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Abstract: Standard enthalpies, entropies, and heat capacities are calculated for more than 14,000
halogenated species using a high-fidelity automated thermochemistry workflow. This workflow gen-
erates conformers at density functional tight binding (DFTB) level, optimizes geometries, calculates
harmonic frequencies, and performs 1D hindered rotor scans at DFT level, and computes electronic
energies at G4 level. The computed enthalpies of formation for 400 molecules show good agree-
ment with literature references, but the majority of the calculated species have no reference in the
literature. Thus, this work presents the most accurate thermochemistry for many halogenated hy-
drocarbons to date. This new dataset is used to train an extensive ensemble of group additivity val-
ues (GAV) and hydrogen bond increment groups (HBI) within the Reaction Mechanism Generator
(RMG) framework. On average, the new group values estimate standard enthalpies for halogenated
hydrocarbons within 3 kcal/mol of their G4 values. To demonstrate the significance of RMG’s im-
proved halogen thermochemistry, a model for C;H,F;Br (2-BTP) is generated, and flame speeds are
compared to a literature mechanism. A significant contribution towards the automation of detailed
modeling of halogenated hydrocarbon combustion, this research provides thermochemical data for
thousands of novel halogenated species and presents a comprehensive set of halogen group additivity
values.
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1. Introduction

1.1 Halogenated Hydrocarbons (HHCs)

Halogenated hydrocarbons (HHCs) are commonly used as flame suppressants and refrigerant
working fluids. The first generation of these compounds, chlorofluorocarbons (CFCs) and hy-
drochlorofluorocarbons (HCFCs), depleted the ozone layer and were banned worldwide under the
Montreal Protocol in the 1980s [1]. The second generation, hydrofluorocarbons (HFCs), are ozone-
friendly but are currently being phased out due to their high global warming potentials (GWPs) [2].
Despite these controls on high-GWP HFC production, a recent study discovered that emissions of
HFC-23 (CHF;), a potent greenhouse gas, reached an historic high in 2018 [3].

To address these environmental concerns, several low-GWP HHC refrigerants and suppressants
have been proposed. However, the chemical properties that make these HFCs more environmen-
tally friendly also increase their flammability [4]. Therefore, the combustion properties of these
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proposed HHCs are of the utmost concern. Since experimental studies of these properties are com-
plex and costly, predictive kinetic modeling of HHC combustion is crucial in screening proposed
compounds in order to facilitate their innovation and implementation.

Understanding the complex chemistry of new compounds and predicting their combustion
behavior under different conditions requires the compilation and simulation of detailed kinetic
mechanisms (or microkinetic models) which often contain thousands of elementary reactions and
hundreds of intermediate species. Building these models by hand is extremely challenging and
error-prone due to the vast number of possible species and reactions to consider, sparse thermoki-
netic data available in the scientific literature, and biases of the human choosing which pathways to
pick. Thus, a tool that could generate these models automatically by enumerating and evaluating
the many potential pathways by which HHCs combust would be instrumental in screening greener
refrigerants and suppressants for flammability.

1.2 Reaction Mechanism Generator

Reaction Mechanism Generator (RMG) is an open-source software package that automatically
builds detailed kinetic models by proposing elementary reactions and estimating chemical prop-
erties (physical, thermochemical, kinetic, solvation, etc.) using a database of reaction templates,
thermokinetic data, and estimation methods [5]. These chemical properties are first sought in
a database of known parameters, but are more commonly estimated using hierarchical decision
trees. Thermochemical parameters (ArHsgx, S50k CP300_2400x) are usually estimated using
Benson’s group additivity method [6] for closed-shell species and the Hydrogen Bond Increment
(HBI) scheme [7] for radicals. RMG’s group additivity values are derived from high fidelity ex-
perimental data supplemented with high level quantum chemistry data.

The success of RMG’s rate-based algorithm in generating reliable kinetic models that cap-
ture all the essential chemistry in complex reacting systems depends heavily on the accuracy of
thermokinetic parameters. As RMG was originally developed to study the kinetics of hydrocar-
bon combustion, its databases contain extensive, although not exhaustive, thermokinetic data for
CHO chemistry. Since many short-lived intermediate species and elementary reactions are impos-
sible to isolate and investigate experimentally, quantum chemistry methods are needed to calculate
thermokinetic parameters. Recent progress on expanding RMG to model nitrogen [8], sulfur [9],
and silicon [10] has shown that quantum chemistry calculations are a viable approach to expand
RMG’s databases and estimation methods to new chemical systems. Thus, adding high-accuracy
halogen thermochemical data to RMG’s thermodynamic libraries and group additivity trees is es-
sential to extending RMG to model halocarbon combustion.

