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ABSTRACT
Click logs are valuable resources for a variety of information re-
trieval (IR) tasks. This includes query understanding/analysis, as
well as learning effective IR models particularly when the models
require large amounts of training data. We release a large-scale
domain-specific dataset of click logs, obtained from user interac-
tions of the Trip Database health web search engine. Our click
log dataset comprises approximately 5.2 million user interactions
collected between 2013 and 2020.We use this dataset to create a stan-
dard IR evaluation benchmark –TripClick– with around 700,000
unique free-text queries and 1.3 million pairs of query-document rel-
evance signals, whose relevance is estimated by two click-through
models. As such, the collection is one of the few datasets offering
the necessary data richness and scale to train neural IR models with
a large amount of parameters, and notably the first in the health
domain. Using TripClick, we conduct experiments to evaluate a
variety of IR models, showing the benefits of exploiting this data to
train neural architectures. In particular, the evaluation results show
that the best performing neural IR model significantly improves
the performance by a large margin relative to classical IR models,
especially for more frequent queries.
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1 INTRODUCTION
User interactions with information systems are a valuable resource
for retrieval system training, refinement and evaluation. These
interactions, in the form of click logs, contain submitted queries
alongside clicked documents from the result page. To be effective,
these collections are sizable, and can be exploited for search en-
gine effectiveness improvement [3, 5, 34], as well as studying user
behavior [23], and information needs [11].

In the health domain, information needs are often diagnostic,
therapeutic or educational in nature. Common queries reflect pa-
tient characteristics such as demographics, general disposition or
symptoms [8, 15, 27, 32, 33] and aim at obtaining a differential di-
agnosis [6, 17], suggested treatments [8], or tests that might help
narrow down the range of candidate diagnoses. In comparison with
general-purpose search engines, the user base of health search en-
gines is almost exclusively composed of domain experts (healthcare
professionals) and behavioral traces may differ significantly from
those observed on the popular web.

This work develops and shares TripClick, a large-scale dataset
of the click logs provided by https://www.tripdatabase.com, a health
web search engine for retrieving clinical research evidences, used
almost exclusively by health professionals. The dataset consists of
5.2 million clicks collected between 2013 and 2020, and is publicly
available for research purposes. Each log entry contains an identifier
for the ongoing search session, the submitted query, the list of
retrieved documents, and information on the clicked document.
TripClick is one of the very few datasets providing the necessary
data richness and scale to train deep learning-based IR models with
a high number of parameters. To the best of our knowledge, this is
the first effort to release a large-scale click log dataset in the health
domain. It can serve various information processing scenarios, such
as retrieval evaluation, query analysis, and user behavior studies. In
particular, covering the search activities throughout the year 2020,
the TripClick dataset provides an interesting resource capturing
the COVID-19 pandemic.

Based on the click logs, we create and provide a health IR bench-
mark. The benchmark consists of a collection of documents, a set of
queries, and the query-document relevance information, extracted
from user interactions. Regarding the documents collection, since
the vast majority of the retrieved and clicked documents in the
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dataset are medical articles originating from the MEDLINE cata-
log.1 We create the IR benchmark using the subset of the click logs
containing the documents in MEDLINE. This results in 1.5 million
medical articles’ abstracts, 692,000 unique queries, and 4 million
pairs of interactions between these queries and documents. We
create and provide two estimations of query-document relevance
using two click-through models [1]. The first one, referred to as RAW,
follows a simple approach by considering every clicked document
relevant to its corresponding query. The second uses the Document
Click-Through Rate (DCTR) [4], which estimates query-document
relevance as the rate of clicking the document over all retrieved
results of a specific query.

The TripClick benchmark provides three groups of queries for
evaluation of IR models. The groups are created according to spe-
cific query frequency ranges. Concretely, the HEAD group consists
of most frequent queries which appear more than 44 times, non-
frequent ones with frequencies between 6 and 44 times are grouped
in TORSO, and TAIL encompasses rare queries appearing less than 6
times. To facilitate research on neural IR models, we create a large
training set in pairwise learning-to-rank format [18]. Each item in
the training data consists of a query, one of its relevant documents,
and a randomly selected non-relevant document.

Using this data, we study the performance of several recent neu-
ral IR models as well as strong classical baselines. Evaluation is
carried out using standard IR evaluation metrics, namely Mean
Reciprocal Rank (MRR), Recall at cut-off 10, and Normalized Dis-
counted Cumulative Gain (NDCG) at cut-off 10. The results show
significant improvements of neural architectures over classical mod-
els in all three groups. This improvement is particularly prominent
for more frequent queries, i.e., the ones in the HEAD and TORSO
groups.

