CCCG 2020, Saskatoon, Canada, August 5-7, 2020

Building Patterned Shapes in Robot Swarms with Uniform Control Signals*

David Caballero Angel A. Cantu

Timothy Gomez

Austin Luchsinger Robert Schweller

Tim Wylie

Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction. We look at the
problem of assembling patterns within this model. We
first derive upper and lower bounds on the worst-case
number of steps needed to reconfigure a general pur-
pose board into a target pattern. We then show that
the construction of k-colored patterns of size-n requires
Q(nlogk) steps in general, and Q(nlogk + Vk) steps if
the constructed shape must always be placed in a des-
ignated output location. We then design algorithms to
approach these lower bounds: We show how to construct
k-colored 1 x n lines in O(nlogk + k) steps with unique
output locations. For general colored shapes within a
wx h bounding box, we achieve O(wh log k+hk) steps.

1 Introduction

In this paper we investigate a model of robot motion
planning first proposed by Becker et. al. [7] in which
n robots exist on a 2D grid consisting of “open” and
“blocked” spaces, and are controlled by way of uniform
control signals which tell all robots to move one step
in any one of the four cardinal directions. This model,
which we call the single-step model, has important ap-
plications for the scalable development of microbot and
nanobot swarms due to the simplified method of con-
trol [9,11]. While previous work in this model has inves-
tigated how to build general shapes [7], and the hardness
of relocation related problems [1], here we focus on the
problem of quickly rearranging the robots into a desired
colored pattern (with an arbitrary shape).

In particular, our problem is as follows. Given a color
palette of k distinct colors, as well as a bounding box of
width w and height h, our goal is to design a universal
board configuration (a board with open and blocked
locations, as well as specified locations for a set of robots
each assigned one of the k colors) with the property that
any pattern fitting within a w x h bounding box can
be assembled (the robots can be reconfigured into the
provided pattern) in a near-optimal number of steps.

*This research was supported in part by National Science
Foundation Grant CCF-1817602.

Our results. We first focus on a special case class of
patterns comnsisting of 1 x n lines over k colors. We
provide a board that can assemble any 1 x n patterned
line over k colors within O(nlog k + k) steps, along with
showing a lower-bound of Q(nlogk + v/k) under the
assumption that the board must always place the output
pattern in the same location. We extend this to general
2D shapes of size n and provide a construction achieving
O(whlog k + hk) steps, which for dense shapes of size n
is comparable to the lower bound of Q(nlogk + Vk).
Previous Work. The single-step model of this pa-
per was first studied in [7] where it was shown how to
reconfigure n robots into any size n shape within O(n?)
steps given a single blocked location. An additional line
of related research considers global movement signals,
but requires that all pieces move maximally in the input
direction [4]. This line of research has explored build-
ing shapes [2,3,6,8,10], performing computation [5], as
well complexities for reconfiguration and relocation of
particles [2-5]. Additionally, [12] considers the recon-
figuration of rectangular patterns of n colored robots
within O(n?) steps. While closely related to our work,
this work differs from the problem we are considering
in that 1) they consider the maximal-movement of par-
ticles, and 2) we are attempting to build arbitrary pat-
terns, while they are rearranging a given set of pieces
(meaning the number of each color in the pattern is
fixed). We also consider general shaped patterns and
striving for near-optimal construction times, and are not
attempting to reconfigure all pieces on the board.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m X n board is a
partition B = (O, W) of {(z,y)|x € {1,2,...,m},y €
{1,2,...,n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.”

Tiles/Robots. A tile/robot is a labeled unit square
centered on a non-blocked point on a given board. For-
mally, a tile is an ordered pair (c,a) where ¢ is a coor-
dinate on the board, and a is a label.

