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Abstract This paper investigates a simplified model of robot motion planning
where particles on a board respond to global signals, causing them to move
uniformly in a particular direction. We consider two types of movement com-
mands: 1) Steps, which cause particles to move one unit distance in the given
direction, and 2) Tilts, which cause particles to move maximally in the given
direction. Under the overarching theme of reconfiguring robot swarms, we look
at the problem of assembling general shapes both within systems that exclu-
sively use step commands and systems that exclusively use tilt commands.
We derive upper and lower bounds on the worst-case number of movements
needed to reconfigure a general purpose board into a target shape. Under step
transformations, we show a set of obstacles that can reconfigure n robots from
any size-n shape to construct any other size-n shape with optimal Θ(n) steps,
which improves on previous techniques taking O(n2) steps. We then provide a
board configuration that, under tilt transformations, can construct any size-n
shape (given “helper particles”) in optimal Θ(n) tilts, which also improves
upon the previous best known time of O(n2) tilts.

1 Introduction

Robot motion planning has been an area of interest for many years. When con-
sidering robots at the micro and nano-scale, power and bandwidth limitations
often make individual robot control infeasible. Thus, abstract models of motion
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planning started considering global signals that control all robots uniformly.
Perhaps the simplest (first proposed in [8]) consists of movable particles (an
abstract representation of robots) that exist on a 2D grid environment with
“open” and “blocked” spaces. These particles are controlled by global signals
which uniformly move all particles in a particular direction when given a move-
ment command (unless movement is prevented by a blocked space). In [8], the
movement commands cause particles to move one unit distance in the given
direction. Motivated by further limitations, another version of motion plan-
ning with global signals was considered in [4]. They analyze the complexity of
steering particles through an environment when movement commands require
them to move maximally in a direction. This spurred further investigation
into computation and complexity of relocating particles [6] (recently [1–3,5,
11,10]).

With a better understanding of the power of this model, efforts went
towards the problem of engineering particular environments to reconfigure
particles into desired shapes [12]. While [8] discusses the reconfiguration of
robots into particular forms, [12] has an emphasis on “building shapes” with
these particles. Then in [7], they formally analyze and improve on the results
from [12] by creating fixed shape “micro-factories” (or shape builders) that are
capable of constructing a shape from a particular class of shapes (later named
“drop shapes”) by attaching particles to each other using maximal movement
commands. In [13], they investigated the natural next step to improve the
efficiency of engineered environments to build their particular shape.

Recent developments for “particle swarm shape builders” have focused on
universal constructors, which are environments where movements can trans-
form a particle swarm from a starting configuration into another from a given
universe of configurations. In [3], they are formally introduced and two uni-
versal constructors using maximal movements are presented. One is capable of
building any shape up to a given size, but allows for a relaxed notion of shape
construction where “extra” particles are allowed to exist in the environment
(weak construction). They also consider shape construction in which all par-
ticles in the environment must be considered in the final configuration (strong
construction), and provide a universal constructor which can strongly build
any “drop shape” (up to a certain size). This work is continued in [2] where
they expand the set of shapes their universal constructors can build.

Previous Results. The micro-factories of [7] use “sticky” particles (which
adhere to each other) for their shape construction. These micro-factories use
maximal movement commands, and the number of movement commands grows
linearly with the size of the shape. However, these are fixed-shape construc-
tors (i.e., the shape created by the factory is hard-coded into the environ-
ment). More progress was made on these fixed shape micro-factories when [13]
presented an “efficient” shape constructor that achieves sublinear construction
times by successively combining subassemblies in “staged” assembly. Although
these fixed shape results achieve outstanding runtimes for shape construction,
each shape requires a unique environment designed for its construction.