The contribution of this work is three-fold:

• Releasing a large-scale dataset of click logs in the health
domain.

• Creating a novel health IR benchmark, suited for deep learning-
based IR models.

• Conducting evaluation experiments on various classical and
neural IR models on the collection.

The click logs dataset, the benchmark, and all related resource
as well as the code used to create the benchmark are available on
https://tripdatabase.github.io/tripclick.

The remainder of this paper is structured as follows: Related
resources are reviewed in Section 2. Section 3 describes the dataset
of click logs, followed by explaining the process of creating the
TripClick IR benchmark in Section 4. We lay out our experiment
setup and report and discuss the results in Section 5.

2 RELATED RESOURCES
In this section, we review some of the existing resources related
to TripClick, in particular large-scale search log datasets in the
web domain, as well as some common health IR collections. The
statistics of these resources as well as our novel TripClick dataset
are summarized in Table 1.

1https://pubmed.ncbi.nlm.nih.gov

Table 1: Number of queries and number of query-document
interactions (Q-D) of various IR collections in the web and
health domain.

Collection Queries Q-D

W
eb

Sogou-QCL [37] 537K 12.2M
MS MARCO Passage Retrieval [21] 1.0M 532K
MS MARCO Document Retrieval [21] 367K 384K
ORCAS [2] 10.4M 18.8M

H
ea
lth

TripClick Logs Dataset 1.6M 5.2M
TREC Precision Medicine 2019 [26] 40 13K
CLEF Consumer Health Search 2018 [13] 50 26K

"DateCreated": Date(1510099598753)
SessionId: 0voniyqiiinv41t3y2jwosx0
Keywords: "risk of cancer from diagnostic x-rays"
Documents: [1184559, 9261540, 4780587, 1412562, 5002174,
5026261, 5569939, 9416551, 9410485, 5611210, 6659224,
1172157, 9279530, 4974766, 5857055, 1314398, 7875167,
1400849, 7622126, 9280769]
DocumentId: 6659224
Url: "http://www.ncbi.nlm.nih.gov/pubmed/20602108"
Title: "Diagnostic X-ray examinations and increased
chromosome translocations: evidence from three studies
DOI: "10.1007/s00411-010-0307-z"
ClinicalAreas: "Radiology"

Figure 1: Sample click log entry.

Large-scale click log datasets in the English Web domain have
first been released by AOL [23] and MSN [36], containing thou-
sands of search queries. Later on, Yandex2 provided a dataset with
35 million anonymized search sessions [29]. Recently, Sogou3 has
made available a dataset of 537,000 queries in Chinese, accompa-
nied with 12.2 million user interactions (Sogou-QCL) [37]. Another
recent IR collection in the web domain, MS MARCO [21], pro-
vides a large set of informational question-style queries from Bing’s
search logs. These queries are accompanied by human-annotated
relevant/non-relevant passages and documents. More recently, the
ORCAS collection [2] releases a large dataset of the click logs related
to MS MARCO.

In the health domain, several standard IR benchmarks have been
developed over the years, especially through evaluation campaigns
such as the Text Retrieval Conference (TREC) and Conference and
Labs of the Evaluation Forum (CLEF). Examples of some IR tasks
are CLEF eHealth Consumer Health Search [13] and TREC Preci-
sion Medicine [26]. The related collections consists of some dozens
of queries, where each query is accompanied by a set of human-
annotated relevance judgements on documents. TripClick comple-
ments the previous efforts in creating standard health IR collections,
by providing a novel dataset of health queries and query-document
relevance signals, several orders of magnitude larger in size.

2https://www.yandex.com
3https://www.sogou.com

https://tripdatabase.github.io/tripclick
https://pubmed.ncbi.nlm.nih.gov
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Table 2: Statistics of the TripClick logs dataset.

Number of click log entries 5,272,064
Number of sessions 1,602,648
Average number of q-d interactions per session 3.3
Number of unique queries 1,647,749
Number of documents (clicked or retrieved) 2,347,977
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Figure 2: Query frequency histogram. The vertical axis is
presented in log scale.

