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Abstract

We propose a new framework, called Poisson
learning, for graph based semi-supervised learn-
ing at very low label rates. Poisson learning is
motivated by the need to address the degener-
acy of Laplacian semi-supervised learning in this
regime. The method replaces the assignment of la-
bel values at training points with the placement of
sources and sinks, and solves the resulting Poisson
equation on the graph. The outcomes are provably
more stable and informative than those of Lapla-
cian learning. Poisson learning is efficient and
simple to implement, and we present numerical
experiments showing the method is superior to
other recent approaches to semi-supervised learn-
ing at low label rates on MNIST, FashionMNIST,
and Cifar-10. We also propose a graph-cut en-
hancement of Poisson learning, called Poisson
MBO, that gives higher accuracy and can incorpo-
rate prior knowledge of relative class sizes.

1. Introduction
Semi-supervised learning uses both labeled and unlabeled
data in learning tasks. For problems where very few labels
are available, geometric or topological structure in unlabeled
data can be used to greatly improve the performance of clas-
sification, regression, or clustering algorithms. One of the
most widely used methods in graph-based semi-supervised
learning is Laplace learning, originally proposed in (Zhu
et al., 2003), which seeks a graph harmonic function that
extends the labels. Laplace learning, and variants thereof,
have been widely applied in semi-supervised learning (Zhou
et al., 2005; 2004a;b; Ando & Zhang, 2007) and manifold
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ranking (He et al., 2004; Yang et al., 2013; Xu et al., 2011),
among many other problems.

This paper is concerned with graph-based semi-supervised
learning at very low label rates. In this setting, it has been
observed that Laplace learning can give very poor classifica-
tion results (Nadler et al., 2009; El Alaoui et al., 2016). The
poor results are often attributed to the fact that the solutions
develop localized spikes near the labeled points and are al-
most constant far from the labeled points. In particular, label
values are not propagated well by the Laplacian learning ap-
proach. To address this issue, recent work has suggested to
consider p-Laplace learning (El Alaoui et al., 2016). Several
works have rigorously studied p-Laplace regularization with
few labels (Slepčev & Thorpe, 2019; Calder, 2018; 2019),
and recent numerical results show that p > 2 is superior
to Laplace learning at low label rates (Flores et al., 2019).
The case of p =∞ is called Lipschitz learning (Kyng et al.,
2015), which seeks the absolutely minimal Lipschitz ex-
tension of the training data. Other methods to address low
label rate problems include higher order Laplacian regular-
ization (Zhou & Belkin, 2011) and spectral cutoffs (Belkin
& Niyogi, 2002).

While p-Laplace learning improves upon Laplace learn-
ing, the method is more computationally burdensome than
Laplace learning, since the optimality conditions are non-
linear. Other recent approaches have aimed to re-weight
the graph more heavily near labels, in order to give them
wider influence when the labeling rate is very low. One way
to re-weight the graph is the Weighted Nonlocal Laplacian
(WNLL) (Shi et al., 2017), which amplifies the weights
of edges directly connected to labeled nodes. The WNLL
achieves better results at moderately low label rates, but still
performs poorly at very low label rates (Flores et al., 2019).
To address this, (Calder & Slepčev, 2019) proposed the
Properly Weighted Laplacian, which re-weights the graph
in a way that is well-posed at arbitrarily low label rates.

Much of the recent work on low label rate problems has
focused on formulating and implementing new learning
approaches that are well-posed with few labels. The ex-
act nature of the degeneracy in Laplace learning, and the
question of how the tails of the spikes propagate label infor-
mation, has not been studied and is still poorly understood.
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For some problems, the performance of Laplacian learning
is good (Zhu et al., 2003), while for other problems it is
catastrophic, yielding very poor classification results similar
to random guessing (Shi et al., 2017; Flores et al., 2019).

In this paper, we carefully analyze Laplace learning at very
low label rates, and we discover that nearly all of the degen-
eracy of Laplace learning is due to a large constant bias in
the solution of the Laplace equation that is present only at
low label rates. In order to overcome this problem we intro-
duce a new algorithm, we call Poisson learning, that gives
very good classification performance down to extremely low
label rates. We give a random walk interpretation of Poisson
learning that shows how the method uses information from
the random walkers only before they reach the mixing time
of the random walk and forget their initial condition. We
also propose a graph-cut enhancement of Poisson learning,
called Poisson MBO, that can incorporate knowledge about
class sizes, and further improves the class-label accuracy.

The rest of the paper is organized as follows. In Section 2
we first briefly introduce Poisson learning, and then provide
a detailed motivation for the algorithm and a theoretical
analysis from both the variational and random walk perspec-
tives. The Poisson MBO approach is presented in Section
2.4. In Section 3 we present the step-by-step algorithms and
discuss implementation details for the Poisson and Poisson
MBO algorithms. In Section 4 we present numerical exper-
iments with semi-supervised classification on the MNIST,
FashionMNIST, and Cifar-10 datasets. The proofs of the
results are available in the supplementary materials.

2. Poisson learning
Let X = {x1, x2, . . . , xn} denote the vertices of a graph
with edge weights wij ≥ 0 between xi and xj . We as-
sume the graph is symmetric, so wij = wji. We define
the degree di =

∑︁n
j=1 wij . For a multi-class classification

problem with k classes, we let the standard basis vector
ei ∈ Rk represent the ith class. We assume the first m
vertices x1, x2, . . . , xm are given labels y1, y2, . . . , ym ∈
{e1, e2, . . . , ek}, where m < n. The task of graph-based
semi-supervised learning is to extend the labels to the rest
of the vertices xm+1, xm+2, . . . , xn.

The well-known Laplace learning algorithm (Zhu et al.,
2003) extends the labels by solving the problem

Lu(xi) = 0, if m+ 1 ≤ i ≤ n,

u(xi) = yi, if 1 ≤ i ≤ m,

}︄
(2.1)

where L is the unnormalized graph Laplacian given by

Lu(xi) =

n∑︂
j=1

wij(u(xi)− u(xj)).

Here, u : X → Rk and we write the components of u as
u(xi) = (u1(xi), u2(xi), . . . , uk(xi)). The label decision
for vertex xi is determined by the largest component of
u(xi)

ℓ(xi) = argmax
j∈{1,...,k}

{uj(x)}. (2.2)

We note that Laplace learning is also called label propa-
gation (LP) (Zhu et al., 2005), since the Laplace equation
(2.1) can be solved by repeatedly replacing u(xi) with the
weighted average of its neighbors, which can be viewed as
dynamically propagating labels.

At very low label rates, we propose to replace the problem
(2.1) by Poisson learning: Let y = 1

m

∑︁m
j=1 yj be the av-

erage label vector and let δij = 1 if i = j and δij = 0 if
i ̸= j. One computes the solution of the Poisson equation

Lu(xi) =

m∑︂
j=1

(yj − y)δij for i = 1, . . . , n (2.3)

satisfying
∑︁n

i=1 diu(xi) = 0. While the label decision can
be taken to be the same as (2.2), it is also simple to account
for unbalanced classes or training data with the modified
label decision

ℓ(xi) = argmax
j∈{1,...,k}

{sjuj(x)}, (2.4)

where sj = bj/(y · ej) and bj is the fraction of data belong-
ing to class j. We explain this label decision in Remark 2.2.
The Poisson equation (2.3) can be solved efficiently with a
simple iteration given in Algorithm 1.

Technically speaking, in Laplace learning, the labels are im-
posed as boundary conditions in a Laplace equation, while
in Poisson learning, the labels appears as a source term in a
graph Poisson equation. In the sections below, we explain
why Poisson learning is a good idea for problems with very
few labels. In particular, we give random walk and varia-
tional interpretations of Poisson learning, and we illustrate
how Poisson learning arises as the low label rate limit of
Laplace learning.

2.1. Random walk interpretation

We present a random walk interpretation of Poisson learning
and compare to the random walk interpretation of Laplace
learning to explain its poor performance at low label rates.
We note that Laplace learning works very well in practice for
semi-supervised learning problems with a moderate amount
of labeled data. For example, on the MNIST dataset we
obtained around 95% accuracy at 16 labels per class (0.23%
label rate). However, at very low label rates the perfor-
mance is poor. At 1 label per class, we find the average
performance is around 16% accuracy. This phenomenon
has been observed in other works recently (Nadler et al.,
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2009; El Alaoui et al., 2016). However, a clear understand-
ing of the issues with Laplace learning at low label rates was
lacking. The clearest understanding of this phenomenon
comes from the random walk interpretation, and this leads
directly to the foundations for Poisson learning.

Let x ∈ X and let Xx
0 , X

x
1 , X

x
2 , . . . be a random walk on

X starting at Xx
0 = x with transition probabilities

P(Xx
k = xj |Xx

k−1 = xi) = d−1
i wij .

Let u be the solution of the Laplace learning problem (2.1).
Define the stopping time to be the first time the walk hits a
label, that is

τ = inf{k ≥ 0 : Xx
k ∈ {x1, x2, . . . , xm}}.

Let iτ ≤ m denote the index of the point Xx
τ , so Xx

τ = xiτ .
Then, by Doob’s optimal stopping theorem, we have

u(x) = E[yiτ ]. (2.5)

This gives the standard representation formula for the solu-
tion of Laplace learning (2.1). The interpretation is that we
release a random walker from x and let it walk until it hits a
labeled vertex and then record that label. We average over
many random walkers to get the value of u(x).

