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Abstract
We study and characterize the optimal rates of convergence in periodic homogenization of

linear elliptic equations in non-divergence form. We obtain that the optimal rate of con-

vergence is either OðeÞ or Oðe2Þ depending on the diffusion matrix A, source term f, and
boundary data g. Moreover, we show that the set of diffusion matrices A that give optimal

rate OðeÞ is open and dense in the set of C2 periodic, symmetric, and positive definite

matrices, which means that generically, the optimal rate is OðeÞ.
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1 Introduction

In this paper, we are interested in studying and characterizing the optimal rates of con-

vergence in periodic homogenization of linear elliptic equations in non-divergence form.

Let U � Rn be a given bounded domain with smooth boundary. The equation of our main

interest is

�aij
x

e

� �
uexixj ¼ f ðxÞ in U;

ue ¼ g on oU:

(
ð1:1Þ

The matrix function AðyÞ ¼ ðaijÞ1� i;j� n 2 C2ðRn;Rn2Þ is always assumed to be symmet-

ric, Zn-periodic, and positive definite for all y 2 Rn. Denote by Tn ¼ Rn=Zn the flat n-
dimensional torus, and Sn

þ the set of all real symmetric, positive definite matrices of size

n� n, then we can also write that A 2 C2 Tn;Sn
þ

� �
. Assume f 2 C2 U

� �
and g 2 C4ðoUÞ.

In this paper, we always use the Einstein summation convention.

The homogenization problem (1.1) was discussed in the classical books of Bensoussan,

Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9]. It is well-known that, as e ! 0,

ue ! u uniformly on U, where u solves the following effective equation

�aij uxixj ¼ f ðxÞ in U;
u ¼ g on oU:

�
ð1:2Þ

Here, A ¼ faijg1� i;j� n is the effective matrix with constant entries, which is determined as

follows. For each fixed ðk; lÞ 2 f1; . . .; ng2, consider the solution vkl of the (k, l)-th cell

problem

�aijðyÞvklyiyjðyÞ � aklðyÞ ¼ �akl; y 2 Tn; ð1:3Þ

where akl 2 R is the unique constant such that (1.3) has a solution vkl. In fact, vkl is unique
up to an additive constant by the strong maximum principle. Then, for a symmetric matrix

M, the corresponding corrector is

vðy;MÞ ¼ Mklv
klðyÞ: ð1:4Þ

It is clear that v(y, M) solves

�aijðMij þ vyiyjðy;MÞÞ ¼ �aijMij in Tn:

On the other hand, A can also be determined through the corresponding invariant measure

as follows. Let r 2 CðTnÞ be the unique solution to

�ðaijðyÞrðyÞÞyiyj ¼ 0 in Tn;

r[ 0 and
R
Tn rðyÞ dy ¼ 1:

(
ð1:5Þ

We say that r is the invariant measure of the matrix A 2 C2ðTn;Sn
þÞ. See Freidlin [7],

Avellaneda, Lin [1], Evans [6], Engquist, Souganidis [5]. Multiply (1.3) by r and integrate

to yield, for 1� k; l� n,

akl ¼
Z
Tn

aklðyÞrðyÞ dy:
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And thus,

A ¼
Z

Tn
AðyÞrðyÞ dy:

Our main focus in this paper is to understand the optimal rate of convergence of ue to u,
that is, the optimal upper bound of kue � ukL1ðUÞ as e ! 0þ. Heuristically, by the two scale

asymptotic expansions, around a given point x0 2 U with M ¼ D2uðx0Þ, one has the fol-

lowing expansion of ue for x � x0:

ueðxÞ � uðxÞ þ e2v
x

e
;M

� �
¼ uðxÞ þ e2vkl

x

e

� �
uxkxlðx0Þ:

Naively, this suggests that jueðxÞ � uðxÞj �Ce2 for x � x0, and we might be able to obtain

the rate of convergence Oðe2Þ of kue � ukL1ðUÞ as e ! 0þ. Of course, this Oðe2Þ rate, if
obtained, is optimal.

However, in the literature, only an OðeÞ rate is known.

Theorem 1.1 ([2, Theorem 5.1, page 230], [9, page 33]) Assume that f 2 C2 U
� �

and

g 2 C4ðoUÞ. Then, there exists C[ 0 depending only on the ellipticity of A, f, g such that

kue � ukL1ðUÞ �Ce: ð1:6Þ

In fact, using the doubling variable method in the theory of viscosity solutions, the reg-

ularity of f and g can be relaxed to allow f 2 C1 U
� �

and g 2 C3ðoUÞ. In any case, the

regularity of f and g is not the main concern in this paper.

