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Abstract

We study and characterize the optimal rates of convergence in periodic homogenization of
linear elliptic equations in non-divergence form. We obtain that the optimal rate of con-
vergence is either O(¢) or O(¢?) depending on the diffusion matrix A, source term f, and
boundary data g. Moreover, we show that the set of diffusion matrices A that give optimal
rate O(e) is open and dense in the set of C? periodic, symmetric, and positive definite
matrices, which means that generically, the optimal rate is O(e).
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1 Introduction

In this paper, we are interested in studying and characterizing the optimal rates of con-
vergence in periodic homogenization of linear elliptic equations in non-divergence form.
Let U C R" be a given bounded domain with smooth boundary. The equation of our main
interest is

=g on OU.

The matrix function A(y) = (aj),<;j<, € C*(R", an) is always assumed to be symmet-
ric, Z"-periodic, and positive definite for all y € R". Denote by T" = R"/Z" the flat n-
dimensional torus, and S’jr the set of all real symmetric, positive definite matrices of size
n x n, then we can also write that A € C*(T", 8"} ). Assume f € C*(U) and g € C*(dU).
In this paper, we always use the Einstein summation convention.

The homogenization problem (1.1) was discussed in the classical books of Bensoussan,
Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9]. It is well-known that, as ¢ — 0,
u® — u uniformly on U, where u solves the following effective equation

—Tjj Uy, = f(X) in U,
{u:g on OU. (1.2)

Here, A = {ﬁ,-j}l <ij<n is the effective matrix with constant entries, which is determined as

follows. For each fixed (k,I) € {1,...,n}?, consider the solution V¥ of the (k, [)-th cell
problem

_al/(y)v;(,l)/(y) - akl(y) = _aklv y € Tn7 (13)

where ay; € R is the unique constant such that (1.3) has a solution VK In fact, V¥ is unique
up to an additive constant by the strong maximum principle. Then, for a symmetric matrix
M, the corresponding corrector is

v(y, M) = MW" (). (1.4)
It is clear that v(y, M) solves
*Cl,‘j(M,‘j + v}'i}'] (y,M)) = *ﬁ,‘jM,‘j in T".

On the other hand, A can also be determined through the corresponding invariant measure
as follows. Let r € C(T") be the unique solution to

{ —(@;()r()),,, =0  inT",

1.5
r>0  and S r(y)dy = 1. (1:3)

We say that r is the invariant measure of the matrix A € C*(T",S"). See Freidlin [7],
Avellaneda, Lin [1], Evans [6], Engquist, Souganidis [5]. Multiply (1.3) by r and integrate
to yield, for 1 <k,I<n,

= [ o))y
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And thus,

A= [ Gy a.

Our main focus in this paper is to understand the optimal rate of convergence of u° to u,
that is, the optimal upper bound of [|u® — ul|;~ ) as ¢ — 0. Heuristically, by the two scale

asymptotic expansions, around a given point xo € U with M = D?u(xp), one has the fol-
lowing expansion of u® for x ~ xo:

u®(x) =~ u(x) + 82v()—£,M) = u(x) + &M (g)uxkxl(xo).

Naively, this suggests that |u?(x) — u(x)| < Ce? for x = xo, and we might be able to obtain
the rate of convergence O(&?) of ||u® — Ul (py as & — 07. Of course, this O(&?) rate, if
obtained, is optimal.

However, in the literature, only an O(¢) rate is known.

Theorem 1.1 ([2, Theorem 5.1, page 2301, [9, page 33]) Assume that f € C*(U) and
g € C*(dU). Then, there exists C > 0 depending only on the ellipticity of A, f, g such that

1 — u ) < C. (1.6)

In fact, using the doubling variable method in the theory of viscosity solutions, the reg-
ularity of f and g can be relaxed to allow f € C'(U) and g € C*(U). In any case, the
regularity of f and g is not the main concern in this paper.

