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Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction. We look at the
problem of assembling patterns within this model. We
first derive upper and lower bounds on the worst-case
number of steps needed to reconfigure a general pur-
pose board into a target pattern. We then show that
the construction of k-colored patterns of size-n requires
Ω(n log k) steps in general, and Ω(n log k+

√
k) steps if

the constructed shape must always be placed in a des-
ignated output location. We then design algorithms to
approach these lower bounds: We show how to construct
k-colored 1×n lines in O(n log k+k) steps with unique
output locations. For general colored shapes within a
w×h bounding box, we achieve O(wh log k+hk) steps.

1 Introduction

In this paper we investigate a model of robot motion
planning first proposed by Becker et. al. [7] in which
n robots exist on a 2D grid consisting of “open” and
“blocked” spaces, and are controlled by way of uniform
control signals which tell all robots to move one step
in any one of the four cardinal directions. This model,
which we call the single-step model, has important ap-
plications for the scalable development of microbot and
nanobot swarms due to the simplified method of con-
trol [9,11]. While previous work in this model has inves-
tigated how to build general shapes [7], and the hardness
of relocation related problems [1], here we focus on the
problem of quickly rearranging the robots into a desired
colored pattern (with an arbitrary shape).

In particular, our problem is as follows. Given a color
palette of k distinct colors, as well as a bounding box of
width w and height h, our goal is to design a universal

board configuration (a board with open and blocked
locations, as well as specified locations for a set of robots
each assigned one of the k colors) with the property that
any pattern fitting within a w × h bounding box can
be assembled (the robots can be reconfigured into the
provided pattern) in a near-optimal number of steps.

∗This research was supported in part by National Science

Foundation Grant CCF-1817602.

Our results. We first focus on a special case class of
patterns consisting of 1 × n lines over k colors. We
provide a board that can assemble any 1× n patterned
line over k colors within O(n log k+k) steps, along with
showing a lower-bound of Ω(n log k +

√
k) under the

assumption that the board must always place the output
pattern in the same location. We extend this to general
2D shapes of size n and provide a construction achieving
O(wh log k+hk) steps, which for dense shapes of size n
is comparable to the lower bound of Ω(n log k +

√
k).

Previous Work. The single-step model of this pa-
per was first studied in [7] where it was shown how to
reconfigure n robots into any size n shape within O(n2)
steps given a single blocked location. An additional line
of related research considers global movement signals,
but requires that all pieces move maximally in the input
direction [4]. This line of research has explored build-
ing shapes [2,3,6,8,10], performing computation [5], as
well complexities for reconfiguration and relocation of
particles [2–5]. Additionally, [12] considers the recon-
figuration of rectangular patterns of n colored robots
within O(n2) steps. While closely related to our work,
this work differs from the problem we are considering
in that 1) they consider the maximal-movement of par-
ticles, and 2) we are attempting to build arbitrary pat-
terns, while they are rearranging a given set of pieces
(meaning the number of each color in the pattern is
fixed). We also consider general shaped patterns and
striving for near-optimal construction times, and are not
attempting to reconfigure all pieces on the board.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m × n board is a
partition B = (O,W ) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈
{1, 2, . . . , n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.”

Tiles/Robots. A tile/robot is a labeled unit square
centered on a non-blocked point on a given board. For-
mally, a tile is an ordered pair (c, a) where c is a coor-
dinate on the board, and a is a label.

Configurations. A configuration is an arrangement
of tiles on a board such that no tiles occupy the same
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by a unique C ∈ C and 2) C ′ is universal for C.
We say that C ′ is regionally universal for S w.r.t. out-

put region T if ∀S ∈ S ∃ C ∈ C s.t. C regionally repre-
sents S w.r.t. T . Further, C ′ achieves unique placement

if output region T is exactly the size of the minimum
bounding box which can contain any of the patterns in
S. In this paper we focus on designing regionally uni-
versal configurations for general patterns fitting within
a w × h bounding box.

