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—— Abstract

Staged self-assembly has proven to be a powerful abstract model of self-assembly by modeling

laboratory techniques where several nanoscale systems are allowed to assemble separately and then
be mixed at a later stage. A fundamental problem in self-assembly is Unique Assembly Verification
(UAV), which asks whether a single final assembly is uniquely constructed. This has previously been
shown to be II5-hard in staged self-assembly with a constant number of stages, but a more precise
complexity classification was left open related to the polynomial hierarchy.

Covert Computation was recently introduced as a way to compute a function while hiding the
input to that function for self-assembly systems. These Tile Assembly Computers (TACs), in a
growth only negative aTAM system, can compute arbitrary circuits, which proves UAV is coNP-hard
in that model. Here, we show that the staged assembly model is capable of covert computation using
only 3 stages. We then utilize this construction to show UAV with only 3 stages is I15-hard. We then
extend this technique to open problems and prove that general staged UAV is PSPACE-complete.
Measuring the complexity of n stage UAV, we show IIL_,-hardness. We finish by showing a II},
algorithm to solve n stage UAV leaving only a constant gap between membership and hardness.
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Covert Computation in Staged Self-Assembly

1 Introduction

The Staged Self-Assembly model was designed as an extension to the standard hierarchical
model of tile self assembly that mimics the abilities of scientists in the lab to control the
assembly process by mixing test tubes. The additional features in this model allow for more
efficient tile complexity, but increased complexity of certain verification problems.

We use the concept of Covert Computation, a requirement of a computational system
stipulating that the input and computational history of the computation be hidden in the
final output of the system, within the context of Staged Self-assembly, an extension to tile
self-assembly that allows for basic operations such as mixing self-assembly batches over a
sequence of distinct stages. We use this connection to resolve open questions regarding the
complexity of the Unique Assembly Verification (UAV) problem within staged self-assembly-
the problem of whether a given system uniquely produces a specific assembly. The importance
of this work stems from the fundamental nature of the UAV problem, along with the natural
and experimentally motivated Staged Self-Assembly model. Further, the novel approach by
which our results are obtained, by way of designing Covert Computation systems in Staged
Self-Assembly, may be of independent interest as it shows how to utilize Staged Self-Assembly
to implement general purpose computing systems with strong guarantees that might be
useful for cryptography or have applications for privacy within biomedical computation.

Staged Self-Assembly. The Staged Self-Assembly model [1, 6, 7, 8, 9, 10, 11, 15, 19]
is a generalization of the (2-handed) tile assembly model [4] where particles are modeled by
4-sided Wang tiles which nondeterministically combine based on the affinity of tile edges. Tile
self-assembly is a well-studied mathematical abstraction used in the study of self-assembly
systems with algorithmically complex behavior, and enjoys experimental success through a
DNA implementation [20]. In order to add the basic functionality of what an experimentalist
with a set of test tubes could execute [18], the staged model extends tile self-assembly by
allowing assembly to occur in multiple separate bins, and for the contents of these bins to be
either combined or split into a new set of bins after each one of a given sequence of stages.

Covert Computation. Tile self-assembly can be used as a model of computation in
which tiles attach to an input seed structure to grow a final output structure encoding the
result of the computation. This basic paradigm is one of most promising avenues for the
development of nanoscale molecular computing systems (see [20] for recent experimental work
using DNA tiles to implement 6-bit circuits). The authors in [5] recently proposed a new
constraint on such computing systems termed Covert Computation. A covert computation
system computes a function with the additional constraint that the output assembly provides
no information about either the original input or the computational history, beyond the
actual output of the computed function. This is a particularly daunting self-assembly problem
since the output is provided in the form of a self-assembled structure that encodes the exact
geometric location of every placed tile. In previous methods of tile self-assembly computation,
the entire computational history and original input are easily interpreted from the final
output assembly. However, while the output assembly specifies the location of each placed
tile, the result of the computation can be a function of not just these tile locations, but also
of the order in which these tiles are placed, which is the technique exploited in [5]. This
concept provides a useful technique for proving complexity results, and we use it here to
show PSPACE-completeness of verifying unique assembly in staged self-assembly.

Unique Assembly Verification. One well-studied problem in tile self-assembly is the
Unique Assembly Verification (UAV) problem which asks if a given system uniquely produces
a given assembly. This problem was shown to be solvable in polynomial time in the Abstract
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Stages Membership Hardness
1 (2HAM) coNP In [4] coNP-complete® In [16]
2 I3 Thm. 31 coNP-hard” In [16]
3 N 14 Thm. 31 I15-hard Thm. 6
n>3 ., Thm. 31 I? _,-hard Thm. 24
General PSPACE In. [17] PSPACE-complete | Thm. 22

Table 1 Complexities of Unique Assembly Verification in the Staged Assembly Model with respect
to the number of stages n. Our results are in bold. *This result uses the temperature as an input
parameter /variable for the problem. All other results are true even with a constant temperature.
Tile Assembly Model [2]. The addition of negative interactions and detachment of tiles
makes the UAV problem undecidable [13], while growth-only systems with no detachments
are coNP-complete [5]. The UAV problem in the 2-Handed Assembly Model was first studied

in [4] where coNP membership was shown with coNP-completeness in the third dimension.

The problem was also shown to be coNP-complete with a variable temperature [16], but
constant temperature UAV in the 2HAM is still open. In the staged assembly model, initial

investigation in [17] showed coNP-hardness using four stages and II5-hardness for seven stages.

They also showed membership in PSPACE with a conjecture of PSPACE-completeness.

Our Results. In this paper, we introduce the concept of covert computation in the
context of staged self-assembly for the purpose of establishing the complexity of unique
assembly verification within the model. First, we show that staged self-assembly is capable of
covert computation even when limited to three stages. Next, we use this fact to show UAV is
PSPACE-complete in staged self-assembly, resolving the open problem from [17]. Along the
way, we improve on some results from [17]: we show that UAV is I15-hard with just three
stages, improving on the previous hardness result requiring seven stages. We then generalize
this result to show that for n stages, UAV is II!' _,-hard, but yields a IT?, 11 algorithm, leaving
only a gap of two in levels between membership and hardness for this problem. Due to space
constraints these two results are shown in the Appendix. An overview of our results and
known results related to UAV is shown in Table 1.

2 Preliminaries

We provide a high-level overview of the staged self-assembly model and covert computation
within this model. We refer the reader to [6, 7] or the appendix for formal definitions.

Staged Self-Assembly Model.

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set
Y. Each pair of glues g1, g2 € ¥ has a non-negative integer strength str(gi, g2).

Configurations, bond graphs, and stability. A configuration is a partial function
A : 72 = T for some set of tiles T, i.e. an arrangement of tiles on a square grid. For a
given configuration A, define the bond graph G 4 to be the weighted grid graph in which each
element of dom(A) is a vertex, and the weight of the edge between a pair of tiles is equal to
the strength of the coincident glue pair. A configuration is said to be 7-stable for positive
integer 7 if every edge cut of G 4 has strength at least 7, and is 7-unstable otherwise.

