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Abstract This paper investigates a simplified model of robot motion planning
where particles on a board respond to global signals, causing them to move
uniformly in a particular direction. We consider two types of movement com-
mands: 1) Steps, which cause particles to move one unit distance in the given
direction, and 2) Tilts, which cause particles to move maximally in the given
direction. Under the overarching theme of reconfiguring robot swarms, we look
at the problem of assembling general shapes both within systems that exclu-
sively use step commands and systems that exclusively use tilt commands.
We derive upper and lower bounds on the worst-case number of movements
needed to reconfigure a general purpose board into a target shape. Under step
transformations, we show a set of obstacles that can reconfigure n robots from
any size-n shape to construct any other size-n shape with optimal ©(n) steps,
which improves on previous techniques taking O(n?) steps. We then provide a
board configuration that, under tilt transformations, can construct any size-n
shape (given “helper particles”) in optimal ©(n) tilts, which also improves
upon the previous best known time of O(n?) tilts.

1 Introduction
Robot motion planning has been an area of interest for many years. When con-

sidering robots at the micro and nano-scale, power and bandwidth limitations
often make individual robot control infeasible. Thus, abstract models of motion

This research was supported in part by National Science Foundation Grant CCF-1817602.

D. Caballero - A. A. Cantu - T. Gomez - R. Schweller - T. Wylie
University of Texas Rio Grande Valley
E-mail: {david.caballero01,angel.cantu01,timothy.gomez01,robert.schweller,timothy.wylie} Qutrgv.edu

A. Luchsinger
University of Texas Austin
E-mail: amluchsinger@Qutexas.edu



2 David Caballero et al.

planning started considering global signals that control all robots uniformly.
Perhaps the simplest (first proposed in [8]) consists of movable particles (an
abstract representation of robots) that exist on a 2D grid environment with
“open” and “blocked” spaces. These particles are controlled by global signals
which uniformly move all particles in a particular direction when given a move-
ment command (unless movement is prevented by a blocked space). In [8], the
movement commands cause particles to move one unit distance in the given
direction. Motivated by further limitations, another version of motion plan-
ning with global signals was considered in [4]. They analyze the complexity of
steering particles through an environment when movement commands require
them to move maximally in a direction. This spurred further investigation
into computation and complexity of relocating particles [6] (recently [1-3,5,
11,10]).

With a better understanding of the power of this model, efforts went
towards the problem of engineering particular environments to reconfigure
particles into desired shapes [12]. While [8] discusses the reconfiguration of
robots into particular forms, [12] has an emphasis on “building shapes” with
these particles. Then in [7], they formally analyze and improve on the results
from [12] by creating fixed shape “micro-factories” (or shape builders) that are
capable of constructing a shape from a particular class of shapes (later named
“drop shapes”) by attaching particles to each other using maximal movement
commands. In [13], they investigated the natural next step to improve the
efficiency of engineered environments to build their particular shape.

Recent developments for “particle swarm shape builders” have focused on
universal constructors, which are environments where movements can trans-
form a particle swarm from a starting configuration into another from a given
universe of configurations. In [3], they are formally introduced and two uni-
versal constructors using maximal movements are presented. One is capable of
building any shape up to a given size, but allows for a relaxed notion of shape
construction where “extra” particles are allowed to exist in the environment
(weak construction). They also consider shape construction in which all par-
ticles in the environment must be considered in the final configuration (strong
construction), and provide a universal constructor which can strongly build
any “drop shape” (up to a certain size). This work is continued in [2] where
they expand the set of shapes their universal constructors can build.

Previous Results. The micro-factories of [7] use “sticky” particles (which
adhere to each other) for their shape construction. These micro-factories use
maximal movement commands, and the number of movement commands grows
linearly with the size of the shape. However, these are fixed-shape construc-
tors (i.e., the shape created by the factory is hard-coded into the environ-
ment). More progress was made on these fixed shape micro-factories when [13]
presented an “efficient” shape constructor that achieves sublinear construction
times by successively combining subassemblies in “staged” assembly. Although
these fixed shape results achieve outstanding runtimes for shape construction,
each shape requires a unique environment designed for its construction.
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Model | Step/Tilt Complexity | Represent. | Reconfig. Theorem
Lower Upper
Step Q@) ] O(n?) Strong Yes Cor. 1,[8]
Step O(n) Strong Yes Cor. 1, Thm. 2
Tilt 2n) | O(n?) Weak No Cor. 1, [3]
Tilt O(n) Weak No Cor. 1, Thm. 3

Table 1: Size-n shape universal construction results. Model is which transfor-
mation the constructor uses. Step/Tilt Complexity is the number of trans-
formations required for reconfiguration. Represent is the type of shape rep-
resentation achieved by the universal constructor. Reconfig denotes whether
or not a constructor can be reconfigured to represent any other shape in the
set after a shape is built. Theorem is where the result can be found. The two
citations provide upper bounds for their respective problems.

