
CHAMP: Characterizing Undesired App Behaviors
from User Comments based on Market Policies
Yangyu Hu1∗, Haoyu Wang2∗�, Tiantong Ji3, Xusheng Xiao3, Xiapu Luo4, Peng Gao5 and Yao Guo6

1 Chongqing University of Posts and Telecommunications, Chongqing, China
2 Beijing University of Posts and Telecommunications, Beijing, China

3 Case Western Reserve University, USA 4 The Hong Kong Polytechnic University, Hong Kong, China
5 University of California, Berkeley, USA 6 Peking University, Beijing, China

Abstract—Millions of mobile apps have been available through
various app markets. Although most app markets have enforced
a number of automated or even manual mechanisms to vet
each app before it is released to the market, thousands of
low-quality apps still exist in different markets, some of which
violate the explicitly specified market policies. In order to identify
these violations accurately and timely, we resort to user com-
ments, which can form an immediate feedback for app market
maintainers, to identify undesired behaviors that violate market
policies, including security-related user concerns. Specifically, we
present the first large-scale study to detect and characterize the
correlations between user comments and market policies. First,
we propose CHAMP, an approach that adopts text mining and
natural language processing (NLP) techniques to extract semantic
rules through a semi-automated process, and classifies comments
into 26 pre-defined types of undesired behaviors that violate
market policies. Our evaluation on real-world user comments
shows that it achieves both high precision and recall (> 0.9) in
classifying comments for undesired behaviors. Then, we curate
a large-scale comment dataset (over 3 million user comments)
from apps in Google Play and 8 popular alternative Android app
markets, and apply CHAMP to understand the characteristics
of undesired behavior comments in the wild. The results confirm
our speculation that user comments can be used to pinpoint
suspicious apps that violate policies declared by app markets. The
study also reveals that policy violations are widespread in many
app markets despite their extensive vetting efforts. CHAMP
can be a whistle blower that assigns policy-violation scores and
identifies most informative comments for apps.

Index Terms—User comment, app market, undesired behavior

I. INTRODUCTION

Although the mobile app ecosystem has seen explosive
growth in recent years, app quality remains a major issue across
app markets [1], [2]. On the one hand, it is reported that millions
of Android malicious apps were identified every year [3],
using more and more complex and sophisticated malicious
payloads and evasion techniques [4], [5], [6]. On the other
hand, a large number of fraudulent and gray behaviors (e.g.,
ad fraud) were found in the mobile app ecosystem from time
to time [7], [8], [9], [10], [11], [12]. Furthermore, apps with
functionality/performance issues such as “diehard apps” [13],
and devious contents such as “anti-society contents” still remain
in the markets [14].

*The first two authors contributed equally to this work. Prof. Haoyu Wang
is the corresponding author (haoyuwang@bupt.edu.cn).

Package Name:
com.beetteer.signal.booster

App Name:
Signal Booster

Store:
Tencent Myapp

Example comments:

Too many ads. Once the app is started,
the notification bar is full of ads.

Time：2015-06-10

Dnt download it, it is a virus, it crashed
my phone !!!!!

Time：2014-10-5

Fig. 1. An example of user-perceived undesired behavior.

Most app markets have released strict developer policies,
along with inspection and vetting processes before app pub-
lishing, seeking to nip the aforementioned threats in the bud
and improve app quality in the markets. For example, Google
Play has released a set of developer policies [15] that cover 10
main categories, including “Privacy, Security and Deception”,
“Spam and Minimum Functionality”, and “Monetization and
Ads”, etc. Each category stands for a type of violation that
may be associated with various undesired behaviors. Apps that
break these policies should not be published on Google Play.

However, it is challenging to automatically check policy
compliance for mobile apps. Despite Google Play’s efforts in
adopting strict vetting processes by using automated tools [16],
[17], malware and Potentially Harmful Apps (PHAs) are recur-
rently found in Google Play [18]. Third-party app markets also
show a significantly higher prevalence of malware, fake, and
cloned apps [1]. On the one hand, it has been reported that many
malicious apps use sophisticated techniques to evade automated
detection [4]. For example, certain malicious behaviors could
only be triggered at a specific time or environment, such as
checking whether the app is being inspected in emulating
environments [19]. On the other hand, even if malware can be
detected by these automated tools, many other fraudulent and
gray behaviors such as ad fraud and malicious push notifications
are hard to identify. Moreover, functionality/performance issues
are typically app-specific, while devious contents are broad
and difficult to detect without human inspection, posing more
challenges for automated tools [14].

In many cases, whether an app’s behavior has exposed severe
security risks or performance issues depends on how users
think of it [20], [21]. As an important process for developers

to improve app quality, app markets allow users to leave
their ratings and comments after downloading and using each
app [22]. These comments can be considered as the direct
feedback from users who have experienced the apps [21],
helping developers address the issues that might not have been
spotted in testing. For example, as shown in Figure 1, two
users gave 1-star ratings for the app. One user complained
that this app contains aggressive advertising behaviors, and the
other even reported that this app might be malicious. In fact,
this behavior is also one of the undesired behaviors explicitly
prohibited by the developer policies. When such comments are
made aware to the market maintainers, they should be able to
warn the app developers about the behaviors immediately and
remove the apps from the market if such undesired behaviors
are not addressed by the app developers. In other words, user
comments can form an immediate feedback for app market
maintainers to identify user concerns and characterize the
undesired behaviors that violate market policies.

Ideally, user reviews could serve as an effective source for
app markets to identify policy violations in the apps after
they have passed the initial vetting process. However, the
number of user comments in an app market is huge given
the rapidly increasing number of apps, and there is a lack
of automated tools to detect comments that are related to
market policy violations and further perform deeper analysis
on these comments. Furthermore, these useful comments are
often buried in a much larger number of irrelevant comments,
making it labor-intensive and error-prone to manually inspect
these comments to obtain feedback. While user comments have
been studied for emerging issues [23], app risks [20] and app
recommendation [24], few research efforts have been spent
in investigating how user comments can assist app markets
in improving app vetting process. Thus, little is known to
what extent user comments can provide feedback on undesired
behaviors that violate market policies and how app markets
can utilize these feedback to improve their app vetting and
maintenance process.

In this work, we investigate the correlation between user com-
ments and market policies, i.e., characterizing user-perceived
undesired behaviors prohibited by market policies. First,
we create a taxonomy of 26 kinds of undesired behaviors
summarized from the developer policies of 9 app markets.
Then, we propose CHAMP, an approach that adopts text
mining and NLP techniques to identify comments that describe
these 26 kinds of undesired behaviors and classify them. We
refer to such comments as undesired-behavior comments
(UBComments). More specifically, CHAMP first extracts
semantic rules from a training dataset of user comments via
a semi-automated process. CHAMP then uses the extracted
rules to automatically identify the undesired behaviors reflected
in a given comment. Evaluation of CHAMP on benchmarks
from real-word user comments suggests that it can successfully
identify UBComments with high precision and recall (>0.9).

To further understand UBComments in the wild, we have
curated a large-scale dataset from 9 app markets, with over
3 million user comments. We applied CHAMP on these

TABLE I
THE DISTRIBUTION OF POLICIES COLLECTED (TOTAL 599).

Market # Policies Market # Policies

GooglePlay [27] 172 360 Market [28] 30
Huawei Market [29] 22 Lenovo Market [30] 28
Meizu Market [31] 53 Oppo Market [32] 15
Vivo Market [33] 96 Xiaomi Market [34] 159
Tencent Myapp [35] 24

comments to identify the UBComments and study their charac-
teristics. We have a number of interesting findings:
• UBComments are prevalent in the app ecosystem, which

can be found in 47% of the apps we studied. UBComments
account for 20% for the 1-star comments. Our manual
verification on sampled apps suggested the existence of
undesired behaviors (96% of them could be verified). It
confirms our assumption that users can still perceive
a large number of undesired behaviors prohibited by
market policies, even though these apps have already
passed the comprehensive vetting process.

• User-perceived undesired behaviors, even some security-
related ones, can be found in both malware and “benign”
apps (the apps that were not flagged by any anti-virus
engines on VirusTotal [25]). It suggests that user com-
ments can be a complementary source for providing
insights of malware detection.

