

1 **CATS: Customizable Abstractive Topic-based Summarization**

2 SEYED ALI BAHRAINIAN, AI Lab, Brown University, USA

3 GEORGE ZERVEAS, AI Lab, Brown University, USA

4 FABIO CRESTANI, Informatics Department, University of Lugano, Switzerland

5 CARSTEN EICKHOFF, AI Lab, Brown University, USA

6 Neural sequence-to-sequence models are the state-of-the-art approach used in abstractive summarization of textual documents, useful
7 for producing condensed versions of source text narratives without being restricted to using only words from the original text. Despite
8 the advances in abstractive summarization, custom generation of summaries (e.g. towards a user's preference) remains unexplored. In
9 this paper, we present CATS, an abstractive neural summarization model that summarizes content in a sequence-to-sequence fashion
10 while also introducing a new mechanism to control the underlying latent topic distribution of the produced summaries. We empirically
11 illustrate the efficacy of our model in producing customized summaries and present findings that facilitate the design of such systems.
12 We use the well-known CNN/DailyMail dataset to evaluate our model. Furthermore, we present a transfer-learning method and
13 demonstrate the effectiveness of our approach in a low resource setting, *i.e.* abstractive summarization of meetings minutes, where
14 combining the main available meetings' transcripts datasets, AMI and ICSI, results in merely a few hundred training documents.
15

16 CCS Concepts: • Computing methodologies → Neural networks; Latent Dirichlet allocation; Natural language generation.

17 Additional Key Words and Phrases: sequence-to-sequence neural models, abstractive summarization, topical customization ¹

18 **ACM Reference Format:**

19 Seyed Ali Bahrainian, George Zerveas, Fabio Crestani, and Carsten Eickhoff. 2021. CATS: Customizable Abstractive Topic-based
20 Summarization. *ACM Transactions on Information Systems* 1, 1, Article 1 (January 2021), 24 pages. <https://doi.org/10.1145/3464299>

21 **1 INTRODUCTION**

22 Automatic document summarization is defined as producing a shorter, yet semantically highly related version of a
23 source document. Solutions to this task are typically classified into two categories: extractive summarization and
24 abstractive summarization.

25 Extractive summarization *selects* sentences of a source text based on a scoring scheme, and combines those exact
26 sentences in order to produce a summary. Conversely, abstractive summarization aims at producing shortened versions
27 of a source document by *generating* sentences that do not necessarily appear in the original text. The majority of
28 traditional research on text summarization has focused on extractive summarization [5, 27] due to its simplicity

29
30 ¹This article has some textual overlap with the PhD thesis of the first author [3].

31
32 Authors' addresses: Seyed Ali Bahrainian, AI Lab, Brown University, Providence, RI, USA; George Zerveas, AI Lab, Brown University, Providence, RI,
33 USA; Fabio Crestani, Informatics Department, University of Lugano, Lugano, Ticino, Switzerland; Carsten Eickhoff, AI Lab, Brown University, Providence,
34 RI, USA.

35
36 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
37 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
38 of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
39 redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

40 © 2021 Association for Computing Machinery.

41 Manuscript submitted to ACM

42 Manuscript submitted to ACM

53 compared to abstractive methods. Recent advances in neural sequence-to-sequence modeling, however, have sparked
 54 interest in abstractive summarization due to its flexibility and broad range of applications.
 55

56 Summarization is extensively used in domains such as news articles [33, 37], minute-taking in corporate meetings [35]
 57 or electronic health records [14], to name a few. Aside from providing generic summaries of passages of text, there
 58 are applications to Information Retrieval (IR) scenarios in which the retrieval system summarizes results rather than
 59 merely retrieve them. For instance, search engines are increasingly presenting summaries, mash-ups and digests of
 60 relevant documents in the form of natural language answers to user queries. Automatic summarization lends itself for
 61 key use cases in mobile search [1] and scenarios involving communication with search engines via voice. Previous
 62 research on voice-based search shows that merely reading out the textual output of a search engine result page is an
 63 insufficient interaction paradigm [32] for a user. Furthermore, the underlying components of a spoken conversational
 64 search system (where communication between user and system is mediated verbally through voice) will need to operate
 65 differently from a traditional IR system [12, 36]. A recent user study [38] on conversational search has observed the
 66 importance of document summarization when presenting results of users' spoken search queries. In fact, the ideal
 67 voice-based assistant would summarize the key points of particular relevance for a certain searcher. This paper presents
 68 a novel abstractive summarization framework as a first step towards this vision.
 69

70 In this paper, we introduce CATS, a Customizable Abstractive Topic-based sequence-to-sequence Summarization
 71 model, which is not only capable of summarizing text documents with high quality, but also allows to selectively focus
 72 on a range of desired topics of interest when generating summaries. Our experiments corroborate that our model
 73 can selectively add or remove specific topics from the summary. Furthermore, our experimental results on a publicly
 74 available dataset indicate that the proposed neural sequence-to-sequence model can be effectively fine-tuned to perform
 75 abstractive summarization in a low-resource setting. Moreover, we discuss a number of findings in the process of
 76 developing an abstractive summarization model with the ability to customize summaries. The main contributions of
 77 this article are:
 78

79

- 80 (1) We introduce a novel neural sequence-to-sequence model based on an encoder-decoder architecture which
 81 leverages topic modeling to perform customizable abstractive summarization.
- 82 (2) We introduce a novel attention mechanism [2] named *topical attention* that may be used for simultaneously
 83 identifying important topics as well as recognizing those parts of the encoder output that are vital to be focused
 84 on.
- 85 (3) We extensively evaluate our model in customizing summaries, general abstractive summarization, as well as
 86 summarization in low-resource settings.

87 The remainder of this paper is organized as follows: Section 2 discusses related work on abstractive neural
 88 summarization. In Section 3, we introduce the CATS summarization model. In Section 4, we discuss our experimental
 89 setup and results showing the efficacy of CATS in custom generation of summaries. Furthermore, we present a transfer-
 90 learning approach to summarization of small size datasets and we conduct a ROUGE-based evaluation. In Section 5, we
 91 present a discussion on the potential use cases of CATS, other potential means of custom summary generation, and
 92 how the topical attention can be adapted to other sequence-to-sequence problems. Finally, in Section 6, we conclude
 93 with a discussion on future directions of inquiry.
 94

105 2 RELATED WORK

106 Prior to the rise of neural sequence-to-sequence models there had been limited interest in the area of abstractive
 107 summarization. TOPIARY was an abstractive model proposed in 2004 by Zajic et al. [48] which showed superior results
 108 in the DUC-2004 task. This model used a combination of linguistically motivated compression techniques and an
 109 unsupervised topic detection algorithm that inserts keywords extracted from the article into the compressed output.
 110 Some other notable work in the task of abstractive summarization includes using traditional phrase table-based machine
 111 translation approaches [7] and compression using weighted tree transformation rules [11].
 112

113 Recent work approaches abstractive summarization as a sequence-to-sequence problem. In this section, we first
 114 briefly review some of the most important research in this domain. In order to do so we divide the literature into two
 115 categories of models that are mostly trained from scratch while requiring lower computational resources for training
 116 and those models which are based on fine-tuning already existing models that exhibit high computational demand both
 117 for training the base models as well as fine-tuning. Then we focus on the use of topic models in previous abstractive
 118 summarization research.
 119

120 2.1 Seq2seq Abstractive Summarization Models Trained from Scratch

121 One of the early deep learning architectures that was shown to be effective in the task of abstractive summarization was
 122 the Attention-based Encoder-Decoder [28] proposed by Bahdanau et al. [2]. This model had originally been designed
 123 for machine translation, where it defined the state of the art.
 124

125 Attention mechanisms are shown to enhance the basic encoder-decoder model [2]. The main bottleneck of the basic
 126 encoder-decoder architecture is its fixed-sized representation ("thought vector"), which is unable to capture all the
 127 relevant information of the input sequence as the model or input scaled up. However, the attention mechanism relies
 128 on the notion that at each generation step, only parts of the input are relevant. In this paper, we build on the same
 129 notion to force our proposed model to attend to parts of the input which together represent a semantic topic.
 130

131 Based on the Attention-based encoder-decoder architecture, several models were introduced. The Pointer Generator
 132 Network (PGN) [41] was applied by See et al. [33] to the task of abstractive summarization. This model aims at solving
 133 the challenge of out-of-vocabulary words and factual errors. The main idea behind this model is to choose between
 134 either generating a word from the fixed vocabulary or copying one from the source document at each step of the
 135 generation process. It incorporates the power of extractive methods by "pointing" [41]. At each step, a generation
 136 probability is computed, which is used as a switch to choose words from the target vocabulary or the source document.
 137 Our model differs from the PGN firstly in the use of a different attention mechanism which forces the model to
 138 focus on certain topics when generating an output summary. Secondly, our model enables the selective inclusion or
 139 exclusion of certain topics in a generated summary, which can have several potential applications. This is done by
 140 incorporating information from an unsupervised topic model. By definition, topic models are hierarchical Bayesian
 141 models of discrete data, where each topic is a set of words, drawn from a fixed vocabulary, which together represent a
 142 high-level concept [42]. According to this definition, Blei et al. introduced the Latent Dirichlet Allocation (LDA) [8]
 143 topic model. We further elaborate on the connection between this and our model in Section 3.
 144

145 The work of [29] is another approach which utilizes reinforcement learning to optimize ROUGE L, such that sub-
 146 sequences similar to a reference summary are generated. Similar to [33] they also use the pointer generator mechanism
 147 to switch between generating a token or extracting it from the source.
 148

157 Gehrmann et al. [15] propose using a content selector to select phrases in a source document that should be part of a
 158 generated summary. Likewise, [25] introduce an information selection layer to explicitly model the information selection
 159 process in abstractive document summarization. They perform information filtering and local sentence selection in
 160 order to generate summaries. The two latter approaches report best performances on the CNN/DailyMail benchmark.
 161 Our proposed model relies on information selection in the form of topics.
 162

164 **2.2 Seq2seq Abstractive Summarization Models developed by Fine-tuning Pre-trained Models**

165 The introduction of Transformer architectures and their proven efficacy in various natural language sequence-to-
 166 sequence problems is the latest major shift in the automatic document summarization field. Here we briefly review
 167 some of the latest developments in the space.
 168

