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1. INTRODUCTION
Buildings use 40% of the global energy consumption and emit 
30% of the CO2 emissions [1]. Of the total building energy, 
30-40% are for building heating and cooling systems, which 
regulate the indoor thermal environment and provide thermal 
comfort to occupants.  In the United States, most buildings 
use forced air technology to deliver heating / cooling to the 
targeted thermal zones as shown in figure 1. This system may 
cause complaints for thermal comfort from inhabitants due 
to excessive draft movement, inhomogeneous conditioning, 
and difficulty in accurately controlling the temperature for a 
system serving multiple rooms [2].

To address these issues, researchers have suggested the use 
of radiant heating and cooling system as a better alternative to 
all-air systems, as depicted in figure 2 and 3.  Radiant systems 
supply heating or cooling directly to the building space using 
radiation released by the heated or cooled building enclosure 

via the embedded heating or cooling tubes. In the cooling 
season, the radiant system often works with a separated 
dehumidifier together to meet space latent and sensible 
cooling load (called separate sensible and latent cooling system 
SSLC). The SSLC has shown higher efficiency than forced air 
systems [3].  However, it is unsure whether the radiant heating 
and cooling system can provide better thermal comfort to 
occupants. Moreover, the evaluation method for thermal 
comfort in the current standard is only suitable for forced air 
systems. A new method shall be developed to evaluate the 
radiation system’s thermal comfort. 

In this paper, we review the experiment-based studies on 
the thermal comfort of radiant systems. According to the 
experimental studies regarding thermal comfort and radiant 
systems, the key findings are concluded to help guide the 
evaluation of thermal comfort for radiant systems.
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Figure 1. Forced-air Heating & Cooling. Figure 2. Radiant Heating. Figure 3. Radiant Cooling
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ID Parameters Type Products Accuracy Level Pros Cons Reference

Thermocouple  (K‐ or T‐ 
types)

Testo[4], Swema 03[10],Aosong 
GSP 958[11] ±2.2°C ±1% Low Cost, Economical, Good 

Availability, Self‐Powered
Low accuracy, Low‐High Power 

Consumption
[4],[6], 

[8],[9],[10],[11],[17]

Integrated Chip  Good Low Cost, Small Size, Accurate, 
Low Power Consumption

Small Range of Detected 
Temperature [5]

IoT Temp sensors Arduino+data storage device Good
Wireless + Cloud Computing, 
Remote Control, Real Time 
Data Collection

High Price [7]

Thermistor

TandD Coorporation TR‐
72UI[12],NTC 

thermistor[13],Precon,ST‐S3EW‐
XPA[14], Thermistor probe and 

tape on thermistor[23]

Depends on Calibration Good Sensitivity Suffers from Self‐Heating [12],[13],[14],[23]

Resistance Temeprature 
Detector (RTD) EE21 transmitter[16] Best Very High Accuracy Very High Price Point, Less 

Sensitivity, High Power Consumption [16]

Capacitive sensor Aosong GSP 958[11],Honeywell 
HIH‐4000[13] ±2% RH

Able to Function at High 
Temperature and Low 

Temperature, Full Recovery 
from Condensation

Direct Field Interchangebility [4],[11],[13]

2 Resistive sensor Rotronic HC‐S[10],Vaisala, 
HWM90[14] ±2% RH 0.1% accuracy

Low Cost, Small Size, Readily 
Interchangeble, Remote 

Control, High Repeatability
None, Resistant to Condensation [10],[11],[14]

3 Thermal sensor Testo Hygrometer[8] ±5% RH at 40°C and 
±0.5% RH at 100°C

Able to Function at High 
Temperature, Durable at High 

Temperature (300 °C), 
Provides High Resolution

[8],[9]

4 Cup anenometer Omnidirectional, Reliable and 
Resistant

Low accuracy on low measurements, 
Ice could Disturb Proper Reading

5 Hotwire anenometer
Testo IAQ probe, Swema 

03[10][14], VELOCICALC‐8347[12], 
Dentec[13]

±0.2m
Higher Durability than Cup 
Anenometer, High Precision, 
Quick Response, Small Size

Large Particles could Damage 
Anenometer, not Suitable in Places 
with High Temperature Fluctuation

[4],[8],[10],[12],[13],[14]

6 Hotbulb anenometer [9]

7 MRT Globe thermometer 
with thermocouple

TESTO 480 Globe Probe[4], 
Combined sensor 

device(Arduino)[7], Swema05[10], 
TR‐102Black globe[12], Kimo 
TM110[14], TJHY HQZY[20]

±2°C ±1% [4],[7],[8],[10],[12],[14],[1
9],[20]