When there are insufficiently many labels, the stopping
time τ is so large that we have passed the mixing time of
the random walk, and the distribution of Xx

τ is very close
to the invariant distribution of the random walk π(xi) =
di/

∑︁
i di. In this case, (2.5) gives that

u(x) ≈
∑︁m

i=1 diyi∑︁m
j=1 dj

=: yw. (2.6)

Of course, the function u is not exactly constant, and instead
it is approximately constant with sharp spikes at the labeled
vertices; see Figure 1. Previous work has proved rigorously
that Laplace learning degenerates in this way at low label
rates (Slepčev & Thorpe, 2019; Calder, 2018).

It is important to note that the constant vector yw depends
only on the degrees of the labeled nodes in the graph, which
is very sensitive to local graph structure. When Laplace
learning returns a nearly constant label function, it can be
catastrophic for classification, since most datapoints are
assigned the same label. This explains the 16% accuracy in
the MNIST experiment described above.

In contrast, the Poisson equation (2.3) has a random walk
interpretation that involves the Green’s function for a ran-
dom walk, and is in some sense dual to Laplace learning.
The source term on the right hand side of (2.3) represents
random walkers being released from labeled points and ex-
ploring the graph, while carrying their label information

Figure 1. Demonstration of spikes in Laplace learning. The graph
consists of n = 104 independent uniform random variables on
[0, 1]2 and two points are given labels of 0 and 1. Most values of
the solution u of Laplace learning are very close to 0.5.

with them. For T > 0 let us define

wT (xi) = E

⎡⎣ T∑︂
k=0

m∑︂
j=1

yj1{X
xj
k =xi}

⎤⎦ .

Essentially, each time the random walk starting from xj ,
denoted X

xj

k , visits xi we record the label yj and sum this
over all visits from 0 ≤ k ≤ T . For short time T , this
quantity is meaningful, but since the random walk is recur-
rent (it is a finite graph), wT (xi) → ∞ as T → ∞. If
we normalize by 1/T , we still have the same issue as with
Laplace learning, where we are only measuring the invariant
distribution. Indeed, we note that

wT (xi) =

T∑︂
k=0

m∑︂
j=1

yjP(X
xj

k = xi)

and lim
k→∞

P(Xxj

k = xi) =
di∑︁n
i=1 di

.

Therefore, when k is large we have
m∑︂
j=1

yjP(X
xj

k = xi) ≈
di∑︁n
i=1 di

m∑︂
j=1

yj ,

and so the tail of the sum defining wT (xi) is recording a
blind average of labels.

The discussion above suggests that we should subtract off
this average tail behavior from wT , so that we only record
the short-time behavior of the random walk, before the
mixing time is reached. We also normalize by di, which
leads us to define

uT (xi) = E

⎡⎣ T∑︂
k=0

1

di

m∑︂
j=1

(yj − y)1{X
xj
k =xi}

⎤⎦ , (2.7)

where y = 1
m

∑︁m
j=1 yj . It turns out that as T → ∞, the

function uT (xi) converges to the solution of (2.3).
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Theorem 2.1. For every T ≥ 0 we have

uT+1(xi) = uT (xi)+d−1
i

⎛⎝ m∑︂
j=1

(yj − y)δij − LuT (xi)

⎞⎠ .

If the graph G is connected and the Markov chain induced
by the random walk is aperiodic, then uT → u as T →∞,
where u is the unique solution of the Poisson equation (2.3)
satisfying

∑︁n
i=1 diu(xi) = 0.

Theorem 2.1 gives the foundation for Poisson learning
through the random walk perspective, and in fact, it also
gives a numerical method for computing the solution (see
Algorithm 1).

Remark 2.2. The representation formula (2.7) for the solu-
tion of Poisson learning (2.3) shows that the solution u is a
linear function of the label vectors y1, . . . , ym. That is, for
any A ∈ Rk×k, the solution uA : X → Rk of

LuA(xi) =

m∑︂
j=1

(Ayj −Ay)δij for i = 1, . . . , n

satisfying
∑︁n

i=1 diuA(xi) = 0 is exactly uA = Au, where
u is the solution of (2.3). This shows that any reweighting
of the point sources, by which we mean yj ↦→ Ayj , is
equivalent to reweighting the solution by u ↦→ Au.

If we set A = diag(s1, . . . , sk), then Au corresponds to
multiplying the point sources for class i by the weight si.
We can use this reweighting to account for unbalanced
classes, or a discrepancy between the balancing of train-
ing and testing data, in the following way. Let nj be the
number of training examples from class j, and let bj denote
the true fraction of data in class j. We can choose sj so
that njsj = bj to ensure that the mass of the point sources
for each class, weighted by sj , is proportional to the true
fraction of data in that class. Since nj is proportional to
y · ej , this explains our modified label decision (2.4).

2.2. Variational interpretation

We can also interpret Poisson learning (2.3) as a gradient
regularized variational problem. Before proceeding, we
briefly review some facts about calculus on graphs. Let
ℓ2(X) denote the space of functions u : X → Rk equipped
with the inner product

(u, v)ℓ2(X) =

n∑︂
i=1

u(xi) · v(xi).

This induces a norm ∥u∥2ℓ2(X) = (u, u)ℓ2(X). We also
define the space of mean-zero functions

ℓ20(X) =
{︂
u ∈ ℓ2(X) :

n∑︂
i=1

diu(xi) = 0
}︂

We define a vector field on the graph to be an antisymmetric
function V : X2 → Rk (i.e., V (xi, xj) = −V (xj , xi)).
The gradient of a function u ∈ ℓ2(X), denoted for simplic-
ity as ∇u, is defined to be the vector field

∇u(xi, xj) = u(xj)− u(xi).

The inner product between vector fields V and W is

(V,W )ℓ2(X2) =
1

2

n∑︂
i,j=1

wijV (xi, xj) ·W (xi, xj).

and the norm of V is ∥V ∥2ℓ2(X2) = (V, V )ℓ2(X2).

We now consider the variational problem

min
u∈ℓ20(X)

{︃
1

2
∥∇u∥2ℓ2(X2)−

m∑︂
j=1

(yj − y)·u(xj)

}︃
. (2.8)

The following theorem makes the connection between Pois-
son learning and the variational problem (2.8).
Theorem 2.3. Assume G is connected. Then there exists a
unique minimizer u ∈ ℓ20(X) of (2.8), and u satisfies the
Poisson learning equation (2.3).

Theorem 2.3 shows that the Poisson learning equation (2.3)
arises as the necessary conditions for a gradient regularized
variational problem with an affine loss function. We contrast
this with the solution of Laplace learning (2.1), which is the
minimizer of the variational problem

min
u∈ℓ2(X)

{︂
∥∇u∥2ℓ2(X2) : u(xi) = yi, 1 ≤ i ≤ m

}︂
. (2.9)

Thus, while both Laplace and Poisson learning are gradient
regularized variational problems, the key difference is how
each algorithm handles the labeled data; Laplace learning
enforces hard label constraints while Poisson learning adds
an affine loss function to the energy. Of course, many vari-
ants of Laplace learning have been proposed with various
types of soft label constraints in place of hard constraints.
These variations perform similarly poorly to Laplace learn-
ing at low label rates, and the key feature of Poisson learning
is the affine loss function that can be easily centered.

We note that it would be natural to add a weight µ > 0 to
one of the terms in (2.8) to trade-off the importance of the
two terms in the variational problem. However, as we show
in the supplementary material (see Lemma A.3), this weight
would have no effect on the final label decision. We also
mention that the variational problem (2.8) has a natural ℓp

generalization that we also explore in the supplementary
material (Section A.2).

2.3. Laplace learning at low label rates

Finally, to further motivate Poisson learning, we connect
Poisson learning with the limit of Laplace learning at very
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low label rates. At low label rates, the solution of Laplace
learning (2.1) concentrates around a constant yw, for which
we gave an interpretation of via random walks in Section 2.1.
Near labeled nodes, u has sharp spikes (recall Figure 1) in
order to attain the labels. From the variational perspective,
the constant function has zero cost, and the cost of spikes
is very small, so this configuration is less expensive than
continuously attaining the labels u(xi) = yi.

A natural question concerns whether the spikes in Laplace
learning contain useful information, or whether they are
too localized and do not propagate information well. To
test this, we changed the label decision (2.2) in the MNIST
experiment described in Section 2.1 to subtract off the tail
constant yw identified in (2.6)

ℓ(xi) = argmax
j∈{1,...,k}

{uj(x)− yw · ej}.

where yw is defined in (2.6). Thus, we are centering the
function u at zero. At 1 label per class (10 labeled images
total), the accuracy improved from 16% to 85.9%! Hence,
the difference u− yw contains enough information to make
informed classification decisions, and therefore the spikes
contain useful information.

This indicates that much of the poor performance of Laplace
learning can be explained by a large shift bias that occurs
only at very low label rates. Fixing this seems as sim-
ple as applying the appropriate shift before making a deci-
sion on a label, but this does not lead to a well-grounded
method, since the shifted function u − yw is exactly the
graph-harmonic extension of the shifted labels yj − yw.
Why should we have to use a harmonic extension of the
wrong labels in order to achieve a better result? On the
other hand, Poisson learning, which we introduced above,
provides an intuitive and well-grounded way of fixing the
shift bias in Laplace learning.