3 TRIPCLICK LOGS DATASET
The TripClick logs dataset consists of the user interactions of
the Trip search engine collected between January 2013 and Oc-
tober 2020. A sample click log entry is shown in Figure 1. Each
entry consists of date and time of search (in Unix time, in millisec-
onds), search session identifier, submitted query (Keywords field),
document identifiers of the top 20 retrieved documents,4 and the
metadata of the clicked document. For the clicked document, the
provided data contains its unique identifier and URL. If the clicked
document is a scientific publication, its title, DOI, and clinical areas
are also stored. We should emphasize that the privacy of individual
users is preserved in the clicked search logs by cautiously removing
any Personally Identifiable Information, (PII).

The statistics of the TripClick logs dataset are reported in Ta-
ble 2. It consists of approximately 5.2 million click log entries,
appeared in around 1.6 million search sessions (∼3.3 interactions
per session).

The click logs contain around 1.6 million unique queries. These
queries appear in the logs at varying frequencies. Figure 2 shows the
log-scaled query frequency histogram. The histogram follows an
exponential trend – there are many rare queries (issued only a few
times to the search engine), while there are few highly frequent ones.
Examples of a frequent and a rare query are “asthma pregnancy”,
and “antimicrobial activity of medicinal plants”, respectively.

As reported in Table 2, the log files contain approximately 2.3
million documents. Together with the dataset of click logs, we pro-
vide the corresponding titles and URLs of all documents. Examining
the origin of clicked documents, we observe that approximately
80% of the documents point to articles in the MEDLINE catalog,

4The top 20 retrieved documents by the search engine are shown to users in one page.
The retrieved documents are only available in the log files since August 2016
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Figure 3: Number of submitted queries related to theCOVID-
19 pandemic. The entries 2018 and 2019 compound all occur-
rences in those years.

around 11% to entries in https://clinicaltrials.gov, and the rest to
various publicly available resources on the web.

Finally, looking at the query contents, Figure 3 reports the num-
ber of times a query related to the COVID-19 virus5 is submitted
to the search engine in the period of 2018-2020. The data for 2018
and 2019 are presented as annual sums, while for the year 2020,
numbers are reported per month. While there are only few COVID-
19-related queries before the February of 2020, the information need
rapidly gains popularity with a peak in April. The provided data is
potentially a useful resource for studying the COVID-19 pandemic,
as well as the reaction and evolution of search engines regarding the
sudden emergence of previously unknown/uncommon diseases.

4 TRIPCLICK HEALTH IR BENCHMARK
To create the TripClick benchmark, we use a subset of click log
entries that refer to those documents that are indexed in the MED-
LINE catalog. This choice was made because the majority of the
click logs refer to MEDLINE articles (∼ 80%). Additionally, from
a practical point of view, considering that the MEDLINE articles
remain constant over time, the contents of the corresponding docu-
ments can be conveniently determined from the present MEDLINE
catalog, despite the fact that each document in the logs is accessed
at some historic timestamp. MEDLINE articles are similarly used
in several other health IR benchmarks [24–26]. This subset encom-
passes around 4 million log entries. The statistics of the TripClick
benchmark are reported in Table 3. The process of creating the
benchmark is explained in the following.

We create the collection of documents that appear in the subset
of click logs, resulting in approximately 1.5 million unique docu-
ments. For each document, we fetch the corresponding article from
the MEDLINE catalog. Similar to the TREC Precision Medicine
track [24–26], we use the title and abstract of the articles as docu-
ments of the TripClick benchmark.

We then extract the queries from the subset of click logs, result-
ing in around 692,000 unique queries. As shown in Figure 2, many
queries appear rarely while some few are submitted very often. In
creating the benchmark, we are interested in the performance of var-
ious IR models on queries in different frequency ranges, namely the
sets of infrequent, modestly-frequent, and highly-frequent queries.
5We count those queries containing the keywords corona, covid, covid-19, and covid19

https://clinicaltrials.gov


Table 3: Statistics of TripClick IR benchmark.