169 One of the top Transformer-based models is UniLM (Unified Pretrained Language Model)[13] from Microsoft. “The
 170 model architecture of UNILM follows that of BERTLARGE” [13]. The GELU [20] activation is used as in the GPT [30]
 171 model. They use a 24-layer Transformer with 1,024-dimensional hidden layers, and 16 attention heads, containing
 172 about 340M parameters. “UNILM is initialized by BERTLARGE, and then pre-trained using English Wikipedia and the
 173 BookCorpus” [13]. Subsequently, this model is fine-tuned using summarization training data.
 174

175 Another important model in this category is the T5 (Text-to-Text Transfer Transformer) model from Google [31] that
 176 uses transfer-learning on the Transformer architecture introduced by Vaswani et al. [40]. The authors study a number
 177 of variants of the Transformer architecture and finally fine-tune them on different natural language processing tasks.
 178

179 The next model that is noteworthy in this domain is BART [24] by Facebook. BART is a denoising autoencoder for
 180 pretraining sequence-to-sequence natural language processing models. BART is trained by “corrupting text with an
 181 arbitrary noising function, and learning a model to reconstruct the original text” [24]. Similar to the T5 model, BART too
 182 is based on the Transformer architecture proposed by Vaswani et al. [40] while using a number of noising approaches,
 183 such as token masking, token deletion, randomly shuffling the order of the original sentences and a novel in-filling
 184 scheme, where spans of text are replaced with a single mask token. The only major difference to the Transofrmer
 185 architecuture is that, following GPT, the authors replace ReLU activation functions by GeLUs [20]. They also state that
 186 their proposed architecture “is closely related to that used in BERT, with the following differences: (1) each layer of
 187 the decoder additionally performs cross-attention over the final hidden layer of the encoder (as in the transformer
 188 sequence-to-sequence model); and (2) BERT uses an additional feed-forward network before word prediction, which
 189 BART does not” [24]. For text generation tasks such as abstractive summarization, BART is then fine-tuned on in-domain
 190 data.
 191

192 The final model in this category that we review is ProphetNet [47], which currently represents the state-of-the-
 193 art in abstractive summarization. This model also utilizes the Transformer architecture [40]. The main difference of
 194 ProphetNet is changing the original sequence-to-sequence optimization problem of predicting the next single token into
 195 predicting the n next token simultaneously. They show that this approach outperforms all other baselines in abstractive
 196 summarization in terms of ROUGE scores.
 197

201 **2.3 Use of Topic Models in Summarization**

202 There has also been previous work utilizing topic information in sequence-to-sequence problems such as neural response
 203 generation [45]. The work of Xing et al. uses a topic model named Twitter LDA which is used in responding to messages.
 204 Aside from the different objective, this work is different from ours in that firstly, Twitter LDA assumes the existence of
 205 only a single topic per document. This assumption may be true for tweet-length texts but will not hold in summarization
 206

209 of longer news articles. Secondly, the topic embeddings are derived from the source document and aggregated in a very
 210 different way than ours.

211 The use of LDA topic information in neural abstractive summarization has been considered by Wang et al. [43].
 212 Our work fundamentally differs from theirs not only in that they use a reinforcement learning approach along with
 213 convolutional neural networks optimizing directly on ROUGE, but also that our proposed model learns topic embedding
 214 weights at training time and does not use any topic information at test time. Moreover, they use topic embeddings of a
 215 source document while we use the topics of a target summary. Additionally, previous research [22] shows that while
 216 optimizing on ROUGE naturally results in a high ROUGE score, the readability of summaries produced by such systems
 217 can be poor compared with that of methods optimizing summarization losses like the one proposed in this work.
 218

219 In summary, topic information has been used in previous neural models as an input, and Wang et al. [43] argue that
 220 it results in the diversification of words appearing in summaries. However, the novelty of our approach lies in using
 221 topic information to systematically influence the output summary and steer the generation mechanism to focus on
 222 certain topics only, allowing us to remove or downweight unwanted topics from an output summary. The experimental
 223 section empirically demonstrates the merit of this approach, not only for customizing summaries, but also for achieving
 224 a high performance in terms of ROUGE scores. More importantly, we demonstrate via a user study that CATS can
 225 effectively control the topics present in a generated summary.

230 3 PROPOSED MODEL: CATS

231 3.1 Model Overview

232 Our abstractive summarization method CATS is a neural sequence-to-sequence model based on the attention encoder-
 233 decoder architecture [28]. Additionally, we incorporate the concept of pointer networks [41] into our model, which
 234 enables copying words from the source side while also being able to generate words from a fixed vocabulary. Furthermore,
 235 we introduce a novel attention mechanism controlled by an unsupervised topic model. This ameliorates attention by
 236 way of focusing not only on those words which it learns as important for producing a summary (as in the standard
 237 attention mechanism), but also by learning the topically important words in a certain context. We refer to this novel
 238 mechanism as *topical attention*. Over the encoder-decoder training steps, the model parameters adapt in a way to
 239 learn the topics of each document. During testing, when the model decoder generates summaries of test documents, it
 240 therefore no longer requires the input information from the topic model, as it learns a generalized pattern of the word
 241 weights under each topic.

242 We depict our model in Figure 1. In the following we describe the various components of our model.

243 3.2 Encoder & Decoder

244 Prior to encoding, all documents are pre-processed in the same way as [33] where the Stanford CoreNLP package is
 245 used to tokenize sentences.

246 The tokens of a document (i.e. extracted by a document tokenizer) are given one-by-one as input to the encoder layer.
 247 Our encoder is a single-layer Bi-directional Long Short Term Memory (BiLSTM) network [16]. The network outputs a
 248 sequence of encoder hidden states h_i , each state being a concatenation of forward and backward hidden states, as in [2].

249 At each decoding time step t , the decoder receives as input x_t the word embedding of the previous word (while
 250 training, this is the previous word of the reference summary and at test time it is the previous word output by the
 251 decoder) and computes a decoder state s_t . Our decoder is a single-layer Long Short Term Memory (LSTM) network [17].

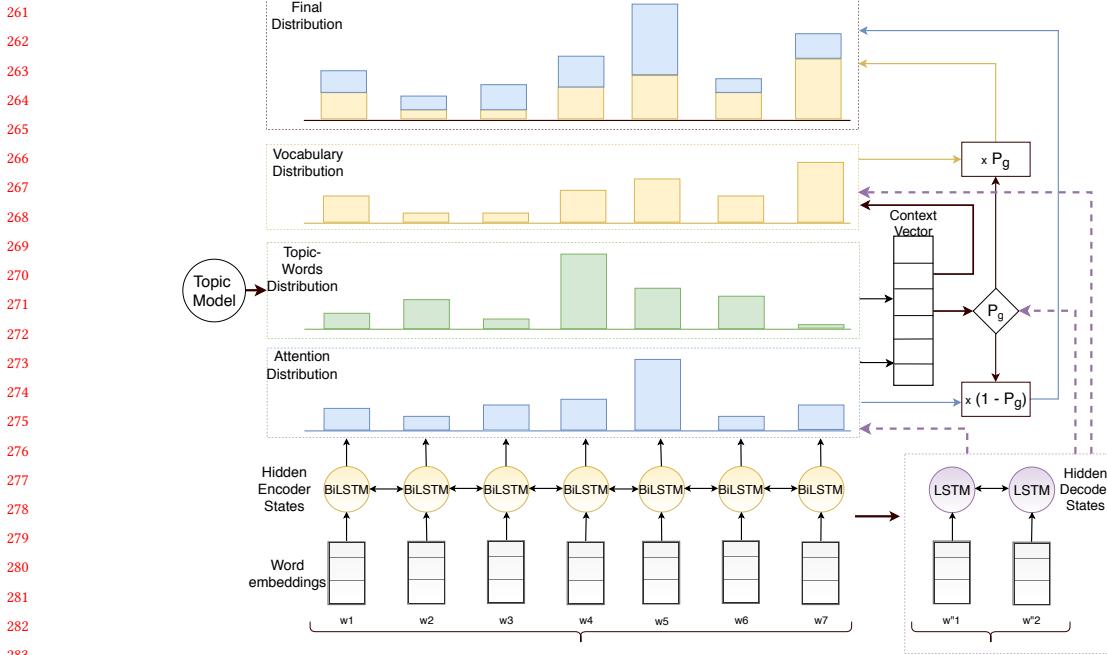


Fig. 1. The architecture of our proposed model.

3.3 Topical Attention

We propose the *topical attention* distribution a^t to be calculated as a combination of the usual attention weights as in [2] and a "topical word vector" derived from a topic model. We use LDA [8] as the topic model of choice. We chose LDA because: (1) it performs well as a component of CATS for yielding competitive summarization performance, (2) it is convenient to implement and use as it is available in a few efficient topic modeling libraries, (3) and finally LDA assigns words probabilities between 0 and 1 while the probability scores of all words in each topic sums up to 1. This facilitates the fusion of these scores with attention weights, which are then fed to a softmax function without the need for additional normalization steps.

In order to compute the *topical attention* weights, after training an LDA model using the training data, we map the target summary corresponding to each document to its LDA space. This gives us the strength of each topic in each target summary. Furthermore, since for each topic we also have the probability scores of each word in a fixed vocabulary \mathcal{V} , for a given document d we could calculate a *topical word vector* τ^d of dimension $|\mathcal{V}|$ considering all the words in that document, such that:

$$\tau^d = \sum_i P(\text{topic}_i|d) \cdot \tilde{\mathbf{w}}_i \quad (1)$$

where $P(\text{topic}_i|d)$ is the probability of each LDA topic being present in the target summary, and $\tilde{\mathbf{w}}_i$ is the $|\mathcal{V}|$ -dimensional vector consisting of the probabilities $\tilde{w}_{i,j} = P(\text{word}_j|\text{topic}_i)$ of all words in vocabulary \mathcal{V} under topic i .