To see the connection to Poisson learning, let us assume the
solution u of the Laplace learning equation (2.1) is nearly
equal to the constant vector yw ∈ Rk from (2.6) at all
unlabeled points xm+1, . . . , xn. For any labeled node xi

with i = 1, . . . ,m we can compute (assuming wij = 0 for
all j ∈ {1, . . . ,m}) that

Lu(xi) =

n∑︂
j=1

wij(u(xi)− u(xj))

≈
n∑︂

j=m+1

wij(yi − yw) = di(yi − yw).

Since Lu(xi) = 0 for i = m + 1, . . . , n, we find that u
approximately satisfies the Poisson equation

Lu(xi) =

m∑︂
j=1

dj(yj − yw)δij for i = 1, . . . , n. (2.10)

This gives a connection, at a heuristic level, been Laplace
equations with hard constraints, and Poisson equations with
point sources, for problems with very low label rates. We
note that since constant functions are in the kernel of L,
u − yw also satisfies (2.10). We also note that the labels,
and the constant yw, are weighted by the degree dj , which
does not appear in our Poisson learning equation (2.3). We
have found that both models give good results, but that (2.3)
works slightly better, which is likely due to the rigorous
foundation of (2.3) via random walks.

2.4. The Poisson MBO algorithm

Poisson learning provides a robust method for propagating
label information that is stable at very low label rates. After
applying Poisson learning to propagate labels, we propose
a graph-cut method to incrementally adjust the decision
boundary so as to improve the label accuracy and account
for prior knowledge of class sizes. The graph-cut method
we propose is to apply several steps of gradient descent on
the graph-cut problem

min
u:X→Sk

(u)X=b

{︃
1

2
∥∇u∥2ℓ2(X2) − µ

m∑︂
j=1

(yj − y)·u(xj)

}︃
, (2.11)

where Sk = {e1, e2, . . . , ek}, b ∈ Rk is given, and
(u)X := 1

n

∑︁n
i=1 u(xi). Since we are restricting u(xi) ∈

Sk, the term 1
2∥∇u∥

2
ℓ2(X2) is exactly the graph-cut energy

of the classification given by u. Likewise, the components
of the average (u)X represent the fraction of points assigned
to each class. The constraint (u)X = b therefore allows us
to incorporate prior knowledge about relative class sizes
through the vector b ∈ Rk, which should have positive en-
tries and sum to one. If there exists u : X → Sk with
(u)X = b, then (2.11) admits a solution, which in general
may not be unique.

On its own, the graph-cut problem (2.11) can admit many
local minimizers that would yield poor classification results.
The phenomenon is similar to the degeneracy in Laplace
learning at low label rates, since it is very inexpensive to
violate any of the label constraints. Our overall plan is to first
use Poisson learning to robustly propagate the labels, and
then project onto the constraint set for (2.11) and perform
several steps of gradient-descent on (2.11) to improve the
classification accuracy. While Poisson learning propagates
the labels in a robust way, the cut energy is more suitable
for locating the exact decision boundary.

To relax the discrete problem (2.11), we approximate the
graph-cut energy with the Ginzburg-Landau approximation

min
u∈ℓ2(X)
(u)X=b

{︂
GLτ (u)− µ

m∑︂
j=1

(yj − y) · u(xj)
}︂
, (2.12)

where
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GLτ (u) =
1

2
∥∇u∥2ℓ2(X2) +

1

τ

n∑︂
i=1

k∏︂
j=1

|u(xi)− ej |2.

The Ginzburg-Landau approximation allows u ∈ ℓ2(X) to
take on any real values, instead of discrete values u ∈ Sk,
making the approximation (2.12) easier to solve computa-
tionally. The graph Ginzburg-Landau approximation GLτ

has been used previously for graph-based semi-supervised
learning in (Garcia-Cardona et al., 2014), and other works
have rigorously studied how GLτ approximates graph-cut
energies in the scalar setting (Van Gennip & Bertozzi, 2012).
Here, we extend the results to the vector multi-class setting.

Theorem 2.4. Assume G is connected. Let b ∈ Rk and
assume there exists u : X → Sk with (u)X = b. For
each τ > 0 let uτ be any solution of (2.12). Then, the
sequence (uτ )τ is precompact in ℓ2(X) and any convergent
subsequence uτm converges to a solution of the graph-cut
problem (2.11) as τm → 0. Furthermore, if the solution
u0 : X → Sk of (2.11) is unique, then uτ → u0 as τ → 0.

Theorem 2.4 indicates that we can replace the graph-cut
energy (2.11) with the simpler Ginzburg-Landau approxi-
mation (2.12). To descend on the energy (2.12), we use a
time-spitting scheme that alternates gradient descent on

E1(u) :=
1

2
∥∇u∥2ℓ2(X2) − µ

m∑︂
j=1

(yj − y) · u(xj),

and E2(u) :=
1

τ

n∑︂
i=1

k∏︂
j=1

|u(xi)− ej |2.

The first term E1 is exactly the energy for Poisson learning
(2.8), and gradient descent amounts to the iteration

ut+1(xi) = ut(xi)− dt

(︃
Lut(xi)− µ

m∑︂
j=1

(yj − y)δij

)︃
.

We note that Lu and the source term above both have zero
mean value. Hence, the gradient descent equation for E1 is
volume preserving, i.e., (ut+1)X = (ut)X . This would not
be true for other fidelity terms, such as an ℓ2 fidelity, and
this volume conservation property plays an important role
in ensuring the class size constraint (u)X = b in (2.12).

Gradient descent on the second term E2, when τ > 0 is
small, amounts to projecting each u(xi) ∈ Rk to the closest
label vector ej ∈ Sk, while preserving the volume con-
straint (u)X = b. We approximate this by the following
procedure: Let ProjSk

: Rk → Sk be the closest point
projection, let s1, . . . , sk > 0 be positive weights, and set

ut+1(xi) = ProjSk
(diag(s1, . . . , sk)ut(xi)), (2.13)

where diag(s1, . . . , sk) is the diagonal matrix with diago-
nal entries s1, . . . , sk. We use a simple gradient descent

scheme to choose the weights s1, . . . , sk > 0 so that the
volume constraint (ut+1)X = b holds (see Steps 9-14 in Al-
gorithm 2). By Remark 2.2, this procedure can be viewed as
reweighting the point sources in the Poisson equation (2.3)
so that the volume constraint holds. In particular, increasing
or decreasing si grows or shrinks the size of class i.

We note that the work of (Jacobs et al., 2018) provides an
alternative way to enforce explicit class balance constraints
with a volume constrained MBO method based on auction
dynamics. Their method uses a graph-cut based approach
with a Voronoi-cell based initialization.

3. Poisson learning algorithms
We now present our proposed Poisson learning algorithms.
The Python source code and simulation environment for
reproducing our results is available online.1

We let W = (wij)
n
i,j=1 denote our symmetric weight ma-

trix. We treat all vectors as column vectors, and we let 1 and
0 denote the all-ones and all-zeros column vectors, respec-
tively, of the appropriate size based on context. We assume
that the first m data points x1, x2, . . . , xm are given labels
y1, y2, . . . , ym ∈ {e1, e2, . . . , ek}, where the standard ba-
sis vector ei ∈ Rk represents the ith class. We encode
the class labels in a k ×m matrix F, whose jth column is
exactly yj . Let b ∈ Rk be the vector whose ith entry bi
is the fraction of data points belonging to class i. If this
information is not available, we set b = 1

k1.

Poisson learning is summarized in Algorithm 1. The label
decision for node i is ℓi = argmax1≤j≤k Uij , and the
reweighting in Step 11 implements the label decision (2.4).
In all our results, we always set b = 1

k1, so Poisson learning
does not use prior knowledge of class sizes (the true value
for b is used in PoissonMBO below). The complexity is
O(TE), where E is the number of edges in the graph. We
note that before the reweighting in Step 11, the Poisson
learning algorithm computes exactly the function uT defined
in (2.7). In view of this, there is little to be gained from
running the iterations beyond the mixing time of the random
walk. This can be recorded within the loop in Steps 8-10
by adding the iteration pt+1 = WD−1pt, where the initial
value p0 is the vector with ones in the positions of all labeled
vertices, and zeros elsewhere. Up to a constant, pt is the
probability distribution of a random walker starting from
a random labeled node after t steps. Then the mixing time
stopping condition is to run the iterations until

∥pt − p∞∥∞ ≤ ε,

where p∞ = W1/(1TW1) is the invariant distribution.
We use this stopping condition with ε = 1/n in all experi-
ments, which usually takes between 100 and 500 iterations.

1Source Code: https://github.com/jwcalder/GraphLearning

https://github.com/jwcalder/GraphLearning
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Algorithm 1 PoissonLearning
1: Input: W,F,b, T
2: Output: U ∈ Rn×k

3: D← diag(W1)
4: L← D−W
5: y← 1

mF1
6: B← [F− y, zeros(k, n−m)]
7: U← zeros(n, k)
8: for i = 1 to T do
9: U← U+D−1(BT − LU)

10: end for
11: U← U · diag(b/y)

The Poisson MBO algorithm is summarized in Algorithm 2.
The matrices D, L and B are the same as in Poisson learn-
ing, and Poisson MBO requires an additional fidelity pa-
rameter µ and two parameters Ninner and Nouter. In all
experiments in this paper, we set µ = 1, Ninner = 40
and Nouter = 20. Steps 9-14 implement the volume con-
strained projection described in Section 2.4. We set the time
step as dτ = 10 and set the clipping values in Step 12 to
smin = 0.5 and smax = 2. We tested on datasets with bal-
anced classes, and on datasets with very unbalanced classes,
one may wish to enlarge the interval [smin, smax].