Worst-Case Step Complexity for Universal Con-
figurations. Given a universal configuration C, the
worst-case step complexity is the maximum number of
steps required to reconfigure C into some element from
its universe set. Consider a universal configuration C

over a set of configurations U . For each u ∈ U , let
d(C, u) denote the length of the smallest step-sequence
from C to u. The worst-case step complexity of C over
U is defined to be max{d(C, u)|u ∈ U}.

3 Fast Universal Constructors: Patterns

We now focus on building shapes with a desired color
pattern. To model this, we specify each robot in the sys-
tem to have a designated color from a given set of k col-
ors. Our goal is then to design configurations that allow
quick reconfiguration of the robots into a specified shape
with a specified color pattern. We start with an analysis
of some lower bounds for any k-color pattern construc-
tors in Section 3.1. We then derive upper bounds for
linear patterns in Section 3.2, general patterns in Sec-
tion 3.3. Accompanying videos for these constructions
can be found at https://asarg.hackresearch.com/

main/CCCG2020-Patterns.

3.1 Lower Bounds on Patterns

Lemma 1 For a given set of n distinct points from the

2D integer lattice, consider the corresponding set of all

size-n colored patterns over those points using at most k

distinct colors. Any universal configuration for such a

set of patterns has worst-case step complexity Ω(n log k).

Proof. There are kn distinct k-color patterns over n

points. Therefore, any universal configuration for this
set of patterns must be universal to a set of kn configura-
tions. The maximum number of distinct configurations
reachable from an initial configuration C ′ within r steps
is upper bounded by

r∑

i=0

(4i) =
4r+1 − 1

3
.

Thus C ′ must satisfy that 4
r+1−1

3
≥ kn, implying that

r = Ω(n log k). �

Lemma 2 Any universal configuration for all k-colored

patterns over a size-n shape with unique placement has

worst-case step complexity Ω(
√
k).

Proof. Consider a unique placement universal con-
structor for all k-colored patterns over some size-n
shape. As this is a unique placement constructor, the
output zone is a fixed region of size exactly the bound-
ing box of the size-n shape. Select an arbitrary point
p = (x, y) within the output region that is covered by
the size-n shape when inscribed within the output re-

gion. Let d = ⌊
√
k

4
− 1⌋ and note that the number of

points within (Manhattan) distance d of (x, y) is strictly
less than k. Therefore, there must be one color c for
which all tiles of color c are at least distance d from
point (x, y). Further, as this system is universal for all
k-colored patterns over the target shape, and the unique
placement restriction enforces the output shape into a
fixed position for each represented pattern, there exists
a pattern in the universe for which the color c must be
placed at position (x, y). The step-sequence to place a
color c tile at location (x, y) requires at least d = Ω(

√
k)

steps, and therefore requires at least Ω(
√
k) steps to fin-

ish this pattern. �

Theorem 3 Any universal configuration for all k-

colored patterns over a shape of size-n has worst-case

run-time at least Ω(n log k). If the configuration sat-

isfies the unique placement requirement, the worst-case

run-time is at least Ω(n log k +
√
k).

Proof. This follows from Lemma 1 and Lemma 2. �

3.2 Fast Linear Patterns

For our first positive result on universal pattern building
we focus on the case of linear 1×n shapes over k colors.
We construct a universal configuration with worst-case
run time of O(n log k+k) (Theorem 4), which is reason-
ably close to the lower bound of Ω(n log k+

√
k) shown

in Theorem 3, and optimal in the case where n ≥ k. The
linear pattern constructor is made up of three sections:
fuel chambers, bit selectors, and holding chambers.

Fuel Chambers. This section of the constructor con-
sists of the fuel chambers, where each are 3 × n open
spaces surrounded by concrete with an opening on the
center right. Morever, each chamber contains a 1 × n

line of robots of one color. Using the opening on the
right side of each chamber we can “chop” off one robot
at a time. By chopping off a robot from each chamber
in parallel, we transmit a column of k differently colored
robots into section 2.

Bit Selectors. The bit selectors are gadgets used to
assign a unique bit-string to each colored robot enter-
ing the section. These bit-strings are created by the
unique combination of two smaller gadgets called the
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