• Although each market has explicitly declared developer
policies, roughly 34% to 65% of apps in each market
were still complained about their undesired behaviors
against the policies. This observation further indicates
that it is hard for app markets to identify all policy
violations during app vetting, while user comments
could further help detect these violations continuously.
Moreover, policies from most markets are inadequate,
as we have identified many apps (5% to 60%) showing
undesired behaviors that are not covered in their policies.

To the best of our knowledge, this is the first large-scale
study on the correlation between user comments and market
policies of mobile apps. We believe that our research efforts
can positively contribute to the app vetting process, promote
best operational practices across app markets, and boost the
focus on related topics for the research community and market
maintainers. We have released the CHAMP tool, along with the
policies and dataset to the research community at Github [26].

II. A TAXONOMY OF UNDESIRED BEHAVIORS

As we seek to identify the UBComments and investigate
the correlation between user comments and market policies,
we first collect a dataset of market policies and compile a
taxonomy of the undesired behaviors described in them.

Market Policy Dataset. Considering that Google Play is
the dominating market in the world except China, we seek
to collect policies from 9 popular markets, including Google
Play and 8 top Chinese third-party app markets, as shown in
Table I. For each market, we crawl all the listed policies from

TABLE II
A TAXONOMY OF UNDESIRED BEHAVIORS AND THE DISTRIBUTION ACROSS MARKET POLICIES. THE!REFERS TO THE MARKET DECLARING THE POLICIES.

THE NUMBER REFERS TO THE # OF APPS WITH UBcomments WE IDENTIFIED FROM EACH MARKET IN SECTION VI.

Category Behavior 360
Market Huawei Lenovo Meizu Oppo Vivo Xiaomi Tencent

Myapp
Google

Play

Functionality and
Performance

fail to install 264 !(216) !(70) !(50) 33 !(32) !(39) !(106) !(5)
fail to retrieve content 30 33 5 !(9) 10 !(11) !(12) !(11) !(21)

fail to uninstall !(119) !(46) !(11) !(19) 23 !(29) !(21) !(49) !(1)
fail to start (e.g., crash) 699 !(451) !(209) !(238) !(174) !(318) 176 !(880) !(105)

bad performance (e.g., no responding) 334 !(134) 30 60 !(53) !(65) !(41) 176 !(18)
fail to login or register 180 201 !(52) 88 98 !(143) 86 184 !(33)

fail to exit !(62) 45 4 11 11 10 9 15 !(2)
powerboot !(3) 1 1 !(0) 0 !(0) !(3) !(0) !(5)

Advertisement

drive-by download 25 22 5 13 7 6 !(14) !(9) !(25)
ad disruption !(498) 262 !(91) !(180) !(118) !(168) !(145) !(818) !(167)

add shortcuts in launching menu 7 1 0 !(7) 1 !(0) 4 !(4) !(7)
ads in notification bar 15 1 !(0) !(3) 1 !(1) !(1) !(10) !(2)

Security

virus !(139) !(96) !(18) !(39) !(40) !(45) !(33) !(151) !(54)
privacy leak !(25) 24 5 7 !(9) !(16) !(11) 24 !(30)

payment deception !(236) !(189) !(39) 74 84 !(127) !(61) 282 !(75)
illegal background behavior (e.g., sms) 160 109 24 57 51 !(49) !(44) !(146) !(0)

excessive network traffic !(90) 40 3 13 !(25) !(30) !(16) 111 !(4)
hidden app !(12) 1 2 4 !(0) !(0) !(1) 2 !(1)

illegal redirection 80 35 !(5) 17 20 !(19) !(16) 135 !(8)
permission abuse 37 !(27) 4 !(8) 4 !(4) !(17) !(11) !(27)

illegitimate update (e.g., update to other app) 3 3 !(0) 0 3 1 2 1 !(0)
browser setting alteration 0 0 0 0 0 !(0) !(0) 0 !(0)

Illegitimate Behavior
of Developers

app repackaging 132 16 12 !(11) 14 17 !(13) 64 !(14)
app ranking fraud 54 28 7 !(34) 22 !(20) !(21) 45 !(6)

Content vulgar content (e.g., pornography, anti-society) !(47) 18 !(1) !(6) 4 !(8) 14 !(21) !(15)
inconsistency between functionality and description 15 5 !(0) 2 3 8 !(1) 8 !(1)

Total # of apps with undesired behaviors 1025 625 338 422 237 463 257 1382 274

Total # of apps with undesired behaviors (declared policies) 731 537 318 365 210 460 211 1233 274

Total # of apps with undesired behaviors (undeclared policies) 891 433 90 219 178 36 191 654 0

the corresponding webpages. In total, we have collected 599
policies. Note that the developer policies of Google Play were
in English, while the other market policies were in Chinese.
Google Play has more complete and fine-grained policies than
any of the third-party app markets.

Summary of Undesired Behaviors. As the policies defined
by each market vary greatly (some are coarse-grained and some
are fine-grained), it is non-trivial to automatically classify them.
Thus, the first two authors of this paper manually went through
these policies, and classified them into 5 main categories,
including 26 distinct undesired behaviors. Table II shows
the taxonomy of the summarized undesired behaviors, and
the distribution of the corresponding policies across markets.
Note that one behavior may correspond to one or more
market policies. We observe that all of the undesired behavior
regulations can be found in Google Play. As for the third-party
markets, Vivo and Xiaomi have declared policies related to
the most types of undesired behaviors, covering 21 and 20
behaviors respectively. We believe that this taxonomy covers
most of the commonly observed undesired behaviors. Even
though it may still be incomplete, our approach is generic
and can be adapted to support new behaviors and different
granularities of behaviors (see Section VII).

III. AUTOMATED CLASSIFICATION OF UBCOMMENTS

A. Overview

Figure 2 shows the overview of CHAMP, which builds a
training dataset of user comments (the training dataset building
phase), extracts semantic rules from the labelled comments
(the semantic rule extraction phase) and uses the rules to
identify and classify UBComments (the detection phase). The
major reason why we prefer semantic rules instead of text
similarity is that most comments are short and often use a few
key phrases in specific orders such as “icon disappears”, while
semantic rules have shown promising results in identifying
sentences with specific purposes [36], [37], [38]. On the
contrary, text similarity approaches based on word similarity
without emphasis on key phrases are optimized for general
purposes, and thus these approaches require extra tuning
to focus on certain words that play important roles in the
sentences of market policies [39], [40], [41]. Additionally,
these approaches generally require a substantial amount of
labelled samples to train the weights, which is less effective
in our context due to the limited number of labelled samples.

¶ In the training dataset labelling phase, we collect the
comments of the apps from Google Play and 8 third-party app
markets, and resort to text clustering model to help to label
the user comments. In the topic modeling and topic labelling

Semantic
Rule

Generation

Topic
Modeling
and Topic
Labelling

Comment
Classification

Labelled
Topics

User
Comments

Behavior
Identification

Behavior 1

Behavior 2

Behavior N

√

√

×

Semantic Rule Extraction PhaseTraining Dataset Building Phase Detection Phase

Market
Policies

Semantic
Rule

Checking
User

Comments

Classified
Comments

Labelled
Comments

Word
Segmen-

tation

Keywords
Extraction

Manual
Inspection

Fig. 2. Overview of CHAMP.

step, we first merge the market policies that describe a same
undesired behavior into a single document (26 documents
in total). Then, CHAMP applies a short-text topic modeling
algorithm [42], [43], [44], [45] to identify a set of topics,
where each topic contains a set of words. At last, CHAMP
labels each topic with related undesired behavior based on the
similarity between the documents of policies and the words
in the topics. In the comment classification step, CHAMP
uses the labelled topics to classify each comment into related
undesired behaviors. We further manually inspect the classified
comments to confirm whether these comments are related
to the corresponding undesired behavior. This is necessary
because we could only classify each comment based on the
keywords with the highest weight under each topic, which may
introduce false positives. For example, if a comment contains
the keyword “notification”, it is considered to be likely to
related to the behavior “ads in notification bar". However, the
word “notification” may also appear in comments that talk about
alerts and notifications (e.g., notifications and alerts for weather
apps). · In the semantic rule extraction phase, CHAMP applies
a generation algorithm on the labelled comments and generates
semantic rules for each undesired behavior automatically.¸
In the detection phase, CHAMP accepts user comments as
input, and uses the semantic rules to classify comments into
the undesired behaviors defined in market policies.

