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ABSTRACT

Existing neural ranking models follow the text matching paradigm,
where document-to-query relevance is estimated through predict-
ing the matching score. Drawing from the rich literature of classical
generative retrieval models, we introduce and formalize the para-
digm of deep generative retrieval models defined via the cumulative
probabilities of generating query terms. This paradigm offers a
grounded probabilistic view on relevance estimation while still en-
abling the use of modern neural architectures. In contrast to the
matching paradigm, the probabilistic nature of generative rankers
readily offers a fine-grained measure of uncertainty. We adopt sev-
eral current neural generative models in our framework and intro-
duce a novel generative ranker (T-PGN), which combines the encod-
ing capacity of Transformers with the Pointer Generator Network
model. We conduct an extensive set of evaluation experiments on
passage retrieval, leveraging the MS MARCO Passage Re-ranking
and TREC Deep Learning 2019 Passage Re-ranking collections. Our
results show the significantly higher performance of the T-PGN
model when compared with other generative models. Lastly, we
demonstrate that exploiting the uncertainty information of deep
generative rankers opens new perspectives to query/collection un-
derstanding, and significantly improves the cut-off prediction task.
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1 INTRODUCTION

Neural ranking models have yielded remarkable improvements to
information retrieval (IR) by estimating a highly non-linear function
of relevance of a query to a document. Arguably, all existing neural
ranking models [7, 11, 12, 14, 25, 28, 33, 50] follow the text matching
paradigm, where relevance is calculated as the predicted matching
score of each document to a given query. In this sense, these neural
ranking models appear to be the descendants of matching-based
(or similarity-based) models such as the vector space model [42],
where the model estimates the relevance score of a document D
to a query Q by the matching function f(Q, D). We refer to these
models (whether neural or classical ones) as matching models.

A generative view on IR was first introduced by Ponte and Croft
[36], where — unlike in matching models — relevance is expressed
in terms of a conditional probability in a well-formed probabilis-
tic framework. In particular, the query likelihood language model
estimates relevance as the probability of the query being gener-
ated by a language model of the document, namely P(Q|®p). This
regime provides a powerful probabilistic framework to IR, and has
been the base for numerous approaches (see Zhai [56] for further
details). Our paper provides a modern perspective on the funda-
mental principle of the generative paradigm for IR through the
recent advancements in deep generative models. We introduce and
provide the theoretical foundations of deep generative ranking mod-
els, comprehensively study the characteristics and performance
of the models’ various architectural choices for passage retrieval,
and show the immediate benefits of the probabilistic nature of this
paradigm in providing more-than-relevance information.

Let us first discuss the overall architectural differences/similarities
across various IR models, as highlighted in Figure 1. Representation-
based models first encode query and document into separate em-
beddings, and then use these embeddings to calculate query-to-
document relevance scores [18, 19, 44]. In query-document interac-
tion models, the query-term-to-document-term interactions (in the
form of similarities or attention networks) are used to create a final
feature vector, and hence estimate the relevance score [7, 11, 12,
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Figure 1: Schematic views of representation-based and query-document interaction models with representative examples of
models (the two categories of the matching paradigm), and deep generative ranking models (the generative paradigm).

14, 18, 20, 25, 28, 34, 50]. In this category of models, large-scale pre-
trained language models such as BERT [8] have shown significant
improvements in retrieval performance [27, 31].

Deep generative ranking models (Figure 1c) view relevance
estimation as the probability of generating the query, given the
document. The models follow the sequence-to-sequence (seq2seq)
encoder-decoder architecture [45]. They first encode the document,
and then use the encoded embeddings to provide probability dis-
tributions over the space of possible queries at the output of the
decoder. This framework in addition to effective estimation of rel-
evance, provides a distinctive benefit in comparison with other
retrieval models: the probabilistic nature of generative models en-
ables the extraction of actionable information in addition to mere
relevance scores. This probabilistic information for example can
take the form of uncertainty estimates of the model. Such uncer-
tainty estimation is directly achieved from the output of the model
and does not need any model modification, nor does it impose any
extra computation. As we show in the present work, this uncertainty
information can effectively be exploited for better understanding of
the underlying collection and training data, and also in downstream
tasks such as rank cut-off prediction.

In addition, the decoupling of query/document encoding in the
architecture of deep generative model enables the ranking model
to store document embeddings at index time and later exploit them
at inference time (similar to representation-based models). At the
same time, the decoder embeddings still effectively interact with
encoded embeddings (typically through attention mechanisms),
which is analogous to interaction-focused models. The use of at-
tention mechanisms over the document during decoding facilitates
effective interaction with encoded document embeddings (as in
query-document interaction models), but also enables the poten-
tial incorporation of orthogonal notions, such as personalization,
diversity or fairness into the model.

The present work explores various aspects of the generative IR
paradigm from the perspective of deep generative models. Con-
cretely, we first formalize the theoretical connection between the
introduced deep generative ranking models and classical generative
IR models, in particular the query likelihood language model.

