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Abstract

Wepresent a new approach for debugging two router configurations
that are intended to be behaviorally equivalent. Existing router ver-
ification techniques cannot identify all differences or localize those
differences to relevant configuration lines. Our approach addresses
these limitations through a modular analysis, which separately an-
alyzes pairs of corresponding configuration components. It handles
all router components that affect routing and forwarding, including
configuration for BGP, OSPF, static routes, route maps and ACLs.
Further, for many configuration components our modular approach
enables simple structural equivalence checks to be used without
additional loss of precision versus modular semantic checks, aid-
ing both efficiency and error localization. We implemented this
approach in the tool Campion and applied it to debugging pairs
of backup routers from different manufacturers and validating re-
placement of critical routers. Campion analyzed 30 proposed router
replacements in a production cloud network and proactively de-
tected four configuration bugs, including a route reflector bug that
could have caused a severe outage. Campion also found multiple
differences between backup routers from different vendors in a
university network. These were undetected for three years, and de-
pended on subtle semantic differences that the operators said they
were "highly unlikely" to detect by "just eyeballing the configs."
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1 Introduction

Networks today are manually configured through low-level configu-
ration directives at individual routers that enforce complex policies
for access control and routing. Manual programming often intro-
duces subtle configuration errors that induce costly and disruptive
outages [7, 19, 23, 25, 27, 30]. While researchers have developed
many verification tools that can analyze network configurations
to find bugs [1, 3, 4, 12, 13, 17, 18, 21, 24, 29, 32–34], there has been
less focus on helping operators to understand and fix the identified
bugs.

This paper presents an approach to router configuration debug-
ging in the context of a specific, but common, verification task:
checking behavioral equivalence of two individual router configura-
tions. This task arises often in large networks. First, it is common
for pairs of routers from different manufacturers (to avoid repli-
cating implementation bugs) to serve as backups for one another
in case of failure. Whenever one router in the pair is updated, the
other must be consistently updated, which is non-trivial if they
use different configuration formats. A second important use case
is router replacement. As shown in (§ 5), routers are periodically
upgraded from one manufacturer (e.g., Juniper) to one another (e.g.,
Arista) with better features, cost, or performance. Since the Arista
configuration has to be manually translated from the Juniper, the
operation is difficult and perilous. The first use case shows the need
for behavioral equivalence checking in space, while the second is
an example of the need for such checking in time.

Existing tools for network control-plane verification, such as
Minesweeper [3], can be used to verify behavioral equivalence of
two router configurations. However, while these tools can detect
equivalence violations, they provide very little help in debugging
such errors. In particular, existing tools have two key limitations
that our work aims to address. First, they provide only a single coun-
terexample and hence identify only a single behavioral difference
between the two configurations. Second, the provided counterex-
ample consists of a concrete packet whose forwarding exhibits
a behavioral difference in the two configurations, leaving to the
operator the difficult tasks of identifying the set of packets that is
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impacted and the specific configuration lines that caused the differ-
ence. We call the first challenge header localization and the second
text localization.

We present a concrete example of header and text localization in
§2. Figure 1 shows two example configuration snippets from real
configurations for a Cisco and Juniper router, and Table 2 shows the
differences output by our tool. The first few rows of each difference
represent header localization and the last three rows represent text
localization. While the configurations used in Figure 1 are small,
they have subtle behavioral differences. Further, many enterprises
have large route maps and ACLs of thousands of lines (see §5.1).

Our tool, Campion, performs localization through a novelmodu-
lar approach. Rather than representing the behavior of each router
configuration monolithically, for example as a set of SMT con-
straints [3], Campion compares pairs of corresponding components
between the two configurations (route maps, ACLs, OSPF costs,
etc., see Table 1) separately. Performing equivalence checks on a
per-component basis immediately helps: every pair of components
that are not behaviorally equivalent is reported, and each such
violation is by construction localized to the relevant configuration
components.

In the context of modular checking, two configuration compo-
nents 𝐶1 and 𝐶2 are considered equivalent if any configuration
containing 𝐶1 could instead use 𝐶2 without changing the configu-
ration’s behavior. How should each pair of components be checked
for equivalence? Observe that there are two distinct types of config-
uration components from the point of view of modular checking.

Many configuration components have the property that any
structural difference implies a possible behavioral difference. For ex-
ample, two OSPF link costs are only guaranteed to be behaviorally
equivalent, for all possible configurations, if they are identical. The
same is true for static routes in two configurations. For these con-
figuration components, we compare them with a simple structural
equivalence check that we call StructuralDiff. This check is effi-
cient, reports and localizes all behavioral differences — all structural
mismatches — and makes it trivial for users to understand the error.

On the other hand, a few configuration components, specifically
ACLs and route maps, encode sophisticated policies, so there are
many possible structures for the same behavior, especially when
considering multiple vendors. For example, Juniper and Cisco route
maps are structured in very different ways. For these configura-
tion components, we compare them with a semantic equivalence
check that we call SemanticDiff. To identify all differences, we
model the two components 𝐶1 and 𝐶2 as functions (e.g., an ACL
is a function from a packet to a boolean). Then, for each path 𝑝1
through 𝐶1 and 𝑝2 through 𝐶2, we check whether there is some
input that traverses along 𝑝1 and 𝑝2 through their respective com-
ponents and exhibits a behavioral difference. This algorithm is
conceptually similar to prior approaches to checking equivalence
in C functions [26] and network data planes [9]. To our knowledge
ours is the first approach that can precisely check equivalence of
network control-plane structures, notably route maps.

The SemanticDiff algorithm localizes each behavioral differ-
ence to a specific path through each component. To help users un-
derstand the difference, we also introduce a novel algorithm called
HeaderLocalize that localizes each difference to the relevant space
of inputs. Specifically, SemanticDiff produces the impacted set of

Feature Check Used

ACLs SemanticDiff
Route Maps (BGP, Route Redistribution) SemanticDiff

Static Routes StructuralDiff
Connected Routes StructuralDiff

Other BGP Properties StructuralDiff
OSPF Properties (costs, areas, etc.) StructuralDiff

Administrative Distances StructuralDiff

Table 1: Components supported by Campion and the check

used for each.

inputs 𝐼 as a binary decision diagram (BDD). Given this BDD and
the original configurations, HeaderLocalize produces a represen-
tation of all destination IP addresses in 𝐼 in terms of the constants
(prefixes or prefix ranges) that appear in the configurations, and
does so in a minimal way.

Perhaps surprisingly, Campion is protocol-free: it does not need
to model or reason about routing protocols like BGP and OSPF.
Our modular approach obviates the need for such reasoning, as
equivalence of each corresponding pair of configuration compo-
nents implies that those protocols will behave identically on the
two routers. We formally prove this theorem, thereby justifying our
approach. A potential downside of our modular approach is that
it can produce false positives: it is possible for two configuration
components to cause a behavioral difference for some configura-
tion, and hence be flagged as erroneous by Campion, but still be
behaviorally equivalent in the context of the two given router con-
figurations. However, our experiments indicate that false positives
are rare. Intuitively this makes sense because configurations are cre-
ated and maintained in a modular fashion, with different aspects of
the configuration responsible for different aspects of the behavior.

We evaluated Campion on the network configurations of a large
cloud provider and a large university campus. We highlight two key
results, with details in §5. First, the operators of the cloud provider
were in the process of replacing 30 Cisco routers with Juniper
routers due to a corporate policy decision. This required them to
manually translate the original Cisco IOS configurations to JunOS.
They used Campion to proactively check equivalence, identifying
four configuration errors that they fixed before they could cause
service disruption, including one error that would have been a
severe outage. Second, the university network has a pair of core
routers and a pair of border routers from different device vendors
and intended to be backups of one another. Campion identified and
localized configuration errors across these two pairs. These errors
have been present in the configurations for nearly three years, and
the operators said that they were "highly unlikely" to detect them
by "just eyeballing the configs." Campion only takes a few seconds
to compare a pair of routers. Our work does not raise any ethical
issues.