B. Training Dataset Labelling

Training Dataset. To label training dataset, we randomly
select 2% of the comments for each app in our dataset
(discussed in § IV). In total, we extract 70,000 comments,
including 15,000 English comments and 55,000 Chinese
comments. Note that these comments were used separately for
training two models for both English and Chinese comments.

Topic Modeling and Topic Labelling. Unlike traditional
documents (e.g., news articles), the descriptions of undesired
behaviors in market policies consist of only one or a few short
sentences. Thus, the lack of rich context makes it infeasible
to use the topic modeling algorithms such as PLSA [46] and
LDA [47], which implicitly model document-level word co-
occurrence patterns. To address this problem, we apply BTM
(biterm topic model) [42], a widely used model for short-text

topic modeling, to learn the set of topics for market policies.
BTM explicitly models word co-occurrence patterns using
biterms, where each biterm is an unordered word-pair co-
occurred in a short context. The output of BTM are a set
of topics where each topic consists of a list of words and
their weights. For each topic z, BTM draws a topic-specific
word distribution φz ∼ Dir(β), and draws a topic distribution
θ ∼ Dir(α) for all of the documents, where α and β are
the Dirichlet priors. For each biterm b in the biterm set B, it
draws a topic assignment Z ∼Multi(θ) and draws two words
(wi, wj) ∼Multi(φz), where wi and wj are words appearing
in the same document. Following the above procedure, the
joint probability of a biterm b = (wi, wj) can be written as:

P (b) =
∑
z

P (z)P (wi|Z)P (wj |Z)

thus the likelihood of all the documents is:

P (B) =
∏
(i,j)

∑
z

θ(z)φi|zφj|z

We conduct topic modeling based on the merged English
and Chinese policies, respectively. We set the number of topics
as 26, which corresponds to the number of undesired behaviors.
CHAMP then labels the proper undesired behaviors for the
topics by computing the probability of each document being
allocated to each topic. It assumes that the topic proportion of
a document equals to the expectation of the topic proportion
of generated biterms during topic modelling:

P (z|d) =
∑
b

P (z|b)P (b|d),

where z represents topic, b represents biterm and d represents
document. p(z|b) can be calculated via Bayes formula based
on the parameters estimated in BTM:

P (z|b) =
θzφi|zφj|z∑
z
θzφi|zφj|z

TABLE III
REPRESENTATIVE STOPWORDS USED IN CHAMP.

Removed
Stopwords

Added
stopwords

miss, high, ask, give,
can not, how, able, stop,

without, allow, obtain, other

god, sex, s**t, s**d,
silly, blah, r**h, d**n,
d**b, da*n, horrible

p(b|d) can be estimated by the empirical distribution of biterms
in the document, where nd(b) is the frequency of the biterm b
in the document d:

p(b|d) = nd(b)∑
b

nd(b)

At last, CHAMP selects the highest score of P(z|d) and
labels the proper undesired behaviors for each of the 26 topics.

Comment Classification. CHAMP then classifies each
comment into related topics. It computes the probability of
each comment being allocated to each topic. If the probability
is above a certain threshold, CHAMP considers that the
comment is related to the topic. We follow the same empirical
approach [43], [44], [45] to set the threshold, and find that 0.6
is a good indicator. In total, we obtain 9,228 comments that
are related to 26 distinct behaviors.

Manual Inspection. Considering that the automated classi-
fied comments may be not related to the undesired behaviors
(see § III.A), we further manually inspected the comments
that are classified into related topics to confirm whether these
comments are UBComments. Besides, if a comment is related
to more than one behavior, we split the comment into several
sentences and each sentence is related to a kind of undesired
behavior. Two authors inspect the comments independently. For
the disagreements of category labelling, a further discussion is
performed. Eventually, we obtained 8,275 comments that are
related to 25 distinct behaviors. After splitting some comments,
we obtained 9,057 labelled comments in total, which will be
used for semantic rules generation. Note that we did not find
any comments that are related to the behavior of “browser
setting alteration”.

C. Automated Semantic Rule Extraction

Based on the labelled comments, given a new comment,
the goal of CHAMP is to determine whether the comment
describes the same or similar behavior as the labelled comments.
To achieve this goal, we propose to automatically extract
semantic rules from the labelled comments for each undesired
behavior. Firstly, for each undesired behavior, CHAMP extracts
and sorts the representative words from the related comments.
Then, CHAMP analyzes the relations of the keywords by merg-
ing the keywords that usually appear in the same comments.
After that, we can get one or more keyword sets containing
different representative keywords. At last, CHAMP generates
semantic rules for each keyword set by combining keywords
and calculating the distance constraints of the keywords.

Word Segmentation. In this step, CHAMP groups the
comments related to each undesired behavior into a corpus (25
corpora in total). For each corpus, it segments the comments
into words, removes meaningless words and sorts the remaining
words in descending order based on the TF-IDF [48] weighting
to generate a word list WordList. Stopwords are the words
considered unimportant in text analysis tasks. Thus, we take
advantage of the stopword lists provided by HIT [49] and a
public English stopwords list “stopwords-iso” [50]. However,
we find that the general stopword lists cannot well fit the app
comment study. On one hand, when some traditional stopwords
(e.g., can) are combined with other words, they become key
phrases for describing undesired behaviors in user comments.
For example, the comment “always have to download other
apps” is related to the undesired behavior “drive-by download”,
thus the traditional stopwords “always” and “other” should
not be removed. We summarized and removed 29 stopwords
(including 14 English stopwords and 15 Chinese stopwords)
that are important for describing undesired behaviors from the
stopwords list. On the other hand, existing research found that
there exist noises and spams (e.g., offensive comments) in app
comments, which are meaningless for describing undesired
behaviors. Therefore, we adapt the selected stopword list and
add over 50 new stopwords that are regularly appeared in user
comments. The representative stopwords are shown in Table III
(offensive words are sanitized).

Representative Keywords Extraction. The goal of this
step is to identify the most representative keywords that can
cover the labelled comments in a given corpus. Thus, for each
keyword in the WordList of a given corpus, CHAMP first
collects the comments in the corpus that contain the keyword
and adds them into a comment set ComtSetword. Then, a
traversal operation begins to select the keywords in order (based
on TF-IDF weight) and compare the ComtSetword of different
words. For the comment set ComtSetwordm

of the m-th word
wordm in the WordList, if part of the comments in it are
overlapped with the comments in the n-th word’s (n < m)
comment set ComtSetwordn , CHAMP will merge wordm and
wordn into a keyword set. Otherwise, CHAMP will assign the
word wordm into a new keyword set. Note that, the traversal
operation will stop if the union set from ComtSetword1

to
ComtSetwordm

contains all of the labelled comments in the
corpus. Based on the traversal operation, CHAMP could extract
one or more keyword sets for each corpus.

Semantic Rule Generation. For each of the extracted
keyword sets in a corpus, CHAMP automatically generates
semantic rules. We observe that a behavior can be generally
described by two keywords of different part-of-speech [51]
in a comment. For example, the verb “steal” and the noun
“money” in the comment “it steals money from the credit
card!!!” are related to behavior “payment deception”. Another
example, the adverb “how” and the verb “uninstall” in the
comment “who can tell me how to uninstall this app” are
related to behavior “fail to uninstall”. Thus, for the extracted
keyword sets, CHAMP combines the keywords of different
part-of-speech pairwise. Furthermore, we observe that most

TABLE IV
REPRESENTATIVE SEMANTIC RULES FOR 4 BEHAVIORS.

Behavior semantic rules

virus
{virus, null, null}
{trojan, null, null}

{malware, null, null}

ads in notification bar

{notification, ads, 3}
{notification, full, 2}

{remove, notification, 4}

permission abuse

{ask, permission, 5}
{require, permission, 6}

{unnecessary, permission, 2}
{need, permission, 6}
{want, permission, 7}

UBComments are short and often include key phrases in specific
orders. Therefore, the semantic rules not only contain key-
words but include order and distance constraints on matching
the keywords. For two keywords keywordu and keywordv
(ComtSetu ∩ ComtSetu 6= ∅), CHAMP will generate
two semantic rules {keywordu, keywordv, constraints} and
{keywordv, keywordu, constraints}, the constraints is used
to limit the distances of these two keywords. For example,
semantic rule {ask, permission, 3} means that “ask” appears
before “permission” and their distance is less than 3 words.
CHAMP automatically calculates the F1-score under different
distance constraints (we set it range from 1 to 20) for each
semantic rule, and select the best one. Note that, if all of
the keywords in a keyword set are noun, each keyword will
generate a semantic rule {keyword, null, null}.