Assemblies. For a configuration A and vector @ = (uy,u,) with u,,u, € Z%, A+ @
denotes the configuration A o f, where f(x,y) = (¢ + uy, y + uy). For two configurations A
and B, B is a translation of A, written B ~ A, provided that B = A + @ for some vector
. For a configuration A, the assembly of A is the set A = {B: B~ A}. An assembly A is
a subassembly of an assembly B, denoted A C B, provided that there exists an A € A and
B € B such that A C B. An assembly is 7-stable provided the configurations it contains
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Covert Computation in Staged Self-Assembly

are T-stable. Assemblies A and B are 7-combinable into an assembly C' provided there exist

Ae A BeB,and C e C such that AUB=C, AN B =@, and C is 7-stable.
Two-handed assembly and bins. We define the assembly process in terms of bins. A

bin is an ordered tuple (S, 7) where S is a set of initial assemblies and 7 is a positive integer

parameter called the temperature. For a bin (S, 7), the set of produced assemblies P(’ 1) is

defined recursively as follows:

1. SC P(’ 57)

2. If A,Bc P(/s,r) are T-combinable into C, then C € P(’S’T).

A produced assembly is terminal provided it is not 7-combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, 7) is denoted Pg ). Intuitively,
P(’ s,7) Tepresents the set of all possible assemblies that can self-assemble from the initial set
S, whereas F(g ;) represents only the set of supertiles that cannot grow any further. The
assemblies in Pg ,) are uniquely produced iff for each x € P(’ 5.7) there exists a corresponding
Y € P(s,7) such that x C y. Thus unique production implies that every producible assembly
can be repeatedly combined with others to form an assembly in P ..

Staged assembly systems. An r-stage b-bin mixz graph M, is an acyclic r-partite
digraph consisting of 7b vertices m; ; for 1 <¢ <r and 1 < j < b, and edges of the form
(my,j, miy1,j7) for some 4, 7, j'. A staged assembly system is a 3-tuple (M, y,{T1,T>,..., Ty}, T)
where M, is an r-stage b-bin mix graph, T; is a set of tile types, and 7 is an integer
temperature parameter.

Given a staged assembly system, for each 1 < i <r 1 <7 < b, we define a corresponding
bin (R; ;,T) where R; ; is defined as follows:

1. Ry ; =T} (this is a bin in the first stage);
2. Fori =2, Rij = ( U P i)

k: (mi_1,k,mi j)EMy

Thus, the j** bin in stage 1 is provided with the initial tile set T}, and each bin in any
subsequent stage receives an initial set of assemblies consisting of the terminally produced
assemblies from a subset of the bins in the previous stage as dictated by the edges of the mix
graph.! The output of the staged system is simply the union of all terminal assemblies from
each of the bins in the final stage.? We say that this set of output assemblies is uniquely
produced if each bin in the staged system uniquely produces its respective set of terminal
assemblies.

Covert Computation. Tile assembly computers were first defined in [5, 14]. We provide
informal definitions of both Tile Assembly Computers and Covert Computation with formal
definitions in the appendix.

A Staged Tile Assembly Computer (STAC) for a function f consists of a staged self-
assembly system, and a format for encoding the input into tiles sets and a format for reading
the output from the terminal assembly. The input format is a specification for what set of
tiles to add to a specific bin in the first stage. Each bit of the input must be mapped to
one of two sets of tiles for the respective bit position: a tile set representing “0”, or tile set
representing “1”. The input set for the entire string is the union of all these tile sets. Our

The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Because systems here may have super-constant tile complexity, we
restrict tiles to only be added at the initial stage.

This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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(a) 2HAM Example (b) Staged Self-Assembly Example

Figure 1 (a) A 2HAM example that uniquely builds a 2 x 3 rectangle. The top 4 tiles in the tile
set all combine with strength-2 glues building the ‘.’ shape. The tile with blue and purple glues
needs two tiles to cooperatively bind to the assembly with strength 2. All possible producibles are
shown with the terminal assembly highlighted. (b) A simple staged self-assembly example. The
system has 3 bins and 3 stages, as shown in the mixgraph. There are three tile types in our system
that we assign to bins as desired. From each stage only the terminal assemblies are added to the
next stage. The result of this system is the assembly shown in the bin in stage 3.

staged self assembly system, with the set of tiles needed to build the input seed added in
a designated bin, is our final system which performs the computation. The output of the
computation is the terminal assembly the system assembles. To interpret what bit-string is
represented by the assembly, a second output format specifies a pair of sub-assemblies and
locations for each bit. An assembly that represents a bitstring is created by the union of
each sub-assembly represented by each bit.

For a STAC to covertly compute f, the STAC must compute f and produce a unique
assembly for each possible output of f. Thus, for all x such that f(z) =y, a covert STAC
that computes f produces the same output assembly representing output y for each possible

input z, making it impossible to determine which input value x was provided to the system.

We now provide the formal definitions of function computing and covert computation.

Input Template. An n-bit input template over tile set T' is a sequence of ordered pairs of
tile sets over T': I = (lo,0,101), - -, (In—1,0, In—1,1). For a given n-bit string b = by, ..., bp—1

and n-bit input template I, the input tile set for b with respect to I is the set I(b) = U, Li s, -

Output Template. An n-bit output template over tile set T is a sequence of ordered
pairs of configurations over T: O = (Cy,0,Co,1), ---,(Cn_1,0, Cn—1,1). For a given n-bit
string « = xg, ..., T,_1 and n-bit output template O, the representation of x with respect
to O is O(z) = the assembly of | J, C; »,. A template is valid for a temperature parameter
7 € Z* if this union never contains overlaps for any choice of z, and is always 7-stable. An
assembly B D O(z), which contains O(z) as a subassembly, is said to represent z as long as
O(d) ¢ B for any d # x.

Function Computing Problem. A staged tile assembly computer (STAC) is an ordered
triple & = (T', I, 0) where I' = (M, {2, T5,...,T;},7) is a staged self assembly system, I is
an n-bit input template, and O is a k-bit output template. A STAC is said to compute
function f : ZZ — Z& if for any z € Z% and y € Z§ such that f(x) = y, then the staged
self assembly system I's , = (M, {I(x),Ts,...,T;},7) uniquely assembles a set of assemblies
which all represent y with respect to template O.