2. Methods/Experimental

2.1 The enum-halocarb4 dataset

Due to a scarcity of thermochemical data for halogenated species in the literature, a new dataset,
enum-halocarb4, was compiled as part of this work. In order to obtain high coverage and diversity
of CHO-(F,C1,Br) chemical space, this dataset was created by “halogenating” a systematically
enumerated set of over 600 CHO species containing up to 4 heavy atoms generated by Margraf et
al. [11]. This “halogenating” process involved systematic substitutions of halogen atoms (F,CI,Br)
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for hydrogens using RDKit [12]. To obtain an initial set of halogenated species to calculate with the
automated thermochemistry workflow, the set was pruned by removing cyclic species and radical
species with more than one unpaired electron. The chemical composition of the 14,801 molecules
in the enum-halocarb4 is shown in Table 1.

Composition | Closed-Shell | Radical | Total
CHOF 1048 1591 | 2639
CHOC1 1040 1552 | 2592
CHOBr 721 721 1442
CHOFC1 852 923 1775
CHOFBr 1540 1858 | 3398
CHOCIBr 932 1108 | 2040
CHOFCIBr 447 468 915

Table 1: Composition of 14801 molecules in enum-halocarb4

2.2 Thermochemistry Workflow

Systematic Conformer Generation

- DFTB optimization m

- RMSD cutoff: 0.1A
- Energy Cutoff: 5 kcal/mol
l Low-energy unique conformers
DFT optimization
M062X-GD3/jun-cc-pvtz

fQ{FST
SMILES: CCFF | ——

. L t E
1-D Hindered Rotors  “camorme’”
} ‘

Lowest energy conformer? =% No _—

Yes

{

G4
- B3LYP/6-31+G(2df,p) Opt Freq
- Series of single point calculations (HF, MP2, MP4,CCSD(T))

MY Arkane —— THERMO (H, S, Cp)
Figure 1: ab-initio Thermochemistry Workflow

The automated thermochemistry workflow used to calculate high-level thermochemical param-
eters (enthalpy, entropy, and heat capacity) of the enum-halocarb4 dataset is shown in Figure 1.
First, a SMILES representation of the molecule is used to generate a molecular graph of the species
using RMG. Then, the molecule is embedded using RDKit [12] to create a 3D geometry. After
embedding, conformers were investigated using the systematic conformer generation algorithm
implemented in AutoTST [13]. This algorithm explores conformers by rotating dihedrals in 120°
increments, varying cis/trans isomerism of double bonds, and alternating R/S sterochemistry for
chiral centers. Conformers were optimized in ASE [14] using the dftb+ calculator [15] with the
halorg-0-1 parameter set [16]. An ensemble of unique low-energy conformers was selected above
a root-mean-square deviation of 0.1 A and below an energy cutoff of 5 kcal/mol.
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These conformers were re-optimized with DFT in Gaussian 16 [17] using M06-2X-D3/jun-cc-
pvtz (the M06-2X functional with Grimme’s D3 empirical dispersion [18] and the jun-cc-pvtz basis
set [19]). Following all geometry optimizations, RMG’s graph isomorphism algorithm was used
to ensure that the optimized molecules matched the corresponding input SMILES. If the optimized
conformer was not isomorphic with the input molecular graph, the conformer was discarded from
the set. If all of the optimized conformers were not isomorphic, that molecule was deemed unstable
and removed from enum-halocarb4.

After identifying the lowest energy conformer with M06-2X-D3/jun-cc-pvtz, 1D hindered ro-
tors calculations were performed in Gaussian 16. For CHOF-containing molecules with internal
rotors, the lowest energy conformer was optimized using B3LYP/6-31+G(2df,p) and rotor scans
were performed in 10° increments with the same method. For molecules containing chlorine and
bromine, the rotor scans were performed in 15° increments using M06-2X-D3/jun-cc-pvtz. If a
lower energy conformer was found during the rotor scans, the conformer was reoptimized starting
with the lower energy coordinates with DFT and the rotor scans were redone.

To obtain more accurate electronic energies, the lowest energy conformer was re-calculated
with the Gaussian 4 (G4) compound method [20] in Gaussian 16. Lastly, to obtain thermochem-
istry in NASA polynomial form, the G4 energies and harmonic frequencies and the DFT rotor
scans were passed to RMG’s statistical mechanics calculator Arkane [21]. For species with inter-
nal rotors, Arkane’s best fit algorithm was used to determine whether a cosine function or a Fourier
series better fits the energy profile of the rotor scan.

2.3 Group Additivity Values

The thermochemical data calculated at G4 level in the enum-
halocarb4 dataset was used as training data to fit new halo-
gen thermo groups in RMG. Three types of thermo additivity
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2.4 Reaction Mechanism Generation

To assess the ability of RMG’s new halogen thermo groups to accurately estimate thermochemistry
of intermediates created during automated generation of HHC combustion models, an RMG model
was constructed for C;H,F;Br (2-BTP) and CF;Br in methane flames. Before generating a model,
a literature mechanism for 2-BTP from NIST [22] was imported into RMG. In order to teach
RMG how these two suppressants behave in hydrocarbon flames, 727 of the 1,610 reactions in
the literature mechanism were added as training reactions to RMG’s reaction families. Then, an
RMG model was built using the Foundational Fuel Chemistry Model Version 1.0 [23] in RMG-
database as a seed mechanism. The enum-halocarb4 was used as an RMG thermo library during
2-BTP model generation, should RMG need thermochemistry for an intermediate in that dataset.
The literature model contained 188 species and 1,610 reactions, whereas the RMG-built model
contained 504 species and 9,515 reactions. For further validation (section 3.2) 122 of the 504
species in the RMG mechanism were recalculated at G4 level using the automated thermochemisty
workflow previously discussed, and the calculated thermochemical properties were compared to
group additivity estimates.