Eventually, CHAMP generates 320 semantic rules for the
26 undesired behaviors in total (the list of rules can be found
in [26]), in which 136 semantic rules are for English comments
and 184 semantic rules are for Chinese comments. Note that
there are no comments related to the behavior of “modify
browser setttings” and thus we use the description in the
related policies to extract semantic rules (4 rules in total). The
major differences between Chinese comment rules and English
comment rules are synonyms. Synonyms in Chinese are more
frequently used than in English, leading to more rules for some
undesired behaviors. For example, two keywords “uninstall”
and “remove” of the semantic rules for behavior “fail to
uninstall” are generated in English comments, while CHAMP
has extracted 5 synonyms of these two keywords in Chinese
comments. Table IV shows representative semantic rules for 3
undesired behaviors in English comments (the complete set of
rules can be found at Github [26]). As our semantic rules are
trained to detect similar sentences that describe the behaviors
in the policies, thus the detected sentences are all high quality,
which will be evaluated in § V.

D. Semantic Rule Checking

Based on these semantic rules, CHAMP classifies each
comment into a type of UBComments or others. Given a
comment, CHAMP first removes the stopwords and performs
word segmentation [52] to extract words from the comment.

CHAMP then applies the semantic rules one by one to
determine whether the comment matches any rules. It searches
the extracted words to see whether the keywords appear in
the extracted words and checks the order and distance of
successful matching keywords to determine whether they meet
the constraints of the semantic rules. As shown in Fig. 1, the
motivating app violates two behaviors, i.e., “ads in notification
bar” and “virus”. Based on the rules defined in Table IV,
CHAMP determines that the first comment “too many ads, ...,
the notification bar is full of ads” matches 2 semantic rules of
the undesired behavior “notification bar”, since the comment
has the keywords of “notification” , “ads” and “full”. Similarly,
the other comment contains the keyword of “virus” and thus
matches the undesired behavior “virus”.

IV. STUDY DESIGN

A. Research Questions

We seek to answer the following research questions (RQs):
RQ1 How effective is CHAMP in detecting UBComments?

As we aim to apply CHAMP to extract UBComments in
the wild, It is necessary to first evaluate the effectiveness
of CHAMP on extracting undesired behaviors using a
benchmark dataset.

RQ2 What kinds of undesired behaviors can be perceived
by users? It is important to explore to what extent we
can infer undesired behaviors from user comments, and
which behaviors can be perceived by users.

RQ3 How well do the policies in each app market capture
the undesired behaviors reflected by user comments?
As each app market has its own policies, we want to know
whether they are effective in flagging undesired behaviors
during the app vetting process. App markets with weak
app vetting processes are more likely to be exploited.

B. Dataset

1) Collecting App Candidates: To answer the RQs, we first
need to harvest a comprehensive dataset that covers as many
undesired behaviors as possible. We take advantage of existing
efforts, and use a large-scale Android app repository [1]. This
repository contains over 6.2 million app items collected from
Google Play and 17 third-party app markets. The dataset also
provides the detection result of VirusTotal [25], a malware
analysis service that aggregates over 60 anti-virus (AV) engines.
To better understand the distribution of UBComments across
apps with different maliciousness levels, we classified our app
candidates into 3 categories: malware, grayware and benign
apps. As previous studies [53] suggested that some AV engines
may not always report reliable results, we regard the apps
labeled by over half of the AV engines (>30) as malware, which
is supposed to be a reliable threshold by previous work [53].
We consider apps flagged by no AV engines as benign apps,
and the other apps as grayware. This roughly classification
of malware and grayware might not be accurate enough, but
this is not the focus of this paper. As the number of reported
engines can be used as an indicator of the maliciousness of
the apps, we only want to study the diversity across apps with

TABLE V
OVERVIEW OF OUR COMMENT DATASET.

Market Malware Grayware Benign Apps
apps # comments # apps # comments # apps # comments

360 Market [28] 625 33,432 399 205,383 457 161,286
Huawei [29] 144 11,193 388 212,452 296 84,221
Lenovo [30] 184 4,545 252 34,897 225 23,976
Meizu [31] 232 6,766 256 181,212 201 139,662
Oppo [32] 134 16,765 163 503,574 94 76,295
Vivo [33] 196 18,894 266 211,453 295 85,996
Xiaomi [34] 297 32,343 111 177,852 64 60,571
Tencent Myapp [35] 1117 69,044 477 250,649 481 131,949
Google Play [27] NA NA 253 183,256 556 311,795
Total 2,027 192,982 1,416 1,960,728 1,713 1,075,751

different levels of maliciousness. We randomly selected 10,000
target app candidates (8,400 Chinese apps and 1,600 Google
Play apps) from the dataset of Wang et al. [1], including 4,000
malware, 3,000 grayware and 3,000 benign apps. Note that the
1,600 Google Play apps include 1,000 benign apps and 600
grayware, as all the malware samples were removed by Google
Play and we cannot get their comments (NA in Table V).

2) Harvesting the User Comments: All the app markets
we studied only provide a limited number of user comments.
For example, Google Play review collection service [54] only
allows reviews of last week to be crawled for each app. Instead,
we built the comment dataset using two alternative approaches.
For the 8,400 apps we selected from the Chinese markets,
we resort to a third-party app monitoring platform named
Kuchuan[55], which has maintained the app metadata including
comments from all the Chinese markets we studied. For the
1,600 apps from Google Play, we developed an automated tool
to continuously fetch the user comments everyday within the
span of 3 months. Table V shows the distribution of collected
comments. In total, we have collected over 3.2 million user
comments from 5,156 apps1, including 192,982 comments from
2,027 malware, 1,960,728 comments from 1,416 (including
1,163 Chinese apps and 253 Google Play apps) grayware and
1,075,751 comments from 1,713 (including 1,157 Chinese apps
and 556 Google Play apps) benign apps. This dataset will be
used in the large-scale measurement study (see § VI).

V. EVALUATION OF CHAMP

A. Benchmark Datasets

We curated two benchmark datasets (English and Chinese) to
evaluate CHAMP. We first select the apps which are confirmed
to have undesired behaviors in the training dataset (see § III-B).
For each app, we exclude the comments already used in training
dataset. At last, two authors of this paper manually inspected
and labelled these comments. Within our affordable efforts,
we aim to collect and label 50 comments for each undesired
behavior, except for some behaviors with few related apps.
Figure 3 shows the distribution of our benchmark (901 Chinese
comments and 618 English comments). Note that we cannot
find comments for the behavior “browser setting alteration”.

1Note that, for the selected 10K app candidates, over 4,000 of them have
no user comments or very few user comments, which were discard by us.

B. RQ1: Effectiveness of CHAMP

1) Overall Results: Table VI shows the evaluation results.
It shows that CHAMP is very effective in identifying
UBComments. The average precision and recall are 95% and
93% for the Chinese benchmark, and 97% and 98% for the
English benchmark. In particular, CHAMP achieves 90+% of
precision and recall for 20 out of 26 types of UBComments.

2) False Positives/Negatives: We further manually analyze
the mis-classified comments and obtain two observations. First,
the false negatives are colloquial expressions instead of phrases.
For example, the comment “A window of card application pops
up continuously” is describing the behavior “ad disruption”.
But the key phrase “ad” is not in it. Moreover, if we add a
new semantic rule with the phrases “window” or “pop up”, it
may lead to other false positives. Second, the false positives
are generated owing to our insufficiently conservative rules.
For example, the comment “The app is completely useless,
btw I thought that this built-in app can not be uninstalled, but
it succeeded.” is irrelevant to undesired behaviors. However, it
is classified to the behavior “fail to uninstall” since it has the
phrases “can not” and “uninstall”. Analogously, if we upgrade
our rules to be more conservative, it may lead to more false
negatives. These are the inherent limitations of rule-based
matching methods. We will further discuss it in § VII.