The idea for universal constructors is that, rather than using different en-
vironments to construct shapes, different sequences of movement commands
are used to determine the shape that is constructed. In [8], the authors present
a strongly universal constructor which is capable of building any size-n shape
in O(n?) unit distance commands. The work of [3] presents a weakly universal
constructor which can build any size-n shape in O(n?) maximal movement
commands. It should be noted that this result contains the use of tile attach-
ment, but a simple modification to the construction can eliminate that use.

The construction of patterns was explored in [14] where the authors present
a configuration capable of rearranging a n tile rectangular pattern in O(n?)
maximal movement commands. This problem was also studied in [9] with unit
distance commands where the authors show nearly optimal step complexity
universal constructors for size-n k-color patterns.

Our Contributions. We focus on a natural problem in this model of mo-
tion planning: reconfiguring particle swarms into desired shapes. We improve
on the results of the universal general shape constructors from the literature
by reducing the number of movements required to transform one configura-
tion into another. We consider both variations of movement commands: unit
distance commands (which we call steps) and maximal movement commands
(tilts). Our contributions (in bold) are outlined in Table 1.

We derive lower bounds on the worst-case number of movements needed
to reconfigure a particle swarm into a desired shape. We present two uni-
versal constructors which improve upon previous work by meeting these lower
bounds. The first constructor (under step transformations) strongly builds any
size-n shape in optimal ©(n) steps. This beats the previously best runtime of
O(n?) steps [8]. The second constructor (under tilt movements) weakly builds
any size-n shape in optimal ©(n) tilts. This is an improvement on the previous
best runtime of O(n?) tilts [3]. We note the universal constructor from [8] has
the property of being infinitely reconfigurable (any configuration it can reach
can also reach all other configurations). We formally define this property, and
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provide extensions to our constructors making them reconfigurable universal
shape builders. We show these extensions do not affect the optimal runtime.

2 Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D square lattice
which consists of open and blocked locations. An m x n board is a partition
B=(O,W) of {(z,y)|lx € {1,2,...,m},y € {1,2,...,n}} where O denotes a
set of open locations, and W denotes a set of blocked locations— referred to
as “concrete.” Based on a geometric hierarchy [2], all our constructions use a
connected board, i.e., the set of open spaces O is a connected shape.

Tiles and Configurations. A tile (or robot/particle) is a labeled unit square
that may exist on an open board location. Formally, a tile is an ordered pair
(¢c,a) where ¢ is a coordinate on the board, and a is a label. A configuration
is an arrangement of tiles on a board. Formally, a configuration C' = (B, P =
{p1...pr}) consists of a board B and a set of tiles P with unique coordinates
that do not overlap with the blocked locations of board B.

Step Transformation. A step is a way to turn one configuration into another
by way of a global signal that moves all tiles in a configuration one unit in
a direction d € {N, E, S, W} when possible without causing an overlap with
a blocked position, or another tile. Formally, for a configuration C' = (B, P),
let P’ be the maximal subset of P such that translation of all tiles in P’ by 1
unit in the direction d induces no overlap with blocked squares or other tiles.
A step in direction d is performed by executing the translation of all tiles in
P’ by 1 unit in that direction. If a configuration does not change under a step
transformation for direction d, the configuration is d-terminal. In the case a
step causes a tile to leave the board, we remove it from the configuration.

A configuration C' can be directly reconfigured (under the step transfor-
mation) into configuration C’ (denoted C' —% C”) if applying one step in
direction d € {N, E,S,W} to C results in C’. Define the relation —% to be
the transitive closure of —} and say that C' can be reconfigured into C’ if and
only if C' =% C’, i.e., C' may be reconfigured into C’ by way of a sequence of
step transformations.