We then investigate the effectiveness of various generative archi-
tectures in passage retrieval. To this end, we conduct a comprehen-
sive study on the use of the state-of-the-art neural language gen-
eration techniques for retrieval. We study various models, among
them Pointer Generator Networks (PGN) [43], and a recently pro-
posed combination of BERT and Transformers [24]. In addition to
these models, we combine the benefits of PGN in query decoding
with those of BERT in document encoding, and propose a new
generative ranking model referred to as T-PGN. We evaluate these
generative models on the MS MARCO Passage Re-ranking [30]
and the TREC Deep Learning 2019 Passage Re-ranking task [6].
The results demonstrate that among the generative models, our
introduced T-PGN model shows the overall best performance.

Finally, drawing from the probabilistic framework of deep gen-
erative models, we calculate a measure of uncertainty reflecting
the model’s confidence in the prediction of a given query. The un-
certainty estimate is achieved by calculating the entropy values of
the probability distributions of query term generation. We use the
resulting uncertainty estimates to first analyze the existence of bias
with respect to term positions in the queries of MS MARCO and
then exploit this extra information for cut-off prediction, observing
a significant improvement in the task.

To summarize, our main contribution is four-fold:

o Introducing the novel deep generative ranking models and
formalizing them in the perspective of classical generative
IR models.

o Adopting several recent deep generative language models for
ranking, and introducing a new generative ranker (T-PGN).

e Conducting a large set of evaluation experiments on various
generative models for passage retrieval.

o Showecasing the potential of deep generative ranking models
for uncertainty estimation of relevance scores and its use in
a cut-off prediction task.

The paper is organized as follows: Section 2 reviews related
literature. In Section 3, we introduce the deep generative rank-
ing models and explain various architectural choices as well as
their potential for uncertainty estimation. Section 4 describes our
design of experiments, whose results are reported and discussed



in Section 5. The accompanying source code is available at https:
//github.com/CPJKU/DeepGenlR.

2 RELATED WORK
2.1 Neural Retrieval Models

In the category of query-document interaction models, we can dis-
tinguish between three groups of models. The first group captures
patterns of similarity values across terms that appear close together
within the query and within the document [11, 20, 21, 34]. The
second group captures patterns of frequencies across ranges of sim-
ilarity values [7, 12-14, 50]. The last ones are based on large-scale
pre-trained language models, as the use of these models has shown
significant performance gains in various IR tasks.

For instance, the BERT model is used for document/passage re-
trieval through fine-tuning [31], combining them with other rank-
ing models [27], expanding to other more efficient variations [26]
or dense retrieval approaches [22, 51]. In this paper, we also investi-
gate the benefits of exploiting such large-scale pre-trained language
models in the context of deep generative ranking models.

Finally, in addition to the mentioned neural models, other studies
exploit the inherent efficiency of classic IR models while aiming to
improve their effectiveness using pre-trained embedding models.
This is done for instance by generalizing term salience with transla-
tion models [38, 40], and re-weighting terms [57], or through adapt-
ing word embeddings for document retrieval by post-filtering [39],
retrofitting [16], or re-training on local documents [9].

2.2 Neural Generative Models in IR

Neural generative models have been utilized in various IR tasks.
As examples, Zamani et al. [54] study the use of a seq2seq model
to generate queries, whose results are used as a source of weak
supervision for asking clarifying questions. Ren et al. [41] and later
Yang et al. [53] approach the task of reformulating conversational
queries into search-engine-friendly queries using seq2seq with
attention models. Ahmad and Chang [1], Ahmad et al. [2] use
a similar generative model to train a query recommender, which
facilitates the reformulation of users’ queries and hence the effective
ranking of documents.

In the context of neural ranking models, Nogueira et al. [33]
use a seq2seq Transformer model [47, 55] to expand documents
with generated queries, and adopt a BERT-based matching model
to conduct retrieval on the expanded documents. In a more recent
work, Nogueira et al. [32] exploit the T5 model [37] (a pre-trained
Transformer-based seq2seq model) to perform binary classification
of query-document pairs as relevant or irrelevant. In this approach,
query and document are both given as the input to the encoder,
and the generated output of the decoder is two possible tokens
(“true” or “false”) corresponding to the relevant and non-relevant
class. The authors use the logits corresponding to the two tokens
to infer the relevance score. Based on the discussion in Section 1
and on Figure 1, despite the seq2seq architecture of this model, this
approach can in fact be categorized among the query-document
interaction models, since the input is the concatenation of query and
document, and the output is their relevance score. In contrast, the
deep generative models presented in the work at hand generate text
queries from input documents, where the probability of generating
each query term is defined over all possible words (and not over

two tokens). Parallel to our work, Zhuang et al. [58] investigate
query likelihood models built upon a Transformer-based seq2seq
architecture. Our work expands their study by investigating a wide
range of deep generative architectures in IR ranking, and showing
the fundamental benefits of generative ranking models for query
understanding and in downstream tasks.

In a larger context, neural language generation models span vari-
ous language processing tasks, i.e. machine translation [47], abstrac-
tive document summarization [24, 43], dialogue generation [48],
and question answering [10, 49]. The present work benefits from
and contributes to these studies by adopting deep generative mod-
els in the context of retrieval, and introducing a new generative
model.