Theorem 1.1 is well known in the literature. See the classical books of Bensoussan,

Lions, Papanicolaou [2], Jikov, Kozlov, Oleinik [9], and the review paper of Engquist,

Souganidis [5]. For the fully nonlinear settings, see Caffarelli, Souganidis [3], Kim, Lee

[10]. For some numerical results in this direction, see Froese, Oberman [8], Capdeboscq,

Sprekeler, Süli [4]. This OðeÞ rate of convergence is not known to be optimal or not.

Indeed, we have not yet been able to find any discussion on the optimality of OðeÞ in the

literature.

Our paper provides satisfactory results to fill in this gap of knowledge in the literature. It

is one of our goals to clear out a misconception that the optimal rate of convergence is

always Oðe2Þ, which is false in both periodic and random settings. Surprisingly, we can

show that ‘‘almost all‘‘ matrices A 2 C2ðTn;Sn
þÞ give an optimal rate of OðeÞ. To be more

specific, such matrices form an open and dense set under the C2ðTn;Sn
þÞ topology. Fur-

thermore, we provide examples where the optimal rate of homogenization is Oðe2Þ when
the diffusion matrix A, source term f, and boundary data g satisfy special conditions.

Since the literature on homogenization is vast, we only give references on periodic

homogenization of non-divergence form elliptic equations in the paper. We describe our

main results in the following section.

1.1 Main results

Let us now proceed to discuss about optimal rates of convergence of ue to u. For

1� j; k; l� n fixed, denote by
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cklj ¼ cklj ðAÞ ¼
Z
Tn

aijðyÞvklyiðyÞrðyÞ dy: ð1:7Þ

Note that cklj ðAÞ depends only on A but in a highly nonlinear way.

Set

hðxÞ ¼ cklj uxjxkxlðxÞ for all x 2 U:

Let z be the solution to

�aijzxixj ¼ �hðxÞ in U;

z ¼ 0 on oU:

�
ð1:8Þ

Here is our first main result.

Theorem 1.2 Assume that f 2 C3 U
� �

and g 2 C5ðoUÞ. Then, there exists C[ 0 de-

pending only on the ellipticity of A, f, g such that

kue � u� 2ezkL1ðUÞ �Ce2: ð1:9Þ

In particular, the following claims hold.

(i) If h � 0, then kue � ukL1ðUÞ �Ce2, and this rate of convergence Oðe2Þ is optimal.
(ii) If h 6� 0, then kue � ukL1ðUÞ �Ce, and this rate of convergence OðeÞ is optimal.

Of course, this theorem is rather abstract as we do not know precisely what h and z are in
general. It is clear that h � 0 if and only if z � 0, although z depends not only on h but also

on the effective matrix A. In order to understand deeper (1.9), it is necessary to understand

more about qualitative behavior of h. In particular, it is important to know whether situ-

ations (i) and (ii) can happen or not. It turns out that this is the case.

Corollary 1.3 If there exist j; k; l 2 f1; . . .; ng such that cklj 6¼ 0, then we can find f, g such

that situation (ii) of Theorem 1.2 holds true.

Based on the above results, we see that cklj ðAÞ for 1� j; k; l� n determine whether the

optimal rate of convergence is Oðe2Þ or OðeÞ when no special conditions are imposed on

f and g. This leads us to the following classification of matrices in C2 Tn;Sn
þ

� �
.

Definition 1 Let A 2 C2 Tn;Sn
þ

� �
. If cklj ðAÞ ¼ 0 for all 1� j; k; l� n, then we say that A is

a c-good matrix. Otherwise, A is a c-bad matrix.

Clearly, c-good matrices give optimal rate of convergence Oðe2Þ as h � 0. And, for c-bad
matrices, there are choices of f and g such that optimal rate of convergence is only OðeÞ by
Corollary 1.3.

A trivial example of a c-good matrix is the identity matrix A � I. But does a c-bad
matrix ever exist? A positive answer to this question would mean that OðeÞ is the optimal

rate in the general setting. Furthermore, do we expect the majority of matrices in
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C2 Tn;Sn
þ

� �
to be good or bad? To the best of our knowledge, these questions were not yet

studied in the literature, and we view them as the main challenges in our paper.

To answer these questions, we let the topology of C2 Tn;Sn
þ

� �
be induced by the

following metric

dðA;BÞ ¼ kA� BkC2 ¼
Xn
i;j¼1

kaij � bijkC2ðTnÞ; for A;B 2 C2 Tn;Sn
þ

� �
:

As our second main result, we show that the set of c-bad matrices ‘‘dominates’’, confirming

that an optimal rate of OðeÞ should be expected for the ‘‘majority‘‘ of matrices

A 2 C2ðTn;Sn
þÞ.