3) Comparison with Text Similarity Approach: We compare
CHAMP with the text similarity approach, which classifies
a comment to a type of undesired behavior based on text
similarity between the comment and the classified comments
in the training dataset (see § III-B). We regard the behavior
with the highest similarity score as the classification result.

As shown in Table VI, CHAMP achieves significantly
better results than the text similarity approach. The average
precision and recall achieved by the text similarity approach
are 85% and 81% (v.s. 95% and 93% achieved by CHAMP)
for the Chinese comment dataset, and 77% and 85% (v.s. 97%
and 98% achieved by CHAMP) for the English comment
dataset, respectively. In particular, CHAMP outperforms the
text similarity approach on all behaviors. Such results indicate
that the order and distance constraints adopted by our semantic
rules can greatly reduce the false positives/negatives. For
example, the comment “I can not install the app” is similar to
“I installed but it can not help me back up files” considering
their text similarity, but they are describing different types of
undesired behaviors. CHAMP correctly distinguishes these
two comments while the text similarity approach classifies both
of them to the same type of undesired behavior.

VI. LARGE-SCALE MEASUREMENT STUDY

A. RQ2: UBComments in the Wild

1) Overall Results: From the dataset we harvested (see
§ IV), CHAMP identifies 94,028 UBComments, belonging
to 2,440 apps (47%). Each app has received 39 UBCom-
ments from multiple users on average. This indicates that
UBComments are prevalent in the mobile app ecosystem, and
the users who are sensitive to those policy violations are

0
10
20
30
40
50
60

#
 o

f
La

b
e
lle

d
 C

o
m

m
e
n

ts Chinese English

Fig. 3. Distribution of labelled benchmarks.

TABLE VI
EVALUATION RESULTS ON THE BENCHMARK DATASETS (BEST RESULTS ARE SHOWN IN BOLD).

Category Behavior
Benchmark (Chinese) Benchmark (English)

CHAMP Similarity-Based Tool CHAMP Similarity-Based Tool
precision recall F1 precision recall F1 precision recall F1 precision recall F1

Functionality and
Performance

fail to install 96% 94% 95% 87% 90% 88% 83% 100% 91% 71% 100% 83%
fail to retrieve content 100% 100% 100% 89% 67% 76% 96% 98% 97% 85% 80% 82%

fail to uninstall 100% 96% 98% 91% 92% 91% 100% 100% 100% 63% 100% 77%
fail to start (e.g., crash) 98% 96% 97% 88% 88% 88% 96% 96% 96% 85% 82% 84%

bad performance (e.g., no responding) 88% 94% 91% 86% 91% 88% 91% 97% 94% 80% 77% 79%
fail to login or register 98% 98% 98% 87% 90% 88% 96% 100% 98% 87% 90% 88%

fail to exit 93% 93% 93% 81% 93% 87% 100% 100% 100% 100% 100% 100%
powerboot 83% 83% 83% 83% 83% 83% NA NA NA NA NA NA

Advertisement

drive-by download 100% 94% 97% 75% 85% 80% 100% 98% 99% 73% 73% 73%
ad disruption 100% 100% 100% 73% 64% 68% 100% 100% 100% 69% 70% 69%

add shortcuts in launching menu 100% 100% 100% 100% 78% 88% NA NA NA NA NA NA
ads in notification bar 96% 96% 96% 55% 96% 70% 100% 100% 100% 50% 100% 67%

Security

virus 100% 98% 99% 100% 86% 93% 100% 100% 100% 100% 88% 94%
privacy leak 98% 94% 96% 88% 85% 86% 96% 96% 96% 85% 82% 84%

payment deception 100% 91% 95% 92% 87% 90% 98% 96% 97% 91% 79% 85%
illegal background behavior (e.g., sms) 91% 91% 91% 73% 76% 75% NA NA NA NA NA NA

excessive network traffic 98% 98% 98% 90% 90% 90% 100% 100% 100% 80% 80% 80%
hidden app 100% 100% 100% 100% 67% 80% 100% 100% 100% 100% 100% 100%

illegal redirection 88% 85% 87% 88% 78% 82% 92% 100% 96% 75% 82% 78%
permission abuse 92% 80% 86% 86% 80% 83% 100% 96% 98% 89% 84% 87%

illegitimate update (e.g., update to other app) 87% 87% 87% 86% 80% 83% NA NA NA NA NA NA
browser setting alteration NA NA NA NA NA NA NA NA NA NA NA NA

Illegitimate Behavior
of Developers

app repackaging 85% 92% 88% 78% 86% 82% 97% 100% 99% 65% 65% 65%
app ranking fraud 96% 98% 97% 83% 80% 82% 83% 100% 91% 69% 73% 71%

Content vulgar content (e.g., pornography, anti-society) 100% 87% 93% 85% 73% 79% 100% 92% 96% 95% 84% 89%
inconsistency between functionality and description 100% 91% 95% 83% 45% 59% 100% 100% 100% 33% 50% 40%

TABLE VII
DISTRIBUTION OF UBComments BY CATEGORIES.

Category #Comment (%) #App (%)
Functionality/Performance 57,541 (61%) 1701 (70%)

Advertisement 22,885 (24%) 1023 (42%)
Security 13,765 (15%) 1098 (45%)

Illegitimate Behavior 1,129 (1%) 173 (7%)
Content 536 (0.5%) 72 (3%)

Total 94,028 2,440

willing to report them in the comments. Table VII shows
the distribution of UBComments and apps across different
categories of behaviors. Over 61% of the UBComments and
over 70% of the corresponding apps were complained to have
“functionality and performance” issues. This shows that users
are most sensitive to the issues that directly affect their uses of
the apps. For the 26 behaviors we summarized, 25 of them
could be perceived by users. The most popular behaviors of

UBComment are “fail to start”, “ad disruption”, and “payment
deception”, accounting for 79.4% of the UBComments. Both
“fail to start” and “ad disruption” are related to user experiences,
while “payment deception” shows users’ security concerns.

Manual Verification of Undesired Behaviors. To analyze
whether the undesired behaviors described in user comments
reflect the real behaviors of mobile apps, we make effort
to perform a manual verification here. For each of the 25
identified perceived behaviors, we randomly select three apps
(75 apps in total) and manually verify if indeed the apps
violated the policies as described. Our manual verification
follows a series of steps. We first install them on smartphones
to see whether they have shown undesired behaviors as user
complained (e.g., ad disruption and malicious behaviors, etc.).
Then we rely on Testin [56], a service that provides app
testing on thousands of real-world smartphones, to check
the functionality and performance issues (e.g., fail to start
and fail to install). Furthermore, we leverage static analysis

TABLE VIII
DISTRIBUTION OF UBComments BY RATING STARS.

Dataset 1-star 2-star 3-star 4-star 5-star

Malware 28.14% 17.70% 9.09% 3.85% 2.16%

Chinese Grayware 23.36% 16.22% 9.23% 4.37% 0.64%

Chinese Benign Apps 25.38% 17.58% 10.07% 5.95% 0.96%

GPlay Grayware 6.50%
(14.28%)

0.05%
(0.07%)

0.03%
(0.04%)

0.02%
(0.02%)

0%
(0%)

GPlay Benign Apps 1.96%
(8.64%)

0.33%
(0.92%)

0.15%
(0.25%)

0.07%
(0.10%)

0.01%
(0.02%)

Total 19.45% 12.15% 6.69% 2.78% 0.71%

tools (e.g., LibRadar [57] and FlowDroid [58]) to extract and
inspect behavior-related app information (e.g., sensitive code,
permissions and libraries). At last, for the apps in behavior “app
ranking fraud”, we compare their comments based on existing
approaches proposed in [59], [60] to find fake comments.
Overall, 72 apps (96%) have been confirmed with the undesired
behaviors as user commented. For the 3 unconfirmed cases
(one in the vulgar content category, and two in the payment
deception category), our dynamic analysis found that their
services have stopped and our static analysis failed due to they
have adopted heavy obfuscation and code protection using
packing services. Nevertheless, we show that most of the
undesired behaviors can be confirmed.

2) Low-rating Comments vs. High-rating Comments (RQ2.1):
We study the distribution of UBComments across comments
with different ratings (from 1-star to 5-star).

