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Abstract11

Staged self-assembly has proven to be a powerful abstract model of self-assembly by modeling12

laboratory techniques where several nanoscale systems are allowed to assemble separately and then13

be mixed at a later stage. A fundamental problem in self-assembly is Unique Assembly Verification14

(UAV), which asks whether a single final assembly is uniquely constructed. This has previously been15

shown to be Πp

2-hard in staged self-assembly with a constant number of stages, but a more precise16

complexity classification was left open related to the polynomial hierarchy.17

Covert Computation was recently introduced as a way to compute a function while hiding the18

input to that function for self-assembly systems. These Tile Assembly Computers (TACs), in a19

growth only negative aTAM system, can compute arbitrary circuits, which proves UAV is coNP-hard20

in that model. Here, we show that the staged assembly model is capable of covert computation using21

only 3 stages. We then utilize this construction to show UAV with only 3 stages is Πp

2-hard. We then22

extend this technique to open problems and prove that general staged UAV is PSPACE-complete.23

Measuring the complexity of n stage UAV, we show Πp

n−1-hardness. We finish by showing a Πp

n+124

algorithm to solve n stage UAV leaving only a constant gap between membership and hardness.25
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1 Introduction31

The Staged Self-Assembly model was designed as an extension to the standard hierarchical32

model of tile self assembly that mimics the abilities of scientists in the lab to control the33

assembly process by mixing test tubes. The additional features in this model allow for more34

efficient tile complexity, but increased complexity of certain verification problems.35

We use the concept of Covert Computation, a requirement of a computational system36

stipulating that the input and computational history of the computation be hidden in the37

final output of the system, within the context of Staged Self-assembly, an extension to tile38

self-assembly that allows for basic operations such as mixing self-assembly batches over a39

sequence of distinct stages. We use this connection to resolve open questions regarding the40

complexity of the Unique Assembly Verification (UAV) problem within staged self-assembly-41

the problem of whether a given system uniquely produces a specific assembly. The importance42

of this work stems from the fundamental nature of the UAV problem, along with the natural43

and experimentally motivated Staged Self-Assembly model. Further, the novel approach by44

which our results are obtained, by way of designing Covert Computation systems in Staged45

Self-Assembly, may be of independent interest as it shows how to utilize Staged Self-Assembly46

to implement general purpose computing systems with strong guarantees that might be47

useful for cryptography or have applications for privacy within biomedical computation.48

Staged Self-Assembly. The Staged Self-Assembly model [1, 6, 7, 8, 9, 10, 11, 15, 19]49

is a generalization of the (2-handed) tile assembly model [4] where particles are modeled by50

4-sided Wang tiles which nondeterministically combine based on the affinity of tile edges. Tile51

self-assembly is a well-studied mathematical abstraction used in the study of self-assembly52

systems with algorithmically complex behavior, and enjoys experimental success through a53

DNA implementation [20]. In order to add the basic functionality of what an experimentalist54

with a set of test tubes could execute [18], the staged model extends tile self-assembly by55

allowing assembly to occur in multiple separate bins, and for the contents of these bins to be56

either combined or split into a new set of bins after each one of a given sequence of stages.57

Covert Computation. Tile self-assembly can be used as a model of computation in58

which tiles attach to an input seed structure to grow a final output structure encoding the59

result of the computation. This basic paradigm is one of most promising avenues for the60

development of nanoscale molecular computing systems (see [20] for recent experimental work61

using DNA tiles to implement 6-bit circuits). The authors in [5] recently proposed a new62

constraint on such computing systems termed Covert Computation. A covert computation63

system computes a function with the additional constraint that the output assembly provides64

no information about either the original input or the computational history, beyond the65

actual output of the computed function. This is a particularly daunting self-assembly problem66

since the output is provided in the form of a self-assembled structure that encodes the exact67

geometric location of every placed tile. In previous methods of tile self-assembly computation,68

the entire computational history and original input are easily interpreted from the final69

output assembly. However, while the output assembly specifies the location of each placed70

tile, the result of the computation can be a function of not just these tile locations, but also71

of the order in which these tiles are placed, which is the technique exploited in [5]. This72

concept provides a useful technique for proving complexity results, and we use it here to73

show PSPACE-completeness of verifying unique assembly in staged self-assembly.74

Unique Assembly Verification. One well-studied problem in tile self-assembly is the75

Unique Assembly Verification (UAV) problem which asks if a given system uniquely produces76

a given assembly. This problem was shown to be solvable in polynomial time in the Abstract77
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Stages Membership Hardness

1 (2HAM) coNP In [4] coNP-complete∗ In [16]

2 Π
p

3 Thm. 31 coNP-hard∗ In [16]

3 Π
p

4 Thm. 31 Π
p

2-hard Thm. 6

n > 3 Π
p

n+1 Thm. 31 Π
p

n−1-hard Thm. 24

General PSPACE In. [17] PSPACE-complete Thm. 22

Table 1 Complexities of Unique Assembly Verification in the Staged Assembly Model with respect

to the number of stages n. Our results are in bold. ∗This result uses the temperature as an input

parameter/variable for the problem. All other results are true even with a constant temperature.