Covert Computation. A STAC covertly computes a function f(z) = y if 1) it computes
f, and 2) for each y, there exists a unique assembly A, such that for all z, where f(z) =y,
the system I's , = (M,{I(x),T1,...,T;},7) uniquely produces A,. In other words, A, is
determined by y, and every x where f(x) = y has the exact same final assembly.
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Covert Computation in Staged Self-Assembly

3 Covert Computation in Staged Self-assembly

Here, we demonstrate covert computation in the staged assembly model. This construction
creates a logic circuit using a 3-stage temperature-2 system with a number of bins polynomial
in the size of the circuit. We consider only circuits made up of functionally universal NAND
gates, but these techniques could be used to create any 2-input gate.
Figure 2b shows a basic overview of the mixgraph used for the covert computation
implementation. The method requires three stages with a linear number of mixing bins.
In the first stage, we assemble the components needed to perform the computation. These
include an Input Assembly, which encodes the input to the function, Gate Assemblies,
which act as individual gates and perform the computation via their attachment rules
and geometry, and additional assemblies which are used to help “clean up” our circuit
and covertly get the output.
In stage two, the input assembly and gate assemblies are added to a single bin along
with a test tile. The gate assemblies will begin to attach to the input assembly creating
a Circuit Assembly. Once the computation is complete, the test tile can attach to the
circuit assembly if and only if the output is true. The circuit assembly is terminal in this
bin and will be passed to the final stage.
The final stage adds additional assemblies to the bin along with most of the tile set as
single tiles (not shown in figure). The additional assemblies read the output of the circuit
and it grows into one of the output templates. The Output Frame searches for the test
tile representing the output of the circuit. The single tiles fill in any spaces left in the
circuit assembly that would show the computation history, thereby turning the assembly
into the output template. This requires a linear number of additional bins in the first
and second stage to store these single tiles while mixing takes place in other bins.

For our circuit assembly we implement Planar Logic Circuits with only NAND gates. An
example circuit and an assembly showing how the gates are laid out are shown in Figure 2a.
Wires are represented by 2 x 3 blocks of tiles shown in blue in the image. Input and Gate
assemblies contain a subset of the tiles in each block we call arms which represent the values
being passed along the wires. The input assembly is a comb-like structure that is designed
so that each input bit reaches the gate it is used at (Figure 3a). For each NAND gate in
the circuit we have 4 different assemblies, one for each possible input to the gate. A gate
assembly can cooperatively bind to the input assembly if the variable values match. The gate
assembly has a third arm that represents the output. This allows the next gate assembly to
attach, which continues propagating until the computation is done and the circuit assembly
is complete. We now cover the construction in detail by stage.

3.1 First Stage - Assembly Construction

Each bin in the first stage will individually create the assemblies that will come together in
the next stage. For an n-input k-gate NAND logic circuit (considering crossovers as three
XOR gates [5]), we have an input assembly, 4k gate assemblies, and a constant number of
other assemblies that will be used in the final stage. Here we will describe the details of the
individual assemblies created in addition to the arms, which function as wires in our system.

Input. For each bit of the input we have two possible input bit assemblies (Figure 3a).
The value of the bit determines which tiles will be added to create that input bit assembly
in the first stage. Figure 3a shows the selected assemblies that come together to form the
input assembly shown in Figure 3b. Each subassembly has a domino which we call an ‘arm’
representing the corresponding bit value. The shape of these assemblies depends on the gates
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Figure 2 (a) Simple 3-input logic circuit using 2 NAND gates, and the high-level abstraction
of the circuit assembly showing the input variables and gates highlighted as blocks. Blue blocks
are the sections of the assemblies we call Arms that function as wires in the systems. (b) (1) Our
input assembly and gate assemblies are constructed in separate bins. (2) Gate assemblies attach to
the input assembly forming a circuit assembly. (3) Unused gates are terminal in the second stage.
(4) This circuit evaluates to true, so the test tile will be able to attach. (5) Gate assemblies in this
stage grow into a circuit using single tiles. (6) Single tiles fill in open spots in the circuit assembly
to hide the history. The additional assemblies are used to reach the output template.
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Figure 3 (a) Possible input bit assemblies for a 3 bit function. Solid lines between tiles indicate
a strength 2 glue between the tiles. Small boxes indicate a strength 1 glue. For each bit we select
either the left or the right assembly based on the value of the bit and add those tiles to our input
bin in the First Stage. Lighter tiles are not used. (b) The input assembly that is constructed in the
First Stage. The last input bit assembly contains an extra column of tiles that reaches to where the
output gate will be for cooperative attachment of the test tile. (c) 4 gate assemblies, one for each
possible input combination of a NAND gate. Glues are labeled to match the wires of the NAND
gate. (d) Output gates. True output gates contain a flag tile (white).

to which they input because the arm of the assembly must reach the location of the gate it
inputs to. The last input bit assembly also contains an extra set of tiles that reach the final
output gate with a strength-1 glue on its north end and two glues on it’s east to allow for
the test tile and output frame to attach.

Arms. We describe assemblies as having input or output arms which function as the wires of
our circuit. Arms are vertical dominoes that represent bit values, with their location on the
assembly representing the bit having a value 0 or 1 (Figure 4a). The output arm being in the
left position represents a bit value of 0, with the right position representing 1. The locations
of input arms are complementary (right represents 0, left represents 1) to the output arms.
These arms have a glue on the second tile on the inner side. An input arm will attach to an
output arm to “read” the bit (Figure 4b) if they represent the same wire and the same value.
This glue is a strength-1 glue, so the assembly must attach cooperatively elsewhere in the
assembly. Another key feature of these arms is the ability to hide the information passed
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the true and false output templates is the inclusion/exclusion of the test tile within the
Output Frame. A full description of how these assemblies are used to ensure all assemblies
grow into one of the output templates can be found in the appendix.

» Theorem 1. For any function f computed by an n-input boolean circuit with k gates, there
exists a 3-stage O(n? + k2) bin, temperature-2 staged tile assembly computer that covertly
computes f with an output template size of O(n? + k?).

Proof. Proof in Appendix 6.2.3 <

4  Unique Assembly Verification

We now utilize covert computation to show that the open problem of Unique Assembly
Verification in staged self assembly is PSPACE-complete. We start by showing UAV with
3 stages is IT5-hard. We then show how to extend this construction to show that general
staged UAV is PSPACE-complete. With some adjustments the same concept is used to show
that when limiting the system to n stages, the problem of UAV is IT? _-hard.

» Problem 2 (Staged Unique Assembly Verification). Given a staged system T' and an assembly
A, does T uniquely assemble A?

4.1 3-stage UAV is Il5-hard

We modify the covert computation construction to provide a reduction from V3SAT. Given an
instance of VISAT, we create a 3-stage temperature-2 staged system that uniquely produces
a target assembly iff the given instance of VASAT is true. The reduction uses the same
high-level idea as [17] and [3]. The process begins with the construction of an assembly for
every input to the VASAT formula. Circuit assemblies build from these inputs and are flagged
as true or false, while encoding a partial assignment through their geometry. Separate “test”
assemblies are constructed that also encode a partial assignment to the same variables, which
attach to true circuit assemblies with matching assignments. The systems uniquely assembles
a target assembly if for all test assemblies there exists a compatible true circuit assembly for
it to attach to. See Figure 6 for a visual overview of the created system.