Fast Reconfiguration of Robot Swarms 3

Model Step/Tilt Complexity Represent. Reconfig. Theorem
Lower Upper

Step Ω(n) O(n2) Strong Yes Cor. 1,[8]
Step Θ(n) Strong Yes Cor. 1, Thm. 2
Tilt Ω(n) O(n2) Weak No Cor. 1, [3]
Tilt Θ(n) Weak No Cor. 1, Thm. 3

Table 1: Size-n shape universal construction results. Model is which transfor-
mation the constructor uses. Step/Tilt Complexity is the number of trans-
formations required for reconfiguration. Represent is the type of shape rep-
resentation achieved by the universal constructor. Reconfig denotes whether
or not a constructor can be reconfigured to represent any other shape in the
set after a shape is built. Theorem is where the result can be found. The two
citations provide upper bounds for their respective problems.

The idea for universal constructors is that, rather than using different en-
vironments to construct shapes, different sequences of movement commands
are used to determine the shape that is constructed. In [8], the authors present
a strongly universal constructor which is capable of building any size-n shape
in O(n2) unit distance commands. The work of [3] presents a weakly universal
constructor which can build any size-n shape in O(n2) maximal movement
commands. It should be noted that this result contains the use of tile attach-
ment, but a simple modification to the construction can eliminate that use.

The construction of patterns was explored in [14] where the authors present
a configuration capable of rearranging a n tile rectangular pattern in O(n2)
maximal movement commands. This problem was also studied in [9] with unit
distance commands where the authors show nearly optimal step complexity
universal constructors for size-n k-color patterns.

Our Contributions. We focus on a natural problem in this model of mo-
tion planning: reconfiguring particle swarms into desired shapes. We improve
on the results of the universal general shape constructors from the literature
by reducing the number of movements required to transform one configura-
tion into another. We consider both variations of movement commands: unit
distance commands (which we call steps) and maximal movement commands
(tilts). Our contributions (in bold) are outlined in Table 1.

We derive lower bounds on the worst-case number of movements needed
to reconfigure a particle swarm into a desired shape. We present two uni-
versal constructors which improve upon previous work by meeting these lower
bounds. The first constructor (under step transformations) strongly builds any
size-n shape in optimal Θ(n) steps. This beats the previously best runtime of
O(n2) steps [8]. The second constructor (under tilt movements) weakly builds
any size-n shape in optimal Θ(n) tilts. This is an improvement on the previous
best runtime of O(n2) tilts [3]. We note the universal constructor from [8] has
the property of being infinitely reconfigurable (any configuration it can reach
can also reach all other configurations). We formally define this property, and
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provide extensions to our constructors making them reconfigurable universal
shape builders. We show these extensions do not affect the optimal runtime.

2 Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D square lattice
which consists of open and blocked locations. An m × n board is a partition
B = (O,W ) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O denotes a
set of open locations, and W denotes a set of blocked locations− referred to
as “concrete.” Based on a geometric hierarchy [2], all our constructions use a
connected board, i.e., the set of open spaces O is a connected shape.

Tiles and Configurations. A tile (or robot/particle) is a labeled unit square
that may exist on an open board location. Formally, a tile is an ordered pair
(c, a) where c is a coordinate on the board, and a is a label. A configuration
is an arrangement of tiles on a board. Formally, a configuration C = (B,P =
{p1 . . . pk}) consists of a board B and a set of tiles P with unique coordinates
that do not overlap with the blocked locations of board B.

Step Transformation. A step is a way to turn one configuration into another
by way of a global signal that moves all tiles in a configuration one unit in
a direction d ∈ {N,E, S,W} when possible without causing an overlap with
a blocked position, or another tile. Formally, for a configuration C = (B,P ),
let P ′ be the maximal subset of P such that translation of all tiles in P ′ by 1
unit in the direction d induces no overlap with blocked squares or other tiles.
A step in direction d is performed by executing the translation of all tiles in
P ′ by 1 unit in that direction. If a configuration does not change under a step
transformation for direction d, the configuration is d-terminal. In the case a
step causes a tile to leave the board, we remove it from the configuration.