To summarize, the contributions of this paper are:
• A modular approach that identifies all behavioral differences be-

tween two configurations and localizes them to the relevant con-
figuration lines (§3). For each configuration component, we deter-
mine whether a full semantic analysis (SemanticDiff) is needed
or a simple structural equivalence check (StructuralDiff) suf-
fices (see Table 1). We also describe a novel algorithm for local-
izing the relevant inputs (HeaderLocalize).
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• A theorem (§3.4) that shows our modular approach to equiva-
lence checking of configuration components suffices to ensure
router behavioral equivalence, despite not reasoning about the
network protocols.
• A tool, Campion (§4), that localizes behavioral differences be-

tween router configurations. Campion supports all of the routing
and forwarding components modeled by Minesweeper.
• An experimental evaluation of Campion on routers from a large
cloud vendor and a university network. (§5).

2 Campion by Example

This section shows two examples of Campion’s output that identi-
fied behavioral differences in routers from a large university net-
work.We present one case involving differences between BGP route
maps, which Campion identified and localized using SemanticDiff
and HeaderLocalize, and a second case involving differences in
static routes, which Campion identified and localized using Struc-
turalDiff. In both cases, we also demonstrate the advantages of
Campion by comparing its output to that of Minesweeper [3], a
state-of-the-art network configuration verification tool.

2.1 Route Map Diffs via Semantic Checks

Figure 1 shows simplified versions of route maps from two core
routers in a large university network (see § 5.2). The two route
maps are intended to be behaviorally identical, with the first writ-
ten for a Cisco router and the second for a Juniper router. Both
configurations define a prefix list NETS to match a specific set of
IP prefixes (lines 1-2 in Figure 1(a) and 1-4 in Figure 1(b)), as well
as a community list COMM to match the community tags 10:10 and
10:11 (4-5 in Figure 1(a) and 5 in Figure 1(b)). The remainder of
each snippet defines a route map POL for each router, which rejects
route advertisements that match prefixes from NETS or are tagged
with communities from COMM and accepts all other advertisements
(7-12 in Figure 1(a) and 6-21 in Figure 1(b)).

Despite the superficial similarity of the two configurations, there
are large behavioral differences. Campion uses SemanticDiff and
HeaderLocalize to find and localize these differences. Table 2
shows Campion’s output when given the two routemaps in Figure 1.
The output has two results, each of which represents a distinct
configuration error. For each error, Campion identifies all the route
advertisement prefixes that are treated differently by the two route
maps, namely route advertisements for prefixes that are in the
set Included Prefixes but not the set Excluded Prefixes. We
call the process of identifying and representing all problematic
inputs header localization. Further, Campion also shows the action
that each route map takes on these advertisements as well as the
configuration lines responsible for that action. We call the process
of identifying all relevant lines of the configuration text localization.

In the output shown in Table 2(a), the Action and Text rows
indicate that advertisements for the relevant prefixes match the
NETS prefix list in the Cisco route map and are therefore rejected,
but these prefixes fall through to the last term in the Juniper route
map and are accepted. Careful inspection reveals the problem: in the
Cisco route map, NETS matches prefixes with lengths between 16
and 32, while in the Juniper route map it only matches prefixes with
lengths of exactly 16. Thus, a prefix like 10.9.1.0/24 is matched
by the Cisco route map but not by the Juniper route map.

1 ip prefix-list NETS permit 10.9.0.0/16 le 32
2 ip prefix-list NETS permit 10.100.0.0/16 le 32
3 !
4 ip community-list standard COMM permit 10:10
5 ip community-list standard COMM permit 10:11
6 !
7 route-map POL deny 10
8 match ip address NETS
9 route-map POL deny 20

10 match community COMM
11 route-map POL permit 30
12 set local-preference 30

(a) Excerpt from the Cisco route map

1 prefix-list NETS {
2 10.9.0.0/16;
3 10.100.0.0/16;
4 }
5 community COMM members [10:10 10:11];
6 policy-statement POL {
7 term rule1 {
8 from prefix-list NETS;
9 then reject;

10 }
11 term rule2 {
12 from community COMM;
13 then reject;
14 }
15 term rule3 {
16 then {
17 local-preference 30;
18 accept;
19 }
20 }
21 }

(b) Excerpt from the Juniper route map

Figure 1: Cisco and Juniper route maps with subtle differ-

ences

The second result that Campion produces (Table 2(b)) identi-
fies a second, unrelated configuration difference. The Included
Prefixes and Excluded Prefixes rows show that this difference
occurs for advertisements of all prefixes other than those in the
ranges of the NETS prefix list. While Campion can find all differ-
ences and identify all relevant IP prefixes, for other fields of the
route advertisement it currently provides a single example. In this
case, the output indicates that this difference occurs when the route
advertisement contains only the community 10:10. The Action
and Text rows show that the Cisco route map matches the adver-
tisement against the community list COMM and rejects it, while the
Juniper route map again falls through to the last rule. This differ-
ence reveals a subtle error: COMM in the Cisco route map matches
route advertisements containing either the community 10:10 or
10:11, whereas COMM in the Juniper route map erroneously matches
only advertisements tagged with both communities.

Campus network operators confirmed both of the above behav-
ioral differences as configuration errors. Further, the errors are
subtle and have existed since at least July 2017. The network op-
erator commented, "your config-analysis tool is great. It’s highly
unlikely anyone would detect the functional discrepancies just by
eyeballing the configs." As described in §5.2, Campion found addi-
tional differences that have been removed here to keep the example
simple.
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cisco_router juniper_router

Included
Prefixes

10.9.0.0/16 : 16-32
10.100.0.0/16 : 16-32

Excluded
Prefixes

10.9.0.0/16 : 16-16
10.100.0.0/16 : 16-16

Policy Name POL POL

Action REJECT
SET LOCAL PREF 30

ACCEPT

Text route-map POL deny 10
match ip address NETS

rule3 {
then {
local-preference 30;
accept;

}
}

(a) Difference 1

cisco_router juniper_router

Included
Prefixes 0.0.0.0/0 : 0-32

Excluded
Prefixes

10.9.0.0/16 : 16-32
10.100.0.0/16 : 16-32

Community 10:10

Policy Name POL POL

Action REJECT
SET LOCAL PREF 30

ACCEPT

Text route-map POL deny 20
match community COMM

rule3 {
then {
local-preference 30;
accept;

}
}

(b) Difference 2

Table 2: Campion result when checking equivalence of con-

figurations in Figure 1 using a Semantic Check

Route received (Cisco) Prefix: 10.9.0.0/17

Route received (Juniper) Prefix: 10.9.0.0/17

Packet dstIp: 10.9.0.0

Forwarding
Juniper router forwards (BGP)
Cisco router does not forward

Table 3: Minesweeper result when checking equivalence of

configurations from Figure 1

Comparison with Minesweeper.Minesweeper [3] builds a logi-
cal representation of the network behavior, modeling the routing
process and forwarding behavior. It then uses a satisfiability modulo
theories (SMT) solver to answer verification queries. Minesweeper
supports a behavioral equivalence check of individual routers, but it
does so by checking that the logical representation of both routers’
entire configurations are equivalent. A major drawback of this
monolithic approach is the difficulty to diagnose the source of the
error — any identified difference could be caused by BGP configu-
ration, OSPF configuration, ACLs, or static routes.

