SXYYZ-00. ELFIN observations of energetic electron precipitation and backscatter:

implication for losses, atmospheric effects, and magnetospheric populations.
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What is ELFIN? A NASA/NSF - funded dual
CubeSat mission (L: Sep. 2018, INC=94 ©,
ALT=460km, Lifetime= 2.5 yr).

Mission Goal: Reveal dominant wave-loss
mechanism of relativistic “killer” electrons (0.5-
2MeV) from Earth’s radiation belts.

How does it work? Measures, for the first time,
the pitch-angle and energy spectra of electrons.
Determines if these bear the characteristic
signatures of scattering by the main expected
scatterer, EMIC waves, or other waves. Spin-
plane controlled to contain Earth’s B-field.
Instruments: Primary: EPDE for e (50-5000keV),
and FGM for DC B-field & waves

Operations: UCLA
Ground Station +
Wallops and Stellar |
Station (Japan). EPDI

What did we find?
Precipitating fluxes
cause atmospheric
backscattering at a
lower energy, that
depend on down-
going spectra. The
backscattered elec-
trons are a very significant fraction (20-100%) of
down-going flux during low precipitation
(down/perp <10%) and very high precipitation
(down/perp >50% to >1MeV). They represent a
significant reduction in ionospheric energy
deposition and modify magnetospheric
populations and wave excitation therein.
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For time interval between vertical lines in
previous plot: pitch-angle spectra for 16 log-
spaced E’s between 50keV - 6MeV (red-to-black)
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Finding #1 (Backscatter @ Low Precipitation)
The up and down fluxes tend to become
comparable. Their ratio typically becomes
>20% and often >60%. Ratios of r~1 are also
an attribute of noise (8r/r~1/VN, where N= #
of counts). Large ratios (near 1) are often
seen as energy increases and counts become
low, but this is not always physical. Proper
statistics must be applied, as done here.

The 3 events below show how the up/down
ratio changes U w/ precipitation intensity.



Moderate Precipitation (down/perp: 10-50%)
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Finding #2: At moderate precipitation, backscattered

fluxes are also moderate (up/down: 20-40%)




High Precipitation (down/perp >50% to 100s of keV)
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Finding #3: At high precipitation up to 100s of keV,
backscattered fluxes are suppressed (up/down: <20%)




Very High Precipitation (down/perp >50% to >1 MeV) Statistical Assessment: We have examined
clo_pef_fulspn_sflux dSecl= 2 d5pPh=2.6 errmox=30% @ >150 cases at various MLTs and MLATSs; they

%E%éwgé 1o - umﬁ Emax precip.= exhibit behavior consistent with the examples shown.
%E%%‘EE oo f ™ hat -:_"Eh.%um 2 Em~1MeV
ngm = }3}, E.ransition Summary of Findings
- = e Nig™ E~200keV For Down/Perp: Up/Down is:
WLE <10% (low precipitation) 20-100%
2.00 0,
‘?gg%ﬁ ﬂm g <10%, 10-50% (moderate, up to E, ) 20-40% (<E,,)
i B . @E>0.2E, >50% (high, up to E,, 100s keV)  <20%

e 5 10-100%, >50% (high, up to E, >1MeV) 10-100% (E<0.2E,)
wE WOM@RO% <10% (E>0.2E,)
Interpretation

In the absence of fast precipitation due to waves or
curvature  scattering, atmospheric  scattering
dominates a slow e- loss at 1-10% of perp, by acting
on the dominant, trapped population. This creates
both up and down electrons at comparable fluxes.

Under moderate precipitation, down-going fluxes
B 25 s it dominate, as their scattering by the atmosphere
produces fewer e- backscattered at lower energies. As
the precipitation intensifies, the backscattering to
precipitation ratio is progressively further suppressed.
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As precipitation intensifies at energies E_~1MeV or
greater, more backscattered e- at low energies are
created by atmospheric interactions at fluxes that can
exceed those of down-going electrons. This must
depend on the precipitation spectrum (it should be
true for hard spectra or those peaked at high energy).
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down ! up Conclusions
perp down dog\%n Given that down-going electrons generate a
roof—— bty |y 1 10-100% significant flux (10-100%) of backscattered electrons,
i et \ «— @ E<0.2E previous assumptions about ionospheric losses need
2 * , [THR ] *<tm . .
g1 . s ] to be reconsidered. Backscattering needs to be
! ; AN <« <10% parametrized and duly incorporated in atmospheric,
o1 o] ] . . .
S z . | @E>0.2E,, ionospheric and magnetospheric models.
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