Configurations. A configuration is an arrangement
of tiles on a board such that no tiles occupy the same

3274 Canadian Conference on Computational Geometry, 2020

Result Step Complexity Theorem
Lower Upper

Patterned Lines | Q(nlogk + vk) O(nlogk + k) Thms. 3, 4

General Patterns | Q(nlogk +Vk) | O(whlogk + hk) | Thms. 3, 5

Table 1: Construction Results. The patterned lines result is for 1 x n lines using k colors. The general patterns

result is for k-colored size-n w X h-bounded shapes.

location, or occupy blocked board spaces. Formally, a
configuration C' = (B, P) consists of a board B and
a set of tiles P whose coordinates do not overlap each
other, or with blocked locations of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all tiles in
a configuration one unit in a direction d € {N, E, S, W}
when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration
C = (B, P), let P’ be the maximal subset of P such
that translation of all tiles in P’ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other
tiles. A step in direction d is performed by executing the
translation of all tiles in P’ by 1 unit in that direction.
We say that a configuration C' can be directly recon-
figured into configuration C’ (denoted C —; C”) if ap-
plying one step in some direction d € {N, E, S, W} to
C results in C’. We define the relation —, to be the
transitive closure of —; and say that C can be recon-
figured into C' if and only if C —, C’, i.e., C may
be reconfigured into C’ by way of a sequence of step
transformations. A related concept that is the focus of
previous work is the tilt transformation in which a single
direction d tilt consists of the repeated application of a
direction d-step until the configuration is d-terminal. In
this paper, we focus on the step transition, but discuss
connections to work using the tilt transformation.

Step Sequence. A step sequence is a series of steps
which can be inferred from a series of directions D =
(di1,da,...,dy); each d; € D implies a step in that direc-
tion. For simplicity, when discussing a step sequence,
we just refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a step sequence corresponds to a sequence of configu-
rations based on the step transformation. An example
step sequence (N, E, F) and the corresponding sequence
of configurations can be seen in Figure la.

Universal Configuration. A configuration C’ is uni-
versal to a set of configurations C = {C1, Cs, ..., Ci} if
and only if ¢/ —, C;, V C; € C.

Shape/Pattern. We define a shape to be a connected
subset S C Z2. We define a pattern to be a tuple (S, L),
where S is a shape and L : S — A is a total function
that maps each point to a label in a set of labels A.
Configuration Representation. A configuration
may be interpreted as having constructed a “shape” in

Init (N) (E) (E)

(a) An example step sequence

Strong Regional

(b) Representation Examples

Figure 1: (a) An example step sequence. The initial
board configuration followed by the resulting configura-
tions after an N step, E step, and then final F step. (b)
Configuration Representation Examples. Both of these
configurations are different representations of the shape
“A.” First, we show a strong representation where every
tile in the configuration contributes to the shape. Then
we show a regional representation. The yellow square
represents the output region, and the orange tiles repre-
sent additional polyominoes on the board which do not
count towards shape representation (as they are not in
the output region).

a natural way. A configuration C strongly represents
shape S if the collection of all tile coordinates in C' is
exactly the set of points of some translation #(S).

An alternate form of representation allows for a rect-
angular region of the board to be deemed the output
region. Here, we say a configuration regionally repre-
sents a shape S w.r.t. output region 7' if the collection
of all tile coordinates in T is exactly the set of points of
some translation ¢(.S). Figure 1b illustrates the different
types of representations. In the regional representation,
any tiles outside of the output region are ignored.

We extend this idea of shape representation to include
patterns. A configuration C represents a pattern (S, L)
if C' represents S and there exists a translation ¢, such
that for all tiles (¢, a), L(t(c)) = a. The idea of regional
representation of a pattern extends in the same way.

Universal Pattern Builder. Given the concept of
pattern representation, a configuration C’ is universal
for a set of patterns § if and only if there exists a set of
configurations C such that 1) each S € S is represented

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

by a unique C € C and 2) C’ is universal for C.