Number of query-document interactions 4,054,593
Number of documents 1,523,878
Number of queries (all/HEAD/TORSO/TAIL) 692,699 / 5,879 / 108,314 / 578,506
Average query length 4.4 ± 2.4
Average document length 259.0 ± 81.7

Number of relevance data points in RAW (all/HEAD/TORSO/TAIL) 2,870,826 / 246,754 / 994,529 / 1,629,543
Average relevance data points per query in RAW (HEAD/TORSO/TAIL) 41.9 / 9.1 / 2.8
Number of relevance data points in DCTR (HEAD) 263,175
Average relevance data points per query in DCTR (HEAD) 46.2

Number of queries used to create training set 685,649
Number of non-zero RAW relevance data points used to create training set 1,105,811
Number of items in training set 23,222,038
Number of queries in validation sets (HEAD/TORSO/TAIL) 1,175 / 1,175 / 1,175
Number of queries in test sets (HEAD/TORSO/TAIL) 1,175 / 1,175 / 1,175

To this end, we split the queries into three groups, namely HEAD,
TORSO, and TAIL, such that the queries in this sets cover 20%, 30%,
and 50% of the search engine traffic (according to the subset of click
logs). This, in fact, results in assigning the queries with frequencies
lower than 6 to TAIL, the ones between 6 and 44 to TORSO, and
all the rest with frequencies higher higher than 44 to HEAD. The
number of queries in each group is reported in the upper section of
Table 3. While the numbers of unique queries in HEAD and TORSO
are much smaller than those in TAIL, the former together still cover
half of the search engine’s traffic since their queries repeat much
more often than the ones of TAIL.

Next, we create two sets of query-to-document relevance signals,
each created using a click-through model. The first relevance set,
referred to as RAW, follows a simple approach by considering every
clicked document as relevant to its corresponding query. The second
set uses the Document Click-Through Rate (DCTR) [1, 4]. Creating
two sets using different click-throughmodels provides insight about
the effect of each click-throughmodel on the final evaluation results,
achieved using the corresponding relevance signals.

To calculate the two sets of relevance scores, we first collect
all retrieval information related to each query, consisting of the
retrieved documents and the clicked ones. In the RAW set, for a
given query, a relevance score of 1 is assigned to each of its clicked
documents. For completeness, we also include a set of non-relevant
documents (relevance score of 0) for each query, consisting of the
documents in the ranked list of the query that appear in higher
positions than the clicked one. This in fact follows the common
assumption in click-through models, that the user has checked the
documents in the retrieved ranked list from top till the clicked
document, and has not found the top non-clicked ones relevant [1].
We should note that adding these non-relevant scores typically
does not affect the evaluation results, as relevance scores of 0 are
commonly ignored.

Regarding the DCTR set, the relevance score of a document for a
given query is defined as the number of times that the document is
clicked divided by the number of times the document is retrieved in
the result lists of the query. These scores have a numeric range from

0 to 1. To be able to use these scores for retrieval evaluation, we
need to discretize them to relevance grades. To this end, we follow
a similar approach to the one in Xiong et al. [34]. In particular,
we project the DCTR scores to 4 relevance grades (0 to 3), where
0 is non-relevant and 3 is highly relevant. The DCTR scores are
discretized to these grades by selecting thresholds such that the
relevance grades follow a similar distribution as TREC Web Track
2009-2012 query-relevance data. The selected thresholds are 0.0,
0.04, 0.3, and 1, resulting in a distribution of 71.4%, 19.7%, 6.0%, and
2.9% of scores for grades 0 to 3, respectively. We should note that
similar to Xiong et al. [34], the DCTR model is only calculated for
HEAD queries. This is due to the fact that the DCTR method provides
meaningful relevance signals from click logs only if the queries
are sufficiently frequent. The statistics of the numbers of relevance
data points as well as their averages per query, for each group are
reported in the center section of Table 2. We should note that while
we provide two click-through models, the log files can be indeed
exploited in future studies for creating further and more advanced
click-through models.

The provided documents, queries, and relevance signals are well
suited for training neural IR models or as an evaluation benchmark.
To enable consistent and reproducible training and evaluation in
future studies, we construct pre-defined validation and test sets as
well as pair-wise training data. In particular, for each group (HEAD,
TORSO, and TAIL), we create validation and test sets by randomly
selecting 1,175 queries from the pool of the queries in the corre-
sponding group. To create the training data, we use the remaining
queries of the three groups (∼685,000), and their non-zero RAW rele-
vance datat points (∼1.1 million). We follow the pair-wise learning
to rank method [18], where each data entry is a triple, consisting
of a query, a relevant, and a non-relevant document. Similar to
Nguyen et al. [21], for each relevant query-document pair, we cre-
ate 20 training triples, where the query and relevant document are
taken from the given estimated relevance, and the non-relevant
document is randomly sampled from the top 1,000 results of a BM25
model. This results in training data with more than 23 million data
items, as reported in the lower section of Table 2. We would like to



Table 4: Evaluation results on the TripClick benchmark using RAW relevance information. The best results for each metric
are indicated by bold numbers. The superscript letters indicate significant improvements (p < 0.05) over the other models,
indicated with letters inside the parentheses: the superscript letter a refers to BM25 and RM3 PRF, b to PACRR, c to MP, d to
KNRM, e to ConvKNRM, and f to TK.