2.5 Flame Speed Simulations

The RMG 2-BTP model was compared to the literature mechanism by calculating 1D laminar
flame speeds in Cantera [24]. The flame speeds were evaluated at 300K, 1 atm, and a wide range
of methane/air equivalence ratios (¢ = 0.5—1.2) and suppressant volume fractions (0 — 0.05). Since
there is a large discrepancy in the uninhibited methane burning velocity between the 2 models, the
normalized flame speeds were compared by dividing the velocity of the suppressed flame by the
velocity of the uninhibited flame.

3. Results and Discussion

3.1 Thermochemistry Workflow Benchmark
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Figure 3: Enthalpies for halogenated species calculated at G4 level show good agreement with
reference values
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Figure 3 shows the distribution of the error for 400 molecules in the enum-halocarb4 calculated
at G4 level compared to reference enthalpies of formation from the Active Thermochemical Tables
(ATcT) [25] and various literature sources [26—38]. With a mean absolute error (0.83 kcal/mol)
within chemical accuracy (< 1 kcal/mol) for the benchmark set, G4 is a suitable, relatively low
cost composite quantum chemistry method for high-fidelity and high-throughput calculations of
HHCs. However, for heavily halogenated systems, G4 and other composite methods do not com-
pute enthalpies within chemical accuracy [39]. Calculated G4 enthalpies for C,Cl5 and C,Cl in
enum-halocarb4 are more than 3 kcal/mol lower than ATcT values. Therefore, heavily halogenated

molecules in the enum-halocarb4 likely have higher errors than their more sparsely halogenated
counterparts.

3.2 Group Additvity Value Predictions
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Figure 4: Group additivity estimated enthalpies and entropies for halogenated species in enum-
halocarb4 and RMG 2-BTP model

The performance of the thermo groups derived in this work at estimating standard enthalpies
and entropies for 14,453 species in the enum-halocarb4 is shown in Figure 4a. On average, the
halogen GAVs estimate enthalpies of formation within 3 kcal/mol of the G4 calculations. This is
on par with RMG’s CHO thermo GAVs which typically estimate enthalpies within 2-3 kcal/mol.
Based on the halogen GAV performance on the large enum-halocarb4 dataset, RMG’s new halogen
GAVs appear to be reliable at accurately predicting thermochemical properties for a wide range of
HHCs.

Figure 4b shows the predictive capability of the halogen GAVs for 122 species in the RMG 2-
BTP model. With a mean absolute error of 6.7 kcal/mol, the GAVs were significantly less accurate
at estimating enthalpies for 2-BTP intermediates than for the enum-halocarb4 training set. The
poorer performance is largely due to the presence of cyclic species and biradicals in the 2-BTP
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model since there are no biradicals or cyclic molecules in enum-halocarb4. When cyclic species
and biradicals are removed, the mean absolute error is reduced to 4.7 kcal/mol.

3.3 Flame Speeds
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Figure 5: Computed burning velocities of methane flames for RMG and literature mechanisms
with added suppressants 2-BTP or CF;Br.

Figure 5 shows how the premixed methane/air laminar flame speeds change for the literature
and RMG mechanisms when the suppressing agent (2-BTP or CF;Br) is added. Although there is
a large disagreement in the uninhibited methane burning velocities for the two models, the RMG
model shows remarkably good agreement with the literature mechanism over a wide range of
equivalence ratios and suppressant volume fractions. Importantly, RMG is able to automatically
“discover” the important bromine flame inhibition reactions that scavenge H atoms and suppress
flame propagation. Additionally, the RMG model is able to capture the “fuel effect” of 2-BTP,
discussed in [40], which enhances flame speeds for lean methane/air flames.

4. Conclusions

This research provides thermochemical data for thousands of novel halogenated species and presents
a comprehensive set of halogen group additivity values. The halogen GAVs accurately estimate
enthalpies of formation for acylcic closed-shell and radical species in enum-halocarb4 but show
poorer performance for rings and biradicals for which more thermochemical training data are
needed. The new halogen GAVs and enum-halocarb4 thermochemistry data were implemented
in RMG and used to automatically construct a 2-BTP kinetic model with 504 species and 9,515
reactions. Predicted methane/air flame speeds with added suppressant were in close agreement for
the literature and RMG 2-BTP mechanisms, even though the RMG model has 316 more species
and 7,905 more reactions. Thus, although flame speeds appear to be insensitive to these newly dis-
covered species and reactions, a more thorough investigation into RMG’s mechanism is necessary
to determine if these intermediates and pathways are important to halocarbon flame suppression.
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