3 DEEP GENERATIVE RANKING MODELS

In the following, we first formulate deep generative ranking models
by highlighting their connections to classical generative models [3,
36, 56]. We then describe the various loss functions used to train the
models, followed by a detailed description of the proposed T-PGN
and other generative ranking models used in this study. Finally, we
introduce our approach to uncertainty estimation defined on the
probability space resulting from deep generative rankers.

3.1 Definition

Ponte and Croft [36] introduced the language modeling approach to
IR and proposed a new scoring model based on this approach, which
later has been called the query likelihood model (QL). The language
modeling approach defines the relevance of document D to query
Q based on the conditional probability P(Q|D).! This probability is
rooted in the idea that a user who wants to find document D would
utilize query Q to retrieve the document [56]. P(Q|D) is defined
by P(Q|®p) - the probability of generating query Q using the
language model ®p, built based on document D. Zhai [56] explains
the objective of ®p as “modeling the queries that a user would use
in order to retrieve documents”, highlighting the fact that, although
®p is a document language model, it is effectively a model meant
for queries and not for documents.

The most well-known way to use the language modeling ap-
proach is by utilizing a multinomial language model assuming
query term independence [56], resulting in the following model
formulation, known as QL:

QL P(QID) ~ P(Qlop) = [ | P(gilep) (1)
q:€Q
The language model ®p is commonly defined as a unigram proba-
bility distribution of D over all terms in the vocabulary, smoothed
using the collection as background statistics. The relevance score
of query to document is defined as the logarithm of the conditional
probability.

QL: score(Q,D) = > logP(qi|®p) )

qi€Q
Deep generative ranking models follow a similar perspective to
relevance estimation as the QL: Document D should be scored as
more relevant to query Q if the model assigns a higher value to the
probability of generating Q when conditioned on D. This probability

!More precisely, P(Q|D,R = r), i.e. the probability of Q given D and a level of
relevance 7.
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is calculated based on an encoder-decoder architecture. The encoder
receives document D as a sequence of input tokens and provides a
(contextualized) representation of the document. The decoder uses
the document’s representation as well as previous query tokens and
estimates as output the probability of generating the next query
token. The decoder is in fact a query language model which outputs
the probability of generating the next query token, conditioned on
the representation of the document in auto-regressive fashion (one
after another). Given such a generative model, the relevance score is
defined as the probability of generation of the query, conditioned on
the document. The generation probability is formulated as follows:

Po(QID) = [ | Po(qilD, gj<i) ®)
qi€Q
where gj<; denotes the query tokens preceding the current token,
and 6 indicates the model’s parameters learned using training data.
Similar to QL, the relevance score is defined as the logarithm of the
conditional probability:

score(Q, D) = Z log Pg(qi|D, qj<i) (4)
q:€Q

Having outlined the conceptual similarities of deep generative
ranking models and QL, let us now discuss the differences, par-
ticularly by comparing the formulations in Eq. 1 and Eq. 3. One
difference is that deep generative models are not constrained by the
term independence assumption, as the generation of each token is
conditioned on the previous terms. Another difference is rooted in
the language models that deep generative models use to generate
queries. While QL utilizes ®p — the language model of document
D - deep generative models use the query language model that
is created by observing all queries in the training data. In fact, in
contrast to QL, deep generative ranking models explicitly train
a language model for queries, whose generation probabilities are
conditioned on the given document. In this sense, deep generative
ranking models can be seen as an alternative implementation of
the language modeling approach to IR, while still benefiting from

the advantages of neural ranking models.

3.2 Ranking Loss Functions

Considering the provided formulation of deep generative ranking
models, we discuss in this section the training loss functions used to
train generative models. Given a pairwise learning-to-rank setting,
the training data of retrieval models is provided in the form of a
query Q with a relevant and a non-relevant document, denoted as
D* and D™ respectively.

The first loss is the well-known negative log likelihood (NLL),
commonly used to train generative models, and defined as follow:

Lui=- ), logPa(QID") (5)
(Q.D*)eT

where 7 denotes the collection of training data. It is evident that
NLL only considers the relevant document and does not use the
non-relevant one. The next loss function is margin ranking (Marg)
formulated below:

LMarg = Z

(Q.D*,D7)eT

max{0,b — 10ng(Q|D+) +log Py(Q|D7)}

(6)
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Figure 2: Transformer Pointer Generator Network (T-PGN)

The Marg loss increase the differences between the predicted rele-
vance score of the relevant document and the predicted relevance
score of the non-relevant document up to a margin threshold b.
This loss can accept relevance scores in any range and is therefore
commonly adopted in ranking models.

Our final loss function proposed by dos Santos et al. [10] expands
NLL by adding the unlikelihood probability of negative documents,
namely the logarithm of one minus probability of the negative
document in training data. We refer to this loss as negative log
likelihood log unlikelihood (NL3U), defined as follows:

Luu=- ), logPe(QID*)+log(1-Py(QID7))  (7)
(Q.DY)eT

3.3 Neural Generative Ranking Architectures

Based on our formulation of neural generative ranking models,
any neural generative model can be exploited for retrieval, namely
by calculating the query-to-document relevance estimated from
the generation probability distributions. In the following, we first
briefly describe the generative models studied in this paper, and
then explain our proposed T-PGN model. These models are selected
based on their strong performance in tasks such as abstractive
document summarization and machine translation.