The additional complexity of PoissonMBO on top of Pois-
son learning is O(NinnerNouterE). On large datasets like
MNIST, FashionMNIST and Cifar-10, our Poisson learning
implementation in Python takes about 8 seconds to run on
a standard laptop computer, and about 1 second with GPU
acceleration.2 The additional 20 iterations of PoissonMBO
takes about 2 minutes on a laptop and 30 seconds on a GPU.
These computational times do not include the time taken to
construct the weight matrix.

4. Experimental Results
We tested Poisson learning on three datasets: MNIST (Le-
Cun et al., 1998), FashionMNIST (Xiao et al., 2017) and
Cifar-10 (Krizhevsky et al., 2009). FashionMNIST is a
drop-in replacement for MNIST consisting of 10 classes of
clothing items. To build good quality graphs, we trained au-
toencoders to extract important features from the data. For
MNIST and FashionMNIST, we used variational autoen-
coders with 3 fully connected layers of sizes (784,400,20)
and (784,400,30), respectively, followed by a symmetri-
cally defined decoder. The autoencoder was trained for
100 epochs on each dataset. The autoencoder architecture,
loss, and training, are similar to (Kingma & Welling, 2014).
For Cifar-10, we used the AutoEncodingTransformations
architecture from (Zhang et al., 2019), with all the default

2We used an NVIDIA RTX-2070 GPU, and it took 3 seconds to
load data to/from the GPU and 1 second to solve Poisson learning.

Algorithm 2 PoissonMBO
1: Input: W,F,b, T,Ninner, Nouter, µ > 0
2: Output: U ∈ Rn×k

3: U← µ · PoissonLearning(W,F,b, T )
4: dt← 1/max1≤i≤n Dii

5: for i = 1 to Nouter do
6: for j = 1 to Ninner do
7: U← U− dt (LU− µBT )
8: end for
9: s← ones(1, k)

10: for j = 1 to 100 do
11: ˆ︁b← 1

n1
T ProjSk

(U · diag(s))
12: s← max(min(s+ dτ (b− ˆ︁b), smax), smin)
13: end for
14: U← ProjSk

(U · diag(s))
15: end for

parameters from their paper, and we normalized the features
to unit-vectors.

We then constructed a graph over the latent feature space
by connecting each image to its K-nearest neighbors with
Gaussian weights given by

wij = exp
(︁
−4|xi − xj |2/dK(xi)

2
)︁
,

where xi represents the latent variables for image i, and
dK(xi) is the distance in the latent space between xi and its
Kth nearest neighbor. We used K = 10 in all experiments.
The weight matrix was then symmetrized by replacing W
with W +WT . For Poisson learning, we additionally set
wii = 0 for all i. Placing zeros on the diagonal does not
change the solution the Poisson learning equation (2.3), but
it does accelerate convergence of the iteration in Algorithm
1 by allowing the random walk to propagate faster.

We compare against Laplace learning (2.9) (Zhu et al.,
2003), lazy random walks (Zhou & Schölkopf, 2004; Zhou
et al., 2004a), multiclass MBO (Garcia-Cardona et al., 2014;
Bertozzi & Flenner, 2012), weighted nonlocal Laplacian
(WNLL) (Shi et al., 2017), volume constrained MBO (Ja-
cobs et al., 2018), Centered Kernel Method (Mai & Couillet,
2018), sparse label propagation (Jung et al., 2016), and
p-Laplace learning (Flores et al., 2019). In the volume con-
strained MBO method we used exact volume constraints and
temperature of T = 0.1. In the Centered Kernel Method,
we chose α to be 5% larger than the spectral norm of the
centered weight matrix. For a baseline reference, we also
compared against a nearest neighbor classifier that chooses
the label of the closest labeled vertex with respect to the
graph geodesic distance. In all experiments, we ran 100
trials randomly choosing which data points are labeled, with
the exception of the p-Laplace and sparse label propagation
methods, which are slower and were run for 10 trials. The
same random label permutations were used for all methods.
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Table 1. MNIST: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
NEAREST NEIGHBOR 55.8 (5.1) 65.0 (3.2) 68.9 (3.2) 72.1 (2.8) 74.1 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO (GARCIA-CARDONA ET AL., 2014) 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
VOLUMEMBO (JACOBS ET AL., 2018) 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
WNLL (SHI ET AL., 2017) 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
CENTERED KERNEL (MAI & COUILLET, 2018) 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
SPARSE LP (JUNG ET AL., 2016) 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
P-LAPLACE (FLORES ET AL., 2019) 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

Table 2. FashionMNIST: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
NEAREST NEIGHBOR 44.5 (4.2) 50.8 (3.5) 54.6 (3.0) 56.6 (2.5) 58.3 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO (GARCIA-CARDONA ET AL., 2014) 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
VOLUMEMBO (JACOBS ET AL., 2018) 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
WNLL (SHI ET AL., 2017) 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
CENTERED KERNEL (MAI & COUILLET, 2018) 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
SPARSE LP (JUNG ET AL., 2016) 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
P-LAPLACE (FLORES ET AL., 2019) 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# LABELS PER CLASS 10 20 40 80 160

LAPLACE/LP (ZHU ET AL., 2003) 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
NEAREST NEIGHBOR 62.9 (1.7) 66.9 (1.1) 70.0 (0.8) 72.5 (0.6) 74.7 (0.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 68.2 (1.6) 72.0 (1.0) 75.0 (0.7) 77.4 (0.5) 79.5 (0.3)
MBO (GARCIA-CARDONA ET AL., 2014) 52.7 (4.1) 67.3 (2.0) 75.7 (1.1) 79.6 (0.7) 81.6 (0.4)
VOLUMEMBO (JACOBS ET AL., 2018) 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)
WNLL (SHI ET AL., 2017) 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
CENTERED KERNEL (MAI & COUILLET, 2018) 20.6 (1.5) 27.8 (2.3) 37.9 (2.6) 51.3 (3.3) 64.3 (2.6)
SPARSE LP (JUNG ET AL., 2016) 15.2 (2.5) 15.9 (2.0) 14.5 (1.5) 13.8 (1.4) 51.9 (2.1)
P-LAPLACE (FLORES ET AL., 2019) 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)
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Figure 2. Accuracy of Poisson Learning for (a) different numbers of neighbors k used to construct the graph and (b) unbalanced training
data. In (a) we used 5 labels per class and in (b) we used 1 label per class for the odd numbered classes, and m = 1, 2, 3, 4, 5 labels per
class for the even numbered classes. Both figures show the difference in accuracy compared to k = 10 and balanced training data.
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Table 3. Cifar-10: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 10.5 (1.3) 12.5 (4.4) 13.1 (3.8) 14.5 (4.7) 18.0 (6.9)
NEAREST NEIGHBOR 33.6 (4.4) 37.3 (3.3) 40.3 (3.0) 40.9 (2.7) 42.1 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 37.1 (5.0) 42.1 (3.7) 45.8 (3.4) 47.0 (2.8) 48.8 (2.5)
MBO (GARCIA-CARDONA ET AL., 2014) 15.2 (4.1) 20.4 (4.8) 25.9 (4.1) 29.6 (4.3) 34.5 (4.2)
VOLUMEMBO (JACOBS ET AL., 2018) 40.3 (8.0) 47.2 (7.1) 52.2 (5.3) 53.3 (4.7) 55.9 (4.0)
WNLL (SHI ET AL., 2017) 20.8 (6.4) 34.5 (6.2) 42.1 (5.2) 46.1 (4.4) 50.2 (3.5)
CENTERED KERNEL (MAI & COUILLET, 2018) 13.8 (1.1) 15.5 (1.2) 17.3 (1.4) 18.8 (1.7) 20.4 (1.6)
SPARSE LP (JUNG ET AL., 2016) 10.4 (2.1) 11.1 (1.4) 11.8 (2.1) 12.8 (4.4) 13.6 (3.3)
P-LAPLACE (FLORES ET AL., 2019) 28.7 (6.6) 39.8 (6.4) 45.7 (2.6) 46.8 (1.7) 50.4 (2.9)
Poisson 41.6 (5.4) 46.9 (4.2) 51.1 (3.4) 52.5 (3.0) 54.5 (3.0)
PoissonMBO 42.1 (7.0) 49.1 (5.3) 53.8 (4.4) 55.6 (3.7) 57.4 (3.4)