Theorem 1.4 Assume n	 2. The set of c-bad matrices is open and dense in C2 Tn;Sn
þ

� �
.

Remark 1 Theorem 1.2, Corollary 1.3, and Theorem 1.4 allow us to conclude that,

generically, the optimal rate of convergence of ue � u to 0 in LpðUÞ is also OðeÞ for any
given p	 1.

We next give several important cases where situation (i) of Theorem 1.2 occurs.

Theorem 1.5 If one of the following points happens
(a) u is quadratic in U, that is, D2u is a constant matrix in U;
(b) ðaijðyÞrðyÞÞyi ¼ 0 for all 1� j� n, and y 2 Tn;

(c) A is a shifted even function, namely, there exists x 2 Tn such that Aðx� yÞ ¼
Aðxþ yÞ for all y 2 Tn;

then situation (i) of Theorem 1.2 holds true.

Remark 2 Let us discuss condition (b) of Theorem 1.5 here. Firstly, it is clear that if

ðaijðyÞrðyÞÞyi ¼ 0 for all 1� j� n, and y 2 Tn, then cklj ¼ 0 for all 1� j; k; l� n.

Secondly, it is worth noting that the terms ðaijðyÞrðyÞÞyi for all 1� j� n were already

discussed in Avellaneda, Lin [1]. In [1], it was denoted by

bjðyÞ ¼ �ðaijðyÞrðyÞÞyi :

Under condition (b), we are able to write our non-divergence form operator �aijðyÞ/yiyj in

divergence form by using the invariant measure r as

�rðyÞaijðyÞ/yiyj ¼ � rðyÞaijðyÞ/yj

� �
yi

for all / 2 C2ðTnÞ:

Corollary 1.6 We have situation (b) in Theorem 1.5 if one of the following conditions holds
true

• AðyÞ ¼ aðyÞIn for some given a 2 C2ðTn; ð0;1ÞÞ;
• AðyÞ ¼ diagfa1ðy1Þ; a2ðy2Þ; . . .; anðynÞg for some ai 2 C2ðT; ð0;1ÞÞ for all 1� i� n;

• AðyÞ ¼ diagfa1ðyÞ; a2ðyÞ; . . .; anðyÞg for some ai 2 C2ðTn; ð0;1ÞÞ such that ai is
independent of yi for all 1� i� n;
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• AðyÞ ¼ Aðy1Þ, that is, A depends only on y1.

In particular, in dimension n ¼ 1, AðyÞ ¼ aðyÞ, and so all matrices in C2 T;Sþð Þ are c-
good. The specific cases of A discussed in the above corollary match exactly with the

discussions and the numerical results in Froese, Oberman [8] (see examples on layered

materials therein). We only list some representative cases of A in Corollary 1.6, and one

can come up with other similar examples of these types.

1.2 Organization of the paper

In Sect. 2, we prove Theorems 1.1 and 1.2, and also Corollary 1.3. Analysis on c-bad
matrices and the proof of Theorem 1.4 are provided in Sect. 3. In particular, we show that

the set of c-bad matrices is nonempty and construct some explicit examples. We give

proofs of Theorem 1.5 and Corollary 1.6 in Sect. 4.

1.3 Notations

The flat n-dimensional torus is denoted by Tn ¼ Rn=Zn. For y 2 Tn, we write

y ¼ ðy1; y2; . . .; ynÞ. Let Sn
þ be the set of all real symmetric, positive definite matrices of

size n. Denote by In the identity matrix of size n.

2 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Set

/eðxÞ ¼ uðxÞ þ e2v x

e
;D2uðxÞ

� �
¼ uðxÞ þ e2vkl x

e

� �
uxkxlðxÞ for all x 2 U:

Then,

� aij
x

e

� �
/e
xixj

ðxÞ

¼ �aij
x

e

� �h
uxixjðxÞ þ vklyiyj

x

e

� �
uxkxlðxÞ

� �
þ e2vkl x

e

� �
uxixjxkxlðxÞ

þ 2evklyi
x

e

� �
uxjxkxlðxÞ

i

¼ �aij uxixjðxÞ þ Oðe2Þ � 2eaij
x

e

� �
vklyi

x

e

� �
uxjxkxlðxÞ

¼ f ðxÞ þ Oðe2Þ þ OðeÞ:

Then, by the usual maximum principle,

kue � /ekL1ðUÞ �Ce;

which gives (1.6). h

Remark 3 From the proof above, the OðeÞ rate comes from aij
x
e

� �
vklyi

x
e

� �
uxjxkxlðxÞ. Hence, in

order to investigate the optimal rate, one needs to understand better the contribution of the

source term aij
x
e

� �
vklyi

x
e

� �
uxjxkxlðxÞ to (1.1).