Tile Assembly Model [2]. The addition of negative interactions and detachment of tiles78

makes the UAV problem undecidable [13], while growth-only systems with no detachments79

are coNP-complete [5]. The UAV problem in the 2-Handed Assembly Model was first studied80

in [4] where coNP membership was shown with coNP-completeness in the third dimension.81

The problem was also shown to be coNP-complete with a variable temperature [16], but82

constant temperature UAV in the 2HAM is still open. In the staged assembly model, initial83

investigation in [17] showed coNP-hardness using four stages and Πp
2-hardness for seven stages.84

They also showed membership in PSPACE with a conjecture of PSPACE-completeness.85

Our Results. In this paper, we introduce the concept of covert computation in the86

context of staged self-assembly for the purpose of establishing the complexity of unique87

assembly verification within the model. First, we show that staged self-assembly is capable of88

covert computation even when limited to three stages. Next, we use this fact to show UAV is89

PSPACE-complete in staged self-assembly, resolving the open problem from [17]. Along the90

way, we improve on some results from [17]: we show that UAV is Πp
2-hard with just three91

stages, improving on the previous hardness result requiring seven stages. We then generalize92

this result to show that for n stages, UAV is Πp
n−1-hard, but yields a Πp

n+1 algorithm, leaving93

only a gap of two in levels between membership and hardness for this problem. Due to space94

constraints these two results are shown in the Appendix. An overview of our results and95

known results related to UAV is shown in Table 1.96

2 Preliminaries97

We provide a high-level overview of the staged self-assembly model and covert computation98

within this model. We refer the reader to [6, 7] or the appendix for formal definitions.99

Staged Self-Assembly Model.100

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set101

Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).102

Configurations, bond graphs, and stability. A configuration is a partial function103

A : Z2 → T for some set of tiles T , i.e. an arrangement of tiles on a square grid. For a104

given configuration A, define the bond graph GA to be the weighted grid graph in which each105

element of dom(A) is a vertex, and the weight of the edge between a pair of tiles is equal to106

the strength of the coincident glue pair. A configuration is said to be τ -stable for positive107

integer τ if every edge cut of GA has strength at least τ , and is τ -unstable otherwise.108

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈ Z2, A + u⃗109

denotes the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For two configurations A110

and B, B is a translation of A, written B ≃ A, provided that B = A + u⃗ for some vector111

u⃗. For a configuration A, the assembly of A is the set Ã = ¶B : B ≃ A♢. An assembly Ã is112

a subassembly of an assembly B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and113

B ∈ B̃ such that A ⊆ B. An assembly is τ -stable provided the configurations it contains114

CVIT 2016
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are τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist115

A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is τ -stable.116

Two-handed assembly and bins. We define the assembly process in terms of bins. A117

bin is an ordered tuple (S, τ) where S is a set of initial assemblies and τ is a positive integer118

parameter called the temperature. For a bin (S, τ), the set of produced assemblies P ′

(S,τ) is119

defined recursively as follows:120

1. S ⊆ P ′

(S,τ).121

2. If A, B ∈ P ′

(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).122

A produced assembly is terminal provided it is not τ -combinable with any other producible123

assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). Intuitively,124

P ′

(S,τ) represents the set of all possible assemblies that can self-assemble from the initial set125

S, whereas P(S,τ) represents only the set of supertiles that cannot grow any further. The126

assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′

(S,τ) there exists a corresponding127

y ∈ P(S,τ) such that x ⊑ y. Thus unique production implies that every producible assembly128

can be repeatedly combined with others to form an assembly in P(S,τ).129

Staged assembly systems. An r-stage b-bin mix graph Mr,b is an acyclic r-partite130

digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form131

(mi,j , mi+1,j′) for some i, j, j′. A staged assembly system is a 3-tuple ⟨Mr,b, ¶T1, T2, . . . , Tb♢, τ⟩132

where Mr,b is an r-stage b-bin mix graph, Ti is a set of tile types, and τ is an integer133

temperature parameter.134

Given a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a corresponding135

bin (Ri,j , τ) where Ri,j is defined as follows:136

1. R1,j = Tj (this is a bin in the first stage);137

2. For i ≥ 2, Ri,j =


⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τ)



.138

Thus, the jth bin in stage 1 is provided with the initial tile set Tj , and each bin in any139

subsequent stage receives an initial set of assemblies consisting of the terminally produced140

assemblies from a subset of the bins in the previous stage as dictated by the edges of the mix141

graph.1 The output of the staged system is simply the union of all terminal assemblies from142

each of the bins in the final stage.2 We say that this set of output assemblies is uniquely143

produced if each bin in the staged system uniquely produces its respective set of terminal144

assemblies.145

Covert Computation. Tile assembly computers were first defined in [5, 14]. We provide146

informal definitions of both Tile Assembly Computers and Covert Computation with formal147

definitions in the appendix.148

A Staged Tile Assembly Computer (STAC) for a function f consists of a staged self-149

assembly system, and a format for encoding the input into tiles sets and a format for reading150

the output from the terminal assembly. The input format is a specification for what set of151

tiles to add to a specific bin in the first stage. Each bit of the input must be mapped to152

one of two sets of tiles for the respective bit position: a tile set representing “0”, or tile set153

representing “1”. The input set for the entire string is the union of all these tile sets. Our154

1 The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Because systems here may have super-constant tile complexity, we
restrict tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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3 Covert Computation in Staged Self-assembly186

Here, we demonstrate covert computation in the staged assembly model. This construction187

creates a logic circuit using a 3-stage temperature-2 system with a number of bins polynomial188

in the size of the circuit. We consider only circuits made up of functionally universal NAND189

gates, but these techniques could be used to create any 2-input gate.190

Figure 2b shows a basic overview of the mixgraph used for the covert computation191

implementation. The method requires three stages with a linear number of mixing bins.192

In the first stage, we assemble the components needed to perform the computation. These193

include an Input Assembly, which encodes the input to the function, Gate Assemblies,194

which act as individual gates and perform the computation via their attachment rules195

and geometry, and additional assemblies which are used to help “clean up” our circuit196

and covertly get the output.197

In stage two, the input assembly and gate assemblies are added to a single bin along198

with a test tile. The gate assemblies will begin to attach to the input assembly creating199

a Circuit Assembly. Once the computation is complete, the test tile can attach to the200

circuit assembly if and only if the output is true. The circuit assembly is terminal in this201

bin and will be passed to the final stage.202

The final stage adds additional assemblies to the bin along with most of the tile set as203

single tiles (not shown in figure). The additional assemblies read the output of the circuit204

and it grows into one of the output templates. The Output Frame searches for the test205

tile representing the output of the circuit. The single tiles fill in any spaces left in the206

circuit assembly that would show the computation history, thereby turning the assembly207

into the output template. This requires a linear number of additional bins in the first208

and second stage to store these single tiles while mixing takes place in other bins.209