# LABELS PER CLASS 10 20 40 80 160

LAPLACE/LP (ZHU ET AL., 2003) 31.5 (7.6) 49.7 (4.9) 59.6 (2.2) 63.9 (1.0) 66.7 (0.6)
NEAREST NEIGHBOR 45.5 (1.8) 48.7 (1.5) 51.2 (0.8) 53.7 (0.6) 56.1 (0.5)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 53.5 (1.9) 57.6 (1.1) 60.7 (0.7) 64.0 (0.4) 66.4 (0.3)
MBO (GARCIA-CARDONA ET AL., 2014) 47.3 (3.3) 58.6 (2.0) 63.8 (1.1) 66.4 (0.6) 68.5 (0.4)
VOLUMEMBO (JACOBS ET AL., 2018) 59.5 (2.0) 61.4 (0.9) 62.2 (0.7) 63.3 (0.5) 64.2 (0.4)
WNLL (SHI ET AL., 2017) 56.7 (2.3) 61.1 (1.1) 63.7 (0.7) 65.4 (0.4) 66.8 (0.3)
CENTERED KERNEL (MAI & COUILLET, 2018) 26.5 (2.0) 34.8 (2.1) 43.6 (2.2) 51.8 (2.3) 58.7 (1.5)
SPARSE LP (JUNG ET AL., 2016) 16.2 (2.6) 20.3 (1.4) 19.0 (1.1) 19.2 (1.1) 27.1 (1.7)
P-LAPLACE (FLORES ET AL., 2019) 54.6 (2.2) 60.7 (0.8) 63.9 (0.4) 66.0 (0.5) 67.9 (0.3)
Poisson 58.7 (1.8) 61.9 (1.0) 63.7 (0.7) 65.2 (0.6) 66.5 (0.5)
PoissonMBO 61.3 (1.8) 63.8 (1.0) 65.5 (0.6) 66.9 (0.5) 68.3 (0.4)

Tables 1, 2 and 3 show the average accuracy and standard
deviation over all 100 trials for various low label rates. We
also ran experiments at higher label rates on FashionMNIST
and Cifar-10, which are reported in the lower half of their
respective tables. We mention that in Tables 1, 2 and 3
the training data is balanced, so y = 1

101. Thus, the label
decisions (2.4) and (2.2) are equivalent.

We see that in nearly all cases, PoissonMBO outperforms all
other methods, with PoissonMBO typically outperforming
Poisson learning by a few percentage points. The most dras-
tic improvements are seen at the ultra low label rates, and
at the moderate label rates shown in Tables 2 and 3, several
other methods perform well. We note that VolumeMBO and
PoissonMBO are the only methods that incorporate prior
knowledge of class sizes, and are most suitable for direct
comparison. Our results can be compared to the cluster-
ing results of 67.2% on FashionMNIST (McConville et al.,
2019) and 41.2% on Cifar-10 (Ghasedi et al., 2019).

Figure 2(a) shows the accuracy of Poisson learning at 5
labels per class as a function of the number of neighbors K
used in constructing the graph, showing that the algorithm
is not particularly sensitive to this. Figure 2(b) shows the
accuracy of Poisson learning for unbalanced training data.
We take 1 label per class for half the classes and m =
1, 2, 3, 4, 5 labels per class for the other half. Since the
training data is unbalanced, y is not a constant vector and the
label decision in Step 11 of Algorithm 1 (Poisson Learning)
compensates for unbalanced training data. Note that in

Figure 2 we plot the difference in accuracy compared to (a)
the baseline of k = 10 and (b) 1 label per class. In Figure
2 (b), we see an increase in accuracy when only half the
classes get additional labels, though the increase is not as
large as in Tables 1, 2 and 3 where all classes get additional
labels.

5. Conclusion
We proposed a new framework for graph-based semi-
supervised learning at very low label rates called Poisson
learning. The method is efficient and simple to implement.
We performed a detailed analysis of Poisson learning, giving
random walk and variational interpretations. We also pro-
posed a graph-cut enhancement of Poisson learning, called
Poisson MBO, that can give further improvements. We
presented numerical results showing that Poisson Learning
outperforms all other methods for semi-supervised learning
at low label rates on several common datasets.
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Appendices
A. Proofs
We provide the proofs by section.

A.1. Proofs for Section 2.1

We recall Xx
0 , X

x
1 , X

x
2 , . . . is a random walk on X starting at Xx

0 = x with transition probabilities

P(Xx
k = xj |Xx

k−1 = xi) =
wij

di
.

Before giving the proof of Theorem 2.1, we recall some properties of random walks and Markov chains. The random walk
described above induces a Markov chain with state space X . Since the graph is connected and X is finite, the Markov
chain is positive recurrent. We also assume the Markov chain is aperiodic. This implies the distribution of the random
walker converges to the invariant distribution of the Markov chain as k →∞. In particular, choose any initial distribution
p0 ∈ ℓ2(X) such that

∑︁n
i=1 p0(xi) = 1 and p0 ≥ 0, and define

pk+1(xi) =

n∑︂
j=1

wij

dj
pk(xj). (A.1)

Then pk is the distribution of the random walker after k steps. Since the Markov chain is positive recurrent and aperiodic we
have that

lim
k→∞

pk(xi) = π(xi)

for all i, where

π(xi) =
di∑︁n
i=1 di

is the invariant distribution of the Markov chain. It is simple to check that if p0 ∈ ℓ2(X) is any function (i.e., not necesarily
a probability distribution), and we define pk by the iteration (A.1), then

lim
k→∞

pk(xi) = π(xi)

n∑︂
j=1

p0(xj). (A.2)

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Define the normalized Green’s function

GT (xi, xj) =
1

di
E

[︄
T∑︂

k=0

1{X
xj
k =xi}

]︄
=

1

di

T∑︂
k=0

P(Xxj

k = xi).

Then we have

diGT (xi, xj) = δij +

T∑︂
k=1

n∑︂
ℓ=1

wℓi

dℓ
P(Xxj

k−1 = xℓ)

= δij +

n∑︂
ℓ=1

wℓi

dℓ

T∑︂
k=1

P(Xxj

k−1 = xℓ)

= δij +

n∑︂
ℓ=1

wℓi

dℓ

T−1∑︂
k=0

P(Xxj

k = xℓ)

= δij +

n∑︂
ℓ=1

wℓiGT−1(xℓ, xj).
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Therefore we have
di(GT (xi, xj)−GT−1(xi, xj)) + LGT−1(xi, xj) = δij ,

where the Laplacian L is applied to the first variable of GT−1 while the second variable is fixed (i.e. LGT−1(xi, xj) =
[LGT−1(·, xj)]xi

). Since

uT (xi) =

m∑︂
j=1

(yj − y)GT (xi, xj)

we have

di(uT (xi)− uT−1(xi)) + LuT−1(xi) =

m∑︂
j=1

(yj − y)δij .

Summing both sides over i = 1, . . . , n we find that

(uT )d,X =

n∑︂
i=1

diuT (xi) =

n∑︂
i=1

diuT−1(xi) = (uT−1)d,X ,

where d = (d1, d2, . . . , dn) is the vector of degrees. Therefore (uT )d,X = (uT−1)d,X = · · · = (u0)d,X . Noting that

diu0(xi) =

m∑︂
j=1

(yj − y)δij ,

we have (u0)d,X = 0, and so (uT )d,X = 0 for all T ≥ 0. Let u ∈ ℓ2(X) be the solution of

Lu(xi) =

m∑︂
j=1

(yj − y)δij

satisfying (u)d,X = 0. Define vT (xi) = di(uT (xi)− u(xi)). We then check that vT satisfies

vT (xi) =

n∑︂
j=1

wij

dj
vT−1(xj),

and (vT )X = 0. Since the random walk is aperiodic and the graph is connected, we have by (A.2) that limT→∞ vT (xi) =
π(xi)(v0)X = 0, which completes the proof.

A.2. Proofs for Section 2.2

We first review some additional calculus on graphs. The graph divergence of a vector field V is defined as

divV (xi) =

n∑︂
j=1

wijV (xi, xj).

The divergence is the negative adjoint of the gradient; that is, for every vector field V ∈ ℓ2(X2) and function u ∈ ℓ2(X)

(∇u, V )ℓ2(X2) = −(u, divV )ℓ2(X). (A.3)

We also define ∥u∥pℓp(X) =
∑︁n

i=1 |u(xi)|p and

∥V ∥pℓp(X2) =
1

2

n∑︂
i,j=1

wij |V (xi, xj)|p,

where | · | is the Euclidean norm on Rk.

The graph Laplacian Lu of a function u ∈ ℓ2(X) is defined as negative of the composition of gradient and divergence

Lu(xi) = −div (∇u)(xi) =

n∑︂
j=1

wij(u(xi)− u(xj)).
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The operator L is the unnormalized graph Laplacian. Using (A.3) we have

(Lu, v)ℓ2(X) = (−div∇u, v)ℓ2(X) = (∇u,∇v)ℓ2(X2).

In particular (Lu, v)ℓ2(X) = (u,Lv)ℓ2(X), and so the graph Laplacian L is self-adjoint as an operator L : ℓ2(X)→ ℓ2(X).
We also note that

(Lu, u)ℓ2(X) = (∇u,∇u)ℓ2(X2) = ∥∇u∥2ℓ2(X2),

that is, L is positive semi-definite.

The variational interpretation of Poisson learning can be directly extended to ℓp versions, so we proceed in generality here.
For a function u : X → Rk and a positive vector a ∈ Rn (meaning ai > 0 for all i = 1, . . . , n) we define the weighted
mean value

(u)a,X :=
1∑︁n

i=1 ai

n∑︂
i=1

aiu(xi).