In order tomake the comparisonmore fair, we adaptedMinesweeper
to only check behavioral equivalence of two route maps. Specifi-
cally, Minesweeper checks that its logical representations of the
two route maps are equivalent: whenever they receive the same
set of route advertisements, they produce the same forwarding

cisco_router juniper_router

Prefix 10.1.1.2/31

Next Hop 10.2.2.2 None

Admin. Distance 1 None

Text ip route 10.1.1.2
255.255.255.254 10.2.2.2

None

Table 4: Campion result when checking equivalence of static

routes using a Structural Check

behavior for all packets. Table 3 shows the output of this modified
version of Minesweeper on the above example. There is a single
counterexample indicating that, when both routers receive a route
advertisement with prefix 10.9.0.0/17, they will produce different
rules for forwarding packets with destination IP address 10.9.0.0:
the Juniper router will forward them, while the Cisco router will
not.

Minesweeper’s output identifies a behavioral difference between
the two route maps that corresponds to Campion’s output shown
in Table 2(a). However, Minesweeper’s output is lacking in several
important ways. (1) It only provides information about a single
behavioral difference. However, as explained earlier, there are actu-
ally two unrelated configuration differences between these route
maps (Table 2(a) and Table 2(b)). (2) For the error that Minesweeper
does identify, it only provides a single concrete example, with a
specific route advertisement and destination IP prefix. To fully fix
the problem of unintended differences between the two route maps,
operators must understand the set of all route advertisements that
produce this behavioral difference. Having this set explicitly also
provides an indication of the scope of the problem. (3) Minesweeper
provide no information about what parts of the route maps are re-
sponsible for the behavioral difference.

It is possible to modify Minesweeper again, this time to produce
multiple concrete examples. This can be done by simply querying
the SMT solver multiple times, each time including additional logi-
cal constraints that disallow previously generated counterexamples.
This approach could potentially alleviate the first two issues de-
scribed in the previous paragraph, but our experiments with this
approach illustrate that it is not very effective. On the above exam-
ple, running Minesweeper does provide counterexamples from both
classes of differences from Table 2 but it takes 7 counterexamples in
order to have at least one for each prefix range that is relevant for
Difference 1. Further, the approach is fragile: when we replaced the
number 32 in the second line of the Cisco configuration (Figure 1(a))
with 31, it took 27 counterexamples for Minesweeper to provide a
violation of Difference 1 instead of Difference 2.

2.2 Static Route Diffs via Structural Checks

Campion detects differences in configuration components such as
static routes and OSPF costs using a structural equivalence check.
For example, for static routes Campion simply considers the set
of static routes in each router and identifies all structural differ-
ences: cases where a route is present in one set but not the other,
or where a route is present in both but with different attributes
such as the next hop and administrative distance. This technique
illustrates another advantage of our modular approach. Because we
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Packet dstIp: 10.1.1.2

Forwarding
Cisco router forwards (static)
Juniper router does not forward

Table 5: Minesweeper result when checking equivalence of

static routes

are checking configuration components in isolation from the rest of
the configurations, for many components a simple structural check
is as precise as a behavioral check via a semantic representation,
while providing better localization and understandability for users.

An example of an output produced by Campion when checking
static routes is shown in Table 4. This output shows that in the
Cisco router, a static route exists that sends packets destined to
10.1.1.2/31 to 10.2.2.2, but there is no such route in the Juniper
router. Differences like this were found in both the university and
cloud networks.

Table 5 shows the output that Minesweeper produces for the
same example. Minesweeper can identify that the forwarding was
caused by a static route, but it does not determine the prefix of the
static route, the other relevant fields like the administrative distance,
or the lines of the configuration. Hence operators have to search
through a potentially large set of static routes and determine which
one would affect the routing of packet to a 10.1.1.2. Further, if
there were multiple static-route differences, Minesweeper would
only find one, while Campion would identify all.

3 Design and Algorithms

We describe Campion’s design and core algorithms. Campion’s
overall algorithm for identifying and localizing behavioral differ-
ences between configurations 𝐶1 and 𝐶2 is as follows:

1 func ConfigDiff (𝐶1, 𝐶2)
2 result← [ ]
3 pairs←MatchPolicies(𝐶1, 𝐶2)
4 for (𝑝1, 𝑝2) ∈ pairs do
5 differences← Diff(𝑝1, 𝑝2)
6 for 𝑑 ∈ differences do
7 result← result.append(Present(𝑑, {𝐶1,𝐶2}))
8 return result

This algorithm consists of three main parts:

(1) The corresponding components (ACLs or BGP route maps)
for 𝐶1 and 𝐶2 are paired up by the MatchPolicies function.
This can be done with heuristics such as matching compo-
nents by name or matching components that relate to the
same neighboring node, or this information can be provided
by the user.

(2) For each component pair, the Diff function invokes either
SemanticDiff or StructuralDiff to produce a set of differ-
ences, each of which can include a set of inputs, the actions
taken by each component, and the locations in the configu-
rations.

(3) The Present function formats the results for output to the
user, including invoking HeaderLocalize on the results
of SemanticDiff in order to produce an understandable
representation of the set of inputs.

We now describe SemanticDiff, HeaderLocalize, and Struc-
turalDiff in more detail. We then discuss the general applicability
of SemanticDiff and StructuralDiff and show how our mod-
ular approach can find and localize behavioral differences across
entire router configurations.

3.1 SemanticDiff

SemanticDiff takes a pair of configuration components as input
and returns a list of all behavioral differences. The same basic
algorithm applies to both ACLs and route maps. Each difference is
a quintuple of the form: (𝑖, 𝑎1, 𝑎2, 𝑡1, 𝑡2). In this quintuple, 𝑖 refers to
a set of inputs to the components, represented as a logical formula
over message headers. For dataplane ACLs the inputs are sets of
packets, and for route maps they are route advertisements. 𝑎1 and
𝑎2 are the respective actions taken by the two components when
given an input from 𝑖 . The action for ACLs is either accept or reject,
but for route maps the accept action can also set fields such as local
preference. 𝑡1 and 𝑡2 are the respective lines of text from the two
components that process inputs from 𝑖 and result in 𝑎1 and 𝑎2.

The SemanticDiff algorithm has two main steps. First, for each
configuration component, the space of inputs is divided into equiv-
alence classes, based on their paths through the component. Both
ACLs and route maps can be viewed as a sequence of if-then-else
statements, so two inputs are in the same equivalence class if and
only if they take the same set of branches through these statements.
Each equivalence class is represented symbolically as a logical pred-
icate on the input (either a packet header or route advertisement).
Our implementation uses BDDs to represent these predicates. Each
equivalence class is also associated with the text lines that are
on the corresponding path as well as the action taken. This step
consequently produces two lists of triples:

𝐿1 = [(𝑖1,1, 𝑎1,1, 𝑡1,1), (𝑖1,2, 𝑎1,2, 𝑡1,2), . . . , (𝑖1,𝑚, 𝑎1,𝑚, 𝑡1,𝑚)]
𝐿2 = [(𝑖2,1, 𝑎2,1, 𝑡2,1), (𝑖2,2, 𝑎2,2, 𝑡2,2), . . . , (𝑖2,𝑚, 𝑎2,𝑚, 𝑡2,𝑚)]

Figure 2 shows the equivalence classes for the example route
map from Figure 1(a). NETS and COMM correspond to the names of
the attribute filters — NETS for prefix filters and COMM for commu-
nities. We use JNETSK to denote the set of accepted prefixes, and
similarly JCOMMK to denote the set of accepted communities. We
also denote the complement of a set 𝑋 as ¬ 𝑋 . There are three
equivalence classes, one per clause in the route map — the first
clause is associated with the space JNETSK, the second clause is
associated with ¬ JNETSK ∩ JCOMMK, the space of routes matching
JCOMMK but not JNETSK, and the third clause is for all remaining
routes. Each equivalence class is also associated with whether it
accepts or rejects routes and what fields are set.