» Problem 3 (V3SAT). Given an n-bit boolean formula ¢(x1,x2...xy,) with the inputs divided
into two sets X andY, for every assignment to X, does there exist an assignment to'Y such
that ¢(X,Y) =17
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Stage 1 Stage 2 Stage 3

Gate Assemblies

Input Bit Assembies

Blank test
Assembly

Figure 6 A high level overview of the staged system created from an instance of VASAT. (a)
An input assembly is created for every possible input to ¢ and is evaluated using the computation
technique from Section 3. (b) A test assembly is created for every possible input to X. (c) Test
assemblies can attach to a true circuit assembly with the same assignment to X. Blank test assemblies
attach to any circuit. (d) Terminal assemblies are passed to the next stage, including unmatched
test assemblies if any exist. (e) In this stage we add the domino and square assemblies, as well as
every other single tile of the target assembly. (f) Any unmatched test assembly will grow into an
incomplete target assembly since it cannot attach to the square assembly. These incomplete target
assemblies are terminal, meaning the UAV instance is false.

Input Assembly Built From n ATest assembly is built from Test Bit Assemblies

Input Bit Assemblies
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BT 4]:| TN
H B [
sS=S
N -0 i
x|
Input Bit Assemblies For Variable X, | F% i =]
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Figure 7 (a) Input bit assemblies for variables in X with geometry on the left reflecting the bit
value. (b) An example initial circuit assembly for input z1 = 1,22 = 0,23 = 0. The geometry on
the left side of the assembly represents the assignment of X. (c) Separately built test bit assemblies
nondeterministically attach to build one test assembly for every assignment to variables in X. (d)
The blank test assembly is composed of the same base but has no protruding arms.

4.1.1 First Stage

Input and Gate Assemblies. In the first stage an input bit assembly for both assignments
to every variable x1,...,x, is built in its own bin (2n bins in total). Input bit assemblies
have the same structure as in the covert computation construction, except that input bit
assemblies representing bits in X also have a horizontal row of tiles on the left of the frame
that reflects the bit value. Figure 7a shows this modification to the input bit assemblies.
The bit assemblies representing variable x,, no longer has additional tiles that attach to the
test tile used in section 3. The input bit assemblies representing variable z|x|4; have an
additional 2 tiles attached, which are used to attach to the test assembly. Gate Assemblies
are built in the same way described in Section 3.

Test Assemblies. Similar to the input bit assemblies, two test bit assemblies are constructed
for every variable in X. A test bit assembly is a column of connected tiles, with a horizontal
row of 3 tiles extending to the right, the position of this row represents an assignment “0” or
“1”. An example test assembly building from separate test bit assemblies is shown in Figure



23:11

Test Assembly el

e o e e e ST Hh

T

e |
I

True Circuit Assembly




23:12

354
355
356
357
358

359

360

361

362
363
364
365
366
367
368
369
370
371
372
373
374

375

376

377
378
379
380
381
382

383

Covert Computation in Staged Self-Assembly

Target Assembl
9 Y "Incomplete" Assembly Grown From

e e e e e Unmatched Test Assembly
- [ EESEEENEESEE
T T glsrsc:r:my M T T Circuit 1]
- __J]__ H = "J,“ Assembly  [T]
(] il =] il Square I m R [
sl icai B Assembly _ oM e
i i i | Domino E % i I -
= ' o —,%H] B— Assembly i i miii
w0 oRE o Be
) ==t
o e e [c]o]

(a) (b) (c)

Figure 9 (a) An example target assembly. The area boxed in red shows where the test assembly
meets the input assembly (A, B), and the adjacent domino (C, D). The four tile types A, B,C, D
are not added in individually at the third stage. (b) The two additional assemblies that are added
in at the third stage, composed of the same four tile types. (c) The square assembly is geometrically
blocked from attaching to an assembly that grew from an unmatched test assembly, as they both
contain tile A.

instead two subassemblies are added in. This is done in a specific way to ensure the following
property: Every assembly except unmatched test assemblies from the second stage will grow
to the target assembly. Our target assembly contains a circuit assembly attached to a test
assembly with every empty spot filled in. At the point where a test assembly attaches a the
circuit assembly, a domino assembly is attached completing the target assembly as seen in
Figure 9a.

» Lemma 5. Let A be the set of initial assemblies in the sole bin in the third stage. For all
assemblies a € A, a will grow to the target assembly iff a is not an unmatched test assembly.

Proof. All individual tiles of the target assembly are added into the last stage, with the
exception of four withheld tiles: the two tiles where the test assembly and input assembly
meet, and the two tiles below that (tiles A, B,C, D in Fig. 9a). Instead of these four tiles,
two assemblies are added that we refer to as the square and domino (Fig. 9b). These two
assemblies perform the function of allowing every initial assembly besides unmatched test
assemblies to grow into the target assembly. True circuit assemblies with test assemblies
attached will have their empty spaces filled by single tiles, and the domino assembly will
attach. Unused gates will grow to a near-complete circuit, attach to the square assembly, and
then continue to grow to the target assembly. True and False Circuit Assemblies with blank
test assemblies attached already contain the four withheld tiles, so will grow to the target by
attaching to all necessary single tiles. Unmatched test assemblies that did not attach to a
true circuit assembly can grow to a near complete target assembly, however, it will never
acquire tile B (Fig. 9a), as it could only achieve this by attaching to the square assembly.
They both contain tile A, making it geometrically blocked from doing so (Fig. 9c). |

» Theorem 6. UAV in the Staged Assembly Model with three stages is I15-hard with T = 2.

Proof. Given an instance of V3dSAT, the reduction provides an instance of a 3-stage
temperature-2 UAV instance which is true if and only if the instance of VISAT is true.

If the instance of YASAT is true, then for all assignments x to X, there exists an assignment
y to Y with ¢(z,y) = 1. By Lemma 4, this implies there will be no unmatched test assemblies.
By Lemma 5, every assembly that is not an unmatched test assembly or grown from an
unmatched test assembly will grow into the target assembly in the third stage. Thus, the
system uniquely produces the target assembly. If the VISAT instance is false, then there
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Figure 10 An example mix graph for an instance of TQBF with 4 variables. (a) Test bit
assemblies combine into T> test assemblies. Circuit assemblies evaluate every input. (b) T5 test
assemblies attach to compatible (matching partial assignment) true circuits. Any unmatched T5
assemblies are passed to the next stage. (c) T3 test assemblies are added in and attach to compatible
T, test assemblies. (d) Any unmatched T3 assemblies are passed to the next stage. (e) Ty test
assemblies are added and attach to compatible T3 test assemblies. (f) The existence of an unmatched
T4 assembly directly corresponds to the truth of the TQBF instance.

exists an assignment x to X, s.t. for all assignments y to Y, ¢(x,y) = 0. By Lemma 4, a
test assembly representing assignment x would be unmatched, and by Lemma 5, unable to
grow into the target assembly. Thus, this UAV instance is false. |

4.2 Staged UAV is PSPACE-hard

In this section, we explain at a high level how the reduction is extended to reduce from
TQBF with n quantifiers over nvariables to temperature-2 O(n)-stage UAV, showing that
Staged UAV is PSPACE-Hard.