We define the space of weighted mean-zero functions

ℓpa,0(X) = {u ∈ ℓp(X) : (u)a,X = 0}.

For p ≥ 1 and µ > 0 we consider the variational problem

min
u∈ℓpa,0(X)

{︃
1

p
∥∇u∥pℓp(X2)−µ

m∑︂
j=1

(yj − y)·u(xj)

}︃
(A.4)

where y = 1
m

∑︁m
j=1 yj . This generalizes the variational problem (2.8) for Poisson learning, and the theorem below

generalizes Theorem 2.3.

Theorem A.1. Assume G is connected. For any p > 1, positive a ∈ Rn, and µ ≥ 0, there exists a unique solution
u ∈ ℓpa,0(X) of (A.4). Furthermore, the minimizer u satisfies the graph p-Laplace equation

−div (|∇u|p−2∇u)(xi) = µ

m∑︂
j=1

(yj − y)δij . (A.5)

We give the proof of Theorem A.1 below, after some remarks and other results.

Remark A.2. When p = 1, solutions of (A.4) may not exist for all µ ≥ 0, since the variational problem (A.4) may not be
bounded from below. We can show that there exists C > 0 such that if µ < C, the variational problem is bounded from
below and our argument for existence in Theorem A.1 goes through.

It turns out that µ > 0 is a redundant parameter when p > 1.

Lemma A.3. Let p > 1 and for µ > 0 let uµ be the solution of (A.4). Then, uµ = µ1/(p−1)u1.

It follows from Lemma A.3 that when p > 1, the fidelity parameter µ > 0 is completely irrelevant for classification
problems, since the identity uµ = µ1/(p−1)u1 implies that the label decision (2.2) gives the same labeling for any value of
µ > 0. Hence, in Poisson learning with p > 1 we always take µ = 1. This remark is false for p = 1.

Before proving Theorem A.1 we first record a Poincaré inequality. The proof is standard but we include it for completeness.
We can prove the Poincaré inequality for non-negative vectors a ∈ Rn, meaning that ai ≥ 0 for every i = 1, . . . , n as long
as

∑︁n
i=1 ai > 0.

Proposition A.4. Assume G is connected, a ∈ Rd is non-negative with
∑︁n

i=1 ai > 0, and p ≥ 1. There exists λp > 0 such
that

λp∥u− (u)a,X∥ℓp(X) ≤ ∥∇u∥ℓp(X2), (A.6)

for all u ∈ ℓp(X).
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Proof. Define

λp = min
u∈ℓp(X)
u̸≡(u)a,X

∥∇u∥ℓp(X2)

∥u− (u)a,X∥ℓp(X)
.

Then clearly (A.6) holds for this choice of λp, and λp ≥ 0. If λp = 0, then there exists a sequence uk ∈ ℓp(X) with
uk ̸≡ (uk)a,X such that

∥∇uk∥ℓp(X2)

∥uk − (u)a,X∥ℓp(X)
≤ 1

k
.

We may assume that (uk)a,X = 0 and ∥uk∥ℓp(X) = 1, and so

∥∇uk∥ℓp(X2) ≤
1

k
. (A.7)

Since |uk(x)| ≤ ∥uk∥ℓp(X) = 1, the sequence uk is uniformly bounded and by the Bolzano-Weierstrauss Theorem there
exists a subsequence ukj such that ukj (xi) is a convergent sequence in Rk for every i. We denote u(xi) = limj→∞ ukj (xi).
Since ∥ukj∥ℓp(X) = 1 we have ∥u∥ℓp(X) = 1, and thus u ̸≡ 0. Similarly, since (uk)a,X = 0 we have (u)a,X = 0 as well.
On the other hand it follows from (A.7) that ∥∇u∥ℓp(X2) = 0, and so

wij(u(xi)− u(xj)) = 0 for all i, j.

It follows that u(xi) = u(xj) whenever wij > 0. Since the graph is connected, it follows that u is constant. Since
(u)a,X = 0 we must have u ≡ 0, which is a contradiction, since ∥u∥ℓp(X) = 1. Therefore λp > 0, which completes the
proof.

We can now prove Theorem A.1.

Proof of Theorem A.1. Let us write

Ip(u) =
1

p
∥∇u∥pℓp(X2) − µ

m∑︂
j=1

(yj − y) · u(xj). (A.8)

By Proposition A.4 we have

Ip(u) ≥
1

p
λp
p∥u∥

p
ℓp(X) − µ

m∑︂
j=1

(yj − y) · u(xj)

for u ∈ ℓpa,0(X). By Hölder’s inequality we have

m∑︂
j=1

(yj − y) · u(xj) ≤
m∑︂
j=1

|yj − y||u(xj)|

≤

⎛⎝ m∑︂
j=1

|yj − y|q
⎞⎠1/q ⎛⎝ m∑︂

j=1

|u(xj)|p
⎞⎠1/p

≤

⎛⎝ m∑︂
j=1

|yj − y|q
⎞⎠1/q

∥u∥ℓp(X),

where q = p/(p− 1). Letting C =
(︂∑︁m

j=1 |yj − y|q
)︂1/q

we have

Ip(u) ≥
1

p
λp
p∥u∥

p
ℓp(X) − Cµ∥u∥ℓp(X). (A.9)

Since p > 1, we see that Ip is bounded below.
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Let uk ∈ ℓpa,0(X) be a minimizing sequence, that is, we take uk so that

−∞ < inf
u∈ℓpa,0(X)

Ip(u) = lim
k→∞

Ip(uk).

By (A.9) we have that
1

p
λp
p∥uk∥pℓp(X) − Cµ∥uk∥ℓp(X) ≤ inf

u∈ℓpa,0(X)
Ip(u) + 1,

for k sufficiently large. Since p > 1, it follows that there exists M > 0 such that ∥uk∥ℓp(X) ≤ M for all k ≥ 1. Since
|uk(xi)| ≤ ∥uk∥ℓp(X) ≤M for all i = 1, . . . , n, we can apply the Bolzano-Weierstrauss Theorem to extract a subsequence
ukj

such that ukj
(xi) is a convergent sequence in Rk for all i = 1, . . . , n. We denote by u∗(xi) the limit of ukj

(xi) for all i.
By continuity of Ip we have

inf
u∈ℓpa,0(X)

Ip(u) = lim
j→∞

Ip(ukj ) = Ip(u
∗),

and (u∗)a,X = 0. This shows that there exists a solution of (A.4).

We now show that any solution of (A.4) satisfies −div
(︁
|∇u|p−2∇u

)︁
= µf . The proof follows from taking a variation. Let

v ∈ ℓpa,0(X) and consider g(t) := Ip(u + tv), where Ip is defined in (A.8). Then g has a minimum at t = 0 and hence
g′(0) = 0. We now compute

g′(0) =
d

dt

⃓⃓⃓
t=0

⎧⎨⎩1

p
∥∇u+ t∇v∥pℓp(X2) − µ

m∑︂
j=1

(yj − y) · (u(xj) + tv(xj))

⎫⎬⎭
=

1

2p

n∑︂
i,j=1

wij
d

dt

⃓⃓⃓
t=0
|∇u(xi, xj) + t∇v(xi, xj)|p − µ

m∑︂
j=1

(yj − y) · v(xj)

=
1

2

n∑︂
i,j=1

wij |∇u(xi, xj)|p−2∇u(xi, xj) · ∇v(xi, xj)− µ

m∑︂
j=1

(yj − y) · v(xj)

= (|∇u|p−2∇u,∇v)ℓ2(X2) − µ

m∑︂
j=1

(yj − y) · v(xj)

= (−div (|∇u|p−2∇u), v)ℓ2(X) − µ

m∑︂
j=1

(yj − y) · v(xj)

= (−div (|∇u|p−2∇u)− µf, v)ℓ2(X),

where

f(xi) =

m∑︂
j=1

(yj − y)δij .

We choose

v(xi) =
1

ai

(︁
−div

(︁
|∇u|p−2∇u

)︁
(xi)− µf(xi)

)︁
then

(v)a,X =

n∑︂
i=1

(︁
−div

(︁
|∇u|p−2∇u

)︁
(xi)− µf(xi)

)︁
= 0

so v ∈ ℓpa,0(X). Moreover, for this choice of v,

0 = g′(0) =

n∑︂
i=1

1

ai

⃓⃓
div

(︁
|∇u|p−2∇u

)︁
(xi) + µf(xi)

⃓⃓2 ≥ 1

max ai

⃦⃦
div

(︁
|∇u|p−2∇u

)︁
(xi) + µf(xi)

⃦⃦2
ℓ2(X)

.

So, −div
(︁
|∇u|p−2∇u

)︁
= µf as required.
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To prove uniqueness, let u, v ∈ ℓpa,0(X) be minimizers of (A.4). Then u and v satisfy (A.5) which we write as

−div (|∇u|p−2∇u) = µf.

Applying Lemma A.5 (below) we find that ∥u− v∥ℓp(X) = 0 and so u = v.

In the above proof we used a quantitive error estimate which is of interest in its own right. The estimate was on equations of
the form

−div (|∇u|p−2∇u) = f

when f ∈ ℓp0(X), where we use the notation: if a ∈ Rn is a constant vector (without loss of generality the vector of ones)
then we write (u)X = (u)a,X = 1

n

∑︁n
i=1 u(xi) and ℓp0(X) = {u ∈ ℓp(X) : (u)X = 0}.