route-map POL deny 10 Inputs: JNETSK

match ip address NETS Action: Reject

route-map POL deny 20 Inputs: ¬ JNETSK ∩ JCOMMK

match community COMM Action: Reject

route-map POL permit 30 Inputs: ¬ JNETSK ∩ ¬ JCOMMK

set local-preference 30 Action: Accept, local-pref=30

Figure 2: Partitioning the space of route advertisements

based on route map definitions.
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Once the inputs are partitioned into equivalence classes for both
components, the SemanticDiff algorithm then performs a pairwise
comparison to identify behavioral differences. For each pair of
equivalence classes (𝑖1,𝑖 , 𝑎1,𝑖 , 𝑡1,𝑖 ) and (𝑖2, 𝑗 , 𝑎2, 𝑗 , 𝑡2, 𝑗 ) from the two
components, if 𝑖1,𝑖 and 𝑖2, 𝑗 have a non-empty intersection and the
actions 𝑎1,𝑖 and 𝑎2, 𝑗 differ, then there is a behavioral difference. In
that case, we add

(𝑖1,𝑖 ∩ 𝑖2, 𝑗 , 𝑎1,𝑖 , 𝑎2, 𝑗 , 𝑡1,𝑖 , 𝑡2, 𝑗 )
to the list of differences returned by SemanticDiff.

3.2 HeaderLocalize

SemanticDiff produces the set of packets that exhibit behavioral
differences as a logical predicate. The HeaderLocalize algorithm
produces a more human-understandable representation in terms of
the constants (e.g. IP prefixes) that appear in the configuration, han-
dling the header localization problem. Specifically, HeaderLocalize
produces a compact representation of the set of all destination IP
addresses relevant to an ACL difference and the set of all IP prefix
ranges relevant to a route map difference. For ease of presenta-
tion, we only describe finding prefix ranges relevant to route map
differences, but the process for ACLs is analogous. In principle,
HeaderLocalize can also be extended to other route fields such
as communities, but we have not yet done so. Currently, instead
of producing all communities relevant to a route map difference,
Campion outputs a single example.

For route maps, sets of IP prefixes are represented by prefix
ranges, each of which is a pair of a prefix and a range of lengths.
For example, (1.2.0.0/16, 16-32) is a prefix range where the
prefix is 1.2.0.0/16 and the length range is 16-32. A prefix 𝑝 is a
member of a prefix range 𝑅 if both of the following hold:

(1) The IP address of 𝑝 matches the prefix of 𝑅
(2) The length of 𝑝 is included inside the range of 𝑅

For example, 1.2.3.0/24 is a member of the prefix range
(1.2.0.0/16, 16-32), (0.0.0.0/0, 0-32) is the set of all pre-
fixes, and (1.0.0.0/8, 24-24) is the set of all prefixes with length
24 and 1 as the first octet. We say that a prefix range 𝑅1 is contained
in another prefix range 𝑅2, denoted 𝑅1 ⊂ 𝑅2, if the members of 𝑅1
are a subset of those of 𝑅2.

The input to HeaderLocalize is a BDD 𝑆 representing the set of
messages affected by an identified policy difference, along with the
original configurations 𝐶1 and 𝐶2. The output is a representation
of 𝑆 ’s prefix ranges in terms of the prefix ranges that are in the two
configurations. First, all prefix ranges from the two configurations
are extracted to get the set R = {𝑅1, 𝑅2, . . . 𝑅𝑛}. If the set of all
prefixes (0.0.0.0/0, 0-32), which we will call𝑈 , is not in R, then
it is added. Furthermore, R is extended so that it is closed under
intersection. Since each line of a route map can allow or reject
route advertisements based on prefix ranges in the configuration,
it is always possible to represent the set 𝑆 as a combination of
complements, unions, and intersection of sets from R. The goal of
HeaderLocalize is to identify the minimal such representation.

To find this minimal representation, HeaderLocalize builds a
directed acyclic graph (DAG) that relates the prefix ranges in R
to one another. This data structure is analogous to the ddNF data
structure previously used for packet header spaces [8], but here
we associate each node with prefix ranges rather than tri-state bit

vectors representing data-plane packets. HeaderLocalize’s ddNF
data structure consists of a set of nodes 𝑁 , a set of edges 𝐸 ⊆ 𝑁 ×𝑁 ,
a labeling function 𝑙 mapping nodes to prefix ranges, and a root
node. It satisfies the following properties:

(1) The root node is labeled with𝑈 , the set of all prefixes, and
all other nodes are reachable from it.

(2) Each node has a unique label (and thus in the following
explanation, we will sometimes refer to a node by its prefix
range or vice versa).

(3) The set of prefix ranges used as labels contains R and is
closed under intersection.

(4) For any nodes𝑚,𝑛 ∈ 𝑁 , there is an edge (𝑚,𝑛) ∈ 𝐸 exactly
when 𝑙 (𝑛) ⊂ 𝑙 (𝑚) and there is no node𝑚′ such that 𝑙 (𝑛) ⊂
𝑙 (𝑚′) ⊂ 𝑙 (𝑚).

An example DAG is shown in Figure 3 for a set of seven prefix
ranges. There is one node per prefix range, and each node’s prefix
range is a subset of those of its ancestors. For example𝐷 is contained
in 𝐵 and𝐴. The DAG is built by inserting one prefix range at a time,
starting with𝑈 [8].We also associate each internal node, with prefix
range 𝑅 and outgoing edges to nodes labeled 𝐶1,𝐶2, . . . ,𝐶𝑘 , with
the set of prefixes 𝑅−𝐶1−𝐶2 · · ·−𝐶𝑘 . We call this set the remainder
set, as it is the set of prefixes that remain in 𝑅 after prefixes of the
children nodes are removed. For example, the remainder set of node
𝐵 in Figure 3 is 𝐵 − 𝐷 − 𝐸. The remainder and leaf node sets are all
disjoint from one another, and their union is𝑈 . Importantly, because
the set 𝑆 of interest was created through unions, intersections, and
complements of the prefix ranges in R, each remainder set and
leaf prefix range has the property that either it is contained in 𝑆 or
disjoint from 𝑆 .

Next HeaderLocalize uses the DAG to produce a representation
of 𝑆 in terms of the prefix ranges in R. This is done by traversing
the DAG with the recursive function GetMatch shown below. If
the current node is a leaf, then its prefix range 𝑅 is included in the
result if that range is contained in 𝑆 . If the current node is internal,
then there are two cases. If the node’s remainder is contained in
𝑆 , then its prefix range 𝑅 should be included in the result, after
removing any of the node’s child prefixes in the DAG that are not
contained in 𝑆 . This latter process is done through a recursive call
to GetMatch with the complement set of 𝑆 . if the node’s remainder
is not contained in 𝑆 , then we simply recurse on the children and
union the results.

The GetMatch algorithm produces a representation of 𝑆 that
is a union of terms of the form 𝑅 − 𝑋1 − 𝑋2 − . . . 𝑋𝑘 , where 𝑅 is a
prefix range, but each 𝑋 𝑗 is also in the form 𝑅 − 𝑋1 − 𝑋2 − . . . 𝑋𝑘 .
For example, running GetMatch on the DAG in Figure 3 produces
{𝐵 − 𝐷,𝐶 − (𝐹 − 𝐺)}, and the nodes in the figure are colored to
illustrate the algorithm’s process. As a final simplification step, we
remove all nested differences from the result through a single pass
over it. In our example, the result 𝐶 − (𝐹 −𝐺) is transformed into
{𝐶−𝐹,𝐺}, so the final representation of the set 𝑆 is {𝐵−𝐷,𝐶−𝐹,𝐺}.