Model Validation Test
NDCG MRR Recall NDCG MRR Recall

HEAD

BM25 (a) 0.209 0.362 0.129 0.199 0.347 0.128
RM3 PRF (a) 0.205 0.344 0.129 0.199 0.354 0.125
PACRR (b) 0.254a 0.451a 0.151a 0.234a 0.410a 0.142a

MP (c) 0.275ab 0.479ab 0.160ab 0.244ab 0.419a 0.150ab

KNRM (d) 0.268ab 0.466a 0.156a 0.254abc 0.449abc 0.151ab

ConvKNRM (e) 0.279abd 0.490abd 0.159ab 0.266abcd 0.473abcd 0.152ab

TK (f ) 0.302abcde 0.521abcde 0.174abcde 0.284abcde 0.487abcd 0.167abcde

TORSO

BM25 (a) 0.224 0.318 0.271 0.206 0.283 0.262
RM3 PRF (a) 0.207 0.290 0.255 0.194 0.261 0.254
PACRR (b) 0.230a 0.333 0.271 0.212 0.302a 0.262
MP (c) 0.253abd 0.364ab 0.296abd 0.243ab 0.347ab 0.297abd

KNRM (d) 0.242ab 0.348a 0.286ab 0.235ab 0.338ab 0.283ab

ConvKNRM (e) 0.248ab 0.360ab 0.292ab 0.243ab 0.358abd 0.288ab

TK (f ) 0.281abcde 0.394abcde 0.326abcde 0.272abcde 0.381abcde 0.321abcde

TAIL

BM25 (a) 0.285 0.277 0.429 0.267 0.258 0.409
RM3 PRF (a) 0.240 0.227 0.392 0.242 0.227 0.384
PACRR (b) 0.289 0.283 0.429 0.267 0.261 0.409
MP (c) 0.294 0.293a 0.429 0.281abe 0.280abde 0.409
KNRM (d) 0.289 0.279 0.429 0.272 0.265 0.409
ConvKNRM (e) 0.289 0.282 0.429 0.271 0.265 0.409
TK (f ) 0.310abde 0.298a 0.471abcde 0.295abde 0.279 0.459abcde

Table 5: Evaluation results using DCTR relevance information. Notations as in Table 4.

Model Validation Test
NDCG MRR Recall NDCG MRR Recall

HEAD

BM25 (a) 0.149 0.314 0.145 0.140 0.290 0.138
RM3 PRF (a) 0.145 0.296 0.143 0.141 0.300 0.136
PACRR (b) 0.186a 0.390a 0.166a 0.175a 0.356a 0.162a

MP (c) 0.202ab 0.416ab 0.181ab 0.183a 0.372a 0.173ab

KNRM (d) 0.196ab 0.407a 0.174ab 0.191abc 0.393ab 0.173ab

ConvKNRM (e) 0.206abd 0.429abd 0.180ab 0.198abcd 0.420abcd 0.178ab

TK (f ) 0.221abcde 0.453abcde 0.194abcde 0.208abcde 0.434abcd 0.189abcde

point out that, considering the relatively high number of relevance
signals per query especially in the HEAD and TORSO group, training
data can also be created for list-wise learning-to-rank approaches.

5 RETRIEVAL EXPERIMENTS ON TRIPCLICK
BENCHMARK

In this section, we demonstrate the usefulness of the proposed
dataset for model training and benchmarking, by reporting the
performance of various IR models on the TripClick benchmark



collection. We first explain our experimental setup, followed by
presenting and discussing the evaluation results.

5.1 Experiment Setup
IR Models. We conduct studies using several classical IR models

as well as recent neural ones. As strong classical IR baselines, we
use BM25 [28] as a widely used exact matching model, and the
RM3 Pseudo Relevance Feedback (PRF) model [16, 19] as a strong
query expansion baseline. In addition, we study the effectiveness
of five recent neural IR models, namely Position Aware Convolu-
tional Recurrent Relevance Matching (PACRR) [12], Match Pyra-
mid (MP) [22], Kernel-based Neural Ranking Model (KNRM) [34],
Convolutional KNRM (ConvKNRM) [5], and Transformer-Kernel
(TK) [10]. These neural models are selected due to their strong
performance on retrieval tasks as well as their diversity in terms of
model architectures.