For our circuit assembly we implement Planar Logic Circuits with only NAND gates. An210

example circuit and an assembly showing how the gates are laid out are shown in Figure 2a.211

Wires are represented by 2 × 3 blocks of tiles shown in blue in the image. Input and Gate212

assemblies contain a subset of the tiles in each block we call arms which represent the values213

being passed along the wires. The input assembly is a comb-like structure that is designed214

so that each input bit reaches the gate it is used at (Figure 3a). For each NAND gate in215

the circuit we have 4 different assemblies, one for each possible input to the gate. A gate216

assembly can cooperatively bind to the input assembly if the variable values match. The gate217

assembly has a third arm that represents the output. This allows the next gate assembly to218

attach, which continues propagating until the computation is done and the circuit assembly219

is complete. We now cover the construction in detail by stage.220

3.1 First Stage - Assembly Construction221

Each bin in the first stage will individually create the assemblies that will come together in222

the next stage. For an n-input k-gate NAND logic circuit (considering crossovers as three223

XOR gates [5]), we have an input assembly, 4k gate assemblies, and a constant number of224

other assemblies that will be used in the final stage. Here we will describe the details of the225

individual assemblies created in addition to the arms, which function as wires in our system.226

Input. For each bit of the input we have two possible input bit assemblies (Figure 3a).227

The value of the bit determines which tiles will be added to create that input bit assembly228

in the first stage. Figure 3a shows the selected assemblies that come together to form the229

input assembly shown in Figure 3b. Each subassembly has a domino which we call an ‘arm’230

representing the corresponding bit value. The shape of these assemblies depends on the gates231
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from an instance of TQBF P over n variables: ∀s ∈ ¶1, . . . , n♢(TERM(ts(x1, . . . , xa), bs) ⇐⇒410

∀xa+1∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) = y)). If s is even, y = 0 and Q = ∀, and y = 1, Q = ∃411

otherwise.412

▶ Lemma 9. In the staged system SP created from an instance of TQBF P over n variables,413

in bin bn+1 in stage n + 1, let A be the set of initial assemblies in bn+1. For all a ∈ A, a414

will grow to the target assembly if and only if a is not an unmatched test assembly tn ∈ Tn.415

▶ Theorem 10. Unique Assembly Verification in the Staged Assembly Model is PSPACE-416

complete with τ = 2.417

Proof. Given an instance of TQBF P over n variables/quantifiers, the reduction provides an418

instance of n + 1-stage τ = 2 UAV that is true if and only if P is true. If P is true, then in419

stage n + 1, every producible assembly grows into the target assembly. Since n is always even,420

by Lemma 20, for a bin bn in stage n, an assembly tn ∈ Tn representing an assignment x1 is421

terminal in bin bn if ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 0). If P is true, then the statement422

∀x1∃x2∀x3, . . . , ∀Xn(ϕ(x1, . . . , xn) = 1) is true, and therefore no unmatched tn ∈ Tn will be423

passed into bn+1. By Lemma 21, every initial assembly in bn+1 that is not some tn ∈ Tn424

grows into the target assembly. Therefore, the target assembly is uniquely assembled if the425

instance of TQBF is true.426

If P is false, then there exists an assignment to x1 such that ∀x2∃x3, . . . , ∀Xn(ϕ(x1, . . . , xn) =427

0). By Lemma 20, some test assembly tn ∈ Tn will be terminal and passed into bin bn+1. By428

Lemma 21 any tn ∈ Tn will not grow into the target assembly, the instance of staged UAV is429

false. ◀430

4.3 n-Stage Hardness431

We now show how the reduction can be used to show hardness for n-stage UAV. We reduce432

from the boolean satisfiability problem for Πp
n, which is a quantified boolean formula with n433

quantifiers (starting with universal) and n − 1 alternations. We show an instance of Πp
n-SAT434

can be reduced to n + 1-stage τ = 3 UAV.435

▶ Problem 11 (Πp
n − SAT ). Given a boolean formula ϕ with variables partitioned into n436

sets X1, . . . , Xn, is it true that ∀X1∃X2 . . . QnXn(ϕ(X1, . . . , Xn)).437

▶ Theorem 12. For all n > 1, UAV in the Staged Assembly Model with n stages is Πp
n−1-hard438

with τ = 2.439

Proof. The system functions nearly identically to the previous reduction. However, if n440

is odd, the output gate assemblies will now contain the flag tile if they represent a false441

output, rather than true. Each consecutive test assembly added now represents one less set442

of variables, rather than just one less variable.443

If n is even, the system acts in the way previously described. If n is odd, then by Lemma 20444

any tn ∈ Tn representing an assignment to X1 is terminal if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) =445

1). However, since we modified the output assemblies to contain the flag tile if they represent446

a false output, they are now terminal if the statement is true for the negation of ϕ. Therefore447

any tn representing X1 is terminal if and only if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) = 0). In448

bin bn+1 all assemblies besides any tn grow to the target assembly in the same way. ◀449

4.4 UAV Membership450

In this section we improve on previous work and show that an n-stage UAV problem is in451

Πp
n+1. We use a similar method as [17], by defining three subproblems that are solved as452
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Stages UAV BPROD BTERM BBIN