3.3 StructuralDiff

It would be possible to use a semantic approach like SemanticDiff
to reason about all configuration components, just aswe do for route
maps and ACLs. However, we observe that other configuration
components typically have a very stylized structure, as a single
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𝐴: (0.0.0.0/0, 0-32)

𝐵: (1.0.0.0/8, 8-32) 𝐶: (2.0.0.0/8, 8-32)

𝐷 : (1.2.0.0/16, 16-32) 𝐸: (1.3.4.0/24, 24-32)

𝐹 : (2.0.0.0/8, 24-32)

𝐺 : (2.5.6.0/24, 24-32)

Remainder: 𝐴 − 𝐵 −𝐶

Remainder: 𝐵 − 𝐷 − 𝐸 Remainder: 𝐶 − 𝐹

Remainder: 𝐹 −𝐺

✕

✕

✕

✓ ✓

✓✓

Figure 3: DAG created from prefix ranges. Green (✓) nodes represent leaves or remainders contained in a set 𝑆 , and red (✕)

nodes represent those that are not. 𝑆 can be represented by the union of 𝐵 − 𝐷 , 𝐶 − 𝐹 , and 𝐺
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Figure 4: Basic features of routing and forwarding. Blue

nodes(✓) represent fixed processes. Yellow nodes (incoming

) are inputs and green nodes (outgoing ) are outputs.

Unmarked (brown) nodes represent configurable entities.

1 func GetMatch (S, node)
2 C← Children(node)
3 R← PrefixRange(node)
4 if IsLeaf(node) then
5 if R ⊆ S then
6 return {R} ▶ node is a leaf, and 𝑅 ⊆ 𝑆

7 else

8 return ∅ ▶ node is a leaf, and 𝑅 ∩ 𝑆 = ∅
9 if Remainder(node, C) ⊆ 𝑆 then ▶ checks if

𝑅 −𝐶1 −𝐶2 . . .𝐶𝑘 ⊆ 𝑆

10 nonmatches←⋃
𝑘∈𝐶 GetMatch(¬ 𝑆 , k)

11 return {𝑅 − nonmatches} ▶ returns {𝑅 −𝑋1 −𝑋2 . . . 𝑋𝑚 }
12 else

13 return

⋃
𝑘∈𝐶 GetMatch(𝑆 , k) ▶ returns {𝑋1, 𝑋2 . . . 𝑋𝑛 }

atomic value (e.g., integer or boolean) or a simple collection of such
values. Hence, when considered modularly, the equivalence of two
such components is tied to their structure.

That is, two components are behaviorally equivalent, for all
possible configurations, if and only if their structural representation
is identical. Thus we can use a simple structural check without
incurring additional false positives versus a semantic approach.
Since the structural approach does not require logical modeling, it
is more efficient. Further, localization is trivial since the structural
check directly identifies the portions of the two components that
differ.

Our StructuralDiff function implements this approach. All
components are represented as atomic values, tuples, or unordered
sets. Atomic values are tested for equality. Tuples are compared
by testing that the corresponding values are equal. Finally, sets are
compared using set difference.

For example, to check two OSPF configurations are equivalent
(excluding route redistribution which is handled by SemanticD-
iff), it suffices to check equivalence for all corresponding attributes
on all corresponding links. That means both routers must have
OSPF edges to the same peers, and the corresponding edges are
configured with the same costs, areas, passive status, etc. We can
think of the configuration of each OSPF link as a tuple of its config-
ured attributes and check each corresponding attribute. The same
approach works for BGP properties not implemented with route
maps, such as which edges are to route reflector clients and whether
communities are propagated.

Other components that affect routing include connected and
static routes. Connected routes are formed by the set of subnets
connected to the router’s interfaces, and the difference between
routers is the set of such subnets present in one router but not the
other. Similarly, a single static route can be represented as a tuple
consisting of a destination prefix, a next-hop, an administrative
distance, and optional fields like tags; so the difference is the set
of tuples present in one router but not the other. Administrative
distances can also be compared as values configured per protocol.

As mentioned earlier, localization for these components is
straightforward because the equivalence check is performed di-
rectly on the components’ structures. Further, unlike route maps
andACLs, these components have no explicit notion of input. Hence
there is no need for, or analogue to, HeaderLocalize for such dif-
ferences.

3.4 Debugging an Entire Router

We now formalize our approach to checking full router equivalence.
We observe that many crucial parts of routing, such as the route
selection process, are fixed. They are implemented according to a
standard and depend only on the provided inputs and configura-
tions. All of the various processes in Figure 4 need to be modeled to
fully simulate a router or network, but only the configured aspects
(shown in brown) need to be modeled to find behavioral differences.

Figure 4 provides a flow diagram illustrating the processes sup-
ported by Campion. For routing, there is both a BGP process (top
of figure) and an OSPF process (middle of figure), as these are the
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most common inter-domain and intra-domain routing protocols;
other protocols could be added similarly. The bottom of the figure
shows the router’s process for forwarding routes. The brown (un-
marked) nodes represent parts of the router configuration, while
the other components are fixed processes like routing protocols
(in blue (✓)), or input routes and packets (in yellow (incoming )
), or outputs and byproducts like selected routes and forwarded
packets (in green (outgoing )).

Assuming that these are the only routing components used in
the configurations being compared, then Campion is a sound ver-
ifier for router configuration equivalence: If Campion identifies
no differences, then the two router configurations are behaviorally
equivalent. We formalize the fact that behavioral equivalence can
be verified without reasoning about the routing protocols as follows
(our formalization considers behavioral equivalence of entire net-
works, but it therefore also applies to the special case of individual
routers).

Definition 3.1. A networkN = (𝑇,R, CP , FP , ⪯P ) is a topology
T = (V, E) of vertices and edges, a set of routes R, a family of
configuration functions CP : E → Ω that maps each edge in
the topology to a configuration Ω, a family of transfer functions
FP : Ω × E × R → R that transforms a route along an edge
for a protocol, and a protocol preference relation ⪯P : R × R that
compares two routes for a protocol.

Definition 3.2. For two networks N = (𝑇,R, CP , FP , ⪯P ) and
N∗ = (𝑇 ∗,R, C∗P , F

∗
P , ⪯P ) and an isomorphism I between T

and T ∗, we say that the two networks are locally equivalent if
for all protocols 𝑝 ∈ P, edges 𝑒 ∈ E, and routes 𝑟 ∈ R then
F𝑝 (C𝑝 (𝑒), 𝑒, 𝑟 ) = F ∗𝑝 (C∗𝑝 (𝐼 (𝑒)), 𝐼 (𝑒), 𝑟 ).

Theorem 3.3 (Soundness). If networks N and N∗ are locally
equivalent for isomorphism I, then they have the same set of routing
solutions.

Proof. The proof is by a reduction to the stable routing prob-
lem [4] and is described in the appendix. □

4 Implementation and Limitations

Campion operates on a vendor-independent representation pro-
duced by Batfish [12]. Real routers support an enormous number
of features. For Campion, we have focused on the most common
components used for routing and forwarding. Campion currently
supports all of the configuration components and features that
are supported by Minesweeper (Table 1). This includes common
features of BGP route maps, like communities, local preference,
and MEDs, as well as other configurable aspects of BGP like route
redistribution. It also includes configurable OSPF attributes like
link cost and areas, static routes, and ACLs. Sets of packets and
route advertisements are represented by BDDs that are handled
with the JavaBDD library, extending code from Bonsai [4] used to
encode import filters, output filters, and ACLs.