Evaluation. Performance evaluation is carried out in terms of
Mean Reciprocal Ranks [31] (MRR), Recall at a cutoff of 10, and
Normalized Discounted Cumulative Gain (NDCG) at a cutoff of 10.
Statistical significance tests are conducted using a two-sided paired
t-test and significance is reported for p < 0.05. The evaluation is
performed using trec_eval.6

Hyper-parameters and Training. For classical IR models, we use
the default hyper-parameters of the Anserini toolkit [35]. For neural
IR models, we use pre-trained word2vec Skipgram [20] embeddings
with 400 dimensions, trained on biomedical texts from the MED-
LINE dataset.7 In a preprocessing step, all documents are casefolded
by projecting all characters to lower case. We remove numbers
and punctuation (except periods), and apply tokenization using Al-
lenNLPWordTokenize [7]. The vocabulary set is created by filtering
those terms with collection frequencies lower than 5, resulting in
215,819 unique terms. We use the Adam optimizer [14] with learn-
ing rate 0.001, a maximum of 3 epochs, and early stopping. We use
a batch size of 64. The maximum length of queries and documents
is set to 20 and 300 tokens, respectively. For KNRM, ConvKNRM,
and TK, we set the number of kernels to 11 in the range of −1 to +1
with a step size of 0.2, and standard deviation of 0.1. The dimension
of the convolutional vectors in ConvKNRM is set to 400. The TK
model consists of 2 layers of Transformers [30] with 2 heads and
intermediate vector size of 512. In MP, the number of convolution
layers is set to 5, each with kernel size 3 × 3 and 16 convolutional
channels. The pre-trained word embeddings are updated during
training. The threshold for selecting the top n retrieved documents
for re-ranking is chosen by tuning the n parameter on a range from
1 to 100, based on the NDCG results of the validation set. More
information about training and reproducing these baseline models
as well as the results of other models is provided in the collection’s
web page: https://tripdatabase.github.io/tripclick.

5.2 Evaluation Results
The evaluation results on the validation and test sets of HEAD, TORSO,
and TAIL using RAW relevance information are shown in Table 4.
Table 5 reports the evaluation results on the HEAD queries using the

6https://github.com/usnistgov/trec_eval
7http://nlp.cs.aueb.gr/software.html

DCTR relevance information.8 The best results for each evaluation
metric are shown in bold. Significant improvements over the other
models are indicated with the superscript letters inside the paren-
theses in front of the models. For brevity, we assign the same sign
of significance to the two classical baselines (superscript letter a),
indicating significant improvements over both models.

In general, the neural models significantly outperform the clas-
sical ones, where the TK model in particular shows the best overall
performance by significantly outperforming the classical IR models
across all groups and evaluation metrics. We observe similar pat-
terns between the results of DCTR and RAW on the HEAD set. The over-
all achieved improvements with neural models are more prominent
for groups containing more frequent queries, namely the improve-
ments of the queries in HEAD are higher than the ones in TORSO, and
subsequently in TAIL.

The evaluation results on the TripClick benchmark and specif-
ically the improvements of the various neural models relative to
each other are similar to the behavior observed on the MS MARCO
collection in previous studies [9, 10]. This is in particular the case
for the results of HEAD (according to both RAW and DCTR) and TORSO
groups. These results highlight the value of the provided benchmark
and training data for research on neural and deep learning-based
IR models in general, and in the health domain in specific.

6 CONCLUSION
This work provides a novel click-log dataset covering the 7 years
user interactions of a health search engine. The dataset consists of
approximately 5.2 million user interactions. Based on the dataset,
we create TripClick, a novel large-scale health IR benchmark with
approximately 700,000 queries and 2.8 million query-document
relevance signals. We use TripClick to train several neural IR
models and evaluate their performances on well-defined held-out
sets of queries. The evaluation results in terms of NDCG, MRR, and
Recall demonstrate the adequacy of TripClick for training large,
highly parametric IR models and show significant improvements
of neural models over classical ones, particularly for queries that
appear frequently in the log dataset. The log dataset as well as
the created benchmark and training data are made available to the
community to foster reproducible academic research on neural IR
models, particularly in the health domain.
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