliated with this paper.
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Fig. 2. Experiment comparing the degree of n-grams repetition in our model versus that of the PGN and PGN+coverage baselines on
the CNN/Dailymail test set. Lower numbers show less repetition in the generated summaries.

4.4.9 Readability experiment: This experiment is designed to measure the readability of the output summaries generated
by the various models. For this purpose we use the Automated Readability Index (ARI) [34]. ARI is a measure for
gauging how understandable a piece of text is. The results of the experiment, reported in Table 9, show that CATS
yields superior readability compared to other models and variations. It is worth noting that CATS with topics removed
performs very close to CATS in terms of automatic readability scores, suggesting high overall text generation quality.
The table additionally presents basic statistics on average number of tokens per sentence as well as average number of
characters per token.

Table 9. Comparing the performance of our model vs. PGN, with respect to readability of output summaries

Ground-truth CATS-without-coverage CATS CATS-with-topics-removed PGN PGN+coverage
ARI 28.40 23.43 34.14 23.86 22.59 23.66

Ave. # tokens per sentence 14.30 23.12 23.82 23.43 20.90 23.92
Ave. # chars per token 4.70 4.64 4.56 4.66 4.61 4.62

4.4.10 Summary coherence experiment: This experiment is designed to measure the coherence of the output summaries
generated by the various models. For this purpose we use the Normalized Pointwise Mutual Information (NPMI) which
is an established measure for quantifying coherence between words. We compute the coherence of a summary by
computing NPMI between all word pairs of every two consecutive sentences normalized by the number of sentences in
the summary. Each sentence is identified by punctuation marks such as ".", "?" and "!". We formally define coherence of
a summary 𝑠 consisting of sentences 𝑠𝑒𝑛𝑡1, . . . , 𝑠𝑒𝑛𝑡𝑛 as:
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = (𝑁𝑃𝑀𝐼 (𝑠𝑒𝑛𝑡1, 𝑠𝑒𝑛𝑡2) + 𝑁𝑃𝑀𝐼 (𝑠𝑒𝑛𝑡2, 𝑠𝑒𝑛𝑡3) + · · · + 𝑁𝑃𝑀𝐼 (𝑠𝑒𝑛𝑡𝑛−1, 𝑠𝑒𝑛𝑡𝑛))/𝑛
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This metric quantifies the relatedness of sentences of a document. In order to compute the coherence of summaries
we remove stop words, punctuation marks as well as all non alphabetic tokens such as numbers. Then we compute the
coherence produced by the different methods.

In this experiment we compare CATS against CATS with the crime topic removed. Table 10 shows the results of this
experiment.

Table 10. Comparing the performance of CATS vs. CATS-with-topics-removed, with respect to coherence of output summaries

CATS CATS-with-topics-removed
Coherence 0.00754 0.00823

As we observe from the table CATS-with-topics-removed achieves a higher coherence score compared with CATS.
This outcome was expected, since CATS aims for covering all topics present in a source article. Subsequently, since the
NPMI score between words which come from different topics are lower, the overall coherence score is also lower. In the
case of CATS-with-topics-removed, however, we observe that the summaries are more focused and therefore yield a
higher coherence score.

In this experiment, we showed that when we remove a certain topic in summaries produced by CATS, we observe a
higher coherence score.

5 DISCUSSION

In the previous sections we have presented and extensively evaluated CATS. In this section, we discuss the use cases
of CATS in its current form, potentially significant improvements and modifications for future work, and, finally, the
potential use of topical attention in other sequence-to-sequence neural architectures.

Prospective use cases of CATS: As previously mentioned, compared to transformer-based models that typically re-
quire large scale pre-training, CATS has the advantage of being trained on a relatively small dataset, while outperforming
all baselines on the standard abstractive summarization task, except for the large-size variants of the transformer-based
models. In addition to standard summarization, we also introduced and tackled the problem of topic-based summariza-
tion. We have qualitatively demonstrated the effectiveness of a fine-tuning method for custom-generation of summaries
by focusing on a few topics and discarding others. In order to use this topic-based summarization feature of CATS in
practice, it is currently necessary to fine-tune multiple instances of CATS beforehand, each including/excluding certain
topics. These thematically customized models can be deployed on cloud infrastructure and be accessed through an API
on demand, so as to serve specific information needs (e.g. a journalist covering only US - China relations as a part of
international relations, or only trade as a part of US - China relations). Although deploying multiple specialized model
instances in parallel is a paradigm widely used in industry (e.g. for machine translation between numerous language
pairs), it comes with practical limitations with respect to infrastructure, maintenance and development time. In the
following, we will discuss possible alternatives to fine-tuning for topic control, which is a topic of active, ongoing
research.