As mentioned in the previous section, it is sometimes necessary
to match up corresponding components between two routers. We
used a few simple heuristics instead of manually specifying match-
ing components. For BGP properties and route maps, we match up
connections with the same neighbor id, and we report the neighbors
that occur in one router but not the other. We match ACLs with
the same name. For OSPF attributes, we match interfaces using a

combination of their interface names, Batfish’s inferred topology,
and their IP address masks. This is necessary since interfaces in
backup routers usually have different IP addresses. While these
heuristics are not perfect, they allow Campion to be run quickly
and easily.

Campion can identify differences and perform header localiza-
tion for any vendor format that Batfish supports. However, cur-
rently Campion can only output exact text lines for configurations
in Cisco IOS and Juniper JunOS formats, since we must write un-
parsers to convert Batfish’s representation back to the original
configuration text. For other formats, Campion does not produce
exact text lines, but it still provides substantial localization informa-
tion, including the component name, affected headers, and actions.
Similarly, for some formats we do not show the exact text lines
for StructuralDiff results, for example OSPF costs. But in these
cases the localization information that Campion provides typically
allows operators to find the relevant lines with simple text searches.

HeaderLocalize for route maps currently only provides exhaus-
tive information for IP prefix ranges. For other relevant parts of a
route advertisement such as community tags, Campion provides a
single example. It is possible to extend HeaderLocalize to provide
exhaustive information across multiple parts of a route advertise-
ment, but doing so increases the complexity both of the algorithm
and of its output. The current approach has been sufficient for
operators to understand Campion’s results and localize the errors.

5 Evaluation

We applied Campion to debug router configuration differences
from a large cloud provider and the campus network of a large uni-
versity, both of which employ a diversity of hardware router ven-
dors. Our experiments demonstrate Campion’s ability to identify
cross-vendor configuration differences and to provide actionable
localization information to operators.

5.1 Differencing in a large Data Center

Network 𝐴 is from a global cloud vendor that uses routers from
different manufacturers. We tested Campion on a data center net-
work from vendor 𝐴 that employs a Clos topology with hundreds
of routers and thousands of servers. All routers are either Juniper
or Cisco, whose configuration languages are supported by Cam-
pion. The data center network uses eBGP, iBGP, OSPF, static routes,
ACLs, and route redistribution for the layer-3 routing topology.
It carries business traffic for multiple global services. Each router
configuration is thousands of lines.

Scenarios.We asked the network operators to employ Campion
on three frequent, real and challenging tasks:

Scenario 1: Debugging redundant routers. Some routers (e.g., Top-
of-Rack) are configured to be backups of one another with equiv-
alent modular policies handling BGP, OSPF and static routes. For
diversity, the operators deploy redundant routers from different
vendors (e.g., Juniper, Cisco). Because network 𝐴 took months to
build, its current configuration comprises fragments written by
different operators for diverse purposes, making hidden inconsis-
tencies likely. It is important to not only ensure equivalence of
multi-vendor, redundant routers, but also to quickly localize the
root causes of any errors. Network 𝐴 is constantly being reconfig-
ured as more policies are added for upcoming production traffic.
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Scenario Component Structural or Semantic Differences

Scenario 1
BGP Semantic 5

Static Routes Structural 2
Scenario 2 BGP Semantic 4
Scenario 3 ACLs Semantic 3

Table 6: Data Center Network Results

Campion allows greater agility by allowing new policies to be more
quickly deployed in diverse backup routers. The operators used
Campion to compare all pairs of backup routers.

Scenario 2: Router replacement. Network 𝐴 has an important up-
date called router replacement, where operators replace a router from
one vendor with one from a different vendor. Such replacements
occur several times a month to take advantage of the price, perfor-
mance, and newer features. For example, the operators of network
𝐴 might replace lower-version Cisco routers with higher-version
Juniper routers in order to avoid a Cisco bug. Router replacement is
one of the riskiest update operations in network 𝐴, since operators
must manually rewrite the old configurations to the new format;
many critical errors have occurred as a result. The operators used
Campion to check for differences between old and new configu-
rations before performing a scheduled replacement, in order to
proactively detect errors.

Scenario 3: Access control in gateway routers. In network 𝐴, many
ACL rules are applied in gateway routers for traffic control. All of
network A’s gateway routers should have identical access-control
policies, but it is difficult for network A’s operators to guarantee
this since: (1) the number of ACL rules is very large, and (2) the use
of nested ACL rules makes their logic complex. The operators used
Campion to check the equivalence of ACL rules in the gateway
routers of the data center network.

Output evaluation.Note that network𝐴’s operators used Cam-
pion and its user interface without any feedback or help from us in
interpreting results. The operators gave us very positive feedback on
the practicality and usability of Campion. By using Campion, they
found several risky, hidden configuration errors, as summarized in
Table 6. All differences that Campion found were unintentional and
considered to be errors by the operators. The network configura-
tions had recently undergone a standardization process to replace
ambiguous and “uncommonly-used” configuration commands with
unambiguous and standard ones. Hence any differences found by
Campion were likely to be erroneous, and indeed this was borne
out by the lack of any false positives.

Scenario 1: Debugging redundant routers.Campion detected seven
configuration bugs across all of the redundant router pairs that it
analyzed. Five of the bugs represent missing fragments of BGP
policy, and two of them were incorrect next hops in static routes.
For four BGP bugs, Campion was able to accurately localize the
difference. For example, Campion pointed out that a prefix for
an import filter was missing in the primary router but present in
the backup one. Why were these bugs not detected by customers
or real-time monitoring systems? This was because the missing

prefixes had not been used for production traffic yet, but would
have been in the near future. Once a service using this prefix is
enabled, a service problem would have occurred. Thus, Campion
proactively prevented a future service disruption.

The fifth BGP error that Campion detected used a version of
the Cisco IOS format which Campion does not fully support yet.
Campion still detected the error and produced useful localization
information, such as the relevant input space and the actions taken
by each router, but the output configuration text was inaccurate.
Due to this inaccuracy, the operator reported the need to spend
more time to understand the precise bug location, but they still
said that it was easy to spot the deviant configuration lines from
Campion’s output.

The two static route errors Campion detected were misconfig-
ured next hops. Backup routers in network 𝐴 should forward the
same prefix to the same next hop, but Campion detected that they
were configured to forward a particular prefix 𝑝 to different next
hops. This is very dangerous: a cascading failure would have trig-
gered when the production traffic corresponding to 𝑝 is turned on
in the near future. Campion accurately pointed out non-equivalent
next hops of this kind in two pairs of backup routers.

Scenario 2: Router replacement.We used Campion to test more
than 30 router replacements. Campion successfully detected four
bugs: one was an incorrect community number and three were
incorrect local preferences. One local preference bug was for the
replacement of a reflector device for iBGP. If this bug were not
detected, the proposed replacement would have caused a severe
outage.

Further, network 𝐴’s operators also tested Campion on a syn-
thetic case based on a static route replacement which resulted in a
significant outage one year ago. The tags of two static routes were
configured differently due to a misunderstanding of the semantics
of the two vendors. Campion accurately pointed out the difference
between the static routes. In other words, a significant outage could
have been avoided if Campion had been used a year ago.

Scenario 3: Access control in gateway routers. Campion success-
fully detected three ACL differences between gateway routers from
Cisco and Juniper. Table 7 shows Campion’s output for one of
these differences.1 Campion’s text localization identified the exact
line in the Cisco ACL where traffic was rejected. The Juniper ACL
equivalent is divided into terms, and Campion’s text localization
was able to locate which term accepted the traffic. Further, Cam-
pion’s header localization also identified header information like
the relevant source IP prefix.

Running Time. For each of the above three scenarios, although
the configuration files of each device in network 𝐴 contains thou-
sands of lines, Campion finished its localization task within five
seconds for each pair of routers.