1 Πp

1 Σp

0 Πp

1 Πp

1

s Πp

s+1 Σp

s Πp

s Πp

s

Table 2 Base case complexity of these problems in 1 stage (2HAM) and their complexity in s

stages

subroutines of a UAV algorithm. However, these subproblems differ from previous work as453

we make some assumptions about our input. We first define bounded bins and systems, then454

define the three subproblems, and show their complexity.455

▶ Definition 13 (Bounded). Given a bin b = (S, τ) in a staged system where S is the set of456

initial assemblies and τ is the temperature. Let Pb be the set of producible assemblies in bin457

b. The bin is bounded by an integer k ∈ Z+ if for each a ∈ Pb, ♣a♣ ≤ k. A staged system is458

bounded if all bins are bounded by some k.459

4.5 Problem Definitions460

Here we define each subproblem and state their complexity however due to space constraints461

the proofs may be found in the full version of the paper.....462

▶ Problem 14 (Bounded Producibility (BPRODs)). Given a bounded staged system Γ, an463

integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A464

producible in b?465

▶ Problem 15 (Bounded Terminal Assembly with producibility promise (BTERMs)). Given a466

bounded staged system Γ, an integer k (described in unary), a bin b in stage s bounded by k,467

and an assembly A ∈ Pb, is A terminal in b?468

▶ Problem 16 (Bounded Bin (BBINs)). Given a staged system Γ, a bin b in stage s, an469

integer k (described in unary), assuming all bins in stages before s are bounded by k, is b470

bounded by k?471

▶ Lemma 17. For a bin b in stage s of a staged self-assembly system,472

the Bounded Producibility problem is in Σp
s,473

the Bounded Terminal Assembly problem with producibility promise is in Πp
s, and474

the Bounded Bin problem is in Πp
s475

4.6 UAVn Membership476

We now present a co-nondeterministic algorithm using oracles for the previous problems to477

solve UAV. For clarity, we use an alternate but equivalent definition of UAV. We provide478

Algorithm 1 which uses oracles to solve the subproblems presented above.479

▶ Problem 18 (Staged Unique Assembly Verification). Given a staged tile-assembly system Γ480

and an assembly A, is Γ bounded by ♣A♣, and for each bin in the last stage, is A the only481

terminal assembly?482

▶ Theorem 19. The n-stage Unique Assembly Verification problem in the staged assembly483

model is in Πp
n+1.484

CVIT 2016
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Data: Given a staged system Γ with n stages, and an Assembly A

Result: Does Γ uniquely assemble A and is Γ bounded?

for each stage s′ starting with s′ = 1 do

for each bin b in stage s′ do

if Not BBINs′(Γ, ♣A♣, b′) then

Reject;

for each bin b in stage n do

if Not BPRODn(Γ, ♣A♣, b, A) then

Reject;

if Not BTERMn(Γ, ♣A♣, b, A) then

Reject;

Nondeterministically select an assembly B with ♣B♣ ≤ ♣A♣ ;

for each bin b′ in stage n do

if BPRODn(Γ, ♣A♣, b′, B) then

if BTERMn(Γ, ♣A♣, b′, B) then

Reject;

Accept;

Algorithm 1 Staged Unique Assembly Verification Membership Algorithm

5 Conclusion485

In this paper we answered an open problem from [17] by showing the Unique Assembly486

Verification problem in the Staged Self-Assembly Model is PSPACE-complete. To show this,487

we utilized a construction capable of covert computation and extended it to show Πp
2-hardness488

of UAV with three stages. We then extended this reduction to show PSPACE-completeness.489

This reduction is also used to show Πp
s−1-hardness with s stages.490

Several important directions for future work remain open. We use three stages to perform491

covert computation. Is the 2HAM alone capable of covert computation? If not, what is the492

lower bound on the number of stages needed? If so, can the construction be used to solve493

the open problem of UAV in that model? This might also mean fewer stages are needed for494

our results in the staged model. The two known hardness results for 2HAM utilize either495

one step into the third dimension or a variable temperature. Perhaps stronger results in the496

staged assembly model can be obtained with one of these variants.497
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6 Appendix561

6.1 Self-Assembly Definitions562

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set Σ.563

Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).564

Configurations, bond graphs, and stability. A configuration is a partial function565

A : Z2 → T for some set of tiles T , i.e. an arrangement of tiles on a square grid. For a566

given configuration A, define the bond graph GA to be the weighted grid graph in which each567

element of dom(A) is a vertex, and the weight of the edge between a pair of tiles is equal to568

the strength of the coincident glue pair. A configuration is said to be τ -stable for positive569

integer τ if every edge cut of GA has strength at least τ , and is τ -unstable otherwise.570

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈ Z2, A + u⃗571

denotes the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For two configurations A572

and B, B is a translation of A, written B ≃ A, provided that B = A + u⃗ for some vector573

u⃗. For a configuration A, the assembly of A is the set Ã = ¶B : B ≃ A♢. An assembly Ã is574

a subassembly of an assembly B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and575

B ∈ B̃ such that A ⊆ B. An assembly is τ -stable provided the configurations it contains576

are τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there exist577

A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is τ -stable.578

Two-handed assembly and bins. We define the assembly process in terms of bins. A579

bin is an ordered tuple (S, τ) where S is a set of initial assemblies and τ is a positive integer580

parameter called the temperature. For a bin (S, τ), the set of produced assemblies P ′

(S,τ) is581

defined recursively as follows:582

1. S ⊆ P ′

(S,τ).583

2. If A, B ∈ P ′

(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).584

A produced assembly is terminal provided it is not τ -combinable with any other producible585

assembly, and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). Intuitively,586

P ′

(S,τ) represents the set of all possible assemblies that can self-assemble from the initial set587