We say that C' is regionally universal for S w.r.t. out-
put region T if VS € § 3 C € C s.t. C regionally repre-
sents S w.r.t. T. Further, C' achieves unique placement
if output region T is exactly the size of the minimum
bounding box which can contain any of the patterns in
S. In this paper we focus on designing regionally uni-
versal configurations for general patterns fitting within
a w X h bounding box.

Worst-Case Step Complexity for Universal Con-
figurations. Given a universal configuration C, the
worst-case step complexity is the maximum number of
steps required to reconfigure C' into some element from
its universe set. Consider a universal configuration C'
over a set of configurations U. For each uw € U, let
d(C,u) denote the length of the smallest step-sequence
from C to u. The worst-case step complexity of C' over
U is defined to be max{d(C,u)|u € U}.

3 Fast Universal Constructors: Patterns

We now focus on building shapes with a desired color
pattern. To model this, we specify each robot in the sys-
tem to have a designated color from a given set of k col-
ors. Our goal is then to design configurations that allow
quick reconfiguration of the robots into a specified shape
with a specified color pattern. We start with an analysis
of some lower bounds for any k-color pattern construc-
tors in Section 3.1. We then derive upper bounds for
linear patterns in Section 3.2, general patterns in Sec-
tion 3.3. Accompanying videos for these constructions
can be found at https://asarg.hackresearch.com/
main/CCCG2020-Patterns.

3.1 Lower Bounds on Patterns

Lemma 1 For a given set of n distinct points from the
2D integer lattice, consider the corresponding set of all
size-n colored patterns over those points using at most k
distinct colors. Any universal configuration for such a
set of patterns has worst-case step complexity Q(nlogk).

Proof. There are k" distinct k-color patterns over n
points. Therefore, any universal configuration for this
set of patterns must be universal to a set of k™ configura-
tions. The maximum number of distinct configurations
reachable from an initial configuration C’ within r steps
is upper bounded by

" 4+t _q

> = ———

i=0

Thus C’ must satisfy that % > k™, implying that
r = Q(nlogk). O

Lemma 2 Any universal configuration for all k-colored
patterns over a size-n shape with unique placement has
worst-case step complezity Q(VE).

Proof. Consider a unique placement universal con-
structor for all k-colored patterns over some size-n
shape. As this is a unique placement constructor, the
output zone is a fixed region of size exactly the bound-
ing box of the size-n shape. Select an arbitrary point
p = (x,y) within the output region that is covered by
the size-n shape when inscribed within the output re-

gion. Let d = L% — 1] and note that the number of
points within (Manhattan) distance d of (x, y) is strictly
less than k. Therefore, there must be one color ¢ for
which all tiles of color ¢ are at least distance d from
point (z,y). Further, as this system is universal for all
k-colored patterns over the target shape, and the unique
placement restriction enforces the output shape into a
fixed position for each represented pattern, there exists
a pattern in the universe for which the color ¢ must be
placed at position (x,y). The step-sequence to place a
color c tile at location (x,y) requires at least d = Q(Vk)
steps, and therefore requires at least Q(v/k) steps to fin-
ish this pattern. O

Theorem 3 Any wuniversal configuration for all k-
colored patterns over a shape of size-n has worst-case
run-time at least Q(nlogk). If the configuration sat-
isfies the unique placement requirement, the worst-case
run-time is at least Q(nlogk + Vk).

Proof. This follows from Lemma 1 and Lemma 2. 0O

3.2 Fast Linear Patterns

For our first positive result on universal pattern building
we focus on the case of linear 1 x n shapes over k colors.
We construct a universal configuration with worst-case
run time of O(nlogk+k) (Theorem 4), which is reason-
ably close to the lower bound of Q(nlogk + v/k) shown
in Theorem 3, and optimal in the case where n > k. The
linear pattern constructor is made up of three sections:
fuel chambers, bit selectors, and holding chambers.