313 Then, for an input sequence of length K , we compute the final attention vector $a^t \in \mathbb{R}^K$ at decoding step t as:

$$314 \quad 315 \quad 316 \quad 317 \quad 318 \quad 319 \quad 320 \quad 321 \quad 322 \quad 323 \quad 324 \quad 325 \quad 326 \quad 327 \quad 328 \quad 329 \quad 330 \quad 331 \quad 332 \quad 333 \quad 334 \quad 335 \quad 336 \quad 337 \quad 338 \quad 339 \quad 340 \quad 341 \quad 342 \quad 343 \quad 344 \quad 345 \quad 346 \quad 347 \quad 348 \quad 349 \quad 350 \quad 351 \quad 352 \quad 353 \quad 354 \quad 355 \quad 356 \quad 357 \quad 358 \quad 359 \quad 360 \quad 361 \quad 362 \quad 363 \quad 364$$

$$e_k^t = v^T \tanh(W_h h_k + W_s s_t + b_{\text{attn}}) \quad (2)$$

$$a^t = f(e^t, \tau^d) \quad (3)$$

320 where $e^t \in \mathbb{R}^K$ is a precursor attention vector, $h_k \in \mathbb{R}^n$ represents the k -th encoder hidden state and $s_t \in \mathbb{R}^l$ the
 321 decoder state at decoding step t , while $v \in \mathbb{R}^m$, $W_h \in \mathbb{R}^{m \times n}$, $W_s \in \mathbb{R}^{m \times l}$, $b_{\text{attn}} \in \mathbb{R}^m$ are learnable parameters. Function
 322 f combines the topical word vector with the precursor attention vector. In order to combine the two, we define f as the
 323 following distribution over the input sequence:

$$325 \quad 326 \quad 327 \quad 328 \quad 329 \quad 330 \quad 331 \quad 332 \quad 333 \quad 334 \quad 335 \quad 336 \quad 337 \quad 338 \quad 339 \quad 340 \quad 341 \quad 342 \quad 343 \quad 344 \quad 345 \quad 346 \quad 347 \quad 348 \quad 349 \quad 350 \quad 351 \quad 352 \quad 353 \quad 354 \quad 355 \quad 356 \quad 357 \quad 358 \quad 359 \quad 360 \quad 361 \quad 362 \quad 363 \quad 364$$

$$a^t = \frac{\text{softmax}(e^t) + \text{softmax}(\tilde{\tau}^d)}{2} \quad (4)$$

327 where $\tilde{\tau}^d \in \mathbb{R}^K$ denotes the "reduced" topical word vector which is formed by selecting the K components of $\tau^d \in \mathbb{R}^{|\mathcal{V}|}$
 328 corresponding to the K words of the input sequence.

329 The attention distribution can be viewed as a probability distribution over the words from the source document,
 330 which tells the decoder where to look to produce the next word. Subsequently, the attention distribution is used to
 331 produce a weighted sum of the encoder hidden states, known as the context vector $h_t^* \in \mathbb{R}^n$, as follows:

$$334 \quad 335 \quad 336 \quad 337 \quad 338 \quad 339 \quad 340 \quad 341 \quad 342 \quad 343 \quad 344 \quad 345 \quad 346 \quad 347 \quad 348 \quad 349 \quad 350 \quad 351 \quad 352 \quad 353 \quad 354 \quad 355 \quad 356 \quad 357 \quad 358 \quad 359 \quad 360 \quad 361 \quad 362 \quad 363 \quad 364$$

$$h_t^* = \sum_k a_k^t \cdot h_k \quad (5)$$

347 The context vector, which is a fixed-sized representation of what has been read by the encoder at this step, is
 348 concatenated with the decoder state s_t and the result is linearly transformed and passed through a softmax function to
 349 produce the output distribution $P_{\mathcal{V}}(w)$ over all words w in vocabulary \mathcal{V} :

$$341 \quad 342 \quad 343 \quad 344 \quad 345 \quad 346 \quad 347 \quad 348 \quad 349 \quad 350 \quad 351 \quad 352 \quad 353 \quad 354 \quad 355 \quad 356 \quad 357 \quad 358 \quad 359 \quad 360 \quad 361 \quad 362 \quad 363 \quad 364$$

$$P_{\mathcal{V}} = \text{softmax}(V[s_t, h_t^*] + b) \quad (6)$$

350 where $V \in \mathbb{R}^{|\mathcal{V}| \times (n+l)}$ and $b \in \mathbb{R}^{|\mathcal{V}|}$ are learnable parameters.

346 3.4 Pointer Generator

347 Another component of our proposed model is a copy mechanism [19]. The idea behind the pointer generator is to
 348 circumvent the limitations of pure abstraction when it comes to factual content such as names, dates of events, statistics
 349 and other content that requires copying from the source document to produce a correct summary. The basic encoder-
 350 decoder architecture often makes mistakes with people's names or other factual content while generating a summary.
 351 As a remedy, pointer networks [41] were introduced in the machine translation domain. We utilize the concept of
 352 pointer generators in our model, in order to give our model the flexibility of choosing between generating a word from
 353 a fixed vocabulary or copying it directly from source when needed.

354 We define p_g as a generation probability such that $p_g \in [0, 1]$. We calculate p_g for time step t from the context vector
 355 h_t^* , the decoder state s_t and the decoder input x_t as:

$$360 \quad 361 \quad 362 \quad 363 \quad 364$$

$$p_g = \sigma(w_{h^*}^T h_t^* + w_s^T s_t + w_x^T x_t + b_{pt}) \quad (7)$$

363 where vectors w_{h^*} , w_s , w_x , and scalar value b_{pt} are learnable parameters and σ is a sigmoid function.

365 Subsequently, p_g is used to linearly interpolate between copying a word from the source (specifically, to copy from
 366 the source document we sample over the input words using the attention distribution) and generating it from the fixed
 367 vocabulary using $P_{\mathcal{V}}$ of Eq. (6).
 368

369 For each document, we define the union of the fixed vocabulary \mathcal{V} and all words appearing in the source document
 370 as the "extended vocabulary". Using the linear interpolation described above, the final probability distribution over the
 371 extended vocabulary is:
 372

$$373 \quad P(w) = p_g P_{\mathcal{V}}(w) + (1 - p_g) \sum_{\forall i: w_i = w} a_i^t \quad (8)$$

374 In Equation (8), we note that if a word w would be out-of-vocabulary, then $P_{\mathcal{V}}(w)$ would be equal to zero. Analogously,
 375 if w does not appear in the source document, then $\sum_{\forall i: w_i = w} a_i^t$ would be equal to zero. In expectation, the most likely
 376 words under this new distribution are the ones that both receive a high likelihood under the output distribution of
 377 the decoder, as well as much attention by the attention module. Words with a high likelihood under the initial output
 378 distribution, which however receive little to no attention, will be generated with a reduced probability, while words
 379 receiving much attention, even if they receive a low likelihood by the decoder or do not even exist in the vocabulary \mathcal{V} ,
 380 will be generated with an increased probability.
 381

382 Therefore, by being able to switch between out-of-vocabulary words and the words from the vocabulary, the pointer
 383 generator model mitigates the problem of factual errors or the lack of sufficient vocabulary in the output summary.
 384

385 3.5 Coverage Mechanism

386 The coverage mechanism [39] is a method for keeping track of the level of attention given to each word at all time
 387 steps. In other words, by summing the attention at all previous steps, the model keeps track of how much coverage
 388 each encoding has already received. This mechanism alleviates the repetition problem, which is a very common issue
 389 in recurrent neural networks with attention.
 390

391 We follow [46] and define the *coverage vector* $c^t \in \mathbb{R}^K$ simply as the sum of attention vectors at all previous decoding
 392 steps:
 393

$$394 \quad c^t = \sum_{i=0}^{t-1} a^i \quad (9)$$

395 First, the coverage vector is taken into account when calculating the attention vector by adding an extra term and
 396 modifying Equation (2) as follows:
 397

$$403 \quad e_k^t = v^T \tanh(W_h h_k + W_s s_t + c_k^t \cdot w_c + b_{\text{attn}}) \quad (10)$$

404 where $w_c \in \mathbb{R}^m$ is a learnable parameter vector of the same length as v .
 405

406 Second, following [33], we use the coverage vector to introduce an additional loss term, which is added to the original
 407 negative log-likelihood loss after being weighted by hyperparameter λ , to produce the following total loss at decoding
 408 step t :

$$409 \quad \mathcal{L}_t = -\log P(w_t | w_{<t}) + \lambda \sum_{i=0}^k \min(a_i^t, c_i^t) \quad (11)$$

410 This additional loss term encourages the attention module to redistribute attention weights by placing low weights
 411 to input words which have already received much attention throughout previous decoding steps. The overall loss for
 412 the entire output sequence of length T is the average loss over all T decoding steps.
 413

Table 1. Statistics of our meeting datasets.

	minutes	ave. #tokens per doc.	ave. #tokens per summary	minimum #tokens	median #tokens	maximum #tokens	#meetings
AMI	4868	5843	283	892	5998	11552	142
ICSI	3513	13080	449	2785	12605	22573	61
ADSC	NA	446	118	152	482	1383	45

3.6 Decoding

In order to generate the output summaries we use beam search. During evaluation of the model using the test data, contrary to training, we do not provide the model with any topical information from our trained LDA topic model. As a result, at this stage the right side of Equation 4 turns into the $\text{softmax}(e^t)$ only. We believe that during training, the model parameters are optimized to best take advantage of the provided *topical attention* distribution, implicitly learning patterns of topic-words weights.

4 EVALUATION

In this section, we introduce our experimental setting, including details of our datasets, baseline models, and evaluation metrics. Finally, we present the experimental results.

4.1 Datasets

4.1.1 The CNN/DailyMail dataset. We use the CNN/DailyMail dataset [21, 28], which contains news articles from the CNN and *Daily Mail* websites. The experiments reported in this paper are based on the non-anonymized version of the dataset, containing 287,226 pairs of training articles and reference summaries, 13,368 validation pairs, and 11,490 test pairs. On average, each document in the dataset contains 781 tokens paired with multi-sentence summaries (56 tokens spread over 3.75 sentences). The non-anonymized version of the dataset was chosen as it presents a more realistic news wire summarization scenario.

Similar to [28, 33], we use a range of pre-processing scripts to prepare the data. This includes the use of the *Stanford CoreNLP* tokenizer to break down documents into tokens. For greater transparency and reproducibility of our results, we make all pre-processing scripts available together with our code base.