Tilt Transformation. A ¢ilt is another way to turn one configuration into
another. A tilt in direction d € {N, E,S,W} for a configuration is executed
by repeatedly applying a step transformation in direction d until a d-terminal
configuration is reached. To differentiate between reconfigurations under tilt
transformations rather than step transformations, we slightly modify the no-
tation. A configuration C' can be directly reconfigured into configuration C’
(denoted C —1. C") if applying one tilt in some direction d € {N, E, S, W} to
C results in C’. Define the relation —%. to be the transitive closure of —4 and
say that C can be reconfigured into C’ if and only if C' —% C’, i.e., C may be
reconfigured into C’ by way of a sequence of tilt transformations.

Step/Tilt Sequence. A step sequence is a series of steps that can be inferred
from a series of directions Dg = (dy,ds, ..., dy); each d; € Dg implies a step in
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(E)
(a) An example step sequence

Init (N) (E)
(b) An example tilt sequence

Weak Strong

(c) Representation Examples

Fig. 1: (a) An example step sequence. The initial board configuration followed
by an N step, E step, and E step. (b) An example tilt sequence. Under tilt
transformations, tiles move maximally in the given direction. (c¢) Configuration
representation examples. Both of these configurations are different representa-
tions of the shape “A.” The weak example contains tiles that do not contribute
to the shape. In the strong example, all tiles are part of the shape.

that direction. For simplicity, when discussing a step sequence, we just refer to
the series of directions from which that sequence was derived. Given a starting
configuration, a step sequence corresponds to a sequence of configurations
based on the step transformations. An example step sequence (N, E, E) and
the corresponding sequence of configurations can be seen in Figure 1la.
Similarly, a tilt sequence is a series of tilts which can be inferred from a
series of directions Dy = (dy,da,...,d;). Each d; € Dp implies a tilt in that
direction. We use the same shorthand of referring to the series of directions
when discussing tilt sequences. An example tilt sequence (N, E,S) and the
corresponding sequence of configurations can be seen in Figure 1b.
Universal Configuration. A configuration C’ is universal to a set of config-
urations C = {C,Cy,...,Ck} if and only if ¢’ —, C; V C; € C.
Reconfigurable Set. A set of configurations C is a reconfigurable set if and
only if V CZ‘,CJ‘ €C C; —, Cj.
Configuration Representation. A configuration may be interpreted as hav-
ing constructed a “shape” in a natural way. Define a shape to be a connected
subset s C Z2. A configuration C' may represent a shape s if C' contains
a collection of “output labeled” tiles L C P whose coordinates are exactly
the set of points of some translation t(s). We say C' strongly represents s if
|P| = |L| = |s] (i.e., all tiles in the configuration are used for the shape rep-
resentation). A weaker version allows for some “helper” tiles to exist in the
configuration and not count towards the represented shape. In this case, we
say a configuration weakly represents s if |P| > |L|, and no tile p € P\L has
the output label. Figure 1c illustrates the different types of representations.
Universal Shape Builder. Given the concept of shape representation, we
say a configuration C’ is universal for a set of shapes S if and only if there
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exists a set of configurations C such that 1) each s € S is represented by a
unique C € C and 2) C’ is universal for C. We say that C’ is strongly universal
for S if each s € S is strongly represented by some C € C. If C’ is universal
for S, but not strongly universal, then we say that C’ is weakly universal.
Reconfigurable Universal Shape Builder. A set of configurations C are a
Reconfigurable Universal Shape Builder for a set of shapes S if and only if 1)
each s € S is represented by a unique C € C, and 2) C is a reconfigurable set.
Worst-Case Complexity for Universal Configurations. Given a univer-
sal configuration C, the worst-case step complexity is the maximum number of
steps required to reconfigure C' into some element from its universe set. Con-
sider a universal configuration C' over a set of configurations U. For each u € U,
let d(C,u) denote the length of the smallest step sequence from C' to u. The
worst-case step complexity of C' over U is defined to be max({d(C,u)|u € U}).
We extend this notion to reconfigurations performed under the tilt transfor-
mation, and refer to the maximum number of tilts required for reconfiguration
as the worst-case tilt complexity for the universal configuration.
Worst-Case Step/Tilt Complexity for Reconfigurable Sets. Consider
a reconfigurable set C. The worst-case step complexity for C is the maximum
number of steps between two configurations in C. For each C;,C; € C, let
d(C;, Cj) denote the length of the smallest step sequence from C; to C;. The
worst-case step complexity of C is defined to be max({d(C;, C;)|C;,C; € C}).
Again, we can extend this notion to reconfigurations performed under the tilt
transformation to define the worst-case tilt complexity for reconfigurable sets.