S, whereas P(S,τ) represents only the set of supertiles that cannot grow any further. The588

assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′

(S,τ) there exists a corresponding589

y ∈ P(S,τ) such that x ⊑ y. Thus unique production implies that every producible assembly590

can be repeatedly combined with others to form an assembly in P(S,τ).591

Staged assembly systems. An r-stage b-bin mix graph Mr,b is an acyclic r-partite592

digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form593

(mi,j , mi+1,j′) for some i, j, j′. A staged assembly system is a 3-tuple ⟨Mr,b, ¶T1, T2, . . . , Tb♢, τ⟩594

where Mr,b is an r-stage b-bin mix graph, Ti is a set of tile types, and τ is an integer595

temperature parameter.596

Given a staged assembly system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, we define a corresponding597

bin (Ri,j , τ) where Ri,j is defined as follows:598

1. R1,j = Tj (this is a bin in the first stage);599

2. For i ≥ 2, Ri,j =


⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τ)



.600

Thus, the jth bin in stage 1 is provided with the initial tile set Tj , and each bin in any601

subsequent stage receives an initial set of assemblies consisting of the terminally produced602

assemblies from a subset of the bins in the previous stage as dictated by the edges of the mix603
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graph.3 The output of the staged system is simply the union of all terminal assemblies from604

each of the bins in the final stage.4 We say that this set of output assemblies is uniquely605

produced if each bin in the staged system uniquely produces its respective set of terminal606

assemblies.607

6.2 Covert Computation608

We now provide the formal definitions of function computing and covert computation then609

continue with details of the third stage of the construction and a formal proof.610

Input Template. An n-bit input template over tile set T is a sequence of ordered pairs of611

tile sets over T : I = (I0,0, I0,1), . . . , (In−1,0, In−1,1). For a given n-bit string b = b0, . . . , bn−1612

and n-bit input template I, the input tile set for b with respect to I is the set I(b) =
⋃

i Ii,bi
.613

Output Template. An n-bit output template over tile set T is a sequence of ordered614

pairs of configurations over T : O = (C0,0, C0,1), . . . , (Cn−1,0, Cn−1,1). For a given n-bit615

string x = x0, . . . , xn−1 and n-bit output template O, the representation of x with respect616

to O is O(x) = the assembly of
⋃

i Ci,xi
. A template is valid for a temperature parameter617

τ ∈ Z+ if this union never contains overlaps for any choice of x, and is always τ -stable. An618

assembly B ⊇ O(x), which contains O(x) as a subassembly, is said to represent x as long as619

O(d) ⊈ B for any d ̸= x.620

Function Computing Problem. A staged tile assembly computer (STAC) is an ordered621

triple ℑ = (Γ, I, O) where Γ = (M, ¶∅, T2, . . . , Ti♢, τ) is a staged self assembly system, I is622

an n-bit input template, and O is a k-bit output template. A STAC is said to compute623

function f : Zn
2 → Zk

2 if for any x ∈ Zn
2 and y ∈ Zk

2 such that f(x) = y, then the staged624

self assembly system Γℑ,x = (M, ¶I(x), T2, . . . , Ti♢, τ) uniquely assembles a set of assemblies625

which all represent y with respect to template O.626

Covert Computation. A STAC covertly computes a function f(x) = y if 1) it computes627

f , and 2) for each y, there exists a unique assembly Ay such that for all x, where f(x) = y,628

the system Γℑ,x = (M, ¶I(x), T1, . . . , Ti♢, τ) uniquely produces Ay. In other words, Ay is629

determined by y, and every x where f(x) = y has the exact same final assembly.630

6.2.1 Utility Gates631

In order to implement general circuits we need to handle gates with more than one output632

and also be able to cross wires. Gates with a fan-out (outputs to more than one place)633

contain multiple output arms (Figure 11a). Non-monotone circuits can be created with634

crossover gates (Figure 11b). These gates have two input arms and two output arms. The635

bit of the upper input arm is represented by the lower output arm and the same for the636

other two arms.637

6.2.2 Third Stage - Clean Up638

In this section we go over each assembly that is input to the final stage and how it eventually639

reaches one of the two output templates.640

3 The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Because systems here may have super-constant tile complexity, we
restrict tiles to only be added at the initial stage.

4 This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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5-stage instance of staged UAV P ′
4. Afterwards we explain prove the results hold in general.695

The example instance of Staged UAV will have five stages. Given the TQBF instance P4,696

an instance of ∀∃SAT = ∀x1, x2, x3∃x4(ϕ) is created. With the instance of ∀∃SAT this we697

use the reduction in Section 4.1 to create an instance of 3-stage UAV. We keep the first two698

stages the reduction creates, and ignore the third.699

By Lemma 4, a test assembly representing the partial assignment x1, . . . , x3 is terminal700

if and only if ∀x4(ϕ(x1, x2, x3, x4) = 0). We refer to this set of test assemblies as T2.701

6.4.1.1 Additional Test Assemblies.702

Two more sets of test assemblies will be added, one in stage 3 and one in stage 4. We will703

call these sets T3 and T4 respectively. These test assemblies will be a subassembly of our704

total test assembly (Figure 13d). We say T3 are type-R test assemblies, meaning their base705

is on the left and their variable arms protrude right (Figure 13a). Similarly, T4 are type-L706

test assemblies (Figure 13b). Type L and R test assemblies encode their assignment in a707

complementary fashion. This allows them to attach to each other only if they encode the708

same partial assignment (Figure 13c). The “arms” for these test assemblies will be length709

4, allowing them to attach to each other without cooperative binding. The set T2 contains710

eight test assemblies, one for each assignment to x1, x2, x3. The set T3 contains four test711

assemblies, each representing an assignment to x1, x2. The test assembly set T4 will have712

two test assemblies, each representing an assignment to x1. This requires adding additional713

bins to the first stage to create additional test bit assemblies.714

6.4.1.2 Mix graph.715

Figure 10 depicts the mix graph structure. In stages 3 and 4 there is one bin which contains716

the circuit assemblies (bins b3 and b4). In the third stage we mix the set of test assemblies717

T3 into bin b3. These will “search” for unmatched T2 test assemblies to attach to. The set718