Proof of Theorem 1.2 We consider the following equation

SN Partial Differential Equations and Applications

15 Page 6 of 16 SN Partial Differ. Equ. Appl. (2020) 1:15



�aij
x

e

� �
we
xixj

¼ aij
x

e

� �
vklyi

x

e

� �
uxjxkxlðxÞ in U;

we ¼ 0 on oU:

(
ð2:1Þ

For 1� d; k; l� n fixed, denote by pdkl 2 CðTnÞ a solution to

�aijðyÞpdklyiyj
ðyÞ ¼ aidðyÞvklyiðyÞ þ ckld in Tn:

By (1.7), we can use the invariant measure r to compute ckld as

ckld ¼
Z

Tn
aidðyÞvklyiðyÞrðyÞ dy ¼ �

Z

Tn
ðaidðyÞrðyÞÞyi v

klðyÞ dy:

Next, define

weðxÞ ¼ e2pjkl x

e

� �
uxjxkxlðxÞ for all x 2 U:

Then,

�aij
x

e

� �
we
xixj

¼ aij
x

e

� �
vklyi

x

e

� �
uxjxkxlðxÞ þ hðxÞ þ OðeÞ:

Let ze be the solution to

�aij
x

e

� �
zexixj ¼ �hðxÞ in U;

ze ¼ 0 on oU:

(
ð2:2Þ

By the maximum principle and Theorem 1.1, we obtain the following estimates

kðwe � weÞ � zekL1ðUÞ �Ce;

and (recall that z is the solution to (1.8))

kze � zkL1ðUÞ �Ce:

Thus,

kðwe � weÞ � zkL1ðUÞ �Ce: ð2:3Þ

On the other hand, set ueðxÞ ¼ /eðxÞ þ 2eweðxÞ. Then

�aij
x

e

� �
ue
xixj

¼ f ðxÞ þ Oðe2Þ in U;

and kue � uekL1ðoUÞ �Ce2. Therefore, by the maximum principle again,

kue � uekL1ðUÞ �Ce2: ð2:4Þ

Combine (2.3) and (2.4) to yield

kue � u� 2ezkL1ðUÞ �Ce2:

We thus obtain (1.9). If h � 0, then z � 0, and (1.9) gives claim (i) right away. In par-

ticular, the optimal rate of convergence of kue � ukL1ðUÞ is Oðe2Þ. Else, if h 6� 0, then

z 6� 0, and claim (ii) holds with optimal rate OðeÞ. h
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Finally, we give a proof of Corollary 1.3.

Proof of Corollary 1.3 Assume that cklj 6¼ 0 for some fixed 1� j; k; l� n. Consider the

equation (1.2) with

f ðxÞ ¼ �2 ajkxl þ aklxj þ aljxk
� �

; gðxÞ ¼ xjxkxl for all x 2 U;

Then, it is straightforward that the solution to (1.2) is

uðxÞ ¼ xjxkxl for all x 2 U:

In particular, h � cklj 6¼ 0 in U. h

3 Analysis on c-bad matrices

3.1 The existence of c-bad matrices

Let us first show that the set of c-bad matrices is not empty for n	 2.

Proposition 3.1 Assume n	 2. The set of c-bad matrices is not empty.

We will provide two different proofs of Proposition 3.1 in dimension n ¼ 2. The first proof

relies on an explicit construction of A 2 C2 T2;S2
þ

� �
such that c111 ðAÞ 6¼ 0, whereas the

second proof is via contradiction. The corresponding proofs in higher dimensions are

similar.

First proof of Proposition 3.1 We only consider the two dimensional case n ¼ 2.

Let A0ðyÞ ¼ diagf1; aðyÞg for some a 2 C1ðT2; ð0;1ÞÞ such that

ðlog aÞy1y2 6� 0: ð3:1Þ

Denote by r0 the corresponding invariant measure of A0, that is,

�r0y1y1 � ðaðyÞr0Þy2y2 ¼ 0 in T2;

r0 [ 0 and
R
T2 r0ðyÞ dy ¼ 1:

(

First, we claim that r0y1 6� 0. Indeed, assume otherwise that r0y1 � 0, then

ðaðyÞr0Þy2y2 ¼ 0;

which, together with the periodicity of aðyÞr0ðyÞ, implies

aðyÞr0ðyÞ ¼ /ðy1Þ

for some 1-periodic function / 2 C1ðT; ð0;1ÞÞ. Using the fact that r0y1 ¼ 0, we get

0 ¼ /ðy1Þ
aðyÞ

� �

y1

¼ /0ðy1ÞaðyÞ � /ðy1Þay1ðyÞ
aðyÞ2

:

Therefore, ðlog/ðy1ÞÞ0 ¼ ðlog aðyÞÞy1 , and hence,
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ðlog aÞy1y2 ¼ 0;

which contradicts (3.1).