3 Lower Bounds for Shape Construction

Theorem 1 Any universal configuration for a set of configurations U un-
der either the step transformation or the tilt transformation has worst-case
Nlog |U|) step/tilt complezity.

Proof Let r denote the worst-case step or tilt complexity for a universal con-
figuration C that is universal for U. We can upper bound the number of dis-
tinct configurations C' may reach by counting the number of distinct length-r
step/tilt sequences. As each step/tilt in a sequence consists of one of four
possible directions, there are exactly 4* distinct length-i step sequences, and
4-3"=1 distinct tilt sequences (since repeating a tilt within a sequence does not
change a configuration). Thus, the total number of distinct step/tilt sequences
of length at most r is upper bounded by

T r—+1
Suy=" >

1=0

As the number of distinct length-r step/tilt sequences is an upper bound
on the number of distinct configurations reachable within r steps/tilts, this
number must be at least |U]|, which implies that r = 2(log |U|). O
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Fig. 2: Tllustration of the board. Outlined in red are the (a) head pixel gadget
and the (b) fuel depositor gadget.

Corollary 1 Any universal configuration for connected shapes of size-n has
worst-case §2(n) step/tilt complexity.

Proof First note that there are at least 2™ distinct connected shapes of size-
n, and thus any universal configuration for this set of shapes must be universal
for a set of configurations of at least this cardinality. Therefore, by Theorem 1,
we get a worst-case step/tilt complexity of 2(log(2°(")) = 2(n). O

Corollary 2 Any reconfigurable set for connected shapes of size-n has worst-
case £2(n) step/tilt complexity.

Proof Observe that any configuration in a universal reconfigurable set is also
universal configuration for that set, so any lower bounds on universal config-
urations also hold for reconfigurable sets. O

4 Fast Size-n Shapes Under Step Transformations

In this section we give a reconfigurable universal shape builder for size-n shapes
under the step transformation that achieves optimal O(n) step complexity. We
first present a universal shape builder, and then expand on the construction
to make it reconfigurable.

4.1 Universal Shape Builder

The mechanics of the constructor introduced here are designed to mimic an
additive manufacturing method of construction where structures are gradually
built by material depositors that move around a surface ejecting material and
building the object piece by piece.

The construction area consists of four n x n groups of pizel gadgets orga-
nized in a grid— each occupying a 5 x 3 region on the board used to hold a
single tile in place. The construction area is divided into a left and right 2n xn
region due to the allocation of the fuel gadgets, each a 5 x 4 region initialized
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Name Sequence
Insert (E, S, WT",8%2 W,E,N,W,S)
Move Up (N°, W, S,E,N,W, S)
Move Down (S5, W, E,N,W, S)
Move Left (N3, WS, 8% W8 52 W,S,W,E,N,W,S)
Move Right | (N3, E® S% E® S? E,S,E,W?2 E,N,W,S)

Table 2: Step sequences used for the construction of size-n shapes. As a stan-
dard convention for languages, exponents represent repeating the string (or
sequence of moves) the number of times in the exponent.

with an output tile for a total of n gadgets, spaced out in the manner illus-
trated in Figure 2a. In this way, shapes are built when the output tiles from
the fuel gadgets are held in pixel gadgets that are positioned relative to the
tile’s position in the shape. All tiles are placed in the construction area by
the fuel depositor gadget, the bottommost fuel gadget that utilizes the 1 x 3
line of concrete tiles beneath it to disalign the fuel with the one being de-
posited. Moreover, all tiles enter the construction area through the head pixel
gadget, which is the pixel gadget diagonal to the fuel depositor. Given the di-
mensions of the construction area, a size-n shape can be translated such that
any position in the shape can be put into the head pixel gadget without the
shape extending beyond the construction area. This is true so long as the step
sequences, as shown in Table 2, are used in the shape construction process.

Tiles are inserted into the construction area by performing the insert se-
quences, causing the withdrawn tile to disalign itself from the rest of the tiles
in the fuel gadgets and simultaneously move them to the fuel gadget below
them. This sequence also places the withdrawn tile inside of the head pixel
gadget while maintaining the tiles already in the construction area inside of
their pixel gadgets. Tiles can be moved around the construction area using
the other sequences. The move up and move down sequences are straightfor-
ward, but the move right and move left sequences are more complex. These
sequences move all tiles in pixel gadgets to the corresponding neighboring pixel
gadgets in the given direction, while taking into consideration tiles that travel
across to the left or right region of the construction area. The left and right
move sequences begin by first moving the tiles that are in the left or right re-
gions to their respective pixel gadgets, and then move the tiles that move from
region to region into to the pixel gadgets of that region. Examples of the tile
movements are shown in Figure 6. Any construction of a size-n shape, using
the board configuration presented in this section, is therefore describable as
some combination of these step sequences.