T ′
3 ⊆ T3 for which all t′

3 ∈ T ′
3 are terminal in bin b3 gives us information about the partial719

assignments that the t′
3 assemblies represent.720

W.l.o.g., consider the test assembly t1,0 ∈ T3 representing partial assignment x1 = 0, x2 =721

1. t1,0 will not be terminal in bin b3 if there exists some unmatched t2 ∈ T2 it can attach722

to, i.e., a test assembly t2 that represents the same partial assignment x1 = 0, x2 = 1. We723

know there are two of these, one representing assignment x1 = 0, x2 = 1, x3 = 0, and one724

representing assignment x1 = 0, x2 = 1, x3 = 1.725

By Lemma 4, the condition for a test assembly t0,1,x3
∈ T2 representing assignment726

x1 = 0, x2 = 1, x3 to be unmatched is ∀x4(ϕ(0, 1, x3, x4) = 0). If this is false for all727

assignments to x3 (x3 = 0 and x3 = 1), t1,0 will have nothing to attach to. Therefore728

t1,0 ∈ T3 is terminal if for ∀x3∃x4(ϕ(1, 0, x3, x4) = 1). More generally a test assembly t3 ∈ T3729

representing assignment x1, x2 is terminal in bin b3 if ∀x3∃x4(ϕ(x1, x2, x3, x4) = 1).730

Let TERM(A, b) be true iff assembly A is terminal in bin b. The set of test assemblies731

T4 is then mixed into bin b4. Utilizing the same logic, a test assembly t4 ∈ T4 representing732

assignment x1 is terminal in bin b4 if and only if ∀x2∃x3∀x4(ϕ(x1, x2, x3, x4) = 0). We can733

then say ∃t4 ∈ T4(TERM(t4, b4)) ⇐⇒ ∃x1∀x2∃x3∀x4(ϕ(x1, x2, x3, x4) = 0). Therefore the734

existence of an unmatched t4 test assembly directly corresponds to the truth of the instance735

of TQBF P4.736
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terminal in bin bs (If ts is not in the final set Tn, we know it will not be terminal in later763

stages).764

We design our system in such a way to achieve a generalization of Lemma 4. In general, for765

a test assembly ts ∈ Ts which represents a certain partial assignment x1, . . . , xa, there is state-766

ment S that quantifies over the rest of the variables (e.g. S = ∀xa+1, . . . , ∃xn(ϕ(x1, . . . , xn) =767

1)) such that S ⇐⇒ ts is terminal in bin bs.768

▶ Lemma 20. Let TERM(A, b) ⇐⇒ (Assembly A is terminal in bin b). Let a be the769

number of variables the test assemblies in Ts represent (a = n − s + 1). Let ts(x1, . . . , xa)770

be the test assembly ts ∈ TS which represents partial assignment x1, . . . , xa. In the staged771

system SP created from an instance of TQBF P over n variables:772

∀s ∈ ¶1, . . . , n♢(TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) =773

y)).774

If s is even, y = 0 and Q = ∀, and y = 1, Q = ∃ otherwise.775

Proof. We prove this by induction on s. Base case: Lemma 4776

Let Q′ be the opposite quantifier of Q. Assume the statement holds for case s −777

1, we will show this implies it holds for case s. Since we are assuming the case s − 1:778

TERM(ts−1(x1, . . . , xa+1), bs−1) ⇐⇒ ∀xa+2, . . . , Q′xn(ϕ(x1, . . . , xn) = ¬y) holds.779

In the next stage, test assemblies in Ts represent one less variable, i.e., a partial assignment780

x1, . . . , xa and search for a test assembly in Ts−1 with a matching partial assignment to781

attach to. Consider test assembly ts(x1, . . . , xa) in bin bs. ts(x1, . . . , xa) is not terminal in782

bin bs if and only if either ts−1(x1, . . . , xa, 0) or ts−1(x1, . . . , xa, 1) were not terminal in bin783

bs−1 (Otherwise geometric blocking would prevent attachment). If follows that ts(x1, . . . , xa)784

is terminal in bin bs if for all xa+1(ts−1(x1, . . . , xa+1) is not terminal in bin bs−1)), therefore:785

TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1(¬TERM(ts−1(x1, . . . , xa, xa+1), bs−1))

Since we assumed TERM(ts−1(x1, . . . , xa+1), bs−1) ⇐⇒ ∀xa+2, . . . , Q′xn(ϕ(x1, . . . , xn) =786

¬y) we substitute the TERM function for the corresponding statement, we then simplify to787

show the Lemma’s statement holds for case s:788

TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1(¬(∀xa+2, . . . , Q′xn(ϕ(x1, . . . , xn) = ¬y)))

TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1(∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) = y))

TERM(ts(x1, . . . , xa), bs) ⇐⇒ ∀xa+1∃xa+2, . . . , Qxn(ϕ(x1, . . . , xn) = y)

◀789

We now show a generalization of Lemma 5. Since it was shown that the existence of an790

unmatched test assembly tn in bin bn corresponds to the truth of the instance of TQBF, we791

now show how in bin bn + 1, every assembly that is not an unmatched tn will grow to the792

target assembly, while tn will not.793

▶ Lemma 21. In the staged system SP created from an instance of TQBF P over n variables,794

in bin bn+1 in stage n + 1, let A be the set of initial assemblies in bn+1. For all a ∈ A, a795

will grow to the target assembly if and only if a is not an unmatched test assembly tn ∈ Tn.796
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quantifiers (starting with universal) and n − 1 alternations. We show an instance of Πp
n-SAT846

can be reduced to n + 1-stage τ = 3 UAV.847

▶ Problem 23 (Πp
n − SAT ). Given a boolean formula ϕ with variables partitioned into n848

sets X1, . . . , Xn, is it true that ∀X1∃X2 . . . QnXn(ϕ(X1, . . . , Xn))?849

The system is created in nearly the same way. There are two key differences. (1) Each850

consecutive set of test assemblies added now represents one less set of variables, rather than851

just one less variable. T2 is the set of test assemblies mixed with the circuit assemblies in852

stage 2. A test assembly t2 ∈ T2 represents an assignment to X1, . . . , Xn−1. For s > 2, the853

set of test assemblies Ts added in at stage s represents an assignment to X1, . . . , Xn−s+1.854