» Problem 7 (TQBF). Given a boolean formula ¢ with n variables z1,..., %y, s it true
that Yx13xs .. Vop(d(x1,...,2n) =1)7

We utilize the same technique used in section 4.1 which reduced from V3SAT, a special
case of TQBF limited to only 2 quantifiers, but adapt the technique to work with a QBF
with n quantifiers Vx13zs ...V, (¢(x1,...,2,) = 1). In the 3rd stage, instead of adding
in single tiles to “clean up”, we add in a second set of test assemblies that represent an
assignment with one less variable in the next stage and are complementary in their geometry.
These new test assemblies then attach to previous test assemblies that were terminal in
the previous stage with matching partial assignments. This process computes an additional
quantifier. We can then repeat this process of adding in complementary sets of test assemblies
for the number of quantifiers required. In the final stage, if a test assembly from the final
set couldn’t find a complementary test assembly to attach to, the instance of TQBF is false,
and that test assembly is prevented from growing to the target assembly. This allows the
truth of instance of staged UAV to correspond to the truth of the QBF. See Figure 10 for a
depiction of the mix graph. We now show how in a certain stage the existence of a terminal
test assembly relates to the truth of a statement about the boolean formula.

» Lemma 8. Let TERM(A,b) < (Assembly A is terminal in bin b). Let a be the number
of variables the test assemblies in Ts represent (a =n—s+1). Let ts(x1,...,2,) be the test as-
sembly ts € Tg that represents partial assignment x1,...,x,. In the staged system Sp created
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from an instance of TQBF P overn variables: Vs € {1,... ,n}(TERM (ts(x1,...,%4),bs) <
VZar13Tat2, .- Qrn(d(X1,...,2n) =9)). If siseven, y=0and Q@ =V, andy=1, Q =3
otherwise.

» Lemma 9. In the staged system Sp created from an instance of TQBF P over n variables,
in bin byy1 in stage n + 1, let A be the set of initial assemblies in b,y1. For alla € A, a
will grow to the target assembly if and only if a is not an unmatched test assembly t,, € T,,.

» Theorem 10. Unique Assembly Verification in the Staged Assembly Model is PSPACE-
complete with T = 2.

Proof. Given an instance of TQBF P over n variables/quantifiers, the reduction provides an
instance of n + 1-stage 7 = 2 UAV that is true if and only if P is true. If P is true, then in
stage n + 1, every producible assembly grows into the target assembly. Since n is always even,
by Lemma 20, for a bin b, in stage n, an assembly t,, € T}, representing an assignment x; is
terminal in bin b, if Vaodzs, ..., VX, (¢(x1,...,2,) = 0). If P is true, then the statement
Va3xoVas, ... , VX, (d(z1, ..., 2,) = 1) is true, and therefore no unmatched ¢,, € T,, will be
passed into b,41. By Lemma 21, every initial assembly in b,41 that is not some ¢, € T,
grows into the target assembly. Therefore, the target assembly is uniquely assembled if the
instance of TQBF is true.

If P is false, then there exists an assignment to 1 such that Vao3zs, ... VX, (d(x1, ..., 2,) =
0). By Lemma 20, some test assembly ¢,, € T;, will be terminal and passed into bin b,,11. By
Lemma 21 any t,, € T,, will not grow into the target assembly, the instance of staged UAV is
false. |

4.3 n-Stage Hardness

We now show how the reduction can be used to show hardness for n-stage UAV. We reduce
from the boolean satisfiability problem for II?, which is a quantified boolean formula with n
quantifiers (starting with universal) and n — 1 alternations. We show an instance of II2-SAT
can be reduced to n + 1-stage 7 = 3 UAV.

» Problem 11 (II2 — SAT). Given a boolean formula ¢ with variables partitioned into n
sets Xy,..., Xy, is it true that VX13Xs ... QnXn(0(X1,..., Xp)).

» Theorem 12. For alln > 1, UAV in the Staged Assembly Model with n stages is IIY, _, -hard
with T = 2.

Proof. The system functions nearly identically to the previous reduction. However, if n
is odd, the output gate assemblies will now contain the flag tile if they represent a false
output, rather than true. Each consecutive test assembly added now represents one less set
of variables, rather than just one less variable.

If n is even, the system acts in the way previously described. If n is odd, then by Lemma 20
any t, € T, representing an assignment to X is terminal if VXo3X5 ... 33X, (6(X1,...,Xpn) =
1). However, since we modified the output assemblies to contain the flag tile if they represent
a false output, they are now terminal if the statement is true for the negation of ¢. Therefore
any t, representing X; is terminal if and only if VX53X5...3X,(¢(X1,...,X,) =0). In
bin b, 41 all assemblies besides any ¢,, grow to the target assembly in the same way. |

4.4 UAV Membership

In this section we improve on previous work and show that an n-stage UAV problem is in
Y. ;. We use a similar method as [17], by defining three subproblems that are solved as
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Table 2 Base case complexity of these problems in 1 stage (2HAM) and their complexity in s
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subroutines of a UAV algorithm. However, these subproblems differ from previous work as
we make some assumptions about our input. We first define bounded bins and systems, then
define the three subproblems, and show their complexity.

» Definition 13 (Bounded). Given a bin b= (S,7) in a staged system where S is the set of
initial assemblies and T is the temperature. Let Py, be the set of producible assemblies in bin
b. The bin is bounded by an integer k € ZV if for each a € Py, |a] < k. A staged system is
bounded if all bins are bounded by some k.

4.5 Problem Definitions

Here we define each subproblem and state their complexity however due to space constraints
the proofs may be found in the full version of the paper.....

» Problem 14 (Bounded Producibility (BPRODy)). Given a bounded staged system T', an
integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A
producible in b?

» Problem 15 (Bounded Terminal Assembly with producibility promise (BTERM,)). Given a
bounded staged system T, an integer k (described in unary), a bin b in stage s bounded by k,
and an assembly A € Py, is A terminal in b?

» Problem 16 (Bounded Bin (BBIN;)). Given a staged system T, a bin b in stage s, an
integer k (described in unary), assuming all bins in stages before s are bounded by k, is b
bounded by k?

» Lemma 17. For a bin b in stage s of a staged self-assembly system,
the Bounded Producibility problem is in X,
the Bounded Terminal Assembly problem with producibility promise is in 112, and
the Bounded Bin problem is in II2

4.6 UAV, Membership

We now present a co-nondeterministic algorithm using oracles for the previous problems to
solve UAV. For clarity, we use an alternate but equivalent definition of UAV. We provide
Algorithm 1 which uses oracles to solve the subproblems presented above.

» Problem 18 (Staged Unique Assembly Verification). Given a staged tile-assembly system T
and an assembly A, is T’ bounded by |A|, and for each bin in the last stage, is A the only
terminal assembly?

» Theorem 19. The n-stage Unique Assembly Verification problem in the staged assembly
model is in 11}, ;.