Theorem 1.1 is well known in the literature. See the classical books of Bensoussan,
Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9], and the review paper of Engquist,
Souganidis [5]. For the fully nonlinear settings, see Caffarelli, Souganidis [3], Kim, Lee
[10]. For some numerical results in this direction, see Froese, Oberman [8], Capdeboscq,
Sprekeler, Siili [4]. This O(¢) rate of convergence is not known to be optimal or not.
Indeed, we have not yet been able to find any discussion on the optimality of O(¢) in the
literature.

Our paper provides satisfactory results to fill in this gap of knowledge in the literature. It
is one of our goals to clear out a misconception that the optimal rate of convergence is
always O(e?), which is false in both periodic and random settings. Surprisingly, we can
show that “almost all* matrices A € C*(T",S",) give an optimal rate of O(¢). To be more
specific, such matrices form an open and dense set under the C*(T",S".) topology. Fur-
thermore, we provide examples where the optimal rate of homogenization is O(¢?) when
the diffusion matrix A, source term f, and boundary data g satisfy special conditions.

Since the literature on homogenization is vast, we only give references on periodic
homogenization of non-divergence form elliptic equations in the paper. We describe our
main results in the following section.

1.1 Main results

Let us now proceed to discuss about optimal rates of convergence of u® to u. For
1 <j, k,I<n fixed, denote by
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& = ') = [ ao)) (17)
Note that ¢}'(A) depends only on A but in a highly nonlinear way.
Set
h(x) = Cfluxjxkx, (x) forall x € U.
Let z be the solution to
—TjjZng = —h(x) in U, (18)
z=0 on 0U. '

Here is our first main result.

Theorem 1.2 Assume that f € C*(U) and g € C°(0U). Then, there exists C >0 de-
pending only on the ellipticity of A, f, g such that

[ — u — 2¢z]| ;1) <Cé. (1.9)
In particular, the following claims hold.

@ Ifh=0, then [[u* — ul| () < Cé¢?, and this rate of convergence O(¢*) is optimal.
(i) If h# 0, then [[u* — ul| . (y) < Cé, and this rate of convergence O(e) is optimal.

Of course, this theorem is rather abstract as we do not know precisely what & and z are in
general. It is clear that 4 = 0 if and only if z = 0, although z depends not only on /4 but also

on the effective matrix A. In order to understand deeper (1.9), it is necessary to understand
more about qualitative behavior of 4. In particular, it is important to know whether situ-
ations (i) and (ii) can happen or not. It turns out that this is the case.

Corollary 1.3 [f there exist j, k,l € {1,...,n} such that cj’.‘l =% 0, then we can find f, g such
that situation (ii) of Theorem 1.2 holds true.

Based on the above results, we see that cj’-" (A) for 1<j,k,I<n determine whether the

optimal rate of convergence is O(¢?) or O(e) when no special conditions are imposed on
fand g. This leads us to the following classification of matrices in C> ('I]'"7 81)

Definition 1 Let A € C*(T",8). If ¢/(A) = 0 for all 1 <j, k,I <n, then we say that A is
a c-good matrix. Otherwise, A is a c-bad matrix.

Clearly, c-good matrices give optimal rate of convergence O(&?) as h = 0. And, for c-bad
matrices, there are choices of f and g such that optimal rate of convergence is only O(¢) by
Corollary 1.3.

A trivial example of a c-good matrix is the identity matrix A = /. But does a c-bad
matrix ever exist? A positive answer to this question would mean that O(¢) is the optimal
rate in the general setting. Furthermore, do we expect the majority of matrices in
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C?(T",8") to be good or bad? To the best of our knowledge, these questions were not yet
studied in the literature, and we view them as the main challenges in our paper.

To answer these questions, we let the topology of C? ('I]'",Si) be induced by the
following metric

n
d(A,B) = |A - B~ = Z llai = bifll c2 vy for A,B € C*(T",8").
ij=1

As our second main result, we show that the set of c-bad matrices “dominates”, confirming
that an optimal rate of O(g) should be expected for the “majority” of matrices
A€ Cz(T”,S’jr).