Quantitative Analysis. As shown in Table VIII, it is appar-
ent that low-rating comments (i.e., 1-star and 2-star) are
more likely to describe undesired behaviors. UBComments
account for roughly 20% and 12% for the 1-star comments
and the 2-star comments, and 2.78% and 0.71% for the 4-
star and the 5-star comments, respectively. Note that the
proportion of UBComments in Google Play is much lower
than that of Chinese markets. The major reason is that the
crawled comments from Google Play contain a large amount of
blank comments, i.e., the comments with only a rating but no
descriptions. We further eliminate such comments and report
the result (see the percentage in brackets in Table VIII).

Qualitative Analysis. As shown in Figure 4, the distribu-
tions of UBComments in Chinese markets and Google Play
show great diversity, and thus we discuss them separately.

For app comments in Chinese markets, the distribution of
undesired behaviors does not show much diversity across
UBComments with different ratings. Behaviors of the “Func-
tionality and Performance” and “Advertisement” types are
most prevalent across all the ratings, with the “Fail to start”
and “Ad disruption” types are quite noticeable. Moreover,
we find that security related behaviors are prevalent in both
low-rating and high-rating comments of malware, but only
prevalent in low-rating comments of grayware and benign apps.
It is quite surprising that users complain about the security
issues (e.g., payment deception) but give the app (malware) a
high rating. Thus, we make efforts to manually examine all

such “contradictory” comments (21,859 in total), and identify
two major reasons. First, the default comment rating of most
Chinese app markets is 5-star, thus a number of users may only
complain the app in the comments but forget to assign a rating.
Second, it is quite possible that some users misunderstand the
meanings of 1-star and 5-star. For example, we find that several
users assign totally opposite ratings in all their comments, i.e.,,
1-star with really good comments, but 5-star with negative
comments, including the UBComments. It suggests the poor
knowledge of the rating system for market users, and the
new challenges in analyzing the comments of third-party app
markets. Nevertheless, CHAMP can reveal how the users feel
about their experiences, and even could improve the techniques
of app risk assessments based on user comments [61], [20].

In Google Play, the distribution of UBComments in low-
rating comments and high-rating comments are quite different.
Users generally give 1-star in their comments when they find
undesired behaviors in the app, even if the behaviors do not
belong to the “security” category. We only find a few comments
that are related to the “vulgar content” type in other comments.
This might be due to the high-quality market which pays
more attention to policy regulations, and this more mature and
regulated ecosystem enables users to better comprehend the
ratings when providing comments.

3) Malware vs. Grayware vs. Benign Apps (RQ2.2): For Chi-
nese markets, over 42% of malware samples have UBComments,
and they have occupied 7% of the comments. As a contrast, over
57% of benign app samples and 57% of grayware samples have
UBComments, and the percentages of these comments are 4%
and 3%, respectively. For Google Play, over 32% of benign apps
and 38% of grayware apps have UBComments, and they account
for 0.3% and 1% of the overall comments (0.6% and 1.5%
after removing the empty ones from the overall comments),
respectively. In general, one would think that malicious apps
have more UBComments than gray and benign apps, as their
behaviors are more likely to inconsistent with users’ expectation.
However, the results are different for what we expected, i.e.,
the percentage of UBComments does not show much difference
across malware, grayware and benign apps. There are mainly
two reasons. First, the policy-violation behaviors of two major
types, “Functionality and Performance” and “Advertisement”,
are prevalent in both malicious and benign apps, e.g., over
74% of the UBComments in third-party benign apps are
related to “Functionality and Performance”. Second, some
malware samples were removed in time by markets, and
thus malicious apps have not received much complaints than
expected. Note that the security-related undesired behaviors
show different distributions across malicious, gray, and benign
apps (see Figure 4). As to Chinese markets, over 27% of the
UBComments belong to the security category for malware,
while the percentages for grayware and benign apps are 14%
and 9%. As to Google Play, over 31% of the UBComments
in grayware are security related (V.S. 16% in benign apps).
Furthermore, we observe that many user-perceived undesired
behaviors (including security-related ones) were found in
both malware and “benign apps”. It suggests that some

Malware

Grayware
（Chinese Markets）

Benign Apps
（Chinese Markets）

Benign Apps
（Google Play）

Grayware
（Google Play）

43.28 26.90 27.50 2.55

Functionality and Performance Advertisement Security Behavior of
Developers

Content

0.66

60.30 27.06 14.65 1.11 0.29

74.33 19.00 9.36 0.90 0.39

33.28 33.53 31.77 2.01 1.16

37.76 31.56 16.71 0.89 17.40

overall

overall

overall

overall

overall

Fig. 4. Distribution of UBComments across different ratings (y-axis) and undesired behaviors (x-axis) in different app categories. Each row adds up to 100%,
with each cell representing the percentage of a specific undesired behavior in the UBComments for a specific rating (e.g., 5 stars) in an app category (e.g.,
Malware). The depth of the color is also used to indicate the percentage in the cell, i.e.,, a deep color indicating a large percentage. For each app category, a
behavior category box represents the UBComments of a specific behavior category (e.g., Security), and the number below the box shows the percentage of the
UBComments in that behavior category.

malicious behaviors are hard to detect by AV engines but
user comments could provide insights for capturing them.

B. RQ3: Undesired Behaviors Across Markets

We perform market-level analysis to investigate the differ-
ences across markets. On one hand, for the undesired behaviors
declared in the policies of each market, we seek to measure
how many such behaviors have been identified in our dataset.
This result could be used to measure the effectiveness of
market regulation, i.e., how many of these undesired apps have
bypassed the corresponding auditing process. On the other hand,
for other undesired behaviors that were not declared in the
policies of a market, we seek to explore whether we could find
such behavior related comments in the corresponding markets.

Table II shows the results. Roughly 34% to 65% of the
apps (the numbers in bold) from each market have found
comments for undesired behaviors described in each of their
market policies. Over 65% of the apps in Huawei Market have
violated its market policies, while the percentage of such apps
in Google Play is 34%. From another point of view, roughly
5% to 60% of the apps (besides Google Play, as it covers all the
behaviors we summarized in this paper) have been complained
of having undesired behaviors that are not captured by the
markets’ policies. For example, over 60% of the apps in the 360
Market have undesired behaviors that are not listed in its market

policies. This may open doors for malicious developers to
exploit the insufficient vetting process.

VII. DISCUSSIONS

A. Relation with Program Analysis

A large number of papers were focused on using program
analysis to detect the security [62], [63], [64], privacy [65],
[66], [38], [67], [68], ads/third-party library [57], [9], [69],
[11], and functionality issues [70], [71], [72], [73], [74] of
mobile apps. In contrast, this paper focuses on a different
perspective, i.e., how the users feel about their experiences.
Users’ expectations play a big role on how much the users can
tolerate the apps’ behaviors.

First, although program analysis could be adopted to identify
whether some sensitive behaviors exist in mobile apps, it
is non-trivial to verify whether the behaviors violate the
policy. The borderline between policy-violation and toler-
able misbehaviors is fuzzy and highly dependent on users’
subjective expectations. For example, program analysis can
easily identify ad libraries used in apps. However, aggressive
mobile ads cannot be simply conflated with the detection
of ad libraries. The detection of ad libraries, enabled by
program analysis techniques, cannot take what users really
feel about the ads into consideration. Second, a number of
the policy-violation behaviors, e.g., payment deception and

vulgar content, are difficult to be triggered and detected
by program analysis techniques. However, they are indeed
much easier revealed by user comments.

Thus, CHAMP is complementary to program analysis,
which can provide insight to identify the boundary between
policy-violation behaviors and tolerable misbehaviors. In-
stead of identifying the policy-violation behaviors directly,
CHAMP can serve as a whistle blower that assigns policy-
violation scores and identifies most informative comments for
apps (e.g., putting security related comments at top). Note
that, not all the apps with UBComments should be removed
by the app market. App vetting is aimed at promoting the
overall quality of apps in the market. Thus, app markets would
generally give developers warnings and buffer time to fix
undesired behaviors in their apps (rather than removing them
directly). With the help of CHAMP, it will be possible to
pinpoint more urgent violations accurately, such as security-
related ones, so that the markets could choose their reaction
accordingly.