4.1.2 The meetings dataset. For our empirical investigation, we compile the available datasets that have been used in previous work on meeting summarization.

For this purpose, we gathered data from the well-known AMI dataset² as well as the ICSI dataset³ which are the only publicly available datasets of real-world meetings. AMI contains two categories of meetings between 2 to 4 participants. The first collection consists of freestyle meetings where the participants can decide on the topics of discussions, and targeted ones about designing technology products (e.g., a remote control).

The ICSI dataset, on the other hand, contains weekly group meetings of academic groups of 3 to 10 participants. Both AMI and ICSI are face-to-face meetings that were initially audio recorded and then later transcribed. The reference summary of each meeting is then given by the manually created minutes that were taken by the original meeting participants.

We randomly divide the AMI and ICSI datasets in a 50-50 split to construct a training set as well as a test set. As a result, we end up with 101 real-world meetings as our test set and the remaining ones as the training set.

²<http://groups.inf.ed.ac.uk/ami/download/>

³<http://groups.inf.ed.ac.uk/ami/icsi/download/>

469 In order to increase the size of our training set we also add the Argumentative Dialogue Summary Corpus (ADSC)
 470 dataset⁴ to our training set. The ADSC is composed of online conversations on topics of societal and political relevance
 471 such as gun control, gay marriage, the death penalty and abortion. Table 1 presents detailed statistics on all three
 472 datasets.
 473

474 **Challenges of Meeting Summarization:** Most summarization research has focused on news documents for reasons
 475 of data availability. However, in addition to the small size of the existing meeting datasets, there are other aspects
 476 that make meeting summarization more challenging: (1) Most news articles are first-person narratives about a single
 477 event. Meetings, on the other hand, have a very different structure involving a dialogue between two or more parties.
 478 (2) Meetings are composed of spoken utterances between people, whereas their summaries and minutes are usually
 479 formulated from a third-person point of view by the human scribe. Therefore, meeting summarization also requires a
 480 change of structure from dialogue to a third-person narrative summarizing events. (3) Meetings can touch on multiple
 481 topics and are not restricted in terms of topical coherence. (4) Meeting transcripts include broken sentences, colloquial
 482 expressions, false starts and flawed grammar, all of which virtually never occur in carefully curated news articles. As an
 483 example, here is an excerpt from a meeting in one of the meeting datasets used in this paper which contains most of
 484 these flaws:
 485

486 *"mm-hmm . so sh . i 'm a bit confused about uh what 's the difference between the functional design and conceptual design
 487 ? uh i is it just uh more detail , uh as i understand it ? right . how how it will be done . so whe where do we identify the
 488 components of our uh product ? "*

489 These issues are a common challenge of meeting transcripts and are noticeable in every meeting in the meeting
 490 datasets used in this article. Therefore, we also include the meetings dataset to also tackle a very different summarization
 491 problem as a low-resource example and show how to achieve reasonable results using our proposed model.
 492

4.2 Baseline Models

493 In this section We empirically compare CATS with several abstractive baselines as follows:

- 494 • *Attention-based encoder-decoder* [28]: this abstractive model was one of the early encoder-decoder models which
 495 showed strong performance on summarization tasks.
- 496 • *PGN and PGN+Coverage* [33]: this model has been shown to effectively overcome the problem of OOV words.
- 497 • *RL with Intra-Attention* [29]: this model implements reinforcement learning to optimize summaries directly based
 498 on the evaluation metric ROUGE L. As a result, it is expected that this model would achieve a high ROUGE L
 499 performance.
- 500 • *BottomUpSum* [15]: this method uses a two-step process to generate a summary. First, it uses a content selector to
 501 identify phrases in a source document that should be part of the summary. Second, it generates a summary of the
 502 pre-selected phrases.
- 503 • *InformationSelection* [25]: this paper proposes to extend the basic attention-based encoder-decoder architecture with
 504 an information selection layer to explicitly model and optimize the information selection process. The proposed
 505 information selection layer consists of global information filtering and local sentence selection. After this step, a
 506 summary is generated using the selected sentences.
- 507 • *ML+RL ROUGE+Novel, with LM* [23]: this model aims at improving the level of abstraction of generated summaries,
 508 by generating novel sentences. In order to do so, they decompose the decoder into a contextual network that retrieves
 509

510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 4⁴<https://nlds.soe.ucsc.edu/node/30>

521 relevant parts of the source document, and use a pre-trained language model that incorporates prior knowledge
 522 about language generation.

523 • *UnifiedAbsExt* [22]: this model combines extractive and abstractive summarization in an end-to-end learnable
 524 framework. Sentence-level attention is used to modulate the word-level attention such that words in less attended
 525 sentences are less likely to be generated.

526 • *RNN-EXT + ABS + RL + Rerank* [10]: in this model, first salient sentences are selected. Then the selected sentences are
 527 rewritten abstractively. These two steps are done using two separate neural networks. Furthermore, a sentence-level
 528 policy gradient method is used to bridge the non-differentiable computation between the two neural networks in a
 529 hierarchical way.

530 • *UniLM* [13]: As described in Section 2.2 UniLM is a language model whose architecture follows that of BERTLARGE
 531 and is also initialized by this model, but slightly modified its activation function and further fine-tuned for abstractive
 532 summarization.

533 • *T5* [31]: This work is also explained in Section 2.2. This model is also based on the Transformer architecture introduced
 534 by Vaswani et al. [40].

535 • *BART* [24]: BART is another top performing summarization model based on the Transformer architecture. The main
 536 contribution is the use of various noising technique for corrupting input text. For further details we refer to Section
 537 2.2.

538 • *ProphetNet* [47]: The ProphetNet is yet another model based on the Transformer architecture explained in Section 2.2.
 539 The idea behind the ProphetNet is changing the original sequence-to-sequence optimization problem of predicting
 540 the next single token into predicting the n next token simultaneously.

541

542 4.3 Evaluation Metrics

543

544 Following standard practice, we evaluate our proposed model against the baseline methods in terms of F_1 ROUGE 1,
 545 F_1 ROUGE 2, and F_1 ROUGE L scores using the official Perl-based implementation of ROUGE [26]. Furthermore, by
 546 means of human evaluation, we assess the readability and informativeness of summaries generated by CATS, as well as
 547 CATS's capability to customize summaries given a set of topics.

548

555 4.4 Experimental Results

556

557 We specify our model parameters as follows: the hidden state dimension of RNNs is set to 256, the embedding dimension
 558 of the word embeddings is set to 128, and the mini-batch size is set to 16. Furthermore, the truncated source lengths
 559 is set to 400 and the truncated target summary lengths is set to 100. In decoding mode (i.e. generating summaries on
 560 the test data) the beam size is 4 and the minimum target length which determines the minimum length of a generated
 561 summary is set to 35. Finally, the size of the vocabulary that CATS uses is set to 50,000 tokens.

562

563 To train a topic model we run LDA over the training data. LDA returns M lists of keywords representing the latent
 564 topics discussed in the collection. Since the actual number of underlying topics (M^*) is an unknown parameter in the
 565 LDA model, it is important to estimate it. For this purpose, similar to the method proposed in [4, 6, 18], we went through
 566 a model selection process. It involves keeping the LDA parameters (commonly known as α and η) fixed, while assigning
 567 several values to M and running the LDA model for each value. We picked the model that minimizes the negative
 568 log $P(W|M)$, where W contains all the words in the vocabulary of all the documents in the training data. This process
 569 is repeated until we have an optimal number of topics. The training of each LDA model takes nearly a day, so we could
 570

571

573 only repeat it for a limited number of M values. In particular, we trained the LDA model with values M ranging from 50
 574 up to 500 with an increment of 50, and the optimal value on the CNN/Dailymail dataset was found to be 100.
 575

576 The experiments reported in this paper were conducted using a Tesla V100 GPU with 18GB of RAM per node.

577 Based on the setup described above, in the following we present our experiments evaluating our proposed model
 578 against baselines.

579
 580 **4.4.1 Automatic Evaluation of Topic Customization.** We first evaluate CATS in generating summaries on pre-defined
 581 topics. In order to do that we remove two topics from the output of the topic model, fine-tune the trained summarization
 582 model for a few additional training steps and compute the presence/absence of the two topics in the generated summaries.
 583

584 The first topic is related to *health care* and its top five keywords are “dr”, “medical”, “patients”, “health”, and “care”.
 585 The second topic is related to *police arrests and charges* with its top five words being “charges”, “court”, “arrested”,
 586 “allegedly”, and “jailed”. Using the LDA model described in Section 4.4, we determine the topics of all human written
 587 summaries from the CNN/DailyMail test set. Our investigation shows that there are 752 human written summaries with
 588 the *health care* topic and 1,326 documents with the *police arrests and charges* topic. After we remove these two topics as
 589 explained above and generate summaries, we find out that the number of generated summaries of the same documents
 590 with the *health care* topic drops down to 64 and the number of generated summaries with *police arrests and charges*
 591 drops down to 255. This shows a significant decrease in the presence of the two topics in the generated summaries.
 592 Furthermore, as a reference point we examine the summaries produced by CATS without any topics removed. Our
 593 findings reveal that summaries produced by CATS have topic distributions very similar to those of human written
 594 summaries. Specifically, the number of documents containing the *health care* topic is 752 while the corresponding
 595 number for the *police arrests and charges* is 1317. These near-identical numbers were expected as CATS is trained to
 596 learn topics from target summaries.
 597

598 Although, this automatic evaluation shows a clear effectiveness in removing topics from summaries, it does come
 599 with a certain limitation. For example, since different topics can share the same words among them, it might happen
 600 that certain shared words that belong to more than one topic cause an error in our evaluation. Moreover, the copy
 601 mechanism that is adopted in our model, may copy certain names from the source document that can contain words
 602 that form a topic to be removed, e.g. World Health Organization. This is the reason why the numbers of topic presences
 603 in the generated summaries although significantly lower, but cannot reach 0. Therefore, in the following subsection we
 604 also conduct a human evaluation of the customized summaries.

605 This experiment clearly showed the effectiveness of CATS in removing topics from summaries, when compared with
 606 both the human written summaries and the output summaries of the standard CATS.