Fuel Chambers. This section of the constructor con-
sists of the fuel chambers, where each are 3 X n open
spaces surrounded by concrete with an opening on the
center right. Morever, each chamber contains a 1 x n
line of robots of one color. Using the opening on the
right side of each chamber we can “chop” off one robot
at a time. By chopping off a robot from each chamber
in parallel, we transmit a column of k differently colored
robots into section 2.

Bit Selectors. The bit selectors are gadgets used to
assign a unique bit-string to each colored robot enter-
ing the section. These bit-strings are created by the
unique combination of two smaller gadgets called the

3274 Canadian Conference on Computational Geometry, 2020

TTTTTTTITIITTT

B

i

HodEod

IEEREE7 SEEEREN

5%%

IEEEEEEEEEE R

Ed2 Ed E3

Ed E3 E3 E3

Ed E3 E3 E3-

Ed E3 E3 E3-

Ed E=2 E3 E3
=

.
W“\E”‘\E‘:

E=

E2 E3I E3X

[B W

BH BH BH HH

=
BH BH BH HH

3
N 1

- (¢) Not Selected
I
¥R TU g8 98 m u
BH BH BH HH

IEEEEEEESEEEEE)

immmm;

(a) Constructor

(b) Sections

(d) Selected

Figure 2: (a) The linear patterns constructor and (b) the different sections. Section 1 consists of the fuel chambers.
Section 2 consists of bit-selector gadgets. Section 3 consists of tile holding chambers, as well as a concrete floor
where the line will be assembled. (c) Example bit selection where one robot is extracted via execution of its unique

bit-string.

up-select and down-select. Each of these smaller gad-
gets has an open space path from one side to the other
such that each of their paths are the opposite of the
other smaller gadget. The incorrect path causes a robot
to get stuck. This idea is demonstrated in Figure 2d,
where one robot can sucessfully traverse the bit selectors
at the cost of the other robot stopping in the up-select
gadget. Therefore, for all k robots entering this section
from the fuel chamber, we can design a unique combi-
nation of up-select and down-select gadgets such that
traversal of any robot through their respected gadgets
will yield that robot on the other side, while all others
stay within their gadgets. Therefore, bit selectors con-
sisting of log k bits each are needed to yield a unique
bit-string per robot, each of which creates an open space
path from one side to the other of length O(log k).

Holding Chambers. FEach individual robot enters
section 3 through the left side at possibly different
heights since each colored robot comes from a different
bit selector. There are nk holding chambers in the
output area of the bit selectors, where each holding
chamber is a 1 x 3 open space surrounded by concrete
tiles, with an open space path from the center left
to right. These chambers hold the robots in place
while another robot is being extracted from the fuel
chambers. After outputting a robot from a bit selector
gadget, we place the robot in the closest holding
chamber to the right. After placing the new robot in a
holding chamber, we address the unselected robots that
were blocked in the bit selectors. The unused robots
are placed back into the fuel chambers by the sequence
<W4,N2, WO(log k)’ SS, WOog k‘)7N47 ‘/[/'27]\]7 E©(log k))
After returning the unselected robots to their fuel cham-
bers, we continue the building process. The sequence
to extract robots and traverse the robot through the
bit selector gadgets also moves all robots in a holding
chamber to the next holding chamber on their right.
After the n'® robot has been placed in section 3, we

combine them by extracting them from the holding
chambers and placing them all on the concrete floor.
Then, we push them together using the single concrete
tile on the right of this floor. Figure 3 shows an
example of this sequence.

Theorem 4 For any positive integers n and k, there
ezists a regionally universal configuration for all 1 xn k-
colored lines with worst-case step complexity O(nlogk+
k). Moreover, this configuration obtains unique place-
ment and has board-size O(n + logk) x O(k).

