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Abstract: Motivated by advances in microscale applications and simplistic robot agents, we look at problems based

on using a global signal to move all agents when given a limited number of directional signals and immovable geome-

try. We study a model where unit square particles move within a 2D grid based on uniform external forces. Movement

is based on a sequence of uniform commands which cause all particles to move 1 step in a specific direction. The 2D

grid board additionally contains “blocked” spaces which prevent particles from entry. Within this model, we investi-

gate the complexity of deciding 1) whether a target location on the board can be occupied (by any) particle (Occupancy

problem), 2) whether a specific particle can be relocated to another specific position in the board (Relocation problem),

and 3) whether a board configuration can be transformed into another configuration (Reconfiguration problem). We

prove that while occupancy is solvable in polynomial time, the relocation and reconfiguration problems are both NP-

Complete even when restricted to only 2 or 3 movement directions. We further define a hierarchy of board geometries

and show that this hardness holds for even very restricted classes of board geometry.
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1. Introduction

The tilt model, proposed by Becker et al. [5], has foundations

in classical robot motion planning. This model consists of a 2D

grid of open and blocked spaces, called the “board”, along with

a set of unit square pieces/tiles placed at open board locations.

A sequence of “tilts” pushes all the board pieces maximally in a

specified cardinal direction. A sequence of such tilts transforms

the initial board configuration into a new configuration. Some

natural computational problems related to this model are those

of occupancy, relocation, and reconfiguration. Occupancy is the

problem of determining if there exists a sequence of tilts such that

a specific, initially empty, board location may be occupied by a

particle on the board. Relocation is the problem of whether a se-

quence of tilts exists to relocate a specific tile from location a to

location b. Reconfiguration asks if a sequence of tilts exists to

transform board configuration A to board configuration B ( where

each configuration specifies the location of all tiles on the board).

These problems were recently all shown to be PSPACE-Complete

(in 4-directions)[2].

Here, we discuss a variant of this model (introduced in [4]) in

which particles only move 1 step per tilt in the specified direction,

rather than maximally. Figure 1 shows a simple example. We fur-

ther consider these problems with limited usable directions (e.g.

only tilting down and right), as well as considering the effect of

limiting the complexity of the geometry of the open spaces of the
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board. For example, one limited type of geometry is that in which

the open spaces form an “x/y-monotone” shape.

1.1 Previous Work

The problems of Occupancy, Relocation, and Reconfiguration

were first studied in [5] in the full tilt model. In this work,

the authors showed NP-hardness for the Occupancy Problem.

Soon after, the authors of [7] showed that finding the mini-

mum move sequence for reconfiguring one configuration to an-

other is PSPACE-Complete. Additional algorithmic, complex-

ity, and logic work was done in [6]. All of these results used

only 1 × 1 pieces. Later work in [1] relaxed the constraint on

tile size and showed the Relocation and Reconfiguration Prob-

lems were PSPACE-Complete when only a single 2 × 2 poly-

omino is allowed. Recent work strengthened these results and

showed PSPACE-Completeness for all three problems even when

only allowing 1 × 1 pieces [2]. Additional work has focused

on the application of the tilt model for the assembly of general

shapes [8], [10], [11], including universal constructors [1], [2],

and sorting polyominoes [9].

1.2 Our Contributions

We investigate some natural questions related to these prob-

lems and seek to find simple versions that are still computation-

ally intractable. We remove the requirement for tiles to slide max-

imally and focus on unit movements as in [4]. In this model,

the occupancy problem is solvable in polynomial time (Theo-

rem 3.1), so we focus on the Relocation and Reconfiguration

problems. We show intractability based on restricted directions
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exists at least one unsatisfied clause chain, there exists at least

one unconfined literal tile inexorably pushed to occupy location b

whilst the relocation tile traverses through the architecture of the

fourth chain of the assignment section. If there are no unsatisfied

clause chains, it follows that there will be a direct path from the

relocation tile to location b on the board allowing its relocation

there.

5.4 Theorem

Theorem 5.1. The relocation problem under the step transforma-

tion is NP-Complete on a monotone board when limited to two

directions.