23:15

CVIT 2016



23:16

485

486
487
488
489
490
491
492
493
494
495
496

497

Covert Computation in Staged Self-Assembly

Data: Given a staged system I' with n stages, and an Assembly A
Result: Does I' uniquely assemble A and is I' bounded?
for each stage s’ starting with s’ = 1 do
for each bin b in stage s’ do
if Not BBIN, (T, |A|, V) then
‘ Reject;
for each bin b in stage n do
if Not BPROD, (T, |Al,b, A) then
‘ Reject;
if Not BTERM,, (T, |A|,b, A) then
‘ Reject;
Nondeterministically select an assembly B with |B| < |A] ;
for each bin b’ in stage n do
if BPROD,(T,|A|, V', B) then
if BTERM, (T, |A|, V', B) then
‘ Reject;

Accept;
Algorithm 1 Staged Unique Assembly Verification Membership Algorithm

5 Conclusion

In this paper we answered an open problem from [17] by showing the Unique Assembly
Verification problem in the Staged Self-Assembly Model is PSPACE-complete. To show this,
we utilized a construction capable of covert computation and extended it to show IT5-hardness
of UAV with three stages. We then extended this reduction to show PSPACE-completeness.
This reduction is also used to show ITY_;-hardness with s stages.

Several important directions for future work remain open. We use three stages to perform
covert computation. Is the 2HAM alone capable of covert computation? If not, what is the
lower bound on the number of stages needed? If so, can the construction be used to solve
the open problem of UAV in that model? This might also mean fewer stages are needed for
our results in the staged model. The two known hardness results for 2HAM utilize either
one step into the third dimension or a variable temperature. Perhaps stronger results in the
staged assembly model can be obtained with one of these variants.
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6 Appendix

6.1 Self-Assembly Definitions

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set X.
Each pair of glues g1, g2 € ¥ has a non-negative integer strength str(gi, g=).

Configurations, bond graphs, and stability. A configuration is a partial function
A : 72 — T for some set of tiles T, i.e. an arrangement of tiles on a square grid. For a
given configuration A, define the bond graph G4 to be the weighted grid graph in which each
element of dom(A) is a vertex, and the weight of the edge between a pair of tiles is equal to
the strength of the coincident glue pair. A configuration is said to be 7-stable for positive
integer 7 if every edge cut of G4 has strength at least 7, and is 7-unstable otherwise.

Assemblies. For a configuration A and vector @ = (ug,uy) with ug,u, € 72, A+ 14
denotes the configuration A o f, where f(x,y) = (¢ + uy,y + uy). For two configurations A
and B, B is a translation of A, written B ~ A, provided that B = A + u for some vector
. For a configuration A, the assembly of A is the set A = {B: B ~ A}. An assembly A is
a subassembly of an assembly B, denoted A C B, provided that there exists an A € A and
B € B such that A C B. An assembly is 7-stable provided the configurations it contains
are T-stable. Assemblies A and B are 7-combinable into an assembly C' provided there exist
A€ A BeB,and C € C such that AUB =C, AN B =@, and C is T-stable.

Two-handed assembly and bins. We define the assembly process in terms of bins. A
bin is an ordered tuple (S, 7) where S is a set of initial assemblies and 7 is a positive integer
parameter called the temperature. For a bin (S, 7), the set of produced assemblies P(' 5.7) is
defined recursively as follows:

].. S g P(,S 7_)~
2. If A, B € Py, are T-combinable into C, then C' € P(g .

A produced assembly is terminal provided it is not 7-combinable with any other producible
assembly, and the set of all terminal assemblies of a bin (S, 7) is denoted Pg ). Intuitively,
P(’ s,7) Tepresents the set of all possible assemblies that can self-assemble from the initial set
S, whereas F(g ;) represents only the set of supertiles that cannot grow any further. The
assemblies in Pg ;) are uniquely produced iff for each x € P(’S’T) there exists a corresponding
y € P(s,7) such that x C y. Thus unique production implies that every producible assembly
can be repeatedly combined with others to form an assembly in Pg ).

Staged assembly systems. An r-stage b-bin miz graph M, ; is an acyclic r-partite
digraph consisting of 7b vertices m; ; for 1 <4 < rand 1 < j < b, and edges of the form
(mi,j, miq1,5) for some 4, 7, j'. A staged assembly system is a 3-tuple (M, p, {T1, T, ..., Tp}, T)
where M, ; is an r-stage b-bin mix graph, 7T; is a set of tile types, and 7 is an integer
temperature parameter.

Given a staged assembly system, for each 1 <4 <r, 1 < j <b, we define a corresponding
bin (R; ;,7) where R; ; is defined as follows:

1. Ry ; =T} (this is a bin in the first stage);
2. Fori =2, Ry = ( U P 1)

k: (mi—1,k,mi;)EMy

Thus, the j% bin in stage 1 is provided with the initial tile set T}, and each bin in any
subsequent stage receives an initial set of assemblies consisting of the terminally produced
assemblies from a subset of the bins in the previous stage as dictated by the edges of the mix
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Covert Computation in Staged Self-Assembly

graph.? The output of the staged system is simply the union of all terminal assemblies from
each of the bins in the final stage.* We say that this set of output assemblies is uniquely
produced if each bin in the staged system uniquely produces its respective set of terminal
assemblies.

6.2 Covert Computation

We now provide the formal definitions of function computing and covert computation then
continue with details of the third stage of the construction and a formal proof.

Input Template. An n-bit input template over tile set T is a sequence of ordered pairs of
tile sets over T: I = (Io.0,101); - - -, (In=1,0, In—1,1). For a given n-bit string b = by, ..., bp_1
and n-bit input template I, the input tile set for b with respect to I is the set I(b) = J; Lip, -

Output Template. An n-bit output template over tile set T is a sequence of ordered
pairs of configurations over T: O = (Co,0,Co1), ---,(Cn-1,0, Cn—1,1). For a given n-bit
string © = xg, ..., T,—1 and n-bit output template O, the representation of x with respect
to O is O(z) = the assembly of | J, C; »,. A template is valid for a temperature parameter
7 € Z* if this union never contains overlaps for any choice of , and is always T-stable. An
assembly B D O(z), which contains O(x) as a subassembly, is said to represent z as long as
O(d) ¢ B for any d # x.

Function Computing Problem. A staged tile assembly computer (STAC) is an ordered
triple & = (T', I, 0) where I' = (M, {2, T5,...,T;},7) is a staged self assembly system, I is
an n-bit input template, and O is a k-bit output template. A STAC is said to compute
function f : Z — Z& if for any x € Z% and y € Z§ such that f(x) = y, then the staged
self assembly system I's , = (M, {I(x),Ts,...,T;}, 7) uniquely assembles a set of assemblies
which all represent y with respect to template O.

Covert Computation. A STAC covertly computes a function f(z) = y if 1) it computes
f, and 2) for each y, there exists a unique assembly A, such that for all z, where f(z) =y,
the system I's , = (M, {I(x),T1,...,T;},7) uniquely produces A,. In other words, A, is
determined by y, and every x where f(z) = y has the exact same final assembly.

6.2.1 Utility Gates

In order to implement general circuits we need to handle gates with more than one output
and also be able to cross wires. Gates with a fan-out (outputs to more than one place)
contain multiple output arms (Figure 11a). Non-monotone circuits can be created with
crossover gates (Figure 11b). These gates have two input arms and two output arms. The
bit of the upper input arm is represented by the lower output arm and the same for the
other two arms.

6.2.2 Third Stage - Clean Up

In this section we go over each assembly that is input to the final stage and how it eventually
reaches one of the two output templates.