Comparing Campion with an existing tool.While provider
𝐴 has its own home-grown verification system that has been used
for 1.5 years, this system can only tell whether the network con-
figuration meets operator intent, but does not provide any error
localization capability. Thus, network 𝐴’s operators spend consid-
erable time localizing bugs even when the existing tool identifies
1The IP addresses and ACL name in this figure have been anonymized for confiden-
tiality reasons.
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Router Pair Route Map Outputted
Differences

Differences
Reported Confirmed Pending

Core
Routers

Export 1 5 5 4 1
Export 2 1 1 1 0

Border
Routers

Export 3 1 1 1 0
Export 4 1 1 1 0
Export 5 2 1 1 0
Import 0 - - -

(a) SemanticDiff results on route maps

Router Pair Component Classes of Errors Differences
Reported Confirmed Pending

Core
Routers

Static Routes 2 1 0 0
BGP Properties 1 1 0 0

(b) StructuralDiff results

Table 8: University Network Results

Router 1 (current) Router 2 (reference)

Included
Packets

srcIP: 9.140.0.3/32
dstIP: 0.0.0.0/0

Excluded
Packets

srcIP: 9.140.0.3/32
dstIP: 0.0.0.0/0
protocol: ICMP

+28 more
ACL Name VM_FILTER_1 VM_FILTER_1

Action REJECT ACCEPT

Text 2299 deny ipv4 9.140.0.0
0.0.1.255 any

set firewall family inet
filter VM_FILTER
term permit_whitelist

Table 7: An example for ACL rules debugging. Router 1 and

Router 2 are Cisco and Juniper routers, respectively.

bugs in the network. Campion therefore provides a new capabil-
ity that can potentially reduce debugging time considerably for
network 𝐴’s operators.

Localization efficiency. For the configurations checked, all
localization results were less than five lines of configuration code.
The configuration files tested vary in size from 300 lines to more
than 1000 lines. Of these, the number of lines that are part of an
ACL or route map definition is typically more than 100. Campion
thus drastically reduces the amount of configuration that operators
must search through to debug a difference.

5.2 Differencing in a University Network

The university network consists of approximately 1400 devices,
including border routers that connect to external ISPs, backbone
core routers and building routers.

We ran Campion to compare the policies for a pair of core routers
and a pair of border routers. In each pair, one used Cisco configu-
ration format and the other used Juniper format. We chose these
two pairs because they are the only Cisco-Juniper backup pairs
with routing policy. The Cisco configurations and the Juniper core
router configuration contain about 1800 lines of text. The Juniper
border router configuration contains about 3500 lines of text. The
results are shown in Table 8.

We match route maps that are applied to the same BGP neighbor.
In total, there were five pairs of operator-defined export route maps,
and one pair of operator-defined import route maps. The differences
that Campion found are summarized in Table 8(a).

The prefix ranges, communities, and text lines produced by Cam-
pion made it straightforward to identify these discrepancies. The
list of issues that we sent to the operators does not exactly corre-
spond to the raw output of our tool. For example, since Campion
divides sets of advertisements based on which lines process them, it
is possible that a single underlying difference in the configuration
results in multiple lines of outputted differences. In Table 8(a), the
Outputted Difference column reports the number of raw outputs
produced by Campion, whereas the Differences Reported column
reports how many distinct issues we reported to the operators. We
categorize a reported difference as Confirmed if the operator indi-
cated that the identified difference was both an actual difference and
unintentional. The last column indicates the number of reported
differences whose status is unknown at this time.

As shown in the table, the operators confirmed that most of the
differences Campion identified were in fact errors. Based on earlier
snapshots, the differences have been present since at least July 2017.

The route maps shown earlier in Figure 1 illustrate two issues
from a pair of core-router route maps (labeled Export 1 in Table 8(a)).
These were differences in the definitions of a prefix list and a com-
munity set and were confirmed as unintentional discrepancies. For
the difference in the prefix lists, the operator agreed it was a mis-
configuration, but was not sure whether the Cisco or Juniper router
was correct. For the community difference, the operator wrote:
“The community group is an obvious mistake on our part. The Ju-
niper config is wrong. We followed the wrong Juniper doc when
configuring the community group.”

In addition to the differences shown in Figure 1, the actual route
maps contained different definitions for their third clause, with the
Juniper router performing a match on communities that was not
done in the Cisco router. They also have different redistribution be-
havior for certain addresses. Further, the two routers have different
fall-through behaviors (accept vs. deny) when handling advertise-
ments that fail to match any clause, which causes two additional
behavioral differences. Operators confirmed all but the last of these
issues, which is still pending. When asked about the difference
between the third clauses of each route map, the operator replied:
“The Juniper config is correct and the intent is obvious because of
the English-language syntax. The Cisco config we’re not sure what
change should be made, if any.” This demonstrates the challenge for
operators when dealing with multi-vendor backups, and the need
for a tool like Campion to ensure consistency and localize errors.

Export 2, the other core router policy, also had the difference in
prefix lists mentioned previously for Export 1 but did not have any
other issues. The differences in the border router policies similarly
affected the matched prefixes and communities but were of a differ-
ent nature: there were differences in two regular expressions used
to match communities for Export 3 and Export 4. Campion reported
that advertisements with a certain community were accepted in
the Cisco router but not the Juniper router. For Export 5, there was
one prefix that was absent in a prefix list in the Juniper router but
present in the Cisco router list. These were also confirmed as errors
by the operators.
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When comparing other properties of the core routers using Cam-
pion’s StructuralDiff, we found differences in the static route
configuration and the BGP configuration. In the static routes we
found two classes of differences. The first included many static
routes that applied to the same prefix but had different next hops
and different administrative distances. We deemed these as inten-
tional differences, since the next hops had similar addresses, sug-
gesting that their next hop routers were of the same role, and
the administrative distances did not affect the relative priority of
routes. The second class of static route differences included two
static routes that were present in one router but not the other, as
demonstrated in § 2. These were reported to the operators, and
they said that these were intentionally added as a workaround for
a specific BGP routing issue. The BGP configuration difference was
that certain iBGP neighbors of the Cisco router were missing a
neighbor send-community command to propagates communities,
while Juniper routers send communities by default. The operators
indicated that this configuration difference does not cause a behav-
ioral difference because the core routers do not set communities on
routes.

5.3 False Positives

We distinguish between two types of false positives that Campion
may produce, both of which were exhibited in the results for the
university network. First, there can be intentional differences be-
tween routers. This was the situation for the static routes that were
added in one configuration as a workaround for a specific BGP
routing issue, as well as for the static routes that had differing next
hops. Second, there can be spurious differences due to Campion’s
modular approach. Specifically, any potential behavioral difference
between corresponding components is reported by Campion, but
these differences may not cause an actual behavioral difference
in the current network, for example because the differences are
shadowed or accounted for by other parts of the configuration. This
was the situation for the iBGP neighbors of one router which were
not configured to send communities.

However, we argue that it is still worthwhile to report both
kinds of false positives. Reporting intentional differences allows
the operator to ensure that all and only expected differences exist
between the two routers. In the case of static routes added as a
workaround, the operator commented, "I just need to find another
way to resolve this," indicating that this difference is intentional but
still not optimal. Reporting spurious differences is valuable because
they represent latent errors that can potentially be "activated" by a
change elsewhere in the network configuration. In the case of the
spurious difference for sending communities, if the core routers
later start to set communities on routes then this difference will
cause an important behavioral difference. Indeed, the operator com-
mented that these kinds of spurious differences would likely be
examined and addressed when the routers are next replaced.