Theorem 1.4 Assume n>2. The set of c-bad matrices is open and dense in C? ('I]'", Si)

Remark 1 Theorem 1.2, Corollary 1.3, and Theorem 1.4 allow us to conclude that,
generically, the optimal rate of convergence of u* — u to 0 in L7 (U) is also O(¢) for any
given p > 1.

We next give several important cases where situation (i) of Theorem 1.2 occurs.

Theorem 1.5 If one of the following points happens

(@) u is quadratic in U, that is, D*u is a constant matrix in U,

b (a;(y)r(y)),, =0forall 1<j<n,andy e T"

(¢) A is a shifted even function, namely, there exists x € T" such that A(x —y) =
A(x+y) forally e T™

then situation (i) of Theorem 1.2 holds true.

Remark 2 Let us discuss condition (b) of Theorem 1.5 here. Firstly, it is clear that if
(a;(y)r(y)),, = 0 for all 1 <j<n, and y € T", then ¢}’ =0 for all 1 <j,k,[<n.

Secondly, it is worth noting that the terms (a;;(y)r(y)),, for all 1 <j<n were already
discussed in Avellaneda, Lin [1]. In [1], it was denoted by

bj(y) = —(aij(y)r(y))yf'

Under condition (b), we are able to write our non-divergence form operator —a;; (y)d’yfy; in

divergence form by using the invariant measure  as

—r0)ag)byy, = —(r0)ag()e,)  forall g € CAT").

Vi

Corollary 1.6 We have situation (b) in Theorem 1.5 if one of the following conditions holds
true

o A(y) = a(y)I, for some given a € C*(T",(0,00));

o A(y) = diag{a;(y1),a2(2), - - ., au(yn)} for some a; € C*(T,(0,00)) for all 1 <i<n;

o A(y) = diag{a|(y),a(y),...,a.(y)} for some a; € C*(T",(0,00)) such that a; is
independent of y; for all 1 <i<n,;
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o A(y) =A(y1), that is, A depends only on y;.

In particular, in dimension n = 1, A(y) = a(y), and so all matrices in C*(T,S,) are c-
good. The specific cases of A discussed in the above corollary match exactly with the
discussions and the numerical results in Froese, Oberman [8] (see examples on layered
materials therein). We only list some representative cases of A in Corollary 1.6, and one
can come up with other similar examples of these types.

1.2 Organization of the paper

In Sect. 2, we prove Theorems 1.1 and 1.2, and also Corollary 1.3. Analysis on c-bad
matrices and the proof of Theorem 1.4 are provided in Sect. 3. In particular, we show that
the set of c-bad matrices is nonempty and construct some explicit examples. We give
proofs of Theorem 1.5 and Corollary 1.6 in Sect. 4.

1.3 Notations

The flat n-dimensional torus is denoted by T" = R"/Z". For y € T", we write
y=(1,¥2,..-,yx). Let S’} be the set of all real symmetric, positive definite matrices of
size n. Denote by [, the identity matrix of size n.

2 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Set
¢%(x) = u(x) + 82v<§, Dzu(x)) u(x) + azvkl( )uxkx, (%) forall x € U.

Then,
= ay(?) (9

—a,j( ) [(u x) + VMJ( )um,( )) + a2vkl( )ux,xjxkx, (x)
+28V ()”xjm[ }

= Gty () + () — 2oty () (%) g ()
=f(x) + O(£%) + O(e).
Then, by the usual maximum principle,
[ — &l 1 () < C,
which gives (1.6). O

¥ (2) ., (x). Hence, in
order to investigate the optimal rate, one needs to understand better the contribution of the

source term d;; () Vi (%) iy, (x) to (1.1).

Remark 3 From the proof above, the O(¢) rate comes from a,/( )v

Proof of Theorem 1.2 We consider the following equation
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X X X i
{ “ay (0 = Q) Gunnto . (2.1)

wt=0 on OU.