After all the tiles have been placed in the construction area, moving them
on to the left or right region of the board allows them to be withdrawn from
the pixel gadgets. They are vertically spaced by four spaces and horizontally
by five. The group of tiles can then be sent through the funneling gadget
(Figure 3) that is used to remove the spaces and group the tiles so that they
take the form of the shape. This gadget was originally presented in [9], but we
give an overview of the gadget for clarity.
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Fig. 5: Making the rows of tiles adjacent by using section three.
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(a) Insert Tile (b) Move Right (c) Insert Tile (d) Move Up

Fig. 6: A simple example of how the given step sequences can be used to insert
and move tiles inside the pixel gadgets.

Section two is a grid-like configuration of concrete tiles that are vertically
separated by one space and horizontally by two spaces. The same basic process
is applied here, but we instead place the rows of tiles in-between the rows of
concrete tiles and perform sufficient steps in the (V) direction (Figure 5).

By positioning the group of tiles in Section three as depicted in Figure 5a,
stepping twice in the (V) direction will cause the topmost rows of the group
of tiles to meet. This is repeated for every row by first stepping in the (F)
direction, followed by two steps in the (V) direction. After every row has been
made adjacent, repeating the step sequence (N, E') will output the tiles from
the funneling gadget, bringing together each column of tiles and outputting
the desired shape at the top of the gadget, (Figures 3c, 3d).

4.3 Reconfigurable Universal Shape Builder

The universal shape constructor can be extended to a reconfigurable universal
shape builder by taking the output of the funneling gadget and breaking its
components apart and placing each tile back into the fuel gadgets.

A shape can be decomposed with an additional gadget placed above the
topmost fuel gadget as shown in Figure 7. This gadget consists of a similar
structure as the fuel gadgets, although with more space inside the gadget and
an additional length n — 2 horizontal line of concrete tiles extending the top
area of the gadget. Shapes moved to the top of this gadget can have their
tiles removed one by one by placing a tile directly above the top opening and
executing the sequence (S, E). By performing the re-fuel sequence (S* W),
the tile just removed will be moved towards the bottom left corner of this
gadget. When this is done for the next tile, the tile inside the gadget will be
moved simultaneously towards the topmost fuel gadget and be placed on the
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Fig. 7: (a-c) Removing a single tile from a size 4 shape using the topmost
opening of the gadget. The additional row of tiles are to the right of the
fuel gadget to keep the assembly from moving downward. (d) Performing the
re-fuel sequence will move the tile to where the arrow points. The dotted
arrows indicate alternate paths that tiles would take if they resided in alternate
locations.

bottom left corner of that fuel gadget similar to the second tile just placed in
the gadget above it. When this is repeated for every tile in the shape, every
tile that was once in the shape will have been placed into the fuel gadget,
and thus another size-n shape can be constructed. Since the funneling gadget
must consider any extreme case of a size-n shape (e.g., a 1 x n or n x 1 shape),
the dimensions of the funneling gadget for the reconfigurable constructor is
designed to accommodate shapes that fit into an n x n bounding box.

Theorem 2 For any positive integer n there exists a universal reconfigurable
shape builder for all connected size-n shapes with worst-case step complexity
O(n) and board size O(n?).

Proof We use the above board configuration C' = (B, P) that is composed of an
arrangement of pixel and fuel gadgets. Pixel gadgets are arranged on the board
in a grid-like fashion, inducing a grid graph of dimension 2n x 2n which defines
the construction area. Moreover, the board consists of n fuel gadgets placed
in the middle of the construction area, each containing one output tile. We
define various step sequences that dictate how to maneuver the tiles around
the board, including the step sequence to insert tiles into the construction
area. The head pixel gadget is the recipient of all the tiles deposited into the
construction area by the fuel depositor gadget. Any position in a size-n shape
can be translated to reside in the head pixel gadget without over extending
beyond the construction area. Therefore, if we consider a spanning tree of a
size-n shape, we can traverse through the tree mapping the traversal to the step
sequences defined above and simultaneously place tiles in the construction area
for every new vertex we visit. Thus, every tile can be inserted in its appropriate
position in a size-n shape in runtime O(n). After all the tiles have been placed
in the construction area, they can be withdrawn from the construction area
(assuming all the tiles are on either the left or right region) and sent to the
funneling gadget to coalesce the tiles into the shape, which also has a runtime
of O(n) steps. In addition to shape construction, we demonstrate a way to
decompose a size-n shape and place back the composite tiles into the fuel
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Fig. 8: The construction area of the board. The pixel gadget boundaries are
outlined to show how they are placed on the board.