Next, let vðyÞ ¼ sr0y1ðyÞ for some s[ 0 sufficiently small such that

jvy1y1ðyÞ þ aðyÞvy2y2ðyÞj ¼ sjr0y1y1y1ðyÞ þ aðyÞr0y1y2y2ðyÞj �
1

2
for y 2 T2:

We let AðyÞ ¼ diagfa1ðyÞ; a2ðyÞg be the matrix with

a1ðyÞ ¼ 1þ vy1y1ðyÞ þ aðyÞvy2y2ðyÞ
	 
�1

; a2ðyÞ ¼ aðyÞa1ðyÞ for y 2 T2:

By the choice of v, it is clear that 1
2
� a1 � 2. Using the formula of a1; a2, one has

�a1ðyÞvy1y1 � a2ðyÞvy2y2 � a1ðyÞ ¼ �1 in T2:

Hence v solves the cell problem (1.3) for k ¼ l ¼ 1. Therefore, v ¼ v11 and a11 ¼ 1.

Let r be the invariant measure corresponding to A ¼ a1ðyÞA0. Note that

rðyÞ ¼ r0ðyÞ
a1ðyÞ

¼ 1þ vy1y1ðyÞ þ aðyÞvy2y2ðyÞ
	 


r0ðyÞ for y 2 T2:

Therefore,

c111 ¼
Z

T2

a1ðyÞrðyÞvy1ðyÞ dy ¼ s

Z

T2

r0ðyÞr0y1y1ðyÞ dy ¼ �s

Z

T2

ðr0y1Þ
2 dy 6¼ 0:

h

The second approach is based on an asymptotic expansion at infinity. We aim at

understanding deeper about the invariant measure and derive various consequences.

Consider a family of matrices fAsg indexed by s[ 0 of the form

AsðyÞ ¼ diagfa1sðyÞ; sa2sðyÞg for y 2 T2;

where a1s; a2s 2 CðT2Þ, and there exists C[ 0 such that

1

C
� a1s; a2s �C:

Let rs be the invariant measure of As. That is, rs solves

�ða1sðyÞrsðyÞÞy1y1 � sða2srsðyÞÞy2y2 ¼ 0 in T2;

rs [ 0 and
R
T2 rsðyÞ dy ¼ 1:

(
ð3:2Þ

To simplify our notions a bit, let v1s be a solution to the cell problem

�a1sðyÞv1sy1y1 � sa2sðyÞv1sy2y2 � a1sðyÞ ¼ �a1s in T2:

We now want to study the asymptotic of rs as s ! 1.

Theorem 3.2 Assume that a1s ! a1, a2s ! a2 uniformly in T2 for some

a1; a2 2 CðT2; ½1C ;C
Þ. Then, rs ! r in L2ðT2Þ as s ! 1, where
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rðyÞ ¼ B

a2ðyÞ
R 1

0

a1ðyÞ
a2ðyÞ dy2

� � for y 2 T2:

Here, B[ 0 is a scaling constant so that
R
T2 rðyÞ dy ¼ 1.

Proof We divide the proof into a few steps.

Step 1. We first obtain a priori estimates for rs. Multiply (3.2) by rs and integrate by

parts to get

0 ¼
Z
T2

ða1srsÞx1r
s
x1
þ sða2srsÞx2r

s
x2
dx

¼
Z
T2

a1sðrsx1Þ
2 þ sa2sðrsx2Þ

2 dxþ
Z
T2

ða1sÞx1r
srsx1 þ sða2sÞx2r

srsx2 dx

	 1

2C

Z
T2

ðrsx1Þ
2 þ sðrsx2Þ

2 dx� Cð1þ sÞ
Z
T2

ðrsÞ2 dx:

In particular,

Z
T2

ðrsx2Þ
2 dx�C

Z
T2

ðrsÞ2 dx: ð3:3Þ

Next, multiply (3.2) by a2sr
s and integrate by parts and do the estimates in the similar

fashion as above to yield

Z
T2

ðrsx1Þ
2 þ sðða2srsÞx2Þ

2 dx�C

Z
T2

ðrsÞ2 dx: ð3:4Þ

Combine (3.3) and (3.4) to deduce that

Z
T2

jDrsj2 þ sðða2srsÞx2Þ
2 dx�C

Z
T2

ðrsÞ2 dx; ð3:5Þ

and in particular,

kDrskL2 �CkrskL2 : ð3:6Þ

Note that 2� ¼ 1. By Sobolev’s inequalities and (3.6),

krskL3 �CðkrskL2 þ kDrskL2Þ�CkrskL2 :