607
 608 **4.4.2 Human Evaluation of Customizing Summaries.** In this section, we describe the human evaluation results of CATS’s
 609 capability to include only certain topics in a summary and exclude others. As mentioned earlier, CATS is the first neural
 610 abstractive summarization model that allows to selectively include or exclude latent topics from the output summaries.
 611 In order to demonstrate this feature, we remove a few topics from the output of the topic model, fine-tune the trained
 612 summarization model for a number of additional training steps and analyze the effect. Our expectation is that the focus
 613 of certain output summaries which usually contain those topics will change, while naturally the raw ROUGE values are
 614 expected to decrease.

615 For this experiment, we chose the same two topics of the automatic evaluation and removed them from the summaries
 616 one at a time. The first topic is related to *health care* and its top five keywords are “dr”, “medical”, “patients”, “health”, and
 617 “care”. The second topic is related to *police arrests and charges* with its top five words being “charges”, “court”, “arrested”,
 618

“allegedly”, and “jailed”. Using the topic rankings of source documents, which are provided by the LDA model described in Section 4.4, we randomly chose 100 documents from the dataset that contained either one of the aforementioned topics, given that those topics were not their sole or primary focus, but in the second rank. The reasoning is that, for example, if a news article would only cover a crime-related topic and the summarization system tries to exclude that topic from a summary, there are very few words left to form a meaningful summary. Thus, in order to systematically exploit the customization mechanism, our model also examines the topics of a given input article and determines whether excluding certain topics from its summary is feasible.

Five human judges evaluated whether the summaries generated by CATS with restricted topics showed exclusion or reduction of those topics or whether there was no major difference. In other words, for each given system-generated summary, its corresponding human-written summary and the original news article, human judges could select either full exclusion of a target topic, reduction of a target topic, or no meaningful change. They were instructed to look for existence of the top 20 words of each topic in particular, except for cases that one of these words is a part of a name (e.g. American Health Center). For each document, we take the majority vote of the human assessors as the final decision. The results of this experiment show that, out of the 100 documents, the majority of the human judges find a full exclusion of a target topic in 87 documents, a reduction of the target topic in ten documents, and no major difference in only three documents. The Kappa agreement between the five human judges is 0.704.

Based on this experiment, we conclude that CATS can in most cases reliably customize summaries by controlling the topics that appear in them, and we attribute this capability to the *topical attention* mechanism. Our model is the first to bring customization of abstractive summaries in sequence-to-sequence architectures. Such feature, can be beneficial for editorial boards of publishers, e.g. news channels who would like to enforce policies regarding the topics of the content they publish. This can also be used at hospitals where doctors need to quickly obtain information from long electronic health-care records of patients regarding a certain illness. For example, a doctor attending a heart condition of a patient might not need information about a previously broken arm and therefore may would like to filter-out such irrelevant information.

Table 2 shows an example summary produced by CATS that was restricted not to include the *health care* topic, alongside a summary produced by CATS restricting the *crime* topic and CATS with no topic restriction, as well as the corresponding human-written reference summary. We observe that in the first two columns the focus of the summary is altered such that it focuses on the crime-related thematic rather than health care and vice versa in order to avoid using words such as “hospital”, “patients” and “medicine” in the first column and words such as “murdering”, “guilty”, “charges”, “denies” in the second column.

Table 3 shows another similar example where CATS is restricted not to include the *health care* topic and separately the *crime* topic.

We observe from the two examples that CATS generates summaries that read fluently in both topic-restriction and no-restriction modes.

4.4.3 *The impact of topic model.* In this section, we analyze the impact of the topic model in achieving summarization performance in terms of ROUGE. We already discussed how we train the LDA model in Section 4.4 using the training data. However, since the LDA model is unsupervised and can be trained in an online training process using new documents, we could also train it using both training as well as testing datasets. In this section we compare the performance of CATS in terms of ROUGE metrics in the situation where the unsupervised LDA topic model is trained only on training data compared with when it is trained on both training and testing datasets.

677 Table 2. Comparison of a CATS generated summary next to a summary with restricted topics and the human-written reference
 678 summary⁵. The words related to the crime topic are colored in red, while words related to health-care are in green.

CATS restricting health-care	CATS restricting crime	CATS	Reference
<p>681 victorino chua , 49 , denies 682 murdering tracey arden , 44 683 , arnold lancaster , 71 and 684 derek weaver , 83 , and deliberately 685 poisoning 18 others between 686 2011 and 2012 . chua has 687 pledged not guilty to 36 688 charges in all , including three 689 alleged murders , one count of 690 grievous bodily harm with intent , 23 counts of attempted 691 grievous bodily harm with intent , eight counts of attempting to cause a poison to be administered and one count of administering a poison .</p>	<p>681 victorino chua , 49 , has given evidence for the first time he didn't poison patients at stepping hill hospital in stockport . a nurse today told he did not poison hospital patients on his ward by contaminating their medicine with insulin .</p>	<p>681 victorino chua , 49 , has given evidence for the first time he didn't poison patients at stepping hill hospital in stockport . a nurse today told a jury he did not murder three hospital patients and poison almost 20 more at stepping hill hospital in stockport in order to kill and injure people he was caring for . chua denies murdering patients tracey arden , 44 , arnold lancaster , 71 and derek weaver , 83 , and deliberately poisoning 18 others between 2011 and 2012 .</p>	<p>681 victorino chua , 49 , denies murdering patients at stockport hospital in 2011 . filipino nurse also accused of poisoning 18 more at stepping hill hospital . denies injecting insulin and other poisons into bags of medicine on ward .</p>

699 Table 3. Comparison of a CATS generated summary next to a summary with restricted topics and the human-written reference
 700 summary⁶. The words related to the crime topic are colored in red, while words related to health-care are in green.

CATS restricting health-care	CATS restricting crime	CATS	Reference
<p>703 darwin man is accused of using someone else 's employee registration number to pose as a fake employee at the aurukun primary health centre on cape york during february and march . health authorities are searching through patient records after it was revealed man did not have the correct qualifications .</p>	<p>703 a 30-year-old darwin man posed as a nurse at the aurukun primary health centre on cape york during february and march . health authorities are searching through patient records after it was revealed man did not have the correct qualifications .</p>	<p>703 a 30-year-old darwin man is accused of using a female nurse 's registration number at the aurukun primary health centre on cape york during february and march . he was charged on saturday with one count of fraud after cairns detectives made contact with him in the northern territory . he was receiving a \$ 100,000 annual salary and accommodation from queensland health in the six weeks he was at the hospital .</p>	<p>703 man , 30 , is accused of using a female nurse 's employee number to work . he worked for six weeks at aurukun primary health centre on cape york . man was charged with fraud after payroll raised the alarm with hospital . authorities are checking patient records to see who he interacted with .</p>

719 In the results presented in Table 4, we observe that when the topic model is fine-tuned using the test data, the
 720 performance significantly improves in terms of ROUGE 1 and ROUGE L while showing slight improvement in terms
 721 of ROUGE 2. Therefore, we conclude that the training of the topic model is an essential factor in summarization
 722 performance.

725 **4.4.4 Comparison in terms of ROUGE.** In this section we compare our proposed model against all baselines in terms of
 726 the *F*₁ ROUGE metrics presented in Section 4.3. The results of this comparison are given in Table 5.

729 Table 4. Comparison between our model trained using LDA trained on training data against our model trained using LDA trained on
 730 both training and test data in terms of F_1 ROUGE metrics on the CNN/Dailymail dataset. Statistical significance test was done with
 731 a confidence of 95% and confirmed significance.

Models	ROUGE 1 (%)	ROUGE 2 (%)	ROUGE L (%)
CATS (LDA:training data)	41.76	18.69	38.21
CATS (LDA:training+testing data)	42.13	18.85	38.63

737
 738
 739 Table 5. Comparison between our proposed model against the baselines in terms of F_1 ROUGE metrics on the CNN/Dailymail dataset.
 740 ‘*’ means that results are based on the anonymized version of the dataset and not strictly comparable to our results. The bottom four
 741 models utilize pre-trained Transformer-based architectures.

Models	ROUGE 1 (%)	ROUGE 2 (%)	ROUGE L (%)
CATS (Ours)	42.13	18.85	38.63
LEAD-3 Baseline	40.34	17.70	36.57
Attn. Enc-Dec (Nallapati et al. [28])	35.46	13.30	32.65
PGN (See et al. [33])	36.44	15.66	33.42
PGN+coverage (See et al. [33])	39.53	17.28	36.38
RL with Intra-Attention (Paulus et al. [29]) ‘*’	41.16	15.75	39.08
BottomUpSum (Gehrmann et al. [15])	41.22	18.68	38.34
InformationSelection (Li et al. [25])	41.54	18.18	36.47
ML+RL ROUGE+Novel, with LM (Kryscinski et al. [23])	40.19	17.38	37.52
UnifiedAbsExt (Hsu et al. [22])	40.68	17.97	37.13
RNN-EXT + ABS + RL + Rerank (Chen and Bansal [10])	40.88	17.80	38.54
UniLM (Dong et al. [13])	43.33	20.21	40.51
T5-small (Raffel et al. [31])	41.12	19.56	38.35
T5-largest (Raffel et al. [31])	43.52	21.55	40.69
BART (Lewis et al. [24])	44.16	21.28	40.90
ProphetNet (Yan et al. [47])	44.20	21.17	41.30

761
 762
 763
 764 We can observe that our model outperforms all other non-Transformer-based models in terms of ROUGE 1 and
 765 ROUGE 2 while being behind the Transformer-based models (the bottom four models in the table). In order to verify
 766 the robustness of findings, we conduct a statistical significance test based on the bootstrap re-sampling technique
 767 using the official ROUGE package [26]. In the case of ROUGE L, [29] reports the highest performance among the
 768 non-Transformer-based models; however, this is due to their model loss function optimizing directly for the evaluation
 769 metric ROUGE L instead of the summarization loss. In fact, [22] reports an experiment that shows summaries generated
 770 by the [29] method achieve the poorest readability scores compared with a number of models including PGN and their
 771 own UnifiedAbsExt model, a finding which we also confirmed by comparing the output summaries with the output of
 772 our model (see Section 4.4.7). This indicates that optimizing on ROUGE L instead of the summarization loss adversely
 773 impacts the quality of the produced summaries. We discuss this point further in Section 4.4.7 where we qualitatively
 774 compare our generated summaries against that of [29].