Seq2SeqAttention. The Sequence-to-Sequence with Attention
model [29] is an extension to the baseline Sequence-to-Sequence
model [45]. The baseline model consists of an encoder LSTM and a
decoder LSTM, where the last hidden state of the encoder is given
to the initial hidden state of the decoder. Seq2SeqAttention ex-
tends this models by the attention network, defined on the encoder
hidden states and conditioned on the hidden state of the decoder
LSTM. This attention mechanism enables the immediate access of
the decoder to all document embeddings at encoder, facilitating
information flow in the model.
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Figure 3: Illustration of different uncertainty estimates on
a given query term position. While the probability of gen-
erating the term Fuel is the same in both cases, the upper
distribution contains a much higher degree of uncertainty.

PGN. See et al. [43] introduce the Pointer Generator Network,
which expands the Seq2SeqAttention model by a novel copy mech-
anism. The objective of this copy mechanism is to facilitate the
transfer of the out-of-vocabulary (OOV) terms appearing in the doc-
ument directly to the output query. This approach has shown highly
competitive performance in abstractive summarization benchmarks.
This is due to the fact that in summarization (similar to IR) rare
words — which are commonly removed from the list of vocabularies
due to their low collection frequencies — can be highly salient, and
hence crucial for the success of the task.

Transf2Transf. The Transformer-to-Transformer is introduced
by Vaswani et al. [47] in the context of machine translation. The
model consists of multiple layers of encoder Transformers to con-
textualize document embeddings with self-attention, followed by
multiple layers of decoder Transformers. The decoder Transformers
generate output probability distributions by contextualizing query
embeddings and attending to the final embeddings of the encoder.

BERTZ2Transf. The BERT-to-Transformer model, recently intro-
duced by Liu and Lapata [24], achieves state-of-the-art results on
abstractive text summarization collections. The model has a similar
architecture to the one of Transf2Transf but instead of Transformers
uses a BERT model encoder.

Transformer Pointer Generator Networks (T-PGN). We in-
troduce the Transformer Pointer Generator Networks model (T-
PGN) which combines the advantages of the PGN model with Trans-
formers. The architecture of the model is shown in Figure 2. The
T-PGN model provides a multi-layer encoder Transformer to create
contextualized word embeddings of document terms. These em-
beddings are then passed to the encoder LSTM, whose final hidden
state is used as the initial state of the decoder LSTM. Similar to PGN,
the attention distribution over the contextualized document em-
beddings (containing the OOV terms) is combined with the output
distribution provided by the decoder to form the final distribution.
This provides a probability distribution of query generation de-
fined over all words in the vocabulary as well as the OOV terms
appearing in document.

3.4 Uncertainty Estimation in Neural
Generative Rankers

Given a document, deep generative models predict a probability
distribution for each term of a query. As discussed in Section 1, this

probabilistic perspective enables the calculation of the uncertainty
of the model with respect to this prediction. In the following, we
explain our approach to calculating an uncertainty estimate given
any deep generative model.

At every step i of query term generation, the deep generative
models estimate a probability distribution over all terms of the
vocabulary. Despite the selected probability value for the term in
the position i, Pg(qi|D, qj<i), the form of the predicted probability
distribution reveals parallel information about the model. In fact,
the same generation probability of a term may result from different
kinds of probability distributions. This point is illustrated with a toy
example in Figure 3 for the term Fuel. As shown, if the distribution
of the term generation probabilities is close to uniform (the upper
graphic in Figure 3), the model is not certain about the generation
probability, as many terms have comparable chance to be generated
in the next position. In contrast, when the distribution is more
skewed, the model is more certain about possible generation terms
(the lower graphic in Figure 3). Despite these different distributions,
the predicted probability values of Fuel in both distributions are
equal. In fact, this term-level uncertainty provides extra information
that might not be captured in the predicted probability values, and
hence the predicted relevance score.

Similar to Xu et al. [52], we define term-level uncertainty as the
entropy of the nucleus probability distribution at each step. The
nucleus distribution [17] provides a well-behaved version of the
original generation probability distribution, by redistributing the
very low probability values. More concretely, the nucleus distribu-
tion recomputes the probability distribution only on the k most
probable terms, where k is chosen such that the accumulated prob-
abilities of these k terms is equal to or greater than a predefined
threshold p. Similar to Xu et al. [52], we set p = 0.95.

Given the nucleus probability distribution for the generation of
the term at time step i, denoted as X i the term-level uncertainty
of the model is calculated as follows:

term-level uncertainty(Xi) =- Z P(x) -log P(x) (8)

xeX!

Using this definition, we can estimate a model’s uncertainty
with respect to generating the whole query, namely query-level
uncertainty, by aggregating term-level uncertainty values. To this
end, various aggregation functions (such as mean, entropy, variance,
and maximum) can be applied to the corresponding values of each
query. We further investigate the characteristic of this uncertainty
estimation for model/collection analysis and the cutoff prediction
task in Section 5.3 and Section 5.4, respectively.