Alternative topic control mechanisms for custom generation: A first solution to obviate the need for fine-tuning
multiple instances, each focusing on a different set of topics, is to prepare a dataset with topic-specific summaries.
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Such a dataset will contain articles and two or more summaries corresponding to each article, such that each summary
focuses on only one (or a subset) of the few topics present in the document. In this way, during training, CATS or
other similar sequence-to-sequence models will learn how to generate a summary focused on a topic (or subset of
topics) indicated as input. To elaborate, each topic will be specified with a unique token which will be fed along with
the input document tokens to the encoder, and the expected output of the decoder will be a summary with a focus on
the corresponding topic(s). We are currently developing such a dataset and will soon release it as the first dataset on
customized topic-based summarization to be used by the community for building advanced summarization systems.
Interestingly, the existing fine-tuned CATS models can be used to generate the topic-specific summaries of this dataset.

A second, promising solution for controlling generation is to add a regularization term to the model’s loss function
in order to explicitly drive the attention mechanism to learn the distribution over input words as induced by the
topic model. Specifically, during training we can use the KL divergence, Wasserstein distance or similar metrics which
measure differences between distributions, to penalize the deviation between the precursor attention weights 𝑒𝑡 (Eq.
(2)) and the topical word distribution 𝜏𝑑 induced by a topic model (Eq. (1)). This method can potentially direct the
model to attend to a source document in the same way as suggested by a distribution over words coming from a topic
model. Moreover, certain topics can be turned off or on in the distribution.

The third possible solution that also relies on the dedicated dataset explained above (as the first solution) is to
extract the topic-words distribution from the model’s output summaries, and penalize its distance from the intended
topic-words distribution specified by a user through a regularization term in the loss function.

Finally, a fourth solution is to train a CATS model as usual, but modify the beam-search text generation algorithm
such that during inference it would assign higher probabilities for generating words that are indicated by a topic-words
distribution. That is, a penalty term would be added to words that are likely to be generated by the normal beam-search
but are not in line with a topic-words distribution indicated by a user.

In summary, we discussed a number of solutions that can be used to enhance the practicality and effectiveness of our
topic-based, customizable summarization model. We believe that combining two or more of the above solutions can
potentially result in a robust topic-based summarization. The above ideas are directions of our current research and
future work.

Integrating the topical attention into other neural architectures: In the standard summarization experiments
reported in the previous section, the concept of topical attention was shown to improve the quality of summaries
compared to the same architecture without topical attention.

The recent advancements in abstractive summarization research has been mostly due to the advent of the transformer
model. As discussed in Section 2, all recent top-performing summarizationmodels are variants of the original Transformer
model [40]. While in very recent work [44] the incorporation of topic models in transformer-based summarization
systems is emerging as a beneficial component, we believe that our idea of topical attention can be directly used in
transformer-based models even in its current form as presented in Equation (4) to mediate between the encoder and
decoder as cross-attention. That is, the topic-words weights are integrated into the cross-attention weights. Adapting
the topical attention mechanism to other transformer-based models, also taking into account the ideas presented in the
previous paragraph, is the focus of our ongoing research.

21



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

TOIS ’21, 2021, Woodstock, NY Seyed Ali Bahrainian, George Zerveas, Fabio Crestani, and Carsten Eickhoff

6 CONCLUSIONS AND FUTUREWORK

In this paper we present CATS, an abstractive summarization model that makes use of latent topic information in a
source document and is thereby capable of controlling the topics appearing in an output summary of a source document.
This can enable customization of generated texts based on user profiles or explicitly given topics, in order to present
content tailored to a user’s information needs.

Our experimental results show that CATS achieves performance superior to all non-transformer-based models in
terms of standard evaluation metrics for summarization (i.e. ROUGE) on a standard benchmark dataset, while drastically
reducing sequence repetition, and, crucially, enabling customization of produced summaries.

Moreover, we showed a transfer-learning approach for applying CATS to small datasets and low-resource cases.
CATS can serve as a foundation for future work in the domain of automatic summarization. Based on the results of

this paper, we are optimistic about the potential of future summarization systems to generate summaries which are
customized to users’ needs. We envision three ways of controlling the focus of output summaries using CATS: First, as
demonstrated in the experiment in Section 4.4.2, certain topics could be disabled in the output of the topic model and be
consequently discarded from output summaries. Second, a reference document could be provided to the topic model, its
topics could be extracted and subsequently direct the focus of generated summaries. This is useful when a user wants
to see summaries/updates primarily or only regarding issues discussed in an existing reference document or collection
of documents. Third, content extracted from user profiles (e.g. history of web pages of interest) could be provided to the
topic model, their salient themes extracted by the model and then taken into account whenever presenting users with
summaries.

Finally, we are interested in exploring the use of dedicated, fully neural topic modeling modules, whose parameters are
learned either using unsupervised pre-training or from scratch during end-to-end training of the sequence-to-sequence
model.
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