A configuration C can be directly reconfigured (under the step transfor-
mation) into configuration C ′ (denoted C →1

S C ′) if applying one step in
direction d ∈ {N,E, S,W} to C results in C ′. Define the relation →∗

S to be
the transitive closure of →1

S and say that C can be reconfigured into C ′ if and
only if C →∗

S C ′, i.e., C may be reconfigured into C ′ by way of a sequence of
step transformations.

Tilt Transformation. A tilt is another way to turn one configuration into
another. A tilt in direction d ∈ {N,E, S,W} for a configuration is executed
by repeatedly applying a step transformation in direction d until a d-terminal
configuration is reached. To differentiate between reconfigurations under tilt
transformations rather than step transformations, we slightly modify the no-
tation. A configuration C can be directly reconfigured into configuration C ′

(denoted C →1
T C ′) if applying one tilt in some direction d ∈ {N,E, S,W} to

C results in C ′. Define the relation →∗
T to be the transitive closure of →1

T and
say that C can be reconfigured into C ′ if and only if C →∗

T C ′, i.e., C may be
reconfigured into C ′ by way of a sequence of tilt transformations.

Step/Tilt Sequence. A step sequence is a series of steps that can be inferred
from a series of directions DS = 〈d1, d2, . . . , dk〉; each di ∈ DS implies a step in
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exists a set of configurations C such that 1) each s ∈ S is represented by a
unique C ∈ C and 2) C ′ is universal for C. We say that C ′ is strongly universal
for S if each s ∈ S is strongly represented by some C ∈ C. If C ′ is universal
for S, but not strongly universal, then we say that C ′ is weakly universal.

Reconfigurable Universal Shape Builder. A set of configurations C are a
Reconfigurable Universal Shape Builder for a set of shapes S if and only if 1)
each s ∈ S is represented by a unique C ∈ C, and 2) C is a reconfigurable set.

Worst-Case Complexity for Universal Configurations. Given a univer-
sal configuration C, the worst-case step complexity is the maximum number of
steps required to reconfigure C into some element from its universe set. Con-
sider a universal configuration C over a set of configurations U . For each u ∈ U ,
let d(C, u) denote the length of the smallest step sequence from C to u. The
worst-case step complexity of C over U is defined to be max({d(C, u)|u ∈ U}).
We extend this notion to reconfigurations performed under the tilt transfor-
mation, and refer to the maximum number of tilts required for reconfiguration
as the worst-case tilt complexity for the universal configuration.

Worst-Case Step/Tilt Complexity for Reconfigurable Sets. Consider
a reconfigurable set C. The worst-case step complexity for C is the maximum
number of steps between two configurations in C. For each Ci, Cj ∈ C, let
d(Ci, Cj) denote the length of the smallest step sequence from Ci to Cj . The
worst-case step complexity of C is defined to be max({d(Ci, Cj)|Ci, Cj ∈ C}).
Again, we can extend this notion to reconfigurations performed under the tilt
transformation to define the worst-case tilt complexity for reconfigurable sets.

3 Lower Bounds for Shape Construction

Theorem 1 Any universal configuration for a set of configurations U un-
der either the step transformation or the tilt transformation has worst-case
Ω(log |U |) step/tilt complexity.

Proof Let r denote the worst-case step or tilt complexity for a universal con-
figuration C that is universal for U . We can upper bound the number of dis-
tinct configurations C may reach by counting the number of distinct length-r
step/tilt sequences. As each step/tilt in a sequence consists of one of four
possible directions, there are exactly 4i distinct length-i step sequences, and
4 ·3i−1 distinct tilt sequences (since repeating a tilt within a sequence does not
change a configuration). Thus, the total number of distinct step/tilt sequences
of length at most r is upper bounded by

r∑

i=0

(4i) =
4r+1 − 1

3
≥ |U |.