4 EXPERIMENT SETUP

Collections. We conduct our evaluation experiments on two para-
graph retrieval collections. The first is the MS MARCO Passage Re-
ranking collection [30]. In total, the development set of MS MARCO
comprises 8,841,822 documents, and 55,578 queries. We follow the
setting in Hofstétter et al. [13] and split the queries into a valida-
tion and a test set, containing 6,980 and 48,598 queries, respectively.
Since the provided relevance judgements by this collection are
highly sparse, we refer to this test set as SPARSE. The second test
collection is the TREC Deep Learning Track 2019 Passage Retrieval



set (TREC-19) [6], which also originates from the MS MARCO col-
lection. The TREC-19 collection encompasses 43 annotated queries.

Generative deep ranking models. Within the proposed generative
neural re-ranking framework, we investigate Seq2SeqAttention,
Transf2Transf, BERT2Transf, PGN, and T-PGN.

Matching models. For the sake of a well rounded performance
evaluation, we sample a number of IR models to compare genera-
tive models to: Kernel-based Neural Ranking Model (KNRM) [50]
Convolutional KNRM (ConvKNRM) [7], MatchPyramid [34], and
two most recent Transformer-based models: Transformer-Kernel
(TK) [14] and the fine-tuned BERT model [8]. This list is indeed
non-comprehensive, since our central aim is to investigate model
architectures within the neural generative paradigm. We conduct
experiments on BM25 as a classical matching model.

Model configuration and training. To provide a fair comparison,
we aim to select similar configurations for the different models. Ev-
ery model using pre-trained word embeddings (Seq2SeqAttention,
PGN, T-PGN, Transf2Transf, and TK) operates with the same set
of pre-trained GloVe [35] vectors of length 300. For models with
BERT (BERT, BERT2Transf), we investigate a recently-released ver-
sion of the pre-trained language model known as BERT-Tiny [46],
which has two layers of Transformers, two attention heads on each
layer, an intermediate feed-forward layer of size 512, and a final
(sub)word embedding of size 128. While much smaller, this model
has shown competitive performance in various language process-
ing tasks [46] in comparison with the larger versions of BERT,
making it suitable for conducting large-scale experiments with
various hyper-parameter settings. We set the setting of all other
model with Transformer networks (TK, T-PGN, and Transf2Transf)
to the same one as BERT-Tiny. Models that contain BERT (BERT,
BERT2Transf) utilize WordPiece tokenization. All state-of-the-art
models are trained with their recommended loss functions, namely
Cross Entropy (CE) for BERT and Marg for the other matching mod-
els. The proposed generative models are trained using three differ-
ent loss functions: NLL, Marg and NL3U. Seq2SegAttention and PGN
have a learning rate of 0.001. Non-BERT Transformer-based models
start from learning rates of 0.0001. BERT-based generative models
use a learning rate of 0.0001 for training the Transformer-decoder,
and 0.00003 for the pre-trained BERT encoder. The complete hy-
perparameter settings of all models are provided in the published
repository together with the source code.?

Evaluation. We evaluate the performance of all models based on
the re-ranking approach. To this end, we first compute the top 200
passages as retrieved by a BM25 model. The resulting candidate
documents are then re-ranked by each of the investigated neural
model. The final re-ranked results are evaluated using several com-
mon performance metrics, namely mean reciprocal rank (MRR),
normalized discounted cumulative gain at 10 (NDCG), and recall. To
investigate statistical significance of results, we conduct two-sided
paired t-tests (details given below). In addition, we qualitatively
analyze a selection of generated queries.

5 RESULTS AND ANALYSIS

In this section, we first show the performance evaluation results
of the various deep generative models, followed by qualitative
analysis of the query generation process. We then explore the use

Zhttps://github.com/CPJKU/DeepGenIR.

of uncertainty estimates to analyze the underlying characteristics
of the model and data, followed by showing the benefit of including
uncertainty information in the cut-off prediction task.

5.1 Performance Evaluation

Evaluation results are provided in Table 1 for all assessed models.
Matching models are grouped at the top of the table, and the lower
part is dedicated to generative models. For each neural generative
model, the results on three loss functions (NLL, Marg, NL3U) are
reported. The best performance among all generative models is
marked in bold. To denote statistical significance, we first assign
each generative model a letter a to f (see first column of Table 1).
Each performance result of each model is also marked with super-
script letters, indicating to which other models a statistically signif-
icant difference exists. To give an example: model T-PGN trained
with loss NLL, obtaining a MRR of 0.2784b¢de o1 the SPARSE test
set, is significantly better (in terms of MRR) than generative models
a, b, ¢, d and e which have also been trained with the same loss NLL.

Let us have a closer look at the results of generative models.
The results indicate that the models that use the copy mechanism
show the best overall performance among the generative models.
In particular, T-PGN shows significantly better results than all
other deep generative models on SPARSE, while PGN shows better
performance on TREC-19. The better performance of PGN-based
models (PGN and T-PGN) in contrast to BERT-based ones is specific
to the retrieval task, and in fact stands in contrast to the common
architectural preferences in other tasks such as machine translation
and abstractive document summarization.