The original staged model [9] only considered O(1) distinct tile types, and thus for simplicity allowed
tiles to be added at any stage. Because systems here may have super-constant tile complexity, we
restrict tiles to only be added at the initial stage.

This is a slight modification of the original staged model [9] in that the final stage may have multiple
bins. However, all of our results apply to both variants of the model.
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5-stage instance of staged UAV P;. Afterwards we explain prove the results hold in general.
The example instance of Staged UAV will have five stages. Given the TQBF instance Pj,
an instance of VASAT = Va1, xq, 23324(p) is created. With the instance of VISAT this we
use the reduction in Section 4.1 to create an instance of 3-stage UAV. We keep the first two
stages the reduction creates, and ignore the third.

By Lemma 4, a test assembly representing the partial assignment x1, ..., x3 is terminal
if and only if Va4 (¢(x1, xe, x3,24) = 0). We refer to this set of test assemblies as Tp.

6.4.1.1 Additional Test Assemblies.

Two more sets of test assemblies will be added, one in stage 3 and one in stage 4. We will
call these sets T3 and T respectively. These test assemblies will be a subassembly of our
total test assembly (Figure 13d). We say T3 are type-R test assemblies, meaning their base
is on the left and their variable arms protrude right (Figure 13a). Similarly, Ty are type-L
test assemblies (Figure 13b). Type L and R test assemblies encode their assignment in a
complementary fashion. This allows them to attach to each other only if they encode the
same partial assignment (Figure 13c). The “arms” for these test assemblies will be length
4, allowing them to attach to each other without cooperative binding. The set T, contains
eight test assemblies, one for each assignment to x1,x2, r3. The set T3 contains four test
assemblies, each representing an assignment to x1,x2. The test assembly set T, will have
two test assemblies, each representing an assignment to x;. This requires adding additional
bins to the first stage to create additional test bit assemblies.

6.4.1.2 Mix graph.

Figure 10 depicts the mix graph structure. In stages 3 and 4 there is one bin which contains
the circuit assemblies (bins by and b4). In the third stage we mix the set of test assemblies
T3 into bin b3. These will “search” for unmatched T5 test assemblies to attach to. The set
T4 C T3 for which all ¢4 € Ty are terminal in bin bs gives us information about the partial
assignments that the ¢; assemblies represent.

W.l.o.g., consider the test assembly t; o € T3 representing partial assignment z; = 0,22 =
1. t1,0 will not be terminal in bin b3 if there exists some unmatched ¢y € T3 it can attach
to, i.e., a test assembly to that represents the same partial assignment ;1 = 0,22 = 1. We
know there are two of these, one representing assignment z; = 0,25 = 1,23 = 0, and one
representing assignment xq; = 0,29 = 1,23 = 1.

By Lemma 4, the condition for a test assembly %o 1., € T2 representing assignment
1 = 0,22 = 1,23 to be unmatched is Va4(¢(0,1,23,24) = 0). If this is false for all
assignments to x3 (x3 = 0 and x5 = 1), t1,0 will have nothing to attach to. Therefore
t1,0 € T3 is terminal if for Veg3za(¢(1,0, 23, 24) = 1). More generally a test assembly t3 € T3
representing assignment 1, 2o is terminal in bin b3 if Vaz3zs(@p(z1, 22, 23, 24) = 1).

Let TERM (A, b) be true iff assembly A is terminal in bin b. The set of test assemblies
Ty is then mixed into bin by. Utilizing the same logic, a test assembly ¢4 € T representing
assignment x; is terminal in bin b4 if and only if Vzo3zsVes(d(x1, x2, x3,24) = 0). We can
then say 3ty € Ty(TERM (t4,b4)) <= T 1VaodrsVay(d(x1, x2,x3,24) = 0). Therefore the
existence of an unmatched t4 test assembly directly corresponds to the truth of the instance
of TQBF Py.
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Figure 13 (a) The set T3 of test assemblies will contain all R test assemblies created by choosing
one arm for each variable (|T5] = 4). (b) The set Ty will contain 2 test assemblies, one encoding
z1 = 0 and one encoding 1 = 1. (¢) An R and L test assembly can attach provided they encode
the same partial assignment. (d) An example target assembly for an instance of TQBF where ¢ is
over 4 variables. The total test assembly is outlined red. The four withheld tiles A, B, C, D are not
not flooded individually in the last stage.

6.4.1.3 Target Assembly.

Stage 5 has one bin bs. It has been shown that the existence of an unmatched test assembly
ty € Ty corresponds to the truth of the QBF. It suffices that in bin bs, if all other initial
assemblies can grow to the target assembly while unmatched T} test assemblies can not, then
the created instance of UAV corresponds to the truth of the QBF. Conditionally growing
assemblies to the target assembly is done the same way as in section 4.1 (See Figure 13d),
flooding all tiles except a select few and adding in a square and domino assembly built from
those tiles instead. This allows the instance of staged UAV to directly correspond to the
truth of the TQBF instance Pj.

6.4.2 General

To scale this reduction to a QBF over n variables, we will utilize more stages and sets of test
assemblies. Given the TQBF instance P, we will ensure that it is of the form Va1, ..., 3, x,(9).
In the case where it is not of this form we add “dummy” variables and quantifiers which
don’t effect the truth of the statement. This can be done without increasing n by more than
2.

6.4.2.1 Test Assemblies.

In total n sets of test assemblies will be added. T5 represents an assignment to x1,...,x,_1,
and each consecutive set represents one less variable than the set before it, i.e., a test
assembly t; € T represents a partial assignment to zi,...,z,—s—1. 13 is composed of R
test assemblies, the following sets alternate between type L and R. We build all these test
assemblies using the same method, making test bit assemblies for each variable and allowing
them to nondeterministically combine.

6.4.2.2 Mix graph.

In general the mix graph will have n + 1 stages. At every stage s > 2, the bin that contains
the the circuit assemblies (see Figure 10) in that stage is referred to as bs. The set of test
assemblies Ty is mixed into bin bs. We say a test assembly t; € Ty is unmatched if ts is
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terminal in bin b, (If ¢4 is not in the final set T;,, we know it will not be terminal in later
stages).

We design our system in such a way to achieve a generalization of Lemma 4. In general, for
a test assembly ¢4 € T which represents a certain partial assignment x1, ..., z,, there is state-
ment S that quantifies over the rest of the variables (e.g. S =Vagi1,..., dxn(d(1,. .., T0) =
1)) such that S <= t, is terminal in bin b;.

» Lemma 20. Let TERM(A,b) <= (Assembly A is terminal in bin b). Let a be the
number of variables the test assemblies in Ty represent (a =n—s+1). Let ts(x1,...,24)
be the test assembly ts € Ts which represents partial assignment x1,...,x,. In the staged
system Sp created from an instance of TQBF P over n variables:

Vs € {1,...,n}(TERM (ts(z1,...,%a),bs) <= VZa113Tat2,...,Qrn(d(z1,...,2,) =
v))

If s is even, y =0 and Q =V, and y = 1, Q@ = 3 otherwise.