Lemma A.5. Let p > 1, a ∈ Rn be non-negative, and assume u, v ∈ ℓpa,0(X) satisfy

−div (|∇u|p−2∇u)(xi) = f(xi)

and
−div (|∇v|p−2∇v)(xi) = g(xi)

for all i = 1, . . . , n, where f, g ∈ ℓp0(X). Then,

∥u− v∥ℓp(X) ≤

{︄
Cλ−q

p ∥f − g∥1/(p−1)
ℓq(X) if p ≥ 2

Cλ−2
p

(︁
∥∇u∥ℓp(X) + ∥∇v∥ℓp(X)

)︁2−p ∥f − g∥ℓ2(X) if 1 < p < 2

where C is a constant depending only on p and q = p
p−1 .

Remark A.6. If −div (|∇u|p−2∇u) = f then we can write
(︁
|∇u|p−2∇u,∇φ

)︁
ℓ2(X2)

= (f, φ)ℓ2(X) for any φ ∈ ℓ2(X).
Choosing φ = u implies ∥∇u∥pℓp(X2) = (f, u)ℓ2(X) ≤ ∥f∥ℓq(X)∥u∥ℓp(X) so we could write the bound for p ∈ (1, 2) in the
above lemma without ∥∇u∥ℓp(X) and ∥∇v∥ℓp(X) on the right hand side.

Proof. For p ≥ 2 we use the identity

|a− b|p ≤ C(|a|p−2a− |b|p−2b) · (a− b)

for vectors a, b ∈ Rk for some constant C depending only on p (which can be found in Lemma 4.4 Chapter I (DiBenedetto,
1993)) to obtain

∥∇u−∇v∥pℓp(X2) =
1

2

n∑︂
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|p

≤ C

n∑︂
i,j=1

wij

(︁
|∇u(xi, xj)|p−2∇u(xi, xj)− |∇v(xi, xj)|p−2∇v(xi, xj)

)︁
·(∇u(xi, xj)−∇v(xi, xj))

= C(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v))ℓ2(X2)

= C(−div (|∇u|p−2∇u) + div (|∇v|p−2∇v), u− v)ℓ2(X)

= C(f − g, u− v)ℓ2(X)

≤ C∥f − g∥ℓq(X)∥u− v∥ℓp(X),

where in the last line we used Hölder’s inequality, 1
p + 1

q = 1, and the value of C may change from line-to-line. By
Proposition A.4 we have

λp
p∥u− v∥pℓp(X) ≤ ∥∇u−∇v∥

p
ℓp(X2) ≤ C∥f − g∥ℓq(X)∥u− v∥ℓp(X).

Therefore we deduce
∥u− v∥ℓp(X) ≤ Cλ−q

p ∥f − g∥1/(p−1)
ℓq(X) .



Poisson Learning

Now for 1 < p < 2 we follow the proof of Lemma 4.4 in Chapter I (DiBenedetto, 1993) to infer

(︁
|a|p−2a− |b|p−2b

)︁
· (a− b) =

∫︂ 1

0

|sa+ (1− s)b|p−2 |a− b|2 ds

+ (p− 2)

∫︂ 1

0

|sa+ (1− s)b|p−4 |(sa+ (1− s)b) · (a− b)|2 ds

for any a, b ∈ Rk. Hence, by the Cauchy Schwarz inequality,

(︁
|a|p−2a− |b|p−2b

)︁
· (a− b) ≥ (p− 1)

∫︂ 1

0

|sa+ (1− s)b|p−2 |a− b|2 ds

≥ (p− 1)|a− b|2
∫︂ 1

0

1

(s|a|+ (1− s)|b|)2−p
ds

≥ (p− 1)|a− b|2

(|a|+ |b|)2−p
.

In the sequel we make use of the inequality(︁
|a|p−2a− |b|p−2b

)︁
· (a− b) ≥ C|a− b|2

(|a|+ |b|)2−p
.

By Hölder’s inequality and the above inequality we have (where again the constant C may change from line-to-line)

∥∇u−∇v∥pℓp(X2) =
1

2

n∑︂
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|p

≤

⎛⎝1

2

n∑︂
i,j=1

wij |∇u(xi, xj)−∇v(xi, xj)|2

(|∇u(xi, xj)|+ |∇v(xi, xj)|)2−p

⎞⎠
p
2
⎛⎝1

2

n∑︂
i,j=1

wij (|∇u(xi, xj)|+ |∇v(xi, xj)|)p
⎞⎠

2−p
2

≤ C

⎛⎝ n∑︂
i,j=1

wij

(︁
|∇u(xi, xj)|p−2∇u(xi, xj)−|∇v(xi, xj)|p−2∇v(xi, xj)

)︁
·(∇u(xi, xj)−∇v(xi, xj))

⎞⎠
p
2

×
(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2

= C
(︁
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)

)︁ p
2

ℓ2(X2)

(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2

= C
(︁
−div (|∇u|p−2∇u) + div (|∇v|p−2∇v), u− v

)︁ p
2

ℓ2(X)

(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2

= C (f − g, u− v)
p
2

ℓ2(X)

(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2

≤ C ∥f − g∥
p
2

ℓ2(X) ∥u− v∥
p
2

ℓ2(X)

(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2 .

Combining the above with Proposition A.4 we have

λp
p∥u− v∥

p
2

ℓp(X) ≤ C ∥f − g∥
p
2

ℓ2(X)

(︁
∥∇u∥ℓp(X2) + ∥∇v∥ℓp(X2)

)︁ (2−p)p
2

which implies the result.

The final proof from Section 2.2 is Lemma A.3.

Proof of Lemma A.3. Let us write

Ip,µ(u) =
1

p
∥∇u∥pℓp(X2) − µ

m∑︂
j=1

(yj − y) · u(xj).
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We note that
Ip,µ(µ

1/(p−1)u) = µp/(p−1)Ip,1(u).

Therefore
Ip,µ(uµ) = µp/(p−1)Ip,1(uµµ

−1/(p−1)) ≥ µp/(p−1)Ip,1(u1).

On the other hand
µp/(p−1)Ip,1(u1) = Ip,µ(µ

1/(p−1)u1) ≥ Ip,µ(uµ)

Therefore
Ip,µ(µ

1/(p−1)u1) = Ip,µ(uµ).

By uniqueness in Theorem A.1 we have uµ = µ1/(p−1)u1, which completes the proof.

A.3. Proofs for Section 2.4

We now turn our attention to the Ginzburg–Landau approximation of the graph cut problem (2.11).

Proof of Theorem 2.4. Let us redefine GLτ in a more general form,

GLτ (u) =
1

2
∥∇u∥2ℓ2(X2) +

1

τ

n∑︂
i=1

V (u(xi))

where V : Rk → [0,+∞) is continuous and V (t) = 0 if and only if t ∈ Sk. Of course, the choice of V (t) =
∏︁k

j=1 |t−ej |2
satisfies these assumptions. We let

Eτ (u) =
{︃

GLτ (u)− µ
∑︁m

j=1(yj − y) · u(xj) if (u)X = b

+∞ else,

E0(u) =
{︃ 1

2∥∇u∥
2
ℓ2(X2) − µ

∑︁m
j=1(yj − y) · u(xj) if (u)X = b and u : X → Sk

+∞ else.

The theorem can be restated as showing that minimisers uτ of Eτ contain convergent subsequences, and any convergent
subsequence converges to a minimiser of E0. We divide the proof into two steps, in the first step we show that the sequence
of minimisers {uτ}τ>0 is precompact, in the second step we show that any convergent subsequence is converging to a
minimiser of E0.

1. Compactness. We first show that any sequence {u′
τ}τ>0 and M ∈ R satisfying supτ>0 Eτ (u′

τ ) ≤M is precompact.
By Proposition A.4 and the Cauchy–Schwarz inequality

M ≥ λ2
2

2
∥u′

τ − b∥2ℓ2(X) +
1

τ

n∑︂
i=1

V (u′
τ (xi))⏞ ⏟⏟ ⏞

≥0

−µ

⌜⃓⃓⎷ m∑︂
j=1

(yj − y)2

⏞ ⏟⏟ ⏞
=:C

∥u′
τ∥ℓ2(X)

≥ λ2
2

2
∥u′

τ − b∥2ℓ2(X) − Cµ∥u′
τ − b∥ℓ2(X) − Cµ∥b∥ℓ2(X).

Hence,

∥u′
τ − b∥ℓ2(X) ≤

Cµ

λ2
2

⎛⎝1 +

√︄
1 +

2λ2
2(M + Cµ∥b∥ℓ2(X))

C2µ2

⎞⎠ =: ˜︁C
so {µ′

τ}τ>0 is bounded in ℓ2(X) and therefore, by the Bolzano–Weierstrass Theorem, precompact.

To show that minimisers {uτ}τ>0 are precompact it is enough to show that there exists M ∈ R such that supτ>0 Eτ (uτ ) ≤
M . This follows easily as we take u ∈ ℓ2(X) satisfying

∑︁n
i=1 u(xi) = b and u(xi) ∈ Sk for all i = 1, 2, . . . , n as a

candidate. We have

Eτ (uτ ) ≤ Eτ (u) =
1

2
∥∇u∥2ℓ2(X2) − µ

m∑︂
j=1

(yj − y) · u(xj) =: M.