The effectiveness of the PGN-based models can be traced in their
decoder architectures, particularly by comparing between PGN and
Seq2SeqAttention. While the sole difference of these two models lies
in the use of the copy mechanism, the PGN and T-PGN models show
significantly higher results with large margins. We assume that this
is due to the way that the copy mechanism in PGN-based models
approach out-of-vocabulary terms (OOVs). In fact, as observed in
previous studies [13], OOVs correspond to infrequent words that —
due to their rarity — contain crucial information for retrieval. Models
that leverage this information, therefore, reach higher performance
levels. While PGN and T-PGN both benefit from effective decoding
(in respect to these retrieval tasks), the improvement of T-PGN
on SPARSE highlights the importance of enriching the encoding
layer with Transformers which differentiates the T-PGN model
from PGN.

Inspecting results for the different loss functions used for the
deep generative models reveals that, overall, the differences be-
tween various loss functions are negligible, such that the models
using NLL (as the simplest loss function) perform generally simi-
lar to the ones with Marg or NL3U. We speculate that this is due
to the probabilistic nature of generative models, as the objective
of such models is to estimate generation probability distributions,
which (based on the results) can be achieved by solely increasing
the generation probability of relevant documents. We therefore
conclude that a generative model can effectively be trained with
the NLL loss function as the simplest choice, which has the benefit
of faster training time in comparison with other loss functions.?

3Since NLL in contrast to Marg and NL3U only processes the relevant documents.
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Table 1: Results of investigated models in terms of MRR, NDCG, and Recall. Best performances among generative models are
marked in bold. Superscripts show significant improvement over respective models trained with the same loss.

Model Loss SPARSE TREC-19
MRR NDCG Recall | MRR  NDCG  Recall
BM25 0.199 0.231 0.383 0.825  0.506 0.129
MatchPyramid Marg 0.242 0.280 0.450 0.884  0.577 0.135
KNRM Marg 0.234 0.274 0.448 0.861  0.545 0.138
ConvKNRM Marg 0.275 0.318 0.498 0.901  0.605 0.152
TK Marg 0.308 0.355 0.545 0.943  0.661 0.159
BERT CE 0.305 0.353 0.542 0.899  0.651 0.152
QL (a) 0.181 0.211 0.355 0.773  0.470 0.124
NLL 0.246% 0.2859 0.4559 0.825 0557  0.141
Seq2SeqAttention (b)) Marg 0.2104 0.2439 0.3994 0.860  0.530 0.123
NL3U 0.2439 0.2824 0.4539 0.859  0.5589  0.140
NLL 0.2554b 0.297%b 0.4784b 0.846  0.541 0.148
Transf2Transf (c) Marg 0.2589b 0.29990 0.4747%d | 0.893 05909  0.138
NL3U 0.2529b 0.2959b 0.475%b 0.883  0.544 0.142
NLL 0.2579b¢ 0.3009b¢ 0.480%b 0.831  0.5549  0.149°
BERT2Transf (d) Marg 0.25749b 0.297%b 0.4699Y 0.863  0.573%  0.136
NL3U 0.2589b¢ 0.3009b¢ 0.4787b 0.873  0.5719  0.1509%¢
NLL 0.273abed g 317abed g 49gabed | 99974 0.5859¢d  (.150°
PGN (e) Marg 0.2759bed g 317abed o 493abedf | 99124 0.609%"  0.145°
NL3U 0.2728bed g 3169bcd g g49gabed | 0845 05697  0.149°
NLL 0.278abede o 3pzabede o 5ogabede | g gg5 05759 0.144
T-PGN (f) Marg 0.2769b¢d g 317abed o 4g8abcd | 0830  0.601%°  0.148%°
NL3U 0.2819bcde g 3g5abede g 5ogabede | g g91a 5739  (.145

Finally, comparing the results of deep generative models with the
state-of-the-art query-document interaction models with Trans-
formers and BERT, we observe that overall the generative models
show only marginally lower performance.*

These observations on the significant differences between var-
ious architectural choices are particularly important considering
that, as discussed in Section 2, most current studies which exploit
generative models (e.g., for tasks such as query reformulation) use
similar models to Seq2SeqAttention [41, 53, 54] or the ones that
utilize Transformers as decoder [33]. Based on our results, exploit-
ing OOV-aware models such as T-PGN can provide considerable
benefits for the corresponding final tasks.

5.2 Qualitative analysis of generated queries.

We now look at the query generation aspect of the models from
a qualitative perspective. In the current and next section, we use
T-PGN as our overall best-performing deep generative model to
generate queries in a greedy generation process. In this process, for
every position the token with the highest probability is selected

4Comparing the latency of models, it is expected that the neural generative models have
overall longer inference time due to their generation process. In particular, we observe
that the PGN-based models, due to the use of two LSTMs at encoder and decoder,
have considerably longer inference time. However, BERT2Transf, while performing
marginally lower than the PGN-based models, shows almost on-par latency to the
BERT ranker.

Table 2: Examples of passages, actual queries for which the
passage was marked relevant, and synthetic queries most
likely to be generated by T-PGN.