(a) North sequence  (b) South sequence  (c) West sequence (d) East sequence

Fig. 9: Tilt sequences to send and receive robots.

gadgets. In doing so, we allow ourselves to build any other size-n shape. Thus,
configuration C' is a reconfigurable shape builder for all size-n shapes with
construction runtime @(n) and board size O(n?). O

5 Fast Size-n Shapes under Tilt Transformations

In this section, we present a weakly reconfigurable universal shape builder for
size-n shapes under full-tilt transformations. Previous work showed the exis-
tence of a weakly universal constructor for general shapes [3], but the runtime
scales linearly in the size of the bounding box (it’s height times it’s width)
rather than size of the shape. The universal constructor presented in this sec-
tion achieves optimal @(n) construction time to weakly build size-n shapes.
The construction uses the same basic idea as the single step construction, but
a lot of additional geometric complexity is required to deal with the less precise
tilt operation.

5.1 Constructor

Similar to the single-step constructor, the construction area consists of four
groups of m x n pixel gadgets organized in a grid-like fashion separated by
a column of n fuel gadgets located in-between the left and right regions of
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Fig. 10: (a) Pixel Gadget. (b) Pixel gadget sections. (c¢) Fuel Gadget. (d) Fuel
Depositor Gadget.
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Name Sequence

Insert Pixel (E,N,W,N,(W,S)?, (E,N,E,S)?)

Reposition ((W,N)? E, ,(E,N)Z,W,N,E,N, (W, S)?, (W, N)?)
Prepare Board (W, (E S)2, W, N)

Move South (E,N,(E,S)%, W, S, (W, N)?)

Move East ((E S)T, (W, N)?)

Move West (E,S,(W,S)%, (W, N)?)

Move North (W,N,E,N,E, S, (W, N)?)

Table 3: Tilt sequences used during the construction process.

the construction area. The full tilt construction is initialized with an n x n
bounding box of helper tiles inside the pixel gadgets in the position shown
by the tile in Figure 10a (each pixel gadget has one helper tile). Shapes in
this model are built by replacing the helper tiles of the bounding box with
the shape output tiles from the fuel gadgets, gradually placing them in their
appropriate positions in the bounding box.

Pixel gadgets in this construction are significantly more complex than the
single-step version, consisting of three sections that are each used at different
points in the construction process. Sections one and two of the pixel gadgets
are made of concrete tiles that aid to send and receive tiles from adjacent pixel
gadgets. The tiles on the board are moved around the construction area using
the tilt sequences defined in Table 3 and shown in Figure 9, where the arrows
depict where the tile will exit a pixel gadget and enter the neighboring pixel
gadget. When output tiles are to be placed inside the construction area, tiles
in the bounding box are placed first in the third section of their pixel gadget
to prevent any decomposition of the bounding box.

This constructor includes some pre and post-processing procedures, shown
in Figure 12, that are used during the construction process. The prepare pizel
sequence is used before performing the insert pirel sequence in order to move
all the tiles of the bounding box inside the third section of their respective pixel
gadget. The insert pizel sequence ejects output tiles from the fuel depositor
gadgets into the concrete structure below (Figure 10d), which will put the tile
inside the head pixel gadget, allowing it to interfere with, and thus replace,
the helper tile. This will discard the helper tile from the board. The reposition
sequence is used after the insert pizel sequence in order to withdraw the tiles
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Fig. 11: (a) Removing the elements from pixel gadgets. (b) The columns of
the bounding box will combine via the collision with the concrete tiles after
performing the sequence Extract Shape. (¢) Performing a (S) tilt will combine
all rows of the bounding box.