Proof. Above we describe a configuration C' = (B, P)
such that it consists of three sections. The first section
pertains to the fuel chambers, which is used to hold &
1 x n lines of robots, one line for each color, in separate
chambers. It follows that a single robot can be extracted
from each of these chambers, resulting in a column of
k robots entering the third section. The third section
consists of the bit-string gadgets, where each receives
one of the k robots. We have shown that the bit-string
gadgets each have a specific unique sequence that takes
the robot from the left side to the right side such that
performing the sequence of one bit-string gadget will
make all robots, save for the one that is within that bit-
string gadget, stuck in one of the compartments in the
bit selectors of the other bit-string gadgets. Therefore,
it is possible to send one robot to the third section in
O(log k) steps. The holding chambers in the third sec-
tion are used to hold the robots in place while the next
robots are being extracted from the former two sections.
Together, these sections can place n robots in the hold-
ing chambers in the third section, after which we can re-
move these robots from the holding chambers and com-
bine them to form a line at the bottom side of the third
section. Placing the robots at the bottom of the third
section takes O(k) steps, while combining them takes
O(n) steps. Therefore, the configuration C' = (B, P)
is a universal configuration for all 1 x n k-colored lines

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

|
=

Ed Ed EI E3

B2 Ed EX E=
B2 Ed EI E=3
E2 E3 EI E3
E3 B3 EI EJ
E2 E3 E3 Ed
j!I Ed E3 E3

(a) Holding Chambers

(b) Extraction

(c) Line Building

Figure 3: Line building depicted.

e

(a) Extraction

EE“E?“E“!

Placement
Figure 4: Line holders depicted. After each line is built

(c¢) Extraction
and extracted from the holding chambers, we place them
in the first row of the line holder. This, in parallel, will
move each line already within the line holder down into
the next row.

with worst-case runtime O(nlogk + k). Moreover, this
configuration has board size O(n + logk) x O(k) and
achieves unique placement w.r.t. a 1 X n rectangular
output region located at the bottom-right of the board,
along the concrete floor. (]

3.3 General Patterns

We now generalize our line pattern construction to gen-
eral shapes over k colors. For given positive integers n,
h and w we focus on size-n shapes fitting in a h x w
bounding box.

Line Holders. For general shapes, we replace the
south concrete floor of section 3 of the line pattern
builder with the line holder depicted in Figure 4. As
shown, each new line built can be moved into the line

holder. If some lines are inside the line holder already,
those lines will move in parallel to the next chamber
below whenever a new line is added to the line holder.
After all lines have been built, we extract them, yielding
essentially a general w x h pattern, but with a constant
vertical and horizontal gap between tiles. Further, by
adding in an “empty” color chamber, we can include
empty spaces within this pattern, yielding a general pat-
terned shape. Finally, to remove the gaps in the shape,
we apply a funneling operation, described in Section 4.

Theorem 5 For positive integers w and h, each greater
than some constant, and positive integer k, there exists a
regionally universal configuration for any k-colored size-
n shape fitting within a h X w bounding box with worst-
case step complexity O(whlogk + hk) and board size
O(wh +log k) x O(max(h, k)).

Proof. The k-colored shape constructor is a simple ex-
tension from the 1 X n constructor. The main addition
of the line constructor is the line holders at the bottom
of the third section. Each different line we construct
can be held inside one of these different line holders in
order to build another line. After each line is made, we
can move that line into the line holders and at the same
time move any line already in the line holders down
one row. After each line is built, we can extract them
and send them through the funneling gadget in order
to remove the constant amount of space between each
tile. With the inclusion of “empty” tiles, we obtain
general patterned shapes. The details of the funneling
gadget are presented in 4. Therefore, the configuration
C = (B, P) is a universal configuration for all k-colored
size-n shapes fitting within a A x w bounding box with
worst-case step complexity O(wh log k+ hk). Moreover,
this configuration has board size O(n+log k) x O(k) and
achieves unique placement w.r.t. a w x h output region
located just above the funneling gadget. O

4 Funneling Gadget

The funneling gadget is designed to take a group of
robots separated by a constant amount of spaces and co-

3274 Canadian Conference on Computational Geometry, 2020

By

B [T

E B EpEE

TTT J‘!\

E B B@pEN
[N R S EN .