On the other hand, by Hölder’s inequality and the fact that
R
T2 rs dx ¼ 1, we have

krsk3L3 ¼
Z
T2

ðrsÞ3 dx
� � Z

T2

rs dx

� �
	

Z
T2

ðrsÞ2 dx
� �2

¼ krsk4L2 :

Combine the two inequalities above to get krskL2 �C. This, together with (3.5), implies

krskL2 þ kDrskL2 þ skða2srsÞx2kL2 �C: ð3:7Þ

Step 2. By compactness, by passing to a subsequence if needed as s ! 1, we have
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rs ! r in L2ðT2Þ;
Drs * Dr weakly in L2ðT2Þ;
ða2rÞx2 ¼ 0:

8><
>:

Thus, we have that

rðxÞ ¼ nðx1Þ
a2ðxÞ

and

Z

T2

nðx1Þ
a2ðxÞ

dx ¼ 1:

Here, n is a periodic function and n	 0 in T. We aim at characterizing n better. Let

/ ¼ /ðx1Þ 2 C1ðTÞ be a test function. Multiply (3.2) with / and integrate by parts to have

Z

T2

a1sðxÞrsðxÞ/00ðx1Þ dx2dx1 ¼ 0:

Let s ! 1 and use the formula of r to yield

Z 1

0

Z 1

0

a1ðxÞ
a2ðxÞ

dx2

� �
nðx1Þ/00ðx1Þ dx1 ¼ 0:

Therefore,

Z 1

0

a1ðxÞ
a2ðxÞ

dx2

� �
nðx1Þ

� �

x1x1

¼ 0;

which means

Z 1

0

a1ðxÞ
a2ðxÞ

dx2

� �
nðx1Þ ¼ Ax1 þ B;

for some constants A;B 2 R. As the left hand side above is an 1-periodic function, we get

that A ¼ 0, which implies

rðxÞ ¼ B

a2ðxÞ
R 1

0

a1ðxÞ
a2ðxÞ dx2

� � for x 2 T2:

Again, B[ 0 is simply a scaling constant so that
R
T2 rðxÞ dx ¼ 1. h

Here is another way of showing that c111 ð�Þ 6� 0 in C2 T2;S2
þ

� �
. This proof is indirect.

Second proof of Proposition 3.1 We prove by contradiction. Assume that the proposi-

tion fails, then c111 ðAÞ ¼ 0 for all A 2 C2 T2;S2
þ

� �
.

Let h 2 C1ðT2; ½1; 2
Þ and w 2 C1ðT2Þ be two functions such that
Z

T2

hðxÞR 1

0
hðxÞ dx2

wx1
dx 6¼ 0: ð3:8Þ

Let C0 ¼ 2 khkL1 þ 1ð ÞkD2wkL1 , and set

v1sðxÞ :¼ wðxÞ
C0s

:

Consider a family of matrices As ¼ diagfa1s; sa2sg, s[ 1, with
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a2s ¼ hðxÞ þ hðxÞv1sx1x1 þ sv1sx2x2

� �h i�1

¼ hðxÞ þ hðxÞwx1x1

C0s
þ wx2x2

C0

� �h i�1

and a1s :¼ hðxÞa2s. By the definition of C0, we have 1
3
� a2s � 2. Moreover, a2s ! a2 :¼

hðxÞ þ wx2x2

C0

h i�1

and a1s ! a1 :¼ hðxÞa2 uniformly in T2 as s ! 1. By Theorem 3.2, as

s ! 1, the invariant measure rs of As converges in L2ðT2Þ to

rðxÞ ¼ B

a2ðxÞ
R 1

0
hðxÞ dx2

; for x 2 T2:

Further, observe that v1s solves the (1, 1)-th cell problem (cf. (1.3)) of As:

�a1sðxÞv1sx1x1 � sa2sðxÞv1sx2x2 � a1sðxÞ ¼ �a1s :¼ �1 in T2:

By our assumption, c111 ðAsÞ ¼ 0 for all s[ 1. Hence, for all s[ 1,

0 ¼ C0sc
11
1 ðAsÞ ¼

Z
T2

a1sðxÞrsðxÞwx1
ðxÞ dx:

Therefore,

0 ¼ lim
s!1

Z
T2

a1sðxÞrsðxÞwx1
ðxÞ dx

¼
Z
T2

a1ðxÞrðxÞwx1
ðxÞ dx ¼ B

Z
T2

hðxÞR 1

0
hðxÞ dx2

wx1
dx;

which contradicts (3.8). h

3.2 The set of c-bad matrices is open and dense in C2(Tn,Sn
+ )

We first show that A7!cklj ðAÞ is continuous in C2 Tn;Sn
þ

� �
.