5.4 Scalability

For each of the data center scenarios, Campion finished its local-
ization task within five seconds for each pair of routers. For the
university core and border pairs, the total runtime to compare the
core and border pairs was 3 seconds. When combined with the
parsing of the configurations, the total time was under 10 seconds,

with configuration parsing taking a majority of the time. We addi-
tionally tested the scalability of SemanticDiff for ACLs. We used
Capirca2 to randomly generate nearly equivalent ACLs for Cisco
and Juniper configurations. We introduced 10 differences between
the two ACLs and compared them. When the ACLs were generated
with 1000 rules, SemanticDiff took less than a second. When the
ACLs were generated with 10,000 rules, SemanticDiff took 15
seconds. These tests were done with a 2.2 GHz CPU. Moreover,
Batfish’s parsing time for the 10,000 case is 13 seconds, which is
comparable to the runtime of SemanticDiff.

6 Related Work

At a high level our work differs from prior work in network verifica-
tion in two ways. First, we target verifying behavioral equivalence
of two router configurations, while prior work typically targets
network-wide reachability properties. Second, we localize identi-
fied errors to both relevant headers and configuration lines; most
prior work simply provides individual concrete counterexamples.

Data Plane Verification Tools: Many tools verify reachabil-
ity properties of a network’s data plane, including its ACLs and
forwarding tables [2, 15, 17, 18, 20, 21, 32]. Several tools focus
on ACLs [22, 29] and localize errors to ACL lines [14, 15, 17, 29].
Closest to our work, netdiff [9] is a tool for checking data plane
equivalence in networks using a similar symbolic execution ap-
proach, but it focuses on the data plane. Campion extends these
capabilities to perform configuration localization for the control
plane. HeaderLocalize and StructuralDiff have no analogue
in netdiff.

Control Plane Verification: Other tools verify properties of a
network’s control plane routing processes [1, 3, 4, 10, 12, 24, 31, 33].
These tools can be adapted to perform router equivalence check-
ing, as we showed for Minesweeper [3] in § 2. However, when
verification fails, these tools only provide individual, concrete coun-
terexamples, while Campion localizes to both headers and configu-
ration text. As we have seen by the experiment in Section 2, even
if we extend Minesweeper to produce multiple counterexamples
it is still not able to quickly find all errors. Further, this still leaves
the question as to which parts of the text caused each error. Re-
cent work extends Minesweeper to localize errors by leveraging an
SMT solver’s ability to provide unsatisfiable cores when verification
fails [28]. The approach localizes errors to specific SMT constraints,
but not to configuration lines or headers. Campion leverages the
BDD encoding of ACLs and route maps from Bonsai [4], which uses
BDDs to perform network abstraction, not router differencing or de-
bugging. Campion’s structural checks are reminiscent of rcc [11],
but our checks are designed to ensure behavioral equivalence and
to do so without incurring additional false positives over a modular
semantic check.

Outlier Detection: Benson et al. [5, 6] infer data-plane reach-
ability specifications from a network’s forwarding tables and use
these specifications in part to identify outliers. However, they only
consider the data plane and cannot localize back to the original
configurations. SelfStarter [16] infers parameterized configuration
templates for ACLs and route maps and uses them for outlier de-
tection. This approach uses sequence alignment and so requires
2https://github.com/google/capirca

https://github.com/google/capirca
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router configurations to be structurally similar. Further, SelfStarter
localizes configuration text but cannot localize headers.

Equivalence Checking: Equivalence checking is an old idea
beyond networks, and our SemanticDiff algorithm is similar in
spirit to prior work. For example, Ramos et al. [26] perform equiv-
alence checking of two C functions via pairwise comparisons of
execution paths. Because network ACLs and route maps are loop-
free, Campion is exhaustive, finding all differences and localizing
to all IP prefixes; equivalence checking of software is undecidable
in general.

7 Conclusion

Campion is a tool for debugging router configurations intended
to be behaviorally equivalent but which in fact are not. Unlike
prior work, Campion uses modular structural or semantic checks
to localize errors to the affected message headers and relevant
configuration lines. Our experience with a cloud provider and a
university indicates that Campion satisfies a real need by localizing
crucial errors.

Prior control-plane verification tools model a configuration
monolithically as a set of constraints. In contrast, Campion exploits
the modular structure of configurations to break up complex checks
of whole router behavior into smaller per-component checks. This
"bottom up" style eases localization, sidesteps reasoning about the
routing protocols, and allows simple structural checks to often be
used without additional loss of precision. None of these capabilities
would be possible without exploiting modularity. As in other forms
of verification, we believe exploiting modularity will be critical to
making real-world network verification and debugging effective.
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Appendix

Theorem 3.3 (Soundness). If networks N and N∗ are locally
equivalent for isomorphism I, then they have the same set of routing
solutions.

Proof. The proof is by a reduction to the stable routing prob-
lem [4]. First, we show that each protocol 𝑝 ∈ P forms a stable
routing problem (SRP). In particular for any given destination router
𝑑 ∈ V advertising initial route 𝑑𝑟 , 𝐼 (𝑑) ∈ V∗ must also advertise
𝑑𝑟 since the protocol-specific advertisement configurations must be
the same. Given this, we can construct the SRP (T ,R, 𝑑𝑟 , ⪯𝑝 , trans)
for N and (T ∗,R, 𝑑𝑟 , ⪯𝑝 , trans∗) for N∗, where:

trans(𝑒, 𝑟 ) = F𝑝 (C𝑝 (𝑒), 𝑒, 𝑟 )
trans∗ (𝑒, 𝑟 ) = F ∗𝑝 (C∗𝑝 (𝑒), 𝑒, 𝑟 )

We further relate the two SRPs with the abstraction (𝑓 , ℎ) where
𝑓 (𝑒) = I(𝑒) and ℎ(𝑟 ) = 𝑟 .

The main theorem for abstract SRPs is that of equivalent routing
solutionswhen the abstractions are sound [4]. Thus, wemust simply
prove that this is a sound abstraction. To do so, we prove each of
the sufficient conditions in [4]:

Dest-equivalence. We have 𝑓 (𝑑) = I(𝑑) which is the destination
router for N∗ and 𝑓 (𝑥) ≠ 𝐼 (𝑑) for any 𝑥 ≠ 𝑑 by virtue of I being
an isomorphism.

Orig-equivalence. We have ℎ(𝑑𝑟 ) = 𝑑𝑟 since ℎ is the identify
function, which by construction is the route used at N∗.

Drop-equivalence. We have ℎ(𝑟 ) = 𝑟 since ℎ is the identity func-
tion, which trivially satisfies the drop-equivalence requirement that
ℎ(𝑟 ) = ⊥ ⇐⇒ 𝑟 = ⊥.

Rank-equivalence. By definition, we have 𝑟1 ⪯𝑝 𝑟2 ⇐⇒
ℎ(𝑟1) ⪯𝑝 ℎ(𝑟2) since ℎ is the identity function.

Trans-equivalence. From the fact that N and N∗ are equivalent
for I, it follows that F𝑝 (C𝑝 (𝑒), 𝑒, 𝑟 ) = F ∗𝑝 (C∗𝑝 (𝐼 (𝑒)), 𝐼 (𝑒), 𝑟 ). This
means that we have trans(𝑒, 𝑟 ) = trans∗ (𝐼 (𝑒), 𝑟 ) by definition. Sub-
stituting the definition of 𝑓 and ℎ, this gives us the equivalence:
ℎ(trans(𝑒, 𝑟 )) = trans∗ (𝑓 (𝑒), ℎ(𝑟 )), which is the desired result.

Topology-abstraction. Finally, the topology requirements
from [4] are trivially satisfied since I is a homomorphism.

This result demonstrates that each protocol will compute the same
set of routing solutions. Thus the composition of the protocols will
also compute and select the same set of routes.

□
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