Example 1
Passage: Fleas are holometabolous insects, going through the four lifecycle stages of egg,
larva, pupa, and imago (adult). Adult fleas must feed on blood before they can become capable
of reproduction. Flea populations are distributed with about 50% eggs, 35% larvae, 10% pupae,
and 5% adults. Generally speaking, an adult flea only lives for 2 or 3 months. Without a host
for food a flea’s life might be as short as a few days. With ample food supply, the adult flea
will often live up to 100 days.
Actual query: how long is life cycle of flea
Generated query: how long do fleas live

Example 2
Passage: I have always wanted to become a Nurse and I have been doing some research and
came across the different Nursing ’titles” such as RN (Registered Nurse), BSN(Bachlor’s in
Science of Nursing) NA(Nurse Assistant), CRNA (Certified Registered Nurse Anesthetist), LPN
and LVN.SN = Bachelor of Science in Nursing, which is just a 4 year RN degree. Both the 2 year
and the BSN graduates sit for the exact same licensure exam and earn the same RN license.
Actual query: difference between rn and bsn
Generated query: what degree do you need to be a nurse

Example 3
Passage: The flea population is typically. made up of 50% eggs, 30% larvae, 15% pupae and only
5% biting adults. Completion of the life cycle from egg to adult varies from two weeks to eight
months. Normally the female flea lays about 15 to 20 eggs per day up to 600 in a lifetime. Usual
hosts for fleas are dogs, cats, rats, rabbits, mice, squirrels, chipmunks, raccoon’s, opossums,
foxes, chickens, and humans.
Actual query: how long is life cycle of flea
Generated query: how long do chickens live

from the generation probability distribution of words. The gener-
ated query in this way is a greedy approximation of the query with
the highest generation probability for the given passage.
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Figure 4: Relevance versus query-level uncertainty of the T-
PGN model on TREC-19.

Table 2 shows examples of passages, provided queries in the
dataset assessed as relevant to the corresponding passages, and
the queries generated by our model. We expect that a generated
query is conceptually relevant to the given passage. Looking at
Example 1, we observe that the generated query is almost the same
as the actual relevant one. It means that the model will predict a
high relevance score of the query to the passage. Example 2 shows
the opposite situation: the generated query, while being completely
different from the actual one, is still a valid and relevant query to
the given passage. Finally, in Example 3, the same actual query
as the one in Example 1 is used but with a different (while still
relevant) passage. This example highlights a failure case where the
generated query (according to the discussed greedy approach) is
conceptually non-relevant to the passage. These examples motivate
the deeper understanding of neural generative ranking models,
while the shown cases are directly relevant to the tasks that exploit
query generation for downstream tasks [33].

5.3 Model Understanding Through the Lens of
Uncertainty

In the following, we present model- and data-related insights we ob-
tained from analyzing uncertainty estimates for the T-PGN model
(Section 3.4) to approach the following questions: (1) Is there any
connection between the model’s confidence in its query genera-
tion probability and query-document relevance estimates? (2) Are
there any patterns in the uncertainty distribution along query term
positions and, if yes, what do they indicate?

To address the first question, we start with calculating query-
level uncertainty estimates by aggregating over term-level uncer-
tainties using mean, entropy, variance, and maximum. Then, for
each query-document pair in the top-200 of a ranking list, we cal-
culate the Spearman-r correlation between each query-level un-
certainty and the predicted relevance scores. We calculate these
correlations for TREC-19, containing 8,600 query-document pairs.

The calculated correlations for mean, variance, max, and en-
tropy are -0.223, -0.206, -0.358, and -0.569, respectively. All differ-
ent uncertainty aggregation results show a negative correlation to
relevance score, indicating that a decreasing predicted relevance
score (for the documents in the lower positions in the ranking list)
increases uncertainty of the model. Figure 4 demonstrates the rel-
evance and query-level uncertainty estimates using entropy for
aggregation, because of its highest negative correlation. The plot
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Figure 5: The interquartile ranges of term-level uncertainty
scores, calculated on each term position for all queries with
a given length, namely the length of 4, 6, 8, and 10. For each
query length, the last term position corresponds to the <E0S>
special token denoting the end of the query.

shows that uncertainty of query-document pairs with higher rele-
vance is widely spread, but the distribution tends to get focused on
a high-uncertainty area as the relevance decreases.

Considering these results, with regard to our first question, we
conclude that the model tends to exhibit higher levels of uncertainty
(in the likelihood of generating the query in query-document pairs)
for low relevance estimates. This could indicate that uncertainty
may contain additional information to relevance which can be
exploited in retrieval tasks. We return to this point in Section 5.4.

To approach the second question, using the query-document
pairs of the TREC-19 results, we average the term-level uncertainty
values over all query terms that appear in a specific position of
the queries. To make the results comparable across various query
lengths, we apply this position-level aggregation over the queries
with the same size. Figure 5 shows these term-level uncertainty
distributions for every position in queries of length 4, 6, 8, and 10
terms, where each query ends with the <E0S> special token. Every
box in the plot represents the interquartile range of term-level
uncertainty distribution for each position.

Looking at Figure 5, we observe two major patterns in all four
settings regarding query length: (1) All average uncertainties tend
to become lower (more confident) in the last terms of the query,
where the last term has consistently the lowest uncertainty with a
considerable drop in comparison to the uncertainty at previous term
positions. (2) The uncertainty distributions regarding the first posi-
tion have similar median values across the four settings with small
variances when compared to the distributions for other positions.