(a) Prepare Board sequence (b) Insert Pixel sequence  (c) Reposition sequence

Fig. 12: The dashed line in (a) shows the path the tile from the fuel gadget
above will take. The dashed line in (b) depicts the path the helper tile will
take when substituting the robot for it.

of the bounding box from section three and allow them to continue moving
around the construction area. After all of the output tiles have been placed
in the construction area, all tiles (input and helper) are withdrawn from the
pixel gadgets with the sequence (W, N, W, N, E) (Figure 11a), causing all of
the tiles to be tilted to the right side of the board. Placing concrete tiles on the
right side of the construction area that are aligned with the launching path
of the pixel gadgets will cause all of the columns to combine in the manner
shown in Figure 11b, which can be followed by a (S) tilt to combine all of the
rows using the concrete tiles shown in Figure 11c, thus yielding the shape.

5.2 Reconfigurable Universal Shape Builder

Achieving reconfigurable universality is similar to the single-step method, but
this version requires more concrete tiles and we must store or reuse the helper
tiles. Rather than discarding the helper tile from the board as previously
mentioned, we make it take the path shown in Figure 13a by including the
concrete tile beneath the dotted arrow. As the reposition sequence is being
performed, this helper tile is sent to collide with the concrete tiles shown in the
figure at the topmost fuel gadget, allowing the helper tile to enter the gadget.
After all the output tiles have been placed on the board, the fuel gadgets will
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(a) Re-fuel (b) Dispenser Gadget

Fig. 13: (a) Performing the reposition sequence will cause the discarded helper
tile to enter the topmost fuel gadget. (b) The paths that the dispenser gadget
sends the tiles of the bounding box.

contain n helper tiles. When the rows and columns of the bounding box are
put together, we move the bounding box into the dispenser gadget in order
to begin removing one column at a time from the bounding box and placing
them back into the pixel gadgets.

We place this dispenser gadget directly above the output region of the
board (Figure 13b), and thus placing the bounding box inside with a simple
(N) tilt. Simply repeating the move west sequence will cause each column,
starting with the leftmost one, to be sliced off the bounding box and sent
through the dispenser gadget. The dispenser gadget will separate the tiles
and send them through a path that will collide with single concrete tiles that
are aligned with the pixel gadgets on the east side of the board such that
finishing the move west sequence will cause the tiles to enter the pixel gadgets.
We repeat the move west sequence until all of the tiles are back into the
construction area. To return the output tiles back into the fuel gadgets, we
simply rebuild the same shape (now in a different translation, but connected
nonetheless), and repeat this process.

Theorem 3 For any positive integer n there exists a configuration C that
is a reconfigurable weakly universal shape builder for all size-n shapes. The
configuration has board size O(n?) and construction runtime ©(n).

Proof The construction above uses a bounding box of n X n helper tiles in-
side the pixel gadgets that are replaced by output tiles from the fuel gadgets.
When the shape is built inside the bounding box, all tiles (output and helper)
can be withdrawn from the construction area (with the sequences given) and
combined on the right side of the construction area. To make this into a recon-
figurable universal shape builder, the dispenser gadget can be added above the
output region of the constructor, which can break apart the elements of the
bounding box and place them back into the pixel gadgets. Moreover, instead
of discarding the helper tiles, concrete tiles can be arranged on the board to
maneuver the helper tiles back into the topmost fuel gadget. Once the recon-
figuration process is done, the output tiles inside the pixel gadgets are replaced
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with the helper tiles, and this process is repeated once more to end up with the
output tiles back in the fuel gadgets and the helper tiles all in the bounding
box. Thus, the configuration C' = (B, P) is a universal reconfigurable construc-
tor that weakly builds size-n shapes in optimal construction runtime ©(n) and
board size O(n?). O

6 Future Work

In this paper we show the existence of a universal reconfigurable shape con-
structor in both the single step and full tilt models where both are optimal
in the number of tilts needed to assemble the shape. The full-tilt constructor
only weakly assembles the shape. A major open question is whether or not a
strongly universal constructor exists for the full-tilt model. Only a few classes
of shapes are known with strong universal constructors (drop shapes [3,7], 2-
cuttable shapes [13], and the drop shape hierarchy [2]). Finally, different types
of board geometries have been defined in previous work with the least restric-
tive being connected (all the open spaces are connected) and the most being a
rectangular frame. All of our constructors use connected board geometry but
previous work has shown constructors that use a simple board. Is it harder
to construct shapes with more constrained boards? Can we still achieve fast
construction with simpler boards or does the lower bound increase?
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