775 We note that we did not include the method of [9] in our comparison, due to the fact that unlike most papers that
 776 use preprocessing scripts of [33] for the non-anonymized version of the dataset, they use different scripts. The effect
 777

781 of this difference on their LEAD-3⁷ baseline remains unclear as they do not report it. Thus, their results may not be
 782 comparable with ours.

783 In this experiment, we conclude that among non-Transformer-based baselines our model achieves superior performance
 784 as compared with other baselines. However, the Transformer-based models outperform CATS in terms of ROUGE
 785 metrics. This is while the training time, computational resources, and the training dataset size used for preparing our
 786 model is only a small fraction of that of the Transformer-based models. Let us take ProphetNet [47], the best performing
 787 model in terms of ROUGE, as an example. The authors explicitly mention that their model has been trained with a
 788 160GB dataset, then with another 16GB dataset, and finally fine-tuned using the CNN /Dailymail dataset. However, our
 789 model has been only trained using the CNN/Dailymail dataset.

790 For the smaller versions of the Transformer models which, similar to our model, are also trainable from scratch, we
 791 report the results of the small T5 model as a point of reference. The reason for reporting only the T5 is that it is the only
 792 model for which the size-performance trade-off is explored by the original authors [31]. As we observe in Table 5, our
 793 proposed model outperforms the T5-small in terms of ROUGE 1 and ROUGE L but it lags behind in terms of ROUGE 2.

794 Besides the data efficiency of CATS, the design goal behind our model is the capability of customizing summaries
 795 based on given topic requirements. This is something that no other model discussed in this article has been shown to
 796 be capable of.

797 4.4.5 *Comparing variations of CATS in terms of ROUGE.* This section performs an ablation study, measuring the impact
 798 of individual CATS components on ROUGE scores. We first present the setup of CATS used in all experiments throughout
 799 this article followed by other variations to determine the effect of each component on the model’s summarization
 800 performance:

- 801 (1) CATS: The standard setup of CATS using topical attention, as explained in Section 3. It focuses on topics of the
 802 target summaries at training time without using any topic information at test time. Additionally, CATS uses a
 803 coverage component as explained in the same section.
- 804 (2) CATS-Source-Topics: This variation uses topical attention focusing on topics of *source articles* at training time
 805 without using any topic information at test time.
- 806 (3) CATS-Source-Topics-TrainTest: This variation uses topical attention which focuses on topics of source articles
 807 during training, but differently from the above variations, also uses topic information of source articles at test
 808 time.
- 809 (4) CATS-No-Coverage: This variation of standard CATS omits the coverage mechanism.
- 810 (5) CATS-No-Topical-No-Coverage: We fully remove the topical attention of CATS and also remove the coverage
 811 mechanism. Under such settings CATS is reduced to a basic pointer generator network.

812 Table 6 presents the results of the ablation study. We observe that having a topical attention focusing on topics
 813 derived from target summaries during training time outperforms other variations of topical attention. We believe that
 814 focusing on topics of target summaries enables CATS to generate summaries precisely to the point as presented in the
 815 target summary. The fact that this variation outperforms all other variations may be caused by the model learning
 816 attention weights as a complement to the topic-words weights so precisely that providing this information at test time
 817 does not improve the summarization performance any further. As we remove the coverage mechanism or even the
 818 entire topical attention scheme, performance noticeably deteriorates.

829 830 ⁷The LEAD-3 baseline is taking the first three sentences of an article as its summary. This baseline is commonly used in automatic summarization as a
 831 reference to evaluate a dataset.

833 Table 6. Ablation study between the full CATS model and a number of reduced/altered variants in terms of F_1 ROUGE metrics on the
 834 CNN/Dailymail dataset.

Models	ROUGE 1 (%)	ROUGE 2 (%)	ROUGE L (%)
CATS	42.13	18.85	38.63
CATS-Source-Topics	41.22	17.98	37.39
CATS-Source-Topics-TrainTest	40.88	17.73	37.12
CATS-No-Coverage	38.13	16.52	35.03
CATS-No-Topical-No-Coverage	36.44	15.66	33.42

843 Table 7. F_1 ROUGE scores on AMI/ICSI test sets.

	ROUGE 1	ROUGE 2	ROUGE L
CATS No-TL	12.13	1.54	11.15
CATS	30.85	8.89	28.50

850 4.4.6 Low-resource Abstractive Summarization using Transfer Learning with CATS.

851 In this section, we introduce a transfer-learning approach for abstractive summarization of a very small dataset of
 852 meetings transcripts. We first train CATS on the CNN/ DailyMail news dataset. Our transfer-learning approach is based
 853 on fine-tuning and adapting model parameters to the new task of meeting summarization.

854 As a result, after we pre-train CATS on the news dataset, we fine-tune it as follows: We feed our model with the
 855 meeting training dataset described in Section 4.1.2. We use a small learning rate to tune all parameters from their
 856 original settings to minimize the loss on the new task. Moreover, we increase the minimum number of tokens generated
 857 from 35 to 65 to account for the greater length of meeting transcripts and corresponding summaries.

858 Fine-tuning adapts the model’s parameters to make it more discriminative for the new task, and the low learning
 859 rate is an indirect mechanism to preserve some of the representational structure learned in the news summarization
 860 task. Moreover, we expose CATS to the meeting training data for 50 epochs on the meeting training set with a batch
 861 size of 16.

862 Since our model utilizes LDA we need to add the training examples to the LDA model as well. That also changes the
 863 derived topics given to the topical attention mechanism.

864 We begin evaluating this approach by comparing our model in terms of the F_1 ROUGE metrics against our model
 865 when the transfer-learning approach described above is applied. Table 7 illustrates the results of this experiment.

866 As we can observe in the table, our model with transfer-learning significantly outperforms the model without
 867 transfer-learning in terms of ROUGE 1 and ROUGE L. Our statistical significance test is based on bootstrap re-sampling
 868 using the official ROUGE package [26] and confirms that the observed improvement over the baselines in terms of
 869 ROUGE metrics is significant with a confidence of 95%.

870 The most important finding of this experiment is the comparison of our model against its equivalent version without
 871 transfer-learning. The considerable improvement in performance corroborates that our transfer-learning approach
 872 is very effective in building a meeting abstractive summarization system, while producing summaries which are in a
 873 third-person-view and contain no colloquial expressions.

874 4.4.7 Human Evaluation of Summaries. We conduct a manual evaluation in order to assess the quality of summaries
 875 produced by CATS compared to the summaries of PGN+coverage [33] and RL with Intra-Attention [29], which were

885 provided by the authors of these methods. We chose the RL with Intra-Attention since it was the only method optimizing
 886 on ROUGE L and thus had a higher ROUGE L. We examine informativeness and readability of 50 randomly sampled
 887 summaries. When comparing the output produced by the three models, the three human assessors⁸ assigned scores
 888 ranging from 1 to 5 to each summary, while blinded to the identity of the models. The average overall scores of each
 889 model are shown in Table 8.
 890

891
 892 Table 8. Human evaluation comparing quality of summaries on a 1-5 scale using three evaluators.
 893

	Readability	Informativeness
CATS	4.1	3.9
PGN+Coverage	3.5	3.3
RL+Intra-Attention	2.6	2.9

900 We observe that the summaries generated by our model are judged to be more readable and more informative.
 901

902
 903 *4.4.8 Analysis of Repetition in Output Summaries.* In this experiment we analyze the quality of the output summaries
 904 produced by CATS and those produced by PGN and PGN+coverage in terms of repetition of text. A common issue
 905 with attention-based encoder-decoder architectures is the tendency to repeat an already generated sequence. In text
 906 summarization, this results in summaries containing repeated sentences or phrases. As described in Section 2, the
 907 coverage mechanism has been introduced to mitigate this undesirable effect, and we show that our model can reduce it
 908 even further.
 909

910 We compare CATS to PGN and PGN+coverage in terms of n-grams repetition with n ranging from 1 to 6. For this
 911 purpose, and to exclude possible influence of better hyperparameter tuning, we train all three models using the optimal
 912 hyperparameters found for PGN+coverage, whenever applicable. The upshot of this experiment is reported in Figure 2.
 913 The scores reported in the figure are normalized average repetition scores over all output summary documents in the
 914 test set of the CNN/Dailymail dataset. We compute the scores by calculating the average of the per-document n-gram
 915 repetition score, $S_{\text{rep,doc}}$, over all test output documents, where we define:
 916

$$917 S_{\text{rep,doc}} = \frac{\# \text{duplicate n-grams}}{\# \text{all n-grams}} \quad (12)$$

918 We observe that our model exhibits drastically lower repetition of text in its output summaries compared with both
 919 PGN and PGN+coverage, which is confirmed by manual inspection of the output. This trend is consistent on all the
 920 tested n-grams. Although PGN+coverage was originally designed to overcome the repetition problem, the results of
 921 this experiment indicate that our proposed topical attention mechanism reduces repetition significantly.
 922

923 We believe that the reason behind this phenomenon is that our model tends to focus not only on the few words in
 924 the input sequence which are assigned high attention weights, but also on other words which are topically connected
 925 with these words in a certain context. Firstly, this acts as an attention diversification and redistribution mechanism (an
 926 effect similar to coverage). Secondly, these topically connected words receive a higher generation probability (through
 927 Equations (6) and (8)) and the model is more inclined to paraphrase the input.
 928

929 The result of this experiment indicates that our *topical attention* mechanism is a very effective solution to the
 930 repetition problem in sequence generation based on encoder-decoder architectures.
 931

932 ⁸None of the assessors are affiliated with this paper.
 933

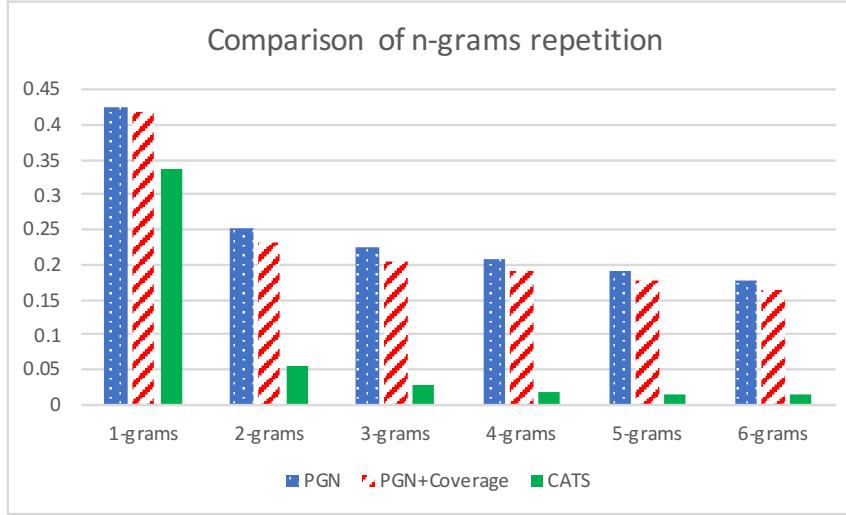


Fig. 2. Experiment comparing the degree of n-grams repetition in our model versus that of the PGN and PGN+coverage baselines on the CNN/Dailymail test set. Lower numbers show less repetition in the generated summaries.