12 Infrared thermometers Swema Multipoint[10] Less Accurate But Statistically 
Insignificant [10]

13 Wired sensor(resistive)

PT1000[4], Wired Skin 
Temperature Sensors of YSI400 
standard[7], Wireless iButtons  

(Thermochron iButton, 
DS1291H)[13], T‐type 
thermocouple[19]

±0.1% More accurate measurement [4],[7],[13],[19]

14
Human/Physiological 
Parameters(heart rate, 

metabolic rate, movement, 
state of being)

Fitbit Alta HR Watch[4], ORMON 
HEM‐7112[19] [4],[19]

15 Surface Temperature 
FLIR c3 handheld infrared imaging 
thermometer[10],NTC Thermistor, 

U‐type EU‐UU‐10‐PTFE[13]
[10],[13]

Skin Temperature

1 Temperature

Relative Humidity

Wind Speed

Table 1. Common Sensors used for Thermal comfort research in Radiant Systems.  
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2. NEW PARAMETERS FOR THERMAL COMFORT 
EVALUATION
Traditionally, thermal comfort studies for building heating and 
cooling systems consider both physical conditions and human 
factors. The physical parameters measured include mean 
radiant temperature (MRT), relative humidity, air velocity, 
and indoor air temperature. These are coupled with human 
parameters such as clothing level and metabolic rate. 

Radiant heating and cooling system utilize radiation rather 
than convection to transfer heat to the occupants in the 
building space. It is not enough to study the air condition and 
mean radiant temperature since the radiation is related to the 
surface temperatures and the geometry relation between 
an occupant and the radiant surface. In the various studies 
of radiant heating and cooling systems we reviewed, the 
physical parameters measured include MRT (mean radiant 
temperature), relative humidity, air velocity, and indoor 
air temperature. Table 1 summarizes the sensors used 
for both commonly used evaluation parameters and new 
parameters being proposed in the studies. The information 
of the sensors used in the studies include sensor categories, 
descriptions, producers, accuracy specifications, and general 
pros & cons [4-36].

The sensors are placed 0.9 m above the floor which is 
considered the standard height for a sedentary person, 
and close to the test subject for more accurate results. Air 
temperature was also measured in selected studies at four 
different heights including 0.1m, 1.1m, 1.7m, and 2.8m to 
evaluate local discomfort that could potentially be brought 
about by vertical temperature difference [11].

Additionally, the new proposed parameters for assessing 
thermal comfort in other states are individual surface 
temperature and skin temperatures. Kashif, et al. [4] assessed 
sleeping parameters for sleeping comfort and quality of 
sleep under thermoelectric air-cooling systems. Parameters 
including sleep onset latency, efficiency of sleep, and wake 

abouts are involved in the thermal comfort assessments to 
reach a more accurate result. Skin temperature parameters 
were measured at various parts of the body including head, 
chest, back, arms, thighs, calves, and core using thermocouples 
with adhesive or infrared thermometers  to calculate local 
thermal sensation for individual body parts, then developed 
overall thermal sensation results. In consideration for radiant 
asymmetry that might cause local discomfort, thermal 
sensation vote and thermal comfort vote that are calculated 
from skin temperature information are utilized to assess 
discomfort and surface temperature limit [4,7,10,13,19,23].

Radiant systems can be classified as per the location of the 
architectural construction with respect to the radiant system. 
Figure 4, illustrates the most commonly used configurations 

3. ASSESSMENT METHODOLOGY FOR RADIANT 
SYSTEM 
Since radiant heating and cooling focuses more on the transfer 
of heat that is not achieved through convection, temperatures 
of the radiant surfaces and local temperatures of test subjects 
are used along with indoor parameters to evaluate subjective 
thermal comfort. 

Teitelbaum, developed a new thermal comfort evaluation 
framework for forced air systems and radiant systems by 
defining comfort as when the heat flux of convective, radiative, 
and evaporative modes equal to the individual’s metabolic rate 
[24]. Researchers can thus adjust specific parameters without 
changing the air temperature to provide better comfort based 
on the chart [24].

4. THERMAL COMFORT EVALUATION 
Skin temperature measurements on local body parts help 
thermal comfort evaluation for radiant systems because 
they account for vertical and horizontal radiant temperature 
asymmetries induced by the high-temperature difference 
between the body and radiant panels. Local skin temperatures 
measured were at the forehead, back, chest, forearm, upper 

Figure 4. Configuration of Radiant Systems.
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arm, backhand, thigh, calf, and foot. They are then used to 
calculate mean skin temperature [21]. Since core temperature 
is an internal temperature, the variation of core temperature is 
only 0.1°C, which is not significant in thermal comfort evaluation 
[22]. Zhang, [22] developed a relationship between local skin 
temperature and local thermal sensation/comfort using 
physiological measurement data and subjective responses.