Our first observation is similar to the findings by Xu et al. [52]
in the context of abstractive text summarization. This indicates that
by observing more terms during the query generation, the model
becomes more and more certain about the distribution of possible
next terms, and this confidence has its maximum in the last term.

Our second observation is, however, in contrast to the results
reported by Xu et al. [52]. In their experiments, generative models
show the greatest interquartile range of term-level uncertainty for
earlier words in the generated sequence. This can potentially reveal
the existence of a bias in the queries of the MS MARCO training
dataset, considering that many queries in the dataset start with
question words such as what, how, and where. In fact, the persis-
tent uncertainty distributions for the first position can indicate
the limited number of unique terms in training data, with which
a query begins. This observation is inline with and reinforces the
conclusions in Hofstétter et al. [15]. However, while they show
the existence of bias in the MS MARCO collection through exten-
sive fine-grained annotation, we view this from the lens of the
uncertainty of the model on each query term position.

5.4 Cut-off Prediction with Uncertainty

Do the uncertainty estimates provide novel and complementary
information to what is provided by relevance scores? If yes, can
this information be exploited in downstream IR tasks? To answer
these questions we evaluate the expressiveness of the uncertainty
estimates in a similar fashion to Cohen et al. [5], via the cutoff
prediction task. The objective of the cut-off prediction task is to
dynamically determine a cut-off point for a ranked list of documents
in order to maximize some non-monotonic metric, in our case Fy
scores. As discussed by Lien et al. [23], the task is motivated by
neural models losing confidence in their estimations as documents
become less relevant to the query. In a real-world scenario, cut-
off prediction can be used by a retrieval system to prevent users
from scraping over search results, about which the ranker is not
sufficiently confident. In such scenarios, the search engine can
switch to alternative strategies, such as applying different ranking
model or encouraging the user to reformulate the query.

To study the effect of uncertainty on this task, we follow the
same procedure as in Bahri et al. [4], namely by using the proposed
Transformer-based cut-off predictor, and comparing the perfor-
mance in terms of F; score (see Bahri et al. [4] for more details). The
predictor receives a set of features in the sense of query-document
interactions, and for each query provides a prediction regarding
the best cut-off in its ranked list. A common feature for this task
is relevance scores, assuming that the changes in relevance can be
indicative of an optimal cut-off point [4]. In our experiments, we are
interested in examining whether adding uncertainty information
can further improve this tasks by providing new information.

We therefore conduct our experiments in two configurations:
(1) using only relevance estimation from T-PGN as single feature,
referred to as Rel; (2) adding the four query-level uncertainty es-
timates (through mean, entropy, variance, and maximum term-
level uncertainty aggregations) as additional features, referred to
as Rel+Uncertainty. To train the cut-off predictors we use the
queries of TREC-19. While this task can benefit from the large
number of the queries in SPARSE, the task intrinsically requires a
sufficient amount of relevance judgements which are not available

Table 3: Results on cut-off prediction task with features
produced by T-PGN on TREC-19 test collection. The last
column show the percentage of F; in respect to the results
of Oracle. The { sign shows the statistical improvement of
Rel+Uncertainty over Rel with p < 0.001.

F; % to Oracle

Greedy 0.193 39.1
Oracle 0.493 100.0
Rel 0.345 70.0
Rel+Uncertainty 0.36471 73.8

in the SPARSE collection. In addition to Rel and Rel+Uncertainty,
we calculate the results of a Greedy approach which provides a
naive baseline by selecting the same cut-off for all ranked lists,
chosen by maximizing the F; score on the training set. Finally, the
Oracle model indicates the score that an ideal cut-off selection
would achieve. We report in Table 3, for each configuration, the
resulting Fy score as well as its percentage when compared to the
F score of Oracle. For each of the configuration, the experiment
is conducted in 50 trials, where in each trial 5-fold cross validation
is applied. The final results are averaged over all trials.
Comparing results for Rel and Greedy in Table 3 - as reported in
previous studies Bahri et al. [4], Lien et al. [23] — we observe that rel-
evance information is an important signal for this task. Comparing
the results of Rel with Rel+Uncertainty we observe additional
improvements by incorporating the uncertainty information. Cal-
culating a two-sided t-test with p < 0.001 between the results of
Rel+Uncertainty and Rel confirms the significance of this im-
provement. These results substantiate the value of the uncertainty
scores, inherent in the architecture of deep generative IR models,
which provide additional actionable information for IR tasks.

6 CONCLUSION

We propose a modern perspective on the generative IR paradigm by
introducing novel deep generative ranking models. The introduced
models offer a solid granular probabilistic framework of neural
retrieval, which lays the foundation for estimation of additional
model-level information such as uncertainty. Proposing a novel
deep generative ranking model, T-PGN, we investigate the per-
formance of several deep generative IR models on two passage
retrieval collections. Our evaluation results show the importance
of the copy mechanism in the generative models in the context of
retrieval, as provided by the PGN and T-PGN models. We further
explore the information provided by the uncertainty estimates, and
showcase the value of such uncertainty information in a cut-off
prediction task.
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