(2) If n is odd, the output gate assemblies will now contain the flag tile if they represent a855

false output, rather than true. If n is even no change is made to the output gate.856

▶ Theorem 24. For all n > 2, UAV in the Staged Assembly Model with n stages is Πp
n−1-hard857

with τ = 2.858

Proof. Assume we are given an instance of Πp
n-SAT, P = X1, . . . , Xn, ϕ. Each Xi is a set of859

variables. The reduction creates an instance of n + 1-stage τ = 3 UAV that is true if and860

only if P is true. First note that Lemma 20 can extend to the case where each set of test861

assemblies represents one less set of variables, rather than one less variable.862

If n is even, the system behaves as previously described. By Lemma 20, in stage n the863

set Tn is added into bn. Any tn ∈ Tn representing an assignment to the variables in X1 is864

terminal if and only if ∀X2∃X3 . . . ∀Xn(ϕ(X1, . . . , Xn) = 0). In bn+1 all assemblies besides865

any tn grow to the target assembly.866

If n is odd, then by Lemma 20 any tn ∈ Tn representing an assignment to X1 is terminal867

if ∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) = 1). However, since we modified the output assemblies to868

contain the flag tile if they represent a false output, they are now terminal if the statement869

is true for the negation of ϕ. Therefore any tn representing X1 is terminal if and only if870

∀X2∃X3 . . . ∃Xn(ϕ(X1, . . . , Xn) = 0). In bin bn+1 all assemblies besides any tn grow to the871

target assembly in the same way. ◀872

6.6 UAV Membership873

In this section we improve on previous work and show that an n-stage UAV problem is in874

Πp
n+1. We use a similar method as [17], by defining three subproblems that are solved as875

subroutines of a UAV algorithm. However, these subproblems differ from previous work as876

we can make some assumptions about our input. We first define bounded bins and systems,877

then define the three subproblems, and show their complexity.878

▶ Definition 25 (Bounded). Given a bin b = (S, τ) in a staged system where S is the set of879

initial assemblies and τ is the temperature. Let Pb be the set of producible assemblies in bin880

b. The bin is bounded by an integer k ∈ Z+ if for each a ∈ Pb, ♣a♣ ≤ k. A staged system is881

bounded if all bins are bounded by some k.882

6.7 Problem Definitions883

▶ Problem 26 (Bounded Producibility (BPRODs)). Given a bounded staged system Γ, an884

integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A885

producible in b?886
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Stages UAV BPROD BTERM BBIN

1 Πp

1 Σp

0 Πp

1 Πp

1

s Πp

s+1 Σp

s Πp

s Πp

s

Table 3 Base case complexity of these problems in 1 stage (2HAM) and their complexity in s

stages

▶ Problem 27 (Bounded Terminal Assembly with producibility promise (BTERMs)). Given a887

bounded staged system Γ, an integer k (described in unary), a bin b in stage s bounded by k,888

and an assembly A ∈ Pb, is A terminal in b?889

▶ Problem 28 (Bounded Bin (BBINs)). Given a staged system Γ, a bin b in stage s, an890

integer k (described in unary), assuming all bins in stages before s are bounded by k, is b891

bounded by k?892

6.8 Base Cases893

For the base cases we look at each problem in a 2HAM system.894

BPROD1 Producibility in the 2HAM is known to be solvable in polynomial time (P = Σp
0)895

[12].896

BTERM1 To verify that an assembly A is not terminal, a producible assembly B that897

can attach to A is provided as a certificate. This assembly is polynomial in the input size898

since the bin is bounded. Thus, we can verify that it is producible in polynomial time.899

BBIN1 We can verify if there exists some assembly larger than k by providing an assembly900

C such that k ≤ C ≤ 2k. Any assembly larger than 2k must have been built using at least901

one assembly greater than size k. This smaller assembly could be used as the certificate902

instead.903

6.9 BPRODs Membership904

BPRODs is a Σp
s algorithm to solve the Bounded Producibility problem for a bin b in stage905

s. The details of this algorithm can be found in Algorithm 2. At a high level this algorithm906

works by nondeterministically selecting a polynomially-sized set of assemblies I (Figure907

16a). We will say an assembly is valid input assembly if it is producible and terminal in the908

previous stage. We check if an assembly is valid input assembly by first calling an oracle909

(BPRODs−1) to check if it is producible in that bin. If we find the assembly is producible910

we can now use the oracle for the BTERMs−1 to verify that is terminal and a valid input911

assembly. (Figure 16b). If each assembly in I is terminal in a bin in stage s − 1 that connects912

to b in the mix graph, then I is a set of possible assemblies input into b (I is a valid input913

set). We use I to nondeterminsically build an assembly B (Figure 16c),914

6.10 BTERMs Membership915

BTERMs is a Πp
s algorithm to solve the Bounded Terminal Assembly problem with produ-916

cibility promise for a bin b in stage s. Algorithm 3 functions similar to BPRODs by first917

finding a set of valid input assemblies and using that set to nondeterministically build an918

assembly B. We then check if B can attach to A (the assembly we are checking is terminal)919

and if it can attach, then we know A is not terminal.920
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Data: Given a bounded staged system Γ, an integer k (described in unary), a bin b

that is bounded by k, and an producible assembly A

Result: Is A terminal in b?