4.4.9 Readability experiment: This experiment is designed to measure the readability of the output summaries generated by the various models. For this purpose we use the Automated Readability Index (ARI) [34]. ARI is a measure for gauging how understandable a piece of text is. The results of the experiment, reported in Table 9, show that CATS yields superior readability compared to other models and variations. It is worth noting that CATS with topics removed performs very close to CATS in terms of automatic readability scores, suggesting high overall text generation quality. The table additionally presents basic statistics on average number of tokens per sentence as well as average number of characters per token.

Table 9. Comparing the performance of our model vs. PGN, with respect to readability of output summaries

	Ground-truth	CATS-without-coverage	CATS	CATS-with-topics-removed	PGN	PGN+coverage
ARI	28.40	23.43	34.14	23.86	22.59	23.66
Ave. # tokens per sentence	14.30	23.12	23.82	23.43	20.90	23.92
Ave. # chars per token	4.70	4.64	4.56	4.66	4.61	4.62

4.4.10 Summary coherence experiment: This experiment is designed to measure the coherence of the output summaries generated by the various models. For this purpose we use the Normalized Pointwise Mutual Information (NPMI) which is an established measure for quantifying coherence between words. We compute the coherence of a summary by computing NPMI between all word pairs of every two consecutive sentences normalized by the number of sentences in the summary. Each sentence is identified by punctuation marks such as ".", "?" and "!". We formally define coherence of a summary s consisting of sentences $sent_1, \dots, sent_n$ as:

$$coherence_s = (NPMI(sent_1, sent_2) + NPMI(sent_2, sent_3) + \dots + NPMI(sent_{n-1}, sent_n))/n$$

989 This metric quantifies the relatedness of sentences of a document. In order to compute the coherence of summaries
 990 we remove stop words, punctuation marks as well as all non alphabetic tokens such as numbers. Then we compute the
 991 coherence produced by the different methods.
 992

993 In this experiment we compare CATS against CATS with the crime topic removed. Table 10 shows the results of this
 994 experiment.
 995

996 Table 10. Comparing the performance of CATS vs. CATS-with-topics-removed, with respect to coherence of output summaries
 997

	CATS	CATS-with-topics-removed
Coherence	0.00754	0.00823

1001
 1002 As we observe from the table CATS-with-topics-removed achieves a higher coherence score compared with CATS.
 1003 This outcome was expected, since CATS aims for covering all topics present in a source article. Subsequently, since the
 1004 NPMI score between words which come from different topics are lower, the overall coherence score is also lower. In the
 1005 case of CATS-with-topics-removed, however, we observe that the summaries are more focused and therefore yield a
 1006 higher coherence score.
 1007

1008 In this experiment, we showed that when we remove a certain topic in summaries produced by CATS, we observe a
 1009 higher coherence score.
 1010

1012 5 DISCUSSION

1013 In the previous sections we have presented and extensively evaluated CATS. In this section, we discuss the use cases
 1014 of CATS in its current form, potentially significant improvements and modifications for future work, and, finally, the
 1015 potential use of topical attention in other sequence-to-sequence neural architectures.
 1016

1017
 1018 **Prospective use cases of CATS:** As previously mentioned, compared to transformer-based models that typically re-
 1019 quire large scale pre-training, CATS has the advantage of being trained on a relatively small dataset, while outperforming
 1020 all baselines on the standard abstractive summarization task, except for the large-size variants of the transformer-based
 1021 models. In addition to standard summarization, we also introduced and tackled the problem of topic-based summariza-
 1022 tion. We have qualitatively demonstrated the effectiveness of a fine-tuning method for custom-generation of summaries
 1023 by focusing on a few topics and discarding others. In order to use this topic-based summarization feature of CATS in
 1024 practice, it is currently necessary to fine-tune multiple instances of CATS beforehand, each including/excluding certain
 1025 topics. These thematically customized models can be deployed on cloud infrastructure and be accessed through an API
 1026 on demand, so as to serve specific information needs (e.g. a journalist covering only US - China relations as a part of
 1027 international relations, or only trade as a part of US - China relations). Although deploying multiple specialized model
 1028 instances in parallel is a paradigm widely used in industry (e.g. for machine translation between numerous language
 1029 pairs), it comes with practical limitations with respect to infrastructure, maintenance and development time. In the
 1030 following, we will discuss possible alternatives to fine-tuning for topic control, which is a topic of active, ongoing
 1031 research.
 1032

1033
 1034 **Alternative topic control mechanisms for custom generation:** A first solution to obviate the need for fine-tuning
 1035 multiple instances, each focusing on a different set of topics, is to prepare a dataset with topic-specific summaries.
 1036

1041 Such a dataset will contain articles and two or more summaries corresponding to each article, such that each summary
1042 focuses on only one (or a subset) of the few topics present in the document. In this way, during training, CATS or
1043 other similar sequence-to-sequence models will learn how to generate a summary focused on a topic (or subset of
1044 topics) indicated as input. To elaborate, each topic will be specified with a unique token which will be fed along with
1045 the input document tokens to the encoder, and the expected output of the decoder will be a summary with a focus on
1046 the corresponding topic(s). We are currently developing such a dataset and will soon release it as the first dataset on
1047 customized topic-based summarization to be used by the community for building advanced summarization systems.
1048 Interestingly, the existing fine-tuned CATS models can be used to generate the topic-specific summaries of this dataset.
1049

1050 A second, promising solution for controlling generation is to add a regularization term to the model's loss function
1051 in order to explicitly drive the attention mechanism to learn the distribution over input words as induced by the
1052 topic model. Specifically, during training we can use the KL divergence, Wasserstein distance or similar metrics which
1053 measure differences between distributions, to penalize the deviation between the precursor attention weights e^t (Eq.
1054 (2)) and the topical word distribution τ^d induced by a topic model (Eq. (1)). This method can potentially direct the
1055 model to attend to a source document in the same way as suggested by a distribution over words coming from a topic
1056 model. Moreover, certain topics can be turned off or on in the distribution.
1057

1058 The third possible solution that also relies on the dedicated dataset explained above (as the first solution) is to
1059 extract the topic-words distribution from the model's output summaries, and penalize its distance from the intended
1060 topic-words distribution specified by a user through a regularization term in the loss function.
1061

1062 Finally, a fourth solution is to train a CATS model as usual, but modify the beam-search text generation algorithm
1063 such that during inference it would assign higher probabilities for generating words that are indicated by a topic-words
1064 distribution. That is, a penalty term would be added to words that are likely to be generated by the normal beam-search
1065 but are not in line with a topic-words distribution indicated by a user.
1066

1067 In summary, we discussed a number of solutions that can be used to enhance the practicality and effectiveness of our
1068 topic-based, customizable summarization model. We believe that combining two or more of the above solutions can
1069 potentially result in a robust topic-based summarization. The above ideas are directions of our current research and
1070 future work.
1071

1072 **Integrating the topical attention into other neural architectures:** In the standard summarization experiments
1073 reported in the previous section, the concept of topical attention was shown to improve the quality of summaries
1074 compared to the same architecture without topical attention.
1075

1076 The recent advancements in abstractive summarization research has been mostly due to the advent of the transformer
1077 model. As discussed in Section 2, all recent top-performing summarization models are variants of the original Transformer
1078 model [40]. While in very recent work [44] the incorporation of topic models in transformer-based summarization
1079 systems is emerging as a beneficial component, we believe that our idea of topical attention can be directly used in
1080 transformer-based models even in its current form as presented in Equation (4) to mediate between the encoder and
1081 decoder as cross-attention. That is, the topic-words weights are integrated into the cross-attention weights. Adapting
1082 the topical attention mechanism to other transformer-based models, also taking into account the ideas presented in the
1083 previous paragraph, is the focus of our ongoing research.
1084

1093 6 CONCLUSIONS AND FUTURE WORK

1094 In this paper we present CATS, an abstractive summarization model that makes use of latent topic information in a
 1095 source document and is thereby capable of controlling the topics appearing in an output summary of a source document.
 1096 This can enable customization of generated texts based on user profiles or explicitly given topics, in order to present
 1097 content tailored to a user's information needs.
 1098

1099 Our experimental results show that CATS achieves performance superior to all non-transformer-based models in
 1100 terms of standard evaluation metrics for summarization (*i.e.* ROUGE) on a standard benchmark dataset, while drastically
 1101 reducing sequence repetition, and, crucially, enabling customization of produced summaries.
 1102

1103 Moreover, we showed a transfer-learning approach for applying CATS to small datasets and low-resource cases.
 1104

1105 CATS can serve as a foundation for future work in the domain of automatic summarization. Based on the results of
 1106 this paper, we are optimistic about the potential of future summarization systems to generate summaries which are
 1107 customized to users' needs. We envision three ways of controlling the focus of output summaries using CATS: First, as
 1108 demonstrated in the experiment in Section 4.4.2, certain topics could be disabled in the output of the topic model and be
 1109 consequently discarded from output summaries. Second, a reference document could be provided to the topic model, its
 1110 topics could be extracted and subsequently direct the focus of generated summaries. This is useful when a user wants
 1111 to see summaries/updates primarily or only regarding issues discussed in an existing reference document or collection
 1112 of documents. Third, content extracted from user profiles (*e.g.* history of web pages of interest) could be provided to the
 1113 topic model, their salient themes extracted by the model and then taken into account whenever presenting users with
 1114 summaries.
 1115