As the number of distinct length-r step/tilt sequences is an upper bound
on the number of distinct configurations reachable within r steps/tilts, this
number must be at least |U |, which implies that r = Ω(log |U |). �
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Name Sequence

Insert 〈E, S4,W 7, S2,W,E,N,W, S〉

Move Up 〈N5,W, S,E,N,W, S〉

Move Down 〈S5,W,E,N,W, S〉

Move Left 〈N3,W 6, S3,W 8, S2,W, S,W,E,N,W, S〉

Move Right 〈N3, E6, S3, E8, S2, E, S, E,W 2, E,N,W, S〉

Table 2: Step sequences used for the construction of size-n shapes. As a stan-
dard convention for languages, exponents represent repeating the string (or
sequence of moves) the number of times in the exponent.

with an output tile for a total of n gadgets, spaced out in the manner illus-
trated in Figure 2a. In this way, shapes are built when the output tiles from
the fuel gadgets are held in pixel gadgets that are positioned relative to the
tile’s position in the shape. All tiles are placed in the construction area by
the fuel depositor gadget, the bottommost fuel gadget that utilizes the 1 × 3
line of concrete tiles beneath it to disalign the fuel with the one being de-
posited. Moreover, all tiles enter the construction area through the head pixel
gadget, which is the pixel gadget diagonal to the fuel depositor. Given the di-
mensions of the construction area, a size-n shape can be translated such that
any position in the shape can be put into the head pixel gadget without the
shape extending beyond the construction area. This is true so long as the step
sequences, as shown in Table 2, are used in the shape construction process.

Tiles are inserted into the construction area by performing the insert se-
quences, causing the withdrawn tile to disalign itself from the rest of the tiles
in the fuel gadgets and simultaneously move them to the fuel gadget below
them. This sequence also places the withdrawn tile inside of the head pixel
gadget while maintaining the tiles already in the construction area inside of
their pixel gadgets. Tiles can be moved around the construction area using
the other sequences. The move up and move down sequences are straightfor-
ward, but the move right and move left sequences are more complex. These
sequences move all tiles in pixel gadgets to the corresponding neighboring pixel
gadgets in the given direction, while taking into consideration tiles that travel
across to the left or right region of the construction area. The left and right
move sequences begin by first moving the tiles that are in the left or right re-
gions to their respective pixel gadgets, and then move the tiles that move from
region to region into to the pixel gadgets of that region. Examples of the tile
movements are shown in Figure 6. Any construction of a size-n shape, using
the board configuration presented in this section, is therefore describable as
some combination of these step sequences.

After all the tiles have been placed in the construction area, moving them
on to the left or right region of the board allows them to be withdrawn from
the pixel gadgets. They are vertically spaced by four spaces and horizontally
by five. The group of tiles can then be sent through the funneling gadget
(Figure 3) that is used to remove the spaces and group the tiles so that they
take the form of the shape. This gadget was originally presented in [9], but we
give an overview of the gadget for clarity.

















16 David Caballero et al.

with the helper tiles, and this process is repeated once more to end up with the
output tiles back in the fuel gadgets and the helper tiles all in the bounding
box. Thus, the configuration C = (B,P ) is a universal reconfigurable construc-
tor that weakly builds size-n shapes in optimal construction runtime Θ(n) and
board size O(n2). �

6 Future Work

In this paper we show the existence of a universal reconfigurable shape con-
structor in both the single step and full tilt models where both are optimal
in the number of tilts needed to assemble the shape. The full-tilt constructor
only weakly assembles the shape. A major open question is whether or not a
strongly universal constructor exists for the full-tilt model. Only a few classes
of shapes are known with strong universal constructors (drop shapes [3,7], 2-
cuttable shapes [13], and the drop shape hierarchy [2]). Finally, different types
of board geometries have been defined in previous work with the least restric-
tive being connected (all the open spaces are connected) and the most being a
rectangular frame. All of our constructors use connected board geometry but
previous work has shown constructors that use a simple board. Is it harder
to construct shapes with more constrained boards? Can we still achieve fast
construction with simpler boards or does the lower bound increase?
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