EE B EpmEN

(]

—~ |
=3
=

Figure 5: (a) An example funneling gadget for a 3 x 3
shape. (b) Basic functional sections of the funneling
gadget. (c-d) Repeating the sequence (N, E) will yield
the shape on the outside of the funneling gadget.

I [l
s mmmsm Em

E E B EEEEE
E B EEEEENE III
e m B

= EE E E B

[EnEEEg
m -lﬂ
:lb_.ﬂ

l:l-ll[Iﬂ-ll[

I:I-III[IDIIII[
I:IIII: | o] III:

(b)

Figure 6: (a-b) Reducing the horizontal distance be-
tween the rightmost column of robots. (c¢-d) Reducing
the vertical distance between the topmost row of robots.

alesce them into a desired shape. The architecture and
sections of the funneling gadget are illustrated in Figure
5. Let a and B be constants equaling the largest num-
ber of vertical and horizontal spaces, respectively, that
separates a robot from its neighbor in the shape. The
first section of the funneling gadget reduces S so that
the largest horizontal separation between two robots is
two. Section two takes the group of robots from the
former section and reduces « until it is one. The third
section finally reduces @ and 8 to zero, and outputs the
group of robots as the desired shape outside the funnel-
ing gadget. However, this process skews the shape in
one direction. This effect can be countered if the input
group of robots are instead skewed in the opposite direc-
tion before passing them through the funneling gadget.

Section One. Section one consists of a grid-like or-
ganization of concrete tiles that are themselves spaced
out vertically by a but horizontally by two, as shown in
Figure 6. To reduce (8 to two, we place the rightmost
column of the group of robots between the two leftmost
columns of concrete tiles (Figure 6a). By stepping in
the (F) direction enough times, the second-to-rightmost
column of the group of robots will meet the leftmost

Figure 7: (a-b) Making the rows of robots adjacent by
using section three.

column of section one, reducing the spaces between the
two columns of robots. After repeating this process for
every column of robots, section one will contain within
itself the group of robots vertically separated by a and
horizontally separated by a distance of two.

Section Two. Section two is a grid-like configuration
of concrete tiles that are vertically separated by one
space and horizontally separated by two spaces. The
same basic process is applied here, but we instead place
the rows of robots in between the rows of concrete tiles
and perform sufficient steps in the (N) direction, as
shown in Figure 7.

Section Three. By positioning the group of robots in
the third section as depicted in Figure 7a, stepping twice
in the (V) direction will cause the topmost rows of the
group of tiles to meet. This is repeated for every row by
first stepping in the (F) direction, followed by two steps
in the (N) direction. After every row has been made
adjacent, repeating the step sequence (N, E) will output
the robots from the funneling gadget, bringing together
each column of robots and outputting the desired shape
at the top of the gadget, (Figures 5¢, 5d).

5 Future Work

Our work leads into a number of areas for future work.
The first direction is to attempt to close the gaps be-
tween our upper bounds and our lower bounds for linear
and general patterns. For lines, the goal is to close the
@(\/E) gap between our upper and lower bounds, and
with general shapes, we are interested in closing the gap
for sparse shapes existing in large bounding boxes. An-
other direction is to consider how the unique placement
requirement affects the required run-time. Without it,
the Q(v/k) lower bound no longer holds. Is it possible to
achieve O(nlogk) step complexity by placing different
patterns at different locations? And if so, can this be
done with a polynomial sized board? Finally, another
interesting direction is to focus on pattern reconfigura-
tion, similar to what [12] have looked at within the full
tilt model. How fast can reconfiguration be done in the
single-step model? Can reconfiguration be done quickly
for general patterns and general shapes?

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

References

1]

Jose Balanza-Martinez, David Caballero, An-
gel A. Cantu, Timothy Gomez, Austin Luchsinger,
Robert Schweller, and Tim Wylie, Relocation with
uniform external control in limited directions, The
22" Japan Conference on Discrete and Computa-
tional Geometry, Graphs, and Games, JCDCGGG,
2019, pp. 39-40.