1116 Finally, we are interested in exploring the use of dedicated, fully neural topic modeling modules, whose parameters are
 1117 learned either using unsupervised pre-training or from scratch during end-to-end training of the sequence-to-sequence
 1118 model.
 1119

1122 ACKNOWLEDGMENTS

1123 This research is supported in part by the NSF (IIS-1956221), SNSF (P2TIP2_187932), ODNI and IARPA via the BETTER
 1124 program (2019-19051600004). The views and conclusions contained herein are those of the authors and should not be
 1125 interpreted as necessarily representing the official policies, either expressed or implied, of NSF, SNSF, ODNI, IARPA or
 1126 the U.S. Government.
 1127

1130 REFERENCES

- 1131 [1] Mohammad Aliannejadi, Morgan Harvey, Luca Costa, Matthew Pointon, and Fabio Crestani. 2019. Understanding Mobile Search Task Relevance
 and User Behaviour in Context. In *Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR '19)*. New York, NY,
 USA, 143–151.
- 1132 [2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. *arXiv preprint*
 arXiv:1409.0473 (2014).
- 1133 [3] Seyed Ali Bahrainian. 2019. *Just-In-Time Information Retrieval and Summarization for Personal Assistance*. Ph.D. Dissertation. Università della
 Svizzera italiana.
- 1134 [4] Seyed Ali Bahrainian and Fabio Crestani. 2018. Augmentation of Human Memory: Anticipating Topics That Continue in the Next Meeting. In
 Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (CHIIR '18). 150–159.
- 1135 [5] Seyed Ali Bahrainian and Andreas Dengel. 2015. Sentiment analysis of texts by capturing underlying sentiment patterns. In *Web Intelligence*, Vol. 13.
 53–68.
- 1136 [6] Seyed Ali Bahrainian, Ida Mele, and Fabio Crestani. 2018. Predicting topics in scholarly papers. In *European Conference on Information Retrieval*.
 Springer, 16–28.

1145 [7] Michele Banko, Vibhu O Mittal, and Michael J Witbrock. 2000. Headline generation based on statistical translation. In *Proceedings of the 38th Annual*
 1146 *Meeting on Association for Computational Linguistics*. Association for Computational Linguistics, 318–325.

1147 [8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation. *J. Mach. Learn. Res.* 3 (2003), 993–1022.

1148 [9] Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. 2018. Deep Communicating Agents for Abstractive Summarization. In *Proceedings*
 1149 *of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
 1150 *Papers)*. 1662–1675.

1151 [10] Yen-Chun Chen and Mohit Bansal. 2018. Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting. In *Proceedings of the 56th*
 1152 *Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers*. 675–686.

1153 [11] Trevor Cohn and Mirella Lapata. 2008. Sentence compression beyond word deletion. In *Proceedings of the 22nd International Conference on*
 1154 *Computational Linguistics-Volume 1*. Association for Computational Linguistics, 137–144.

1155 [12] Fabio Crestani and Heather Du. 2006. Written versus spoken queries: A qualitative and quantitative comparative analysis. *Journal of the American*
 1156 *Society for Information Science and Technology* 57, 7 (2006), 881–890.

1157 [13] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language
 1158 model pre-training for natural language understanding and generation. In *Advances in Neural Information Processing Systems*. 13042–13054.

1159 [14] Ferenc Galkó and Carsten Eickhoff. 2018. Biomedical Question Answering via Weighted Neural Network Passage Retrieval. In *European Conference*
 1160 *on Information Retrieval*. Springer, 523–528.

1161 [15] Sebastian Gehrmann, Yuntian Deng, and Alexander M. Rush. 2018. Bottom-Up Abstractive Summarization. In *Proceedings of the 2018 Conference on*
 1162 *Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*. 4098–4109.

1163 [16] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
 1164 *Neural Networks* 18, 5-6 (2005), 602–610.

1165 [17] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. 2017. LSTM: A Search Space Odyssey. *IEEE Transactions on Neural*
 1166 *Networks and Learning Systems* 28, 10 (2017), 2222–2232.

1167 [18] Thomas L Griffiths and Mark Steyvers. 2004. Finding scientific topics. *Proceedings of the National academy of Sciences* (2004).

1168 [19] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying mechanism in sequence-to-sequence learning. *arXiv preprint*
 1169 *arXiv:1603.06393* (2016).

1170 [20] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus). *arXiv preprint arXiv:1606.08415* (2016).

1171 [21] Karl Moritz Hermann, Tomas Kocišky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching
 1172 machines to read and comprehend. In *Advances in Neural Information Processing Systems*. 1693–1701.

1173 [22] Wan Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang, and Min Sun. 2018. A Unified Model for Extractive and Abstractive Summarization
 1174 using Inconsistency Loss. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia,*
 1175 *July 15-20, 2018, Volume 1: Long Papers*. 132–141.

1176 [23] Wojciech Kryscinski, Romain Paulus, Caiming Xiong, and Richard Socher. 2018. Improving Abstraction in Text Summarization. In *Proceedings of the*
 1177 *2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*. 1808–1817.

1178 [24] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
 1179 Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. *arXiv preprint arXiv:1910.13461*
 1180 (2019).

1181 [25] Wei Li, Xinyan Xiao, Yajuan Lyu, and Yuanzhuo Wang. 2018. Improving Neural Abstractive Document Summarization with Explicit Information
 1182 Selection Modeling. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 -*
 1183 *November 4, 2018*. 1787–1796.

1184 [26] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. *Text Summarization Branches Out* (2004).

1185 [27] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent neural network based sequence model for extractive summarization
 1186 of documents. In *Thirty-First AAAI Conference on Artificial Intelligence*.

1187 [28] Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos Santos, Çağlar Gülcehre, and Bing Xiang. 2016. Abstractive Text Summarization using
 1188 Sequence-to-sequence RNNs and Beyond. In *Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016,*
 1189 *Berlin, Germany, August 11-12, 2016*. 280–290.

1190 [29] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for abstractive summarization. *arXiv preprint arXiv:1705.04304*
 1191 (2017).

1192 [30] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. [n.d.]. Improving language understanding by generative pre-training. ([n. d.]).

1193 [31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the
 1194 limits of transfer learning with a unified text-to-text transformer. *arXiv preprint arXiv:1910.10683* (2019).

1195 [32] Nuzhah Gooda Sahib, Anastasios Tombros, and Tony Stockman. 2012. A comparative analysis of the information-seeking behavior of visually
 1196 impaired and sighted searchers. *Journal of the American Society for Information Science and Technology* 63, 2 (2012), 377–391.

1197 [33] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point: Summarization with Pointer-Generator Networks. In *Proceedings of*
 1198 *the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers*.
 1199 1073–1083.

1200 [34] RJ Senter and Edgar A Smith. 1967. *Automated readability index*. Technical Report. CINCINNATI UNIV OH.

1197 [35] Guokan Shang, Wensi Ding, Zekun Zhang, Antoine Jean-Pierre Tixier, Polykarpos Meladianos, Michalis Vazirgiannis, and Jean-Pierre Lorré. 2018.
 1198 Unsupervised Abstractive Meeting Summarization with Multi-Sentence Compression and Budgeted Submodular Maximization. *arXiv preprint*
 1199 *arXiv:1805.05271* (2018).

1200 [36] Paul Thomas, Daniel McDuff, Mary Czerwinski, and Nick Craswell. 2017. MISC: A data set of information-seeking conversations. In *Proceedings of*
 1201 *the 1st International Workshop on Conversational Approaches to Information Retrieval*.

1202 [37] Anastasios Tombros and Mark Sanderson. 1998. Advantages of query biased summaries in information retrieval. In *Proceedings of the 21st annual*
 1203 *international ACM SIGIR conference on Research and development in information retrieval*. ACM, 2–10.

1204 [38] Johanne R Trippas, Damiano Spina, Lawrence Cavedon, Hideo Joho, and Mark Sanderson. 2018. Informing the Design of Spoken Conversational
 1205 Search: Perspective Paper. In *Proceedings of the 2018 Conference on Human Information Interaction&Retrieval*. ACM, 32–41.

1206 [39] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling Coverage for Neural Machine Translation. In *Proceedings of the*
 1207 *54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1*.

1208 [40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
 1209 all you need. In *Advances in neural information processing systems*. 5998–6008.

1210 [41] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In *Advances in Neural Information Processing Systems*. 2692–2700.

1211 [42] Chong Wang, David Blei, and David Heckerman. 2008. Continuous time dynamic topic models. *Proc. of UAI* (2008).

1212 [43] Li Wang, Junlin Yao, Yunzhe Tao, Li Zhong, Wei Liu, and Qiang Du. 2018. A Reinforced Topic-aware Convolutional Sequence-to-sequence Model for
 1213 Abstractive Text Summarization. In *Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI'18)*. 4453–4460.

1214 [44] Zhengjue Wang, Zhibin Duan, Hao Zhang, Chaojie Wang, Long Tian, Bo Chen, and Mingyuan Zhou. 2020. Friendly Topic Assistant for Transformer
 1215 Based Abstractive Summarization. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 485–497.

1216 [45] Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma. 2017. Topic aware neural response generation. In *Thirty-First*
 1217 *AAAI Conference on Artificial Intelligence*.

1218 [46] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and
 1219 tell: Neural image caption generation with visual attention. In *International conference on machine learning*. 2048–2057.

1220 [47] Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. 2020. ProphetNet: Predicting Future
 1221 N-gram for Sequence-to-Sequence Pre-training. *arXiv preprint arXiv:2001.04063* (2020).

1222 [48] David Zajic, Bonnie Dorr, and Richard Schwartz. 2004. Bbn/umd at duc-2004: Topiary. In *Proceedings of the HLT-NAACL 2004 Document Understanding*
 1223 *Workshop*. 112–119.

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248