Proof. Membership in NP is described in Section 4. To show

NP-Completeness, a reduction from 3SAT is detailed to show re-

location in monotone boards solves 3SAT. For a given 3SAT in-

stance, a monotone board B = (O,W) is designed such that the

elements of the 3SAT instance are represented by correspond-

ing elements of the monotone board. The elements of a given

3SAT instance consist of the set of clauses along with the literals

that make up each individual clause. The literals of each clause

are represented by individual tiles, which inhabit their pertaining

clause chain. As stated above, the literals can be assigned some

truth value by either confining the associated tile within its per-

taining clause chain (e.g., assigning true) or keeping it unconfined

(e.g., assigning false). The reduction can be understood as a two

phase process:

Phase one. Starting with an initial board B = (O,W) described

in the previous section, the first phase consists of making variable

truth assignments in ascending order for the set of Boolean vari-

ables X = {x1, x2, . . . , xN}. Each variable can be given some truth

value by performing either step sequence illustrated in Figure 3.

Simultaneously, each individual literal tile in the clause chains

will reach a corresponding Positive or Negative gadget exactly

when the variable it equals is assigned some truth value. When

assigning a variable to true, the positive literals that equal that

variable will become confined, whereas the negative literals that

equal that variable will remain unconfined. Likewise, assigning

a variable to false keeps the positive literals unconfined and the

negative ones confined. During this phase, the design of the val-

idation section along with the inhabitant validation tiles restrict

the available step sequences to that of the two previously men-

tioned. Given that the Goal gadget resides within the validation

section, along with location b of the board, the validation tiles

risk occupying location b unless either of the step sequences are

performed during this phase. The restrictive nature of the valida-

tion section ensures that phase one of the reduction consists only

of valid variable truth assignments.

Phase two. Afterwards, every clause chain assumes some sat-

isfiability status by the quantity of confined literal tiles residing

within them. During this phase, the number of unconfined lit-

eral tiles of each clause chain are ‘counted’ by the attempt to oc-

cupy two open spaces inside their corresponding clause chains

with these literal tiles. A satisfied clause chain will confine at

least one literal tile and leave at most two literal tiles unconfined.

These two unconfined literal tiles are able to occupy the two open

spaces, essentially removing them from the path to location b

from location a. On the other hand, an unsatisfied clause yields

one too many unconfined literal tiles for the two corresponding

open spaces, causing one of the literal tiles to remain within the

path to location b from location a.

Following this two phase process, the tile initialized at location

a is relocatable to location b on the board if every clause chain

yielded at most two unconfined literal tiles after the first phase.

During the second phase, these two unconfined literal tiles can

be removed from the path from location a to location b, allow-

ing access for the relocation tile to the targeted location on the

board. Similarly, relocation becomes impossible when a clause

chain produces three unconfined literal tiles after phase one since

the attempt to relocate after the second phase will inexorably oc-

cupy location b with one of the unconfined literal tiles. It follows

that the relocation of the relocation tile initialized at location a

is possible if all clause chains were satisfied, which is possible

only with a satisfying truth assignment to the set of variables.

Moreover, if the boolean formula is not satisfiable, then some

clause chains will always yield three unconfined literal tiles. The

forward-progressing nature of the construction, along with the

inability to store tiles in improper notches, means that the relo-

cation tile can never be relocated to its goal position (because it

is blocked). Therefore, for a given 3SAT instance relocation is

possible if and only if the boolean formula is satisfiable. �

Theorem 5.2. The relocation problem under the step transforma-

tion is NP-Complete on a monotone board when limited to three

directions.

Proof. If we allow for movement in a third direction (e.g.,

movement in the 〈W〉 direction), we see how the phases previ-

ously described are not significantly changed. During phase one,

the validation section is used to restrict the step sequences avail-

able when assigning truth values to variables where the inclusion

of the third direction only adds the cycling between the choices

of the step sequences (assigning true or assigning false). There-

fore making movement in the third direction available does not

change the way variable truth assignments are made. Moreover,

the manner in which tiles traverse through the board remains the

same since the movement in the third direction will simply revert

the board back to the configuration that was previously visited

when movement in the 〈E〉 direction was performed. Thus, the

phases of the reduction persist even with the third direction. �

6. Reconfiguration with Limited Directions

We now will take a look at the problem of reconfiguration on a

connected board when limited to two orthogonal directions. We

show that with these constraints the problem is NP-Complete un-

der the step transformation. Without loss of generality we will be

limiting the directions to south and east. In this section, we prove

hardness with a reduction from 3SAT. The following subsections

describe the gadgets used when constructing a tilt configuration

from a 3SAT formula with n variables and m clauses. We present

individual gadgets separately which can be connected in a way

that does not effect their functionality.
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