B. Threats to Validity

First, the taxonomy we summarized may be incomplete. Al-
though we have manually summarized 26 undesired behaviors,
our taxonomy may still be incomplete since it was built based
on current policies. However, our approach is generic and can
be reused to support the detection of new types of undesired
behaviors. Second, our approach inherits the drawbacks of
rule-based approaches. Though our approach was proven to
be quite effective during our evaluation, the semantic rules we
summarized may not be complete and could introduce false
positives/negatives as mentioned in Section V-A. Nevertheless,
market policies are rarely updated. Furthermore, our approach
has strong expansibility of extracting new semantic rules
for emerging app store policies. When policies evolve, new
training can be performed to obtain new rules. Note that
only the training process is semi-automated, as we need to
manually label the classified comments. Our rules are extracted
automatically from the labelled comments, which can be
applied to identify UBComments automatically. Third, we are
not able to verify all the undesired behaviors for all the apps
we identified. We only sample 75 apps for manual verification,
and found 96% of them can be confirmed. We found most of
the behaviors cannot be easily identified using automated tools,
that is the reason why UBComments are prevalent even though
these apps have already passed the market vetting process.
This motivates the research community to develop better tools
for identifying such behaviors. Nevertheless, as aforementioned
(see Section VII-A), instead of identifying the policy-violation
behaviors directly, CHAMP could raise alarm based on the
number of undesired comments and reported users.

VIII. RELATED WORK

To the best of our knowledge, our paper is the first
one that identifies undesired behaviors from user comments.
Nevertheless, there are a number of studies focusing on app
comments from different perspectives. We present and discuss

briefly related works on (1) general app comment analysis, and
(2) using NLP techniques in mobile app analysis.

App Comment Analysis. Mobile app comments have been
extensively studied from other perspectives, including mining
user opinions [75], [76], [77], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87], app comment filtering [88], [79],
[89], and exploring other concerns [90], [91], [92], [93], [94].
For example, Chen et al. [88] pioneered the prioritization of
user comments with AR-Miner. Chen et al. [91] conducted a
study on the unreliable maturity content ratings of mobile
apps, which will result in inappropriate risk exposure for
the children and adolescents. Nguyen et al. [90] proposed to
analyze the relationship between user comments and security-
related changes in Android apps. Kong et al. [20] presented a
machine-learning technique to identify 4 pre-defined types of
security-related comments. Although app comments have been
extensively studied from other perspectives, none of the above
work correlates user comments to the undesired behaviors
described in market policies and none of them can be easily
adopted/extended to study this issue.

NLP in Mobile App Analysis. Besides user comments, NLP
techniques have been widely adopted to study app descriptions,
privacy policies, and other meta text information related to
mobile apps. Whyper [38] and Autocog [95] adapt NLP
techniques to characterize the inconsistencies between app
descriptions and declared permissions. PPChecker [96] is a
system for identifying the inconsistencies between privacy
policy and the sensitive behaviors of apps. CHABADA [97]
adapts NLP techniques to cluster apps using description topics,
and then identifies the outliers of API usage within each cluster.
Our work is the first to investigate the correlation between user
comments and market policies.

IX. CONCLUSION

We present the first large-scale study to investigate the
correlation between user comments and market policies. In
particular, we propose CHAMP, a semantic-rule based ap-
proach that effectively identifies UBComments. We apply
CHAMP to a large scale user comment dataset and observe that
UBComments are prevalent in the ecosystem, even though app
markets explicitly declared their policies and applied extensive
vetting. CHAMP offers a promising approach to detect policy
violations, so as to help market maintainers identify these
violations timely and further improve the app vetting process.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (grant numbers 62072046, 61702045
and 61772042), NSF (CNS-1755772), and Hong Kong RGC
Projects (No. 152223/17E, 152239/18E, CityU C1008-16G).

REFERENCES

[1] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in Proceedings of
the Internet Measurement Conference 2018, 2018, pp. 293–307.

[2] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,” in
The World Wide Web Conference, 2019, pp. 1988–1999.

[3] “2018 Malware Forecast: the onward march of Android
malware,” 2018, https://nakedsecurity.sophos.com/2017/11/07/
2018-malware-forecast-the-onward-march-of-android-malware/.

[4] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, p. 76, 2017.

[5] Y. Tang, Y. Sui, H. Wang, X. Luo, H. Zhou, and Z. Xu, “All your app
links are belong to us: understanding the threats of instant apps based
attacks,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 914–926.

[6] Y. Hu, H. Wang, Y. Zhou, Y. Guo, L. Li, B. Luo, and F. Xu, “Dating with
scambots: Understanding the ecosystem of fraudulent dating applications,”
arXiv preprint arXiv:1807.04901, 2018.

[7] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu,
F. Xu et al., “Deepintent: Deep icon-behavior learning for detecting
intention-behavior discrepancy in mobile apps,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2421–2436.

[8] Y. Hu, H. Wang, R. He, L. Li, G. Tyson, I. Castro, Y. Guo, L. Wu, and
G. Xu, “Mobile app squatting,” in Proceedings of The Web Conference
2020, 2020, pp. 1727–1738.

[9] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 257–268.

[10] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on google play,” in 2016 IEEE Security and Privacy Workshops
(SPW). IEEE, 2016, pp. 224–233.

[11] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang, T. Bissyandé,
and J. Klein, “Maddroid: Characterizing and detecting devious ad contents
for android apps,” in Proceedings of The Web Conference 2020, 2020,
pp. 1715–1726.

[12] T. Liu, H. Wang, L. Li, G. Bai, Y. Guo, and G. Xu, “Dapanda: Detecting
aggressive push notifications in android apps,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 66–78.

[13] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and T. Wang,
“Demystifying diehard android apps,” in 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2020, pp. 187–198.

[14] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play?: a large-scale empirical study,” in Proceedings
of the 15th International Conference on Mining Software Repositories.
ACM, 2018, pp. 231–242.

[15] Google, “Google play developer policy,”
https://play.google.com/about/developer-content-policy.

[16] “Google Bouncer,” 2018, https://krebsonsecurity.com/tag/
google-bouncer/.

[17] “Combating Potentially Harmful Applications with Machine Learning
at Google: Datasets and Models,” 2018, https://android-developers.
googleblog.com/2018/11/combating-potentially-harmful.html.

[18] H. Wang, J. Si, H. Li, and Y. Guo, “Rmvdroid: towards a reliable
android malware dataset with app metadata,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 404–408.

[19] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European
Workshop on System Security. ACM, 2014, p. 5.

[20] D. Kong, L. Cen, and H. Jin, “Autoreb: Automatically understanding the
review-to-behavior fidelity in android applications,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015, pp. 530–541.

[21] G. Xiaodong and K. Sunghun, “"what parts of your apps are loved by
users?" (T),” in 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015, 2015, pp. 760–770.

[22] Google, 2019, https://developer.android.com/distribute/best-
practices/launch/launch-checklist.

[23] G. Cuiyun, Z. Jichuan, L. Michael, R, and K. Irwin, “Online app
review analysis for identifying emerging issues,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 48–58.

[24] Y. Li, B. Jia, Y. Guo, and X. Chen, “Mining user reviews for mobile app
comparisons,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 3, pp. 75:1–75:15, Sep. 2017.

[25] “VirusTotal,” 2018, https://www.virustotal.com.
[26] “UBCFinder,” 2020, https://github.com/UBCFinder/UBCFinder.
[27] “Google Play,” 2019, https://play.google.com/intl/zh-CN/about/

developer-content-policy/#!?modal_active=none.
[28] “360 Market,” 2018, http://zhushou.360.cn/.
[29] “Huawei,” 2018, http://app.hicloud.com/.
[30] “Lenovo,” 2018, https://www.lenovomm.com/apps/1038/0?type=1.
[31] “Meizu,” 2018, http://app.meizu.com/.
[32] “Oppo,” 2018, https://store.oppomobile.com/.
[33] “Vivo,” 2018, http://zs.vivo.com.cn/.
[34] “Xiaomi,” 2018, http://app.mi.com/.
[35] “Tencent Myapp,” 2018, https://sj.qq.com/myapp/.
[36] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated

extraction of security policies from natural-language software documents,”
in International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 12:1–12:11.

[37] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language API descriptions,”
in International Conference on Software Engineering (ICSE), 2012, pp.
815–825.