For 1 <d, k,1<n fixed, denote by p™ € C(T") a solution to
—ay (V)P V) = @)y (y) + ¢ in T

By (1.7), we can use the invariant measure r to compute c§’ as

= /W a,«d(y)vifll(y)r(y) dy = — /W (aid(Y)”()’))y,-Vkl(y) dy.
Next, define

Vi) = 20 (g (v)  forall xe T.

Then,

—ai (M), = a5 () (D)t () + B(x) + O(e).

& &

Let z° be the solution to
{ —aj G)zﬁm = —h(x) in U, (22)
=0 on 0U.
By the maximum principle and Theorem 1.1, we obtain the following estimates
1w* =) = 2l ey < C,
and (recall that z is the solution to (1.8))
ll2* — Z||L>C(U) <Ce.
Thus,
10w* =) = 2| () < C. (2:3)
On the other hand, set ¢®(x) = ¢°(x) + 2ew®(x). Then
~a;(3) ¢, =fW+0G) iU,
and [|u® — ¢°[| < o) < C¢?. Therefore, by the maximum principle again,
i = ¢ ) < CE2. (2.4)
Combine (2.3) and (2.4) to yield
[ — u — 2ez| o) < Ce?.

We thus obtain (1.9). If 2 =0, then z =0, and (1.9) gives claim (i) right away. In par-
ticular, the optimal rate of convergence of ||u® — ul|; () is O(&?). Else, if h # 0, then
7z # 0, and claim (ii) holds with optimal rate O(e). O
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Finally, we give a proof of Corollary 1.3.
Proof of Corollary 1.3 Assume that ¢}’ # 0 for some fixed 1<j,k,/<n. Consider the
equation (1.2) with
flx)= —2(Ejkx, + aux; + ﬁ,jxk), g(x) = xpax; for all x € U,
Then, it is straightforward that the solution to (1.2) is
u(x) = xpx forall x € U.

In particular, i = ¢}’ # 0 in U. O

3 Analysis on c-bad matrices

3.1 The existence of c-bad matrices

Let us first show that the set of c-bad matrices is not empty for n > 2.
Proposition 3.1 Assume n>2. The set of c-bad matrices is not empty.

We will provide two different proofs of Proposition 3.1 in dimension n = 2. The first proof
relies on an explicit construction of A € C?(T2,8%) such that c}'(A) # 0, whereas the
second proof is via contradiction. The corresponding proofs in higher dimensions are
similar.

First proof of Proposition 3.1 We only consider the two dimensional case n = 2.

Let A%(y) = diag{1,2(y)} for some o € C**(T?,(0,00)) such that

(loga), ,, #O. (3.1)
Denote by ¥ the corresponding invariant measure of A°, that is,
_r;)ly'l - (d(y)ro)yzyz =0 in ‘|]'27
>0 and JrP(y)dy = 1.
First, we claim that r;’] # 0. Indeed, assume otherwise that r;)] =0, then
(@), =0,
which, together with the periodicity of a(y)r°(y), implies
a()r’(y) = ()

for some 1-periodic function ¢ € C*>(T, (0, 00)). Using the fact that r;,)] =0, we get

(o) ' )aly) = dn)a, (v)
0= ( () > B () |

Therefore, (log ¢(y;))" = (log «(y)),,» and hence,
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(10g Ooyl)’z = 07

which contradicts (3.1).
Next, let v(y) = sr?] (y) for some s > 0 sufficiently small such that

1
Vo (0) + aO)Viya O] = 17y, 0) + 20)1)y,, ) <5 fory € T2

We let A(y) = diag{a;(y),a2(y)} be the matrix with

a1(y) = [1+ vy, 0) + 20 )] @) =a(ai(y)  forye T2

By the choice of v, it is clear that % <a; <£2. Using the formula of a;, a,, one has

7al(y)v,\)1yl - a2(y)v)'2yz - (l](y) =-1 in -|]—2.

Hence v solves the cell problem (1.3) for k = [ = 1. Therefore, v = viland @, = 1.