Lemma 3.3 We have that A 7!cklj ðAÞ is continuous in C2 Tn;Sn
þ

� �
.

Sketch of proof Take a sequence fAmg � C2 Tn;Sn
þ

� �
such that kAm � AkC2 ! 0 as m !

1 for some A 2 C2 Tn;Sn
þ

� �
. Write AmðyÞ ¼ ðamij ðyÞÞ1� i;j� n and their corresponding

effective matrices as Am ¼ ðamij Þ1� i;j� n.

Fix 1� k; l�m. For each m 2 N, the corresponding cell problem is

�amij ðyÞvmyiyjðyÞ � amklðyÞ ¼ �amkl in Tn:

By subtracting to a constant, we suppose that vmð0Þ ¼ 0. By usual a priori estimates, for

fixed a 2 ð0; 1Þ, there exists C[ 0 independent of m such that

kvmkC2;aðTnÞ �C 1þ kAmkC0;a

� �
�C:

Therefore, it is not hard to see that vm ! v in C2ðTnÞ, where v solves

�aijðyÞvyiyjðyÞ � aklðyÞ ¼ �akl in Tn:
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Next, let frmg and r be the invariant measures corresponding to fAmg and A, respectively.
By repeating Step 1 of the proof of Theorem 3.2, it is clear that there exists a constant

C[ 0 independent of m so that

krmkL2ðTnÞ þ kDrmkL2ðTnÞ �C:

By compactness, we also see that rm ! r in L2ðTnÞ. Thus,

lim
m!1

cklj ðAmÞ ¼ lim
m!1

Z
Tn

amij ðyÞvmyiðyÞr
mðyÞ dy ¼

Z
Tn

aijðyÞvyiðyÞrðyÞ dy ¼ cklj ðAÞ:

h

We now provide a proof of Theorem 1.4. Note that Proposition 3.1 is not needed here in

the proof, but some key ideas in its proof are used essentially.

Proof of Theorem 1.4 As A 7!cklj ðAÞ is continuous in C2 Tn;Sn
þ

� �
, the set of c-bad matrices

is open in C2 Tn;Sn
þ

� �
. We therefore only need to show that this set is dense.

Fix a c-good matrix A0 2 C2 Tn;Sn
þ

� �
and d[ 0. Our aim is to show the existence of a

c-bad matrix A 2 C2 Tn;Sn
þ

� �
such that kA� A0kC2 � d. Let r0 be the invariant measure

corresponding to A0.

Step 1. We first aim at finding A1 2 C2 Tn;Sn
þ

� �
such that kA1 � A0kC2 � d

2
and

ða1ijðyÞr1ðyÞÞyi 6� 0

for some 1� j� n. Here r1 denotes the invariant measure of A1. Of course, if

ða0ijðyÞr0ðyÞÞyi 6� 0 for some j 2 f1; 2; . . .; ng, then we simply let A1 ¼ A0. Otherwise,

ða0ijðyÞr0ðyÞÞyi ¼ 0 for all 1� j� n:

In this case, we take n 2 C1ðTÞ with n0 6� 0, and define A1 ¼ ða1ijÞ1� i;j� n as

a1ijðyÞ ¼

a011ðyÞ þ
dnðy1 þ y2Þ

r0ðyÞ for i ¼ j ¼ 1;

a022ðyÞ �
dnðy1 þ y2Þ

r0ðyÞ for i ¼ j ¼ 2;

a0ijðyÞ otherwise:

8>>>>><
>>>>>:

Choosing n with knkC2ðTÞ sufficiently small, we have kA1 � A0kC2 � d
2
. It is not hard to see

that r1 ¼ r0 as

�ða1ijðyÞr0ðyÞÞyiyj ¼ d ðnðy1 þ y2ÞÞy2y2 � ðnðy1 þ y2ÞÞy1y1
h i

¼ 0:

Moreover,

ða1i1ðyÞr1ðyÞÞyi ¼ dn0ðy1 þ y2Þ 6� 0:

Step 1 is complete.
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Step 2. Next, we will find a c-bad matrix A such that kA1 � AkC2 � d
2
. Of course, if

c111 ðA1Þ 6¼ 0, then A1 is c-bad and we simply put A ¼ A1. If c111 ðA1Þ ¼ 0, then, using the

same idea as in the proof of Proposition 3.1, we will construct A as follows. By the

construction of A1, without loss of generality, we assume

ða1i1ðyÞr1ðyÞÞyi 6� 0:

Let /ðyÞ ¼ sða1i1ðyÞr1ðyÞÞyi , cðyÞ ¼ 1þ a1ijðyÞ/yiyjðyÞ
h i�1

, and set

AðyÞ ¼ cðyÞA1ðyÞ;

where s[ 0 is chosen to be small enough so that kA1 � AkC2 � d
2
. Note that the invariant

measure r(y) of AðyÞ ¼ cðyÞA1ðyÞ is

rðyÞ ¼ r1ðyÞ
cðyÞ ¼ 1þ a1ijðyÞ/yiyjðyÞ

h i
r1ðyÞ for y 2 Tn:

It remains to show that A is c-bad. To this end, observe that

�aij/yiyj � c ¼ �cða1ij/yiyj þ 1Þ ¼ �1 in Tn:

Recall that v11 solves the (1, 1)-th cell problem (1.3) for A1:

�a1ijðyÞv11yiyjðyÞ � a111ðyÞ ¼ �a111 in Tn:

Let vðyÞ ¼ v11ðyÞ þ a111/ðyÞ. Thanks to the above identities,

�aijðyÞvyiyjðyÞ � a11ðyÞ ¼ �a111 in Tn:

That is, v solves the (1, 1)-th cell problem (1.3) for A. Thus,

c111 ðAÞ ¼
Z
Tn

ai1ðyÞrðyÞvyiðyÞ dy

¼
Z
Tn

a1i1ðyÞr1ðyÞvyiðyÞ dy ¼ �
Z
Tn
ða1i1ðyÞr1ðyÞÞyiðv

11ðyÞ þ a111/ðyÞÞ dy

¼ c111 ðA1Þ � a111

Z
Tn
ða1i1ðyÞr1ðyÞÞyi/ðyÞ dy

¼ �sa111

Z

Tn
ða1i1ðyÞr1ðyÞÞyi

� �2

dy 6¼ 0:

Therefore, A is c-bad and kA� A0kC2 � d. The proof is complete. h

4 Optimal rate of convergence Oðe2Þ

In this section, we discuss the situations where the optimal rate of convergence of

kue � ukL1ðUÞ is Oðe2Þ. Let us give proofs of Theorem 1.5 and Corollary 1.6.
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Proof of Theorem 1.5 We only need to show that h � 0 in all situations. In the first

situation, D2u is a constant matrix, then clearly D3u ¼ 0 in U, and hence h � 0.

In the second situation, ðaijðyÞrðyÞÞyi ¼ 0 for all 1� j� n, and y 2 Tn. Then

cklj ¼
Z

Tn
aijðyÞvklyiðyÞrðyÞ dy ¼ �

Z

Tn
ðaijðyÞrðyÞÞyiðyÞv

klðyÞ dy ¼ 0;

which implies h � 0.

Finally, in the last situation, we assume x ¼ 0 without loss of generality. As A is even,

we see that vkl and r are also even for 1� k; l� n. Then vklyi is odd, that is,

vklyiðyÞ ¼ �vklyið�yÞ. Hence, y 7!aijðyÞvklyiðyÞrðyÞ is odd as well, which gives that

cklj ¼
Z
Tn

aijðyÞvklyiðyÞrðyÞ dy ¼ 0:

h

Proof of Corollary 1.6 We aim at showing ðaijðyÞrðyÞÞyi ¼ 0 for all 1� j� n, and y 2 Tn in

all cases.

In the first case, AðyÞ ¼ aðyÞIn for some a 2 C2ðTn; ð0;1ÞÞ. Then, the invariant

measure r is simply rðyÞ ¼ c=aðyÞ for y 2 Tn, where c ¼
R
Tn 1=aðyÞ dy

	 
�1
. It is clear then

that ðaijðyÞrðyÞÞyi ¼ 0 for 1� j� n.

In the second case, we have AðyÞ ¼ diagfa1ðy1Þ; a2ðy2Þ; . . .; anðynÞg for some

ai 2 C2ðT; ð0;1ÞÞ, 1� i� n. The invariant measure of A is

rðyÞ ¼ c

a1ðy1Þa2ðy2Þ. . .anðynÞ

where c[ 0 is a normalization constant such that
R
Tn rðyÞ dy ¼ 1. We again get that

ðaijðyÞrðyÞÞyi ¼ 0.

Thirdly, we consider the situation where AðyÞ ¼ diagfa1ðyÞ; a2ðyÞ; . . .; anðyÞg for some

ai 2 C2ðTn; ð0;1ÞÞ such that ai is independent of yi for all 1� i� n. This case is even

more straightforward as r � 1.

Lastly, in the fourth situation where AðyÞ ¼ Aðy1Þ, it is not hard to see here that

rðyÞ ¼ c

a11ðyÞ
¼ c

a11ðy1Þ

where c[ 0 is a normalization constant such that
R
Tn rðyÞ dy ¼ 1. It is clear then that

ðaijðyÞrðyÞÞyi ¼ 0 for 1� j� n. h
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