Now we have shown that there exists convergent subsequences we show that any limit must be a minimiser of E0.
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2. Converging Subsequences. Let u0 be a cluster point of {uτ}τ>0, i.e. there exists a subsequence such that uτm → u0

as m→∞. Pick any v ∈ ℓ2(X) with E0(v) < +∞. We will show

(a) Eτ (v) = E0(v),

(b) lim infτ→0 Eτ (uτ ) ≥ E0(u0).

Assuming (a) and (b) hold then, by (a),
E0(v) = Eτm(v) ≥ Eτm(uτm).

Taking the limit as m→∞, and applying (b) we have

E0(v) ≥ lim inf
m→∞

Eτm(uτm) ≥ E0(u0).

It follows that for all v ∈ ℓ2(X) we have E0(u0) ≤ E0(v), hence u0 is a minimiser of E0.

To show (a), we easily notice that

Eτ (v) =
1

2
∥∇v∥2ℓ2(X2) +

1

τ

n∑︂
i=1

V (v(xi))⏞ ⏟⏟ ⏞
=0

−µ
m∑︂
j=1

(yj − y) · v(xj) = E0(v).

For (b) we without loss of generality assume that uτ → u0 and

lim inf
τ→0

Eτ (uτ ) = lim
τ→0
Eτ (uτ ) < +∞.

As
∑︁n

i=1 uτ (xi) = b for all τ > 0 and uτ (xi) → u0(xi) for every i ∈ {1, . . . , n} then (u0)X =
∑︁n

i=1 u0(xi) = b. And
since V (uτ (xi)) ≤ τEτ (uτ )→ 0 then we have V (u0(xi)) = 0, hence u0(xi) ∈ Sk. Now,

Eτ (uτ ) =
1

2
∥∇uτ∥2ℓ2(X2)⏞ ⏟⏟ ⏞

→ 1
2∥∇u0∥2

ℓ2(X2)

+
1

τ

n∑︂
i=1

V (uτ (xi))⏞ ⏟⏟ ⏞
≥0

−µ
m∑︂
j=1

(yj − y) · uτ (xj)⏞ ⏟⏟ ⏞
→

∑︁m
j=1(yj−y)·u0(xj)

.

So lim infτ→0 Eτ (uτ ) ≥ E0(u0) as required.

Remark A.7. If (a) and (b) in the proof of Theorem 2.4 are strengthened to

(a′) for all v ∈ ℓ2(X) there exists vτ → v such that limτ→0 Eτ (vτ ) = E0(v),

(b′) for all v ∈ ℓ2(X) and for all vτ → v then lim infτ→0 Eτ (vτ ) ≥ E0(v)

then one says that Eτ Γ-converges to E0 (and one can show that (a′) and (b′) hold in our case with a small modification of
the above proof). The notion of Γ-convergence is fundamental in the calculus of variations and is considered the variational
form of convergence as it implies (when combined with a compactness result) the convergence of minimisers.

B. Continuum limits
We briefly discuss continuum limits for the Poisson learing problem (2.3). We take p = 2 for simplicity, but the arguments
extend similarly to other values of p ≥ 1. In order to analyze continuum limits of graph-based learning algorithms, we make
the manifold assumption, and assume G is a random geometric graph sampled from an underlying manifold. To be precise,
we assume the vertices of the graph corresponding to unlabeled points x1, . . . , xn are a sequence of i.i.d. random variables
drawn from a d-dimensional compact, closed, and connected manifoldM embedded in RD, where d≪ D. We assume
the probability distribution of the random variables has the form dµ = ρdVolM, where VolM is the volume form on the
manifold, and ρ is a smooth density. For the labeled vertices in the graph, we take a fixed finite set of points Γ ⊂M. The
vertices of the random geometric graph are

Xn := {x1, . . . , xn} ∪ Γ.
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We define the edge weights in the graph by
wxy = ηε (|x− y|) ,

where ε > 0 is the length scale on which we connect neighbors, |x−y| is Euclidean distance in RD, and η : [0,∞)→ [0,∞)
is smooth with compact support, and ηε(t) =

1
εd
η
(︁
t
ε

)︁
. We denote the solution of the Poisson learning problem (2.3) for this

random geometric graph by un,ε(x).

The normalized graph Laplacian is given by

Ln,εu(x) =
2

σηnε2

∑︂
y∈Xn

ηε(|x− y|)(u(x)− u(y)),

where ση =
∫︁
Rd |z1|2η(|z|) dz. It is well-known (see, e.g., (Hein et al., 2007)), that Ln,ε is consistent with the (negative of)

the weighted Laplace-Beltrami operator
∆ρ := −ρ−1div M(ρ2∇Mu),

where div M is the manifold divergence and∇M is the manifold gradient. We write div = div M and∇ = ∇M now for
convenience. In particular, for any u ∈ C3(M) we have

|Ln,εu(x)−∆ρu(x)| ≤ C(∥u∥C3(M) + 1)(λ+ ε)

holds for all x ∈ Xn with probability at least 1− Cn exp
(︁
−cnεd+2λ2

)︁
for any 0 < λ ≤ 1, where C, c > 0 are constants.

Using the normalised graph Laplacian in the Poisson learning problem (2.3) we write

Ln,εun,ε(x) = n

m∑︂
y∈Γ

(g(y)− y)δx=y for x ∈ Xn, (B.1)

where g(y) ∈ R denotes the label associated to y ∈ Γ and y = 1
|Γ|

∑︁
x∈Γ g(x). We restrict to the scalar case (binary

classification) for now. Note that the normalisation plays no role in the classification problem (2.2). To see what should
happen in the continuum, as n→∞ and ε→ 0, we multiply both sides of (B.1) by a smooth test function φ ∈ C∞(M),
sum over x ∈ X , and divide by n to obtain

1

n
(Ln,εun,ε, φ)ℓ2(X) =

∑︂
y∈Γ

(g(y)− y)φ(y). (B.2)

Since Ln,ε is self-adjoint (symmetric), we have

(Ln,εun,ε, φ)ℓ2(X) = (un,ε,Ln,εφ)ℓ2(X) = (un,ε,∆ρφ)ℓ2(X) +O
(︁
(λ+ ε)∥un,ε∥ℓ1(X)

)︁
.

We also note that ∑︂
y∈Γ

(g(y)− y)φ(y) =

∫︂
M

∑︂
y∈Γ

(g(y)− y)δy(x)φ(x) dVolM(x),

where δy is Dirac-Delta distribution centered at y ∈M, which has the property that∫︂
M

δy(x)φ(x) dVolM(x) = φ(y)

for every smooth φ ∈ C∞(M). Combining these observations with (B.2) we see that

1

n
(un,ε,∆ρφ)ℓ2(X) +O

(︃
(λ+ ε)

n
∥un,ε∥ℓ1(X)

)︃
=

∫︂
M

∑︂
y∈Γ

(g(y)− y)δy(x)φ(x) dVolM(x).

If we can extend un,ε to a function onM in a suitable way, then the law of large numbers would yield

1

n
(un,ε,∆ρφ)ℓ2(X) ≈

∫︂
M

un,ε(x)ρ(x)∆ρφ(x) dVolM(x).
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Hence, if un,ε → u as n→∞ and ε→ 0 in a sufficiently strong sense, then the function u :M→ R would satisfy

−
∫︂
M

u div (ρ2∇φ) dVolM =

∫︂
M

∑︂
y∈Γ

(g(y)− y)δy(x)φ(x) dVolM(x)

for every smooth φ ∈ C∞(M). If u ∈ C2(M), then we can integrate by parts on the left hand side to find that

−
∫︂
M

φ div (ρ2∇u) dVolM =

∫︂
M

∑︂
y∈Γ

(g(y)− y)δy(x)φ(x) dVolM(x)

Since φ is arbitrary, this would show that u is the solution of the Poisson problem

−div
(︁
ρ2∇u

)︁
=

∑︂
y∈Γ

(g(y)− y)δy onM. (B.3)

We conjecture that the solutions un,ε converge to the solution of (B.3) as n→∞ and ε→ 0 with probability one.

Conjecture B.1. Assume ρ is smooth. Assume that n→∞ and ε = εn → 0 so that

lim
n→∞

nεd+2

log n
=∞.

Let u ∈ C∞(M\ Γ) be the solution of the Poisson equation (B.3) and un,ε solve the graph Poisson problem (B.1). Then
with probability one

lim
n→∞

max
x∈Xn

dist(x,Γ)>δ

|un,ε(x)− u(x)| = 0

for all δ > 0.

The conjecture states that un,ε converges to u uniformly as long as one stays a positive distance away from the source
points Γ, where the solution u is singular. We expect the conjecture to be true, since similar results are known to hold when
the source term on the right hand side is a smooth function f . The fact that the right hand side in (B.3) is highly singular,
involving delta-mass concentration, raises difficult technical problems that will require new insights that are far beyond the
scope of this paper.

Remark B.2. If Conjecture B.1 is true, it shows that Poisson learning is consistent with a well-posed continuum PDE for
arbitrarily low label rates. This is in stark contrast to Laplace learning, which does not have a well-posed continuum limit
unless the number of labels grows to∞ as n → ∞ sufficiently fast. This partially explains the superior performance of
Poisson learning for low label rate problems.