Let 7 be the invariant measure corresponding to A = a;(y)A°. Note that

(y)

al(y) - [] + Yy (y) + O‘(y)vyzyz (y)}ro(y) fory € T2.

r(y) =

Therefore,

el = / @ ()r(y)vy () dy = 5 / 00, ) dy = —s /Tz(ri’fdy 70

O

The second approach is based on an asymptotic expansion at infinity. We aim at

understanding deeper about the invariant measure and derive various consequences.
Consider a family of matrices {A*} indexed by s > 0 of the form

A*(y) = diag{ais(y),san(y)} ~ fory € T,

where ajy, ay; € C( 2), and there exists C > 0 such that
—1 < <C
aiy, dog .
c S0 @

Let * be the invariant measure of A*. That is, r* solves

(@M O))y,y, = s(ar (), =0 in T2,
r>0 and Jpr(y)dy=1.

To simplify our notions a bit, let v!* be a solution to the cell problem
—ais(y)vy’,, — san (), —ai(y) = =@, in T2,

We now want to study the asymptotic of r* as s — oo.

Theorem 3.2 Assume that aj;z — a1, ay — ay uniformly in T? for some

aj,a; € C(T?, [&,Cl). Then, r* — r in L*(T?) as s — oo, where
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B
1
ax()(fy b )

Here, B > 0 is a scaling constant so that sz r(y)dy = 1.

fory € T2

r(y) =

Proof We divide the proof into a few steps.
Step 1. We first obtain a priori estimates for °. Multiply (3.2) by r* and integrate by
parts to get

0= / (@), 7, (@) 7, d
T

B / (1)’ + san(r,)” dx + / (1), 7r, + s(a) ,r'r, dx
T T
1

LI )zdx—C(lJrs)/ (#) d.
2C [t o 2

T

In particular,

/T (Lravsc [ ()as (3.3)

Next, multiply (3.2) by a,#* and integrate by parts and do the estimates in the similar
fashion as above to yield

/T () + s((ar), ) dr<C /v (). (3.4)
Combine (3.3) and (3.4) to deduce that
/T DR+ s((anr), ) dr < € A (s, (3.5)
and in particular,
1DP 2 < ClIr |l 2 (3.6)

Note that 2* = co. By Sobolev’s inequalities and (3.6),
7l < CAUIP 2 + 1D (1) < ClIr |l -

On the other hand, by Holder’s inequality and the fact that [ r*dx = 1, we have

i = ([ ora) ([ ra)=( [ era) =ik

Combine the two inequalities above to get ||r*||;» < C. This, together with (3.5), implies
1712 + 1D [| 2 + sll(azsr) . Iz < C- (3.7)

Step 2. By compactness, by passing to a subsequence if needed as s — oo, we have
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P in L*(T?),
Dr® — Dr weakly in L2(T?),
(azr),, = 0.

Thus, we have that

L) [,
r(x) and /T dx=1.

ar(x) 2 ap(x)

Here, ¢ is a periodic function and £>0 in T. We aim at characterizing ¢ better. Let
¢ = ¢(x1) € C°(T) be a test function. Multiply (3.2) with ¢ and integrate by parts to have

/T2 ais(x)r* (x) " (x1) dxadx; = 0.

Let s — oo and use the formula of r to yield

/ol (/0' 28 de) &) (x1) dx; = 0.
([ 29 as)ew) =0

([ 48 e etw) = an + 5.

for some constants A, B € R. As the left hand side above is an 1-periodic function, we get
that A = 0, which implies

Therefore,

which means

B
la(x
ar(w) (Jy ity dv)

Again, B > 0 is simply a scaling constant so that sz r(x)dx=1. O

for x € T2.

r(x) =

Here is another way of showing that c}!(-) # 0 in C? (T]'z7 Si) This proof is indirect.
Second proof of Proposition 3.1 We prove by contradiction. Assume that the proposi-
tion fails, then c}!(4) = 0 for all A € C2(T%,S2).
Let 0 € C*(T?,[1,2]) and y € C*(T?) be two functions such that

0™y ax 20
/Tz 7 o gV 7O (3.8)
Let Co = 2(||0]| .~ + 1)||D*|| ;. and set
1y o= YO
vi(x) = Cos