Jose Balanza-Martinez, Timothy Gomez, David
Caballero, Austin Luchsinger, Angel A. Cantu,
Rene Reyes, Mauricio Flores, Robert T. Schweller,
and Tim Wylie, Hierarchical shape construction
and complezity for slidable polyominoes under uni-
form external forces, Proceedings of the 2020
ACM-STAM Symposium on Discrete Algorithms,
SODA’20, STAM, 2020, pp. 2625—2641.

Jose Balanza-Martinez, Austin Luchsinger, David
Caballero, Rene Reyes, Angel A. Cantu, Robert
Schweller, Luis Angel Garcia, and Tim Wylie, Full
tilt: Universal constructors for general shapes with
uniform external forces, Proceedings of the 30"
Annual ACM-STAM Symposium on Discrete Algo-
rithms, SODA’19, 2019, pp. 2689-2708.

Aaron T. Becker, Erik D. Demaine, Sandor P.
Fekete, Golnaz Habibi, and James McLurkin,
Reconfiguring massive particle swarms with lim-
ited, global control, Algorithms for Sensor Sys-
tems (Berlin, Heidelberg) (Paola Flocchini, Jie
Gao, Evangelos Kranakis, and Friedhelm Meyer
auf der Heide, eds.), Springer Berlin Heidelberg,
2014, pp. 51-66.

Aaron T. Becker, Erik D. Demaine, Sandor P.
Fekete, Jarrett Lonsford, and Rose Morris-Wright,
Particle computation: complexity, algorithms, and
logic, Natural Computing 18 (2019), 6751-6756.

Aaron T. Becker, Sandor P. Fekete, Phillip
Keldenich, Dominik Krupke, Christian Rieck,
Christian Scheffer, and Arne Schmidt, Tilt assem-
bly: Algorithms for micro-factories that build ob-
jects with uniform external forces, 2017.

Aaron T. Becker, Golnaz Habibi, Justin Werfel,
Michael Rubenstein, and James McLurkin, Mas-
stwe uniform manipulation: Controlling large popu-
lations of simple robots with a common input signal,
2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Nov 2013, pp. 520-527.

Sheryl Manzoor, Samuel Sheckman, Jarrett Lons-
ford, Hoyeon Kim, Min Jun Kim, and Aaron T.
Becker, Parallel self-assembly of polyominoes un-
der uniform control inputs, IEEE Robotics and Au-
tomation Letters 2 (2017), no. 4, 2040-2047.

[9]

[10]

[11]

[12]

Sylvain Martel, Samira Taherkhani, Maryam
Tabrizian, Mahmood Mohammadi, Dominic
de Lanauze, and Ouajdi Felfoul, Computer 3d
controlled bacterial transports and aggregations of
microbial adhered nano-components, Journal of
Micro-Bio Robotics 9 (2014), no. 1, 23-28.

Arne Schmidt, Sheryl Manzoor, Li Huang,
Aaron T. Becker, and Séndor Fekete, Efficient par-
allel self-assembly under uniform control inputs,
IEEE Robotics and Automation Letters (2018), 1-
1.

Yasuhiro Shirai, Andrew J. Osgood, Yuming Zhao,
Kevin F. Kelly, and James M. Tour, Direc-
tional control in thermally driven single-molecule
nanocars, Nano Letters 5 (2005), no. 11, 2330
2334, PMID: 16277478.

Y. Zhang, X. Chen, H. Qi, and D. Balkcom,
Rearranging agents in a small space using global
controls, 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017,
pp. 3576-3582.

	Introduction
	Preliminaries
	Fast Universal Constructors: Patterns
	Lower Bounds on Patterns
	Fast Linear Patterns
	General Patterns

	Funneling Gadget
	Future Work