[38] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}:
Towards automating risk assessment of mobile applications,” in Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 527–542.

[39] C. Aggarwal and C. Zhai, Mining text data, ser. A survey of text
clustering algorithms. Boston, MA: Springer, 2012. [Online]. Available:
https://doi.org/10.1007/978-1-4614-3223-4_4

[40] Y. Li, D. McLean, A. Bandar, Zuhair, K. Crockett, and et al, “Sen-
tence similarity based on semantic nets and corpus statistics,” IEEE
Transactions on Knowledge & Data Engineering, no. 8, pp. 1138–1150,
2006.

[41] A. Islam and D. Inkpen, “Semantic text similarity using corpus-based
word similarity and string similarity,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 2, no. 2, p. 10, 2008.

[42] X. Yan, J. Guo, Y. Lan, and et al, “A biterm topic model for short texts,”
in Proceedings of the 22nd international conference on World Wide Web.
ACM, 2013, pp. 1445–1456.

[43] C. Weizheng, W. Jinpeng, Z. Yan, Y. Hongfei, and X. L, “User based
aggregation for biterm topic model,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics, 2015, pp.
489–494.

[44] W. Jian, G. Panpan, M. Yutao, H. Keqing, and et al, “A web service
discovery approach based on common topic groups extraction,” IEEE
Access, no. 5, pp. 10 193–10 208, 2017.

[45] L. Xiangsheng, R. Yanghui, X. Haoran, and et al, “Bootstrapping social
emotion classification with semantically rich hybrid neural networks,”
IEEE Transactions on Affective Computing, no. 8, pp. 428–428, 2017.

[46] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings
of the 22Nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’99.
New York, NY, USA: ACM, 1999, pp. 50–57. [Online]. Available:
http://doi.acm.org/10.1145/312624.312649

[47] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944937

[48] Wikipedia, “Tf-idf,” http://en.wikipedia.org/wiki/Tf-idf.
[49] “Chinese Stopwords List,” 2018, https://github.com/goto456/stopwords.
[50] “English Stopwords List,” 2018, https://github.com/stopwords-iso/

stopwords-en.
[51] “Part of speech,” 2020, https://en.wikipedia.org/wiki/Part_of_speech.
[52] “Word segmentation Library,” 2018, https://pypi.org/project/jieba/.
[53] F. Wei, Y. Li, S. Roy, and et al, “Deep ground truth analysis of current

android malware,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017, pp. 252–
276.

[54] “Google play reviews collection service,” 2018, https://developers.google.
com/android-publisher/api-ref/reviews.

[55] “Kuchuan,” 2018, http://www.kuchuan.com/.

[56] Testin, “Testin service,” https://www.testin.cn/.
[57] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate

detection of third-party libraries in android apps,” in Proceedings of the
38th international conference on software engineering companion, 2016,
pp. 653–656.

[58] A. Steven, R. Siegfried, F. Christian, B. Eric, B. Alexandre, K. Jacques,
L. T. Yves, O. Damien, and M. Patrick, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” ACM Sigplan Notices, no. 6, pp. 259–269, 2014.

[59] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to earn a
few extra bucks? a first look at money-making apps,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 332–343.

[60] M. Daniel and M. Walid, “Towards understanding and detecting fake
reviews in app stores,” Empirical Software Engineering, pp. 1–40, 2019.

[61] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proceedings of the ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD),
2014, pp. 951–960.

[62] W. Pengcheng, S. Jeffrey, W. Yanzhao, and et al, “Ccaligner: a token
based large-gap clone detector,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 1066–1077.

[63] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 1025–1035.

[64] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu, “Graph
embedding based familial analysis of android malware using unsupervised
learning,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 771–782.

[65] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
2015, pp. 1107–1118.

[66] M. Liu, H. Wang, Y. Guo, and J. Hong, “Identifying and analyzing
the privacy of apps for kids,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, 2016, pp.
105–110.

[67] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 426–436.

[68] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Transactions on
Information Systems (TOIS), vol. 35, no. 4, pp. 1–40, 2017.

[69] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accurate
two-phase approach to android app clone detection,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
2015, pp. 71–82.

[70] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 153–163.

[71] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and detecting fragmentation-induced compatibility issues for
android apps,” IEEE Transactions on Software Engineering, 2018.

[72] T. Shin Hwei, D. Zhen, G. Xiang, and et al, “Repairing crashes in android
apps.” IEEE, 2018, pp. 187–198.

[73] B. Pan, L. Bin, S. Wenchang, and et al, “Nar-miner: Discovering negative
association rules from code for bug detection,” in 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 411–422.

[74] H. Wang, H. Liu, X. Xiao, G. Meng, and Y. Guo, “Characterizing android
app signing issues,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 280–292.

[75] K. H, “On identifying user complaints of ios apps,” in Proceedings of
the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 1474–1476.

[76] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about? a study on free ios apps,” IEEE Software,
vol. 99, no. 1, pp. 1–10, 2014.

[77] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in IEEE 22nd international
requirements engineering conference (RE). IEEE, 2014, pp. 153–162.

[78] L. V. G. Carreño and K. Winbladh, “Analysis of user comments: an
approach for software requirements evolution,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 582–591.

[79] B. Fu, J. Lin, L. Li, and et al, “Why people hate your app: Making
sense of user feedback in a mobile app store,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2013, pp. 1276–1284.

[80] A. Di, Sorbo, S. Panichella, V. Alexandru, C, and et al., “Surf: summarizer
of user reviews feedback,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 55–58.

[81] L. Villarroel, G. Bavota, B. Russo, and et al, “Release planning of mobile
apps based on user reviews,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering. IEEE, 2016, pp. 14–24.

[82] S. Panichella, A. Di, Sorbo, G. E, and et al, “Ardoc: app reviews
development oriented classifier,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 1023–1027.

[83] M. Vu, P, V. Pham, H, and T. Nguyen, T, “Phrase-based extraction of user
opinions in mobile app reviews,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 726–731.

[84] Y. Li, B. Jia, Y. Guo, and X. Chen, “Mining user reviews for mobile app
comparisons,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 3, pp. 75:1–75:15, Sep. 2017.

[85] S. FA, S. Kairit, and P. Dietmar, “Using app reviews for competitive
analysis: tool support,” in Proceedings of the 3rd ACM SIGSOFT
International Workshop on App Market Analytics. ACM, 2019, pp.
40–46.

[86] D. Jacek, L. Emmanuel, P. Anna, and S. Angelo, “Finding and
analyzing app reviews related to specific features: A research preview,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2019, pp. 183–189.

[87] E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews, what should app
developers look at first?” IEEE Transactions on Software Engineering,
pp. 1–12, 2019.

[88] N. Chen, J. Lin, S. C. H. Hoi, and et al, “Ar-miner: mining informative
reviews for developers from mobile app marketplace,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 767–778.

[89] L. Washington, V. Felipe, A. Rafael, and et al, “A feature-oriented
sentiment rating for mobile app reviews,” in Proceedings of the 2018
World Wide Web Conference. International World Wide Web Conferences
Steering Committee, 2018, pp. 1909–1918.

[90] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large
effect: Measuring the impact of user reviews on android app security &
privacy,” 2019.

[91] Y. Chen, H. Xu, Y. Zhou, and et al, “Is this app safe for children?: a
comparison study of maturity ratings on android and ios applications,”
in Proceedings of the 22nd international conference on World Wide Web.
ACM, 2013, pp. 201–212.

[92] L. Cen, L. Si, N. Li, and et al, “User comment analysis for android apps
and cspi detection with comment expansion,” in Proceeding of the 1 st
International Workshop on Privacy-Preserving IR: When Information
Retrieval Meets Privacy and Security. PIR, 2014, pp. 25–30.

[93] F. Palomba, M. Linares-Vasquez, G. Bavota, and et al, “User reviews
matter! tracking crowdsourced reviews to support evolution of successful
apps,” in 2015 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 2015, pp. 291–300.

[94] H. Chen, D. He, S. Zhu, and et al, “Toward detecting collusive ranking
manipulation attackers in mobile app markets,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security.
ACM, 2017, pp. 58–70.

[95] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applications,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1354–1365.

[96] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies of
android apps?” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2016, pp. 538–549.

[97] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2014.