Consider a family of matrices A* = diag{ayy, sax}, s > 1, with
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o= o (ot o )] o+ (04 %2)]

and a5 := 0(x)ay,. By the definition of Cy, we have % < ap, < 2. Moreover, ay; — a :=

-1
{9()6) + wc_zoz] and aj; — a; := 0(x)a, uniformly in T2 as s — oo. By Theorem 3.2, as
s — 00, the invariant measure 7* of A° converges in L>(T?) to

B
r(x) =——— for x € T?.

fO dXQ
Further, observe that v!* solves the (1, 1)-th cell problem (cf. (1.3)) of A®:

—als(x)v)lcfxl - sazs(x)v;;xz —as(x) = —ag = —1 in T2
By our assumption, c}!(A*) = 0 for all s > 1. Hence, for all s > 1,
0 = Cosc! (4°) = / ans ()P (W, (x) d.
‘I]'Z

Therefore,

Ozslim/T ars(x)r* (), (x) dx

:/T @) r (W, (x) dx = B /fo(’(ffm &

which contradicts (3.8). O
3.2 The set of c-bad matrices is open and dense in CZ(T",S'l)
We first show that A|—>cj’Fl (A) is continuous in C*(T",S%).

Lemma 3.3 We have that AHcfl(A) is continuous in C*(T",S").

Sketch of proof Take a sequence {A™} C C2(T",S,) such that A" — A .. — 0 asm —
oo for some A € C*(T",8"). Write A™(y) = (4] (y)),<;j<, and their corresponding
effective matrices as A" = (@), ;-

Fix 1 <k,l<m. For each m € N, the corresponding cell problem is

—di ()i, (v) — ag(y) = —ay in T".

By subtracting to a constant, we suppose that v"*(0) = 0. By usual a priori estimates, for
fixed o € (0, 1), there exists C > 0 independent of m such that

V"l caxrny < C(1+ [JA" || o) < C.
Therefore, it is not hard to see that v — v in Cz('I]'”), where v solves
_aij(y)vy;yj (y) —au(y) = —au in T".
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Next, let {#"} and r be the invariant measures corresponding to {A™} and A, respectively.
By repeating Step 1 of the proof of Theorem 3.2, it is clear that there exists a constant
C > 0 independent of m so that

Hrm||L2(T") + ||DrmHL2(-[[n) S C.

By compactness, we also see that " — r in L?>(T"). Thus,

lim ¢f(A") = lim [ ai(yW](y)r"(y)dy = /v a(y)vy, (9)r(y) dy = ¢} (4).

m—0o0 m—0o0 ™ v

O

We now provide a proof of Theorem 1.4. Note that Proposition 3.1 is not needed here in
the proof, but some key ideas in its proof are used essentially.

Proof of Theorem 1.4 As A|—>c]'?l (A) is continuous in C2(T",S}), the set of c-bad matrices
is open in C? (T", S’jr) We therefore only need to show that this set is dense.

Fix a c-good matrix A? € C? ('I]'"7 81) and 6 > 0. Our aim is to show the existence of a
c-bad matrix A € C2(T",8',) such that [|A — A%|| . < 4. Let r” be the invariant measure
corresponding to A°.

Step 1. We first aim at finding A' € C>(T”,S%) such that [|A' — A°||~ < § and

(a;(0)r' (), 0

for some 1<j<n. Here r! denotes the invariant measure of A'. Of course, if
(a)(y)r°(v)),, # 0 for some j € {1,2,...,n}, then we simply let A' = A°. Otherwise,

1

(@), =0 for all 1 <j<n.

In this case, we take ¢ € C*(T) with &' # 0, and define A' = (a}), ., as

o¢(y1 +y2) ..
aty (y) +7r0(y) fori=j=1,
i) = 3y +y2)
a 1T .
l./(y) a(z)z(y) — ro(y) fori=j=2,
aioj(y) otherwise.