Nondeterministically select a set of assemblies I with ♣I♣ ≤ k and each assembly

i ∈ I, ♣i♣ < k for each assembly i ∈ I do

for each bin b′ in stage s − 1 that connects to b in the mix graph do

if BPRODs−1(Γ, k, b′, i) then

if BTERMs−1(Γ, k, b′, i) then

Mark i as valid;

If any i ∈ I is not valid accept ;

Nondeterminiscally build an assembly B with ♣B♣ ≤ k ;

if B can attach to A then

Reject;

Accept;

Algorithm 3 BTERMs Algorithm

Data: Given a staged system Γ, a bin b in stage s, an integer k (described in unary),

assuming all bins in stages before s are bounded by k

Result: Is b bounded by k?

Nondeterministically select a set of assemblies I with ♣I♣ ≤ 2k and each assembly

i ∈ I, ♣i♣ < k for each assembly i ∈ I do

for each bin b′ in stage s − 1 that connects to b in the mix graph do

if BPRODs−1(Γ, k, b′, B) then

if BTERMs−1(Γ, k, b′, B) then

Mark i as valid;

If any i ∈ I is not valid accept ;

Nondeterministically build an assembly B with ♣B♣ ≤ k ;

if B can attach to A then

Reject;

Accept;

Algorithm 4 BBINs Membership

unary. When we first select our set of assemblies I, we build assemblies up to size k. We do937

not need to check anything larger than k because we know the system is bounded for the first938

two problems and for the Bounded Bin problem we assume all previous stages are bounded939

by k. The size of I for the first two algorithms is less than or equal to k since we will not940

produce anything larger than k. For the Bounded Bin problem, the size of I is less than or941

equal to 2k since we only need to check assemblies of size less than 2k by the argument in942

the base case.943

To check if I is valid we utilize a polynomial number of oracle calls to BPRODs−1 and944

BTERMs−1. For each assembly i ∈ I, we check each bin b′ in stage s − 1 that connects945

to b to see if i is terminal in b′. We first call BPRODs−1 to see if i is producible in b′.946

If it is producible in b′, we call BTERMs−1 to check if it is terminal. For each i ∈ I, we947

must find at least one bin where i is terminal. If it is not we end the branch by either948

rejecting for BPRODs or accepting for BTERMs and BBINs. At this point, there will be a949

nondeterministic branch for each set of valid input assemblies.950

Once we have a valid input set I, we know that any assembly we build using those951
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Data: Given a staged system Γ with n stages, and an Assembly A

Result: Does Γ uniquely assemble A and is Γ bounded?

for each stage s′ starting with s′ = 1 do

for each bin b in stage s′ do

if Not BBINs′(Γ, ♣A♣, b′) then

Reject;

for each bin b in stage n do

if Not BPRODn(Γ, ♣A♣, b, A) then

Reject;

if Not BTERMn(Γ, ♣A♣, b, A) then

Reject;

Nondeterministically select an assembly B with ♣B♣ ≤ ♣A♣ ;

for each bin b′ in stage n do

if BPRODn(Γ, ♣A♣, b′, B) then

if BTERMn(Γ, ♣A♣, b′, B) then

Reject;

Accept;

Algorithm 5 Staged Unique Assembly Verification Membership

assemblies is producible in b. By nondeterministically building an assembly B, we have a952

branch of the algorithm for every producible assembly (up to a certain size). With this953

assembly we can make the algorithm specific check. For BPRODs, if any branch builds A954

(B = A), then we accept. If A is not producible then all branches will reject. For BTERMs,955

if A is not terminal then there exists some producible assembly that attaches to A, so there956

is some branch that rejects. If A is terminal, then all producible assemblies can not attach957

to A, so all branches will accept. For BBINs, if there exists a producible assembly of size958

greater than k, the branch that builds it will reject. ◀959

6.12 UAVn Membership960

We now present a co-nondeterministic algorithm using oracles for the previous problems to961

solve UAV. For clarity, we use an alternate but equivalent definition of UAV.962

▶ Problem 30 (Staged Unique Assembly Verification). Given a staged tile-assembly system Γ963

and an assembly A, is Γ bounded by ♣A♣, and for each bin in the last stage, is A the only964

terminal assembly?965

▶ Theorem 31. The n-stage Unique Assembly Verification problem in the staged assembly966

model is in Πp
n+1.967

Proof. The algorithm starts by verifying that the system is bounded by ♣A♣. It calls BBIN1968

on each bin in the first stage. For each subsequent stage s′, BBINs′ can be called since all969

the previous stages are known to also be bounded by ♣A♣. If any bin is not bounded the970

algorithm rejects.971

The next step verifies that A is a terminal assembly in each bin. For each bin b, the972

algorithm first checks that A is a producible assembly in b by calling BPRODn. If A is not973

producible the algorithm rejects. If A is producible, the algorithm calls BTERMn to verify974

that A is terminal. If A is not terminal the algorithm rejects.975
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The final step of the algorithm verifies that A is uniquely produced by nondeterministically976

selecting an assembly B, and checking if B is terminal in the final stage. For each bin b′, the977

algorithm checks if B is producible in b′ using BPRODn. If yes, it calls BTERMn to check if978

B is terminal in b′, and rejects if the oracle returns true. If B is not terminal in any bin,979

then the algorithm accepts.980

If any bin contains a producible assembly larger than A the algorithm will reject in the981

first loop. If A is not a terminal assembly in a bin in stage n, then the algorithm will reject in982

the second loop. Finally, if there exists any other terminal assembly in stage s, the algorithm983

will reject in the final loop. The run time of the algorithm is linear in the number of bins in984

the system and the size of A. It also makes a linear number of oracle calls to a Σp
n oracle985

for the three subproblems defined earlier. This algorithm is a co-nondeterministic algorithm986

that runs in polynomial time using an oracle for the class Σp
n and solves UAV for staged987

assembly with n stages, so this problem is in Πp
n+1. ◀988
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