5. SUBJECTIVE THERMAL COMFORT EVALUATION
Different types of surveys and questionnaires are included in 
every research with slight differences in the approach. The 
questionnaires are conducted in small intervals during the test 
based on mostly ASHRAE 55-2004 or ASHRAE RP-921 protocol 
[8,10,11,13]. The number of responders varies by the study, 
but they are in the low one hundred in terms of magnitude. 
Geographically these were conducted across the globe in Asia 
and Europe. The following techniques were used to evaluate 
thermal comfort for radiant systems subjectively.

5.1 PMV & AMV

PMV: Predicted Mean Vote  AMV: Actual Mean Vote

Using the ASHRAE 7-point thermal sensation scale, the 
questionnaires addressed occupant thermal sensations, 
acceptability of thermal environment, thermal preference, 
satisfaction with general comfort, clothing level, etc., which 
varies with different research. The ASHRAE 7-point thermal 
sensation scale is a scale that ranges from -3 to +3 with 3 being 
feeling hot, -3 being feeling cold, and 0 being feeling neutral. 
PMV and AMV (thermal sensation reported by occupants) are 
then calculated based on the parameters addressed above and 
compared in selected research. Positive PMV-AMV difference 
indicates that test subjects perceived cooler with a radiant 
system under the same operative temperature than with a 
conventional air system

5.2 TSV: Thermal sensation vote 

Thermal sensation vote (TSV) is a subjective vote from the 
occupants on a scale from -4 to 4, with 4 being very hot 
and -4 being very cold. Since TSV is a subjective vote, its 
relationship with skin temperature has been analyzed from 
experiment results. Skin temperatures were measured at 28 
locations on the body, and sensation and comfort questions 
were asked for 19 local body parts and for the whole body 
[22]. In asymmetrical environments, thermal sensation and 
thermal comfort can be estimated mainly by the local skin 
temperatures and core temperatures [22]. 

5.3 TCV: Thermal comfort vote 

Thermal comfort vote (TCV) is the local thermal comfort of 
a body part voted on a scale from -4 to 4, with -4 being very 
uncomfortable and 4 being very comfortable. When subjects 

are thermally neutral, thermal comfort vote and thermal 
sensation vote shows a linear relationship. As local TSV shifts 
to a higher value (warm), local TCV starts to decrease from 2 
to -4, which indicates a warm local discomfort.

6. THERMAL DISCOMFORT EVALUATION FOR THE 
RADIANT SYSTEM
In evaluating thermal discomfort for radiant systems, draught, 
vertical temperature difference (VTD), and radiant asymmetry 
have been analyzed with parameters including surface 
temperature, skin temperature, and air velocity. 

6.1 Draught

Since the radiant system involves low air velocity (< 0.2m/s) 
and vertical temperature difference (<0.4°C), it eliminates 
potential discomfort caused by excessive air movement 
compared to all air systems [14]. Azad, Abdus Salam, [14] found 
that the percentage dissatisfied due to draught for the radiant 
system is 10 while 20 for the conventional all-air system [14].

6.2 Vertical temperature difference (VTD)

  Air temperatures were measured at different height 
levels, including 0.1m, 1.1m, 1.7m, and 2.8m [8]. As radiant 
temperatures asymmetry and surface temperatures could 
affect test subjects’ thermal sensation, the walls, ceiling, and 
floor’s temperature were measured using a FLIR handheld 
infrared imaging thermometer in research regarding 
radiant cooling [10].

6.3 Radiant temperature asymmetry

The ASHRAE guideline for radiant asymmetry presents all the 
comfort limits for overhead radiation and horizontal radiant 
asymmetries, including warm ceiling, cold ceiling, warm wall, 
and cold wall. The findings done by the researchers include 
maximum vertical temperature difference from ankle to head, 
comfort limit of floor heating, the effect of the cold window 
on radiant asymmetry, air stratification for floor heating, 
the effect of exposure duration for radiant asymmetry, and 
comfort limit for cold floors.

7. CONCLUSION
The review studies have the following findings that are 
important for future research and design of thermal comfort in 
radiant systems. (1) Except for the mean radiant temperature, 
new parameters that are more suited for thermal comfort 
evaluation of radiant systems include skin temperature and 
surface temperature. (2) The thermal comfort evaluation 
parameters in the studied literatures include predicted mean 
vote, actual mean vote, thermal sensation vote, thermal 
comfort vote. (3)Using PMV (Predicted Mean Vote) alone as 
subjective evaluation of thermal comfort does not account 
for thermal discomfort brought by vertical temperature 
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