Choosing & with |[£[| = (y) sufficiently small, we have [|A' — A%l < 4.1t is not hard to see

that r! = 0 as

(@) 0)),, = O[(E01 +32))yy, — 01+ 22, =0

Moreover,

Step 1 is complete.
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Step 2. Next, we will find a c-bad matrix A such that [|[A! — Al < g. Of course, if
cl(A") # 0, then A! is c-bad and we simply put A = A'. If ¢}!(A!) = 0, then, using the
same idea as in the proof of Proposition 3.1, we will construct A as follows. By the
construction of A!, without loss of generality, we assume

(ah ' (), 0.
Let ¢(y) = s(a}, (y)r! (Y))y,’ () = [1 + ailj(y)qﬁyiy,_(y)] _1, and set

A(y) =7(nA'(y),

where s > 0 is chosen to be small enough so that |[A! — A||» <2. Note that the invariant
measure 7(y) of A(y) = y(»)A' (y) is
')

r(y) = o) L+ a;(y) ¢y, )| ' ()  foryeT"

It remains to show that A is c-bad. To this end, observe that
—Qij Py, =V = _V(aiqus.vf_vf +1)=-1 in T".
Recall that v'! solves the (1, 1)-th cell problem (1.3) for A':
—al.lj(y)v}l,llyj () —a}, () = —aj, in T".
Let v(y) = v!!(y) +@l,$(y). Thanks to the above identities,
_aij()’>v,v,)y ) —an(y) = —E}l in T"
That is, v solves the (1, 1)-th cell problem (1.3) for A. Thus,

) = [ arom, o)
— [ et o) dy =~ [ (@060, 0"0) +al )

—cla) —al [ (@0 o), 00)d
—saly [ (1@ o)) v 20,

Therefore, A is c-bad and ||A — A°||» <. The proof is complete. O

4 Optimal rate of convergence O(z?)

In this section, we discuss the situations where the optimal rate of convergence of
[l — ull g () 18 O(£?). Let us give proofs of Theorem 1.5 and Corollary 1.6.
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Proof of Theorem 1.5 We only need to show that 2 =0 in all situations. In the first
situation, D?u is a constant matrix, then clearly D3u =0 in U, and hence h = 0.
In the second situation, (a;(y)r(y)),, = 0 for all 1 <j<n, and y € T". Then

&= [ atrds == [ @), om0 b =o

which implies & = 0.
Finally, in the last situation, we assume x = O without loss of generality. As A is even,
we see that V¥ and r are also even for 1<k,/<n. Then vi‘l is odd, that is,

vf’l(y) = —v];f(—y). Hence, y»—>a,;,-(y)va"l(y)r(y) is odd as well, which gives that

of = / ay(y)vy (y)r(y) dy = 0.
T
O

Proof of Corollary 1.6 We aim at showing (a;;(y)r(y)),, = Oforall 1 <j<n,andy € T" in
all cases.

In the first case, A(y) = a(y)l, for some a € C?(T",(0,00)). Then, the invariant
measure r is simply r(y) = c/a(y) fory € T", where ¢ = [ [}, 1/a(y) dy] ! Itis clear then
that (a;(y)r(y)), =0 for 1 <j<n.

In the second case, we have A(y) = diag{ai(y1),a2(y2), - . .,an(ys)} for some
a; € C3(T,(0,00)), 1 <i<n. The invariant measure of A is

c

0) = om0 )

where ¢ >0 is a normalization constant such that [, r(y)dy =1. We again get that
(a;(y)r(v)),, = 0.

Thirdly, we consider the situation where A(y) = diag{a;(y),a2(y), ..., a,(y)} for some
a; € C*(T",(0,00)) such that a; is independent of y; for all 1 <i<n. This case is even
more straightforward as r = 1.

Lastly, in the fourth situation where A(y) = A(y;), it is not hard to see here that

)= an(y)  anbn)

where ¢ > 0 is a normalization constant such that [, r(y)dy = 1. It is clear then that
(aij()’)”(y))yi =0for1<j<n. o
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