Proof. We prove this by induction on s. Base case: Lemma 4

Let Q' be the opposite quantifier of ). Assume the statement holds for case s —
1, we will show this implies it holds for case s. Since we are assuming the case s — 1:
TERM (ts_1(x1,...,Taqs1),bs—1) < Vxgso,...,Q xn(d(x1,...,2,) = —y) holds.

In the next stage, test assemblies in T represent one less variable, i.e., a partial assignment
T1,...,Tq and search for a test assembly in T5_; with a matching partial assignment to
attach to. Consider test assembly ts(x1,...,2,) in bin bs. ts(z1,...,z,) is not terminal in
bin b if and only if either ts_1(x1,...,24,0) or ts_1(z1,...,Zq, 1) were not terminal in bin
bs—1 (Otherwise geometric blocking would prevent attachment). If follows that ¢s(z1,...,z4)
is terminal in bin by if for all z441(ts—1(z1,...,Te41) is not terminal in bin bs_1)), therefore:

TERM(tS(.’El, - ,$a>, bs) = V.’Ea+1 (ﬁTERM(tsfl(.’L‘l, R l‘a+1), bsfl))

Since we assumed TERM (ts_1(x1, ..., Zas1),bs—1) < Vagro,...,Qrn(d(x1,...,2,) =

—y) we substitute the TERM function for the corresponding statement, we then simplify to
show the Lemma’s statement holds for case s:

TERM(ts(xla cee axa),bs) <~ vanrl(_'(vle»Q, s ,Q/l'n(d)(.’ﬂl, s ,l’n) = _'y)))

TERM (ts(x1,...,%4),bs) <= Voor1(3xaqyo, ..., Qrn(d(x1,...,2,) =v))

TERM (ts(x1,...,24),bs) < Voay13ITara, ..., Qrn(d(ar, ..., 20) = 1)

We now show a generalization of Lemma 5. Since it was shown that the existence of an
unmatched test assembly ¢,, in bin b, corresponds to the truth of the instance of TQBF, we
now show how in bin b, + 1, every assembly that is not an unmatched ¢,, will grow to the
target assembly, while ¢,, will not.

» Lemma 21. [In the staged system Sp created from an instance of TQBF P over n variables,
in bin b1 in stage n+ 1, let A be the set of initial assemblies in byy1. For alla € A, a
will grow to the target assembly if and only if a is not an unmatched test assembly t,, € T,,.
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Figure 14 (a) An example target assembly. The highlighted are shows where the output gate
meets the test assembly, and the adjacent domino. These tiles are not flooded in in the third stage.
(b) The two additional assemblies which are added in the third stage. (c) The square assembly is
geometrically blocked from attaching to an assembly that grew from a test assembly in the third
stage.

Proof. This is accomplished in a similar way to the previous section. In stage n + 1 all
individual tiles of the target assembly are added except for four tiles we refer to as the
withheld tiles (tiles A, B, C, D Figure 14a). Two assemblies are added, which we refer to as
the Square and Domino. The Square assembly is composed of all four withheld tiles, the
Domino is composed of tiles C' and D.

There are a number of initial assemblies passed in bin b,,41 to account for, and each of
these are subassemblies of the target assembly.

False circuit assemblies with a blank test assembly attached (Figure 15a).
True circuit assemblies with a blank test assembly attached (Figure 15b).
True circuit assemblies with a to € T, test assembly attached (Figure 15¢).
t, and t,_1 test assembly pairs that attached (Figure 15d).

Unused Gates (Figure 15e).

Single Tiles, the Square assembly, and the Domino assembly.

ook wnN=

We will explain how each of these categories of assemblies grows to the target assembly.
Note that any subassembly of the target assembly that contains the four withheld tiles
trivially grows to the target assembly, as every tile it is missing now exists alone, and will
eventually attach to it. Therefore if an assembly can acquire the four withheld tiles it is
guaranteed to grow to the target. Items 1,2, and the Square assembly already contain them,
so they will grow to the target assembly.

If an assembly already contain tiles A and B, but not C' and D, then the domino assembly
will attach to it. It now contains all four withheld tiles. This accounts for items 3 and 4. If
it contains none of the withheld tiles, then eventually the square assembly will attach to it,
it then contains all four withheld tiles. This accounts for item 5 and all single tiles. Lastly,
he domino assembly will attach to all assemblies in category 3 or 4, at least one of which is
guaranteed to exist, and will then contain the four withheld tiles.

We now look at how an unmatched test assembly ¢, € T, will grow (shown in Figure
15f). Note that an unmatched ¢, test assembly will exclusively contain tile A, and needs to
acquire tile B to grow to the target assembly. No other unmatched R test assemblies exist in
this bin for t¢,, to attach to. It can not attach to the square assembly, since both t,, and the
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quantifiers (starting with universal) and n — 1 alternations. We show an instance of II2-SAT
can be reduced to n + 1-stage 7 = 3 UAV.

» Problem 23 (II? — SAT). Given a boolean formula ¢ with variables partitioned into n
sets Xy,..., Xy, is it true that VX13Xs ... QX (0(X1,..., X)) ?

The system is created in nearly the same way. There are two key differences. (1) Each
consecutive set of test assemblies added now represents one less set of variables, rather than
just one less variable. T is the set of test assemblies mixed with the circuit assemblies in
stage 2. A test assembly t5 € T5 represents an assignment to Xi,..., X, 1. For s > 2, the
set of test assemblies T added in at stage s represents an assignment to Xi,..., X, _s11.
(2) If n is odd, the output gate assemblies will now contain the flag tile if they represent a
false output, rather than true. If n is even no change is made to the output gate.

» Theorem 24. For alln > 2, UAV in the Staged Assembly Model with n stages is 1IE _ -hard
with T = 2.

Proof. Assume we are given an instance of II2-SAT, P = X;,..., X,,,¢. Each X is a set of
variables. The reduction creates an instance of n + 1-stage 7 = 3 UAV that is true if and
only if P is true. First note that Lemma 20 can extend to the case where each set of test
assemblies represents one less set of variables, rather than one less variable.

If n is even, the system behaves as previously described. By Lemma 20, in stage n the
set T, is added into b,,. Any t, € T, representing an assignment to the variables in X, is
terminal if and only if VX23X3...VX, (¢(X1,...,X,) =0). In b,41 all assemblies besides
any t, grow to the target assembly.

If n is odd, then by Lemma 20 any t,, € T}, representing an assignment to X; is terminal
if VXo3X5...3X,,(¢(Xy,...,X,) = 1). However, since we modified the output assemblies to
contain the flag tile if they represent a false output, they are now terminal if the statement
is true for the negation of ¢. Therefore any t,, representing X; is terminal if and only if
VX53X5...3X,(0(X4,...,X,) =0). In bin b, all assemblies besides any ¢,, grow to the
target assembly in the same way. <

6.6 UAV Membership

In this section we improve on previous work and show that an n-stage UAV problem is in
m +1- We use a similar method as [17], by defining three subproblems that are solved as
subroutines of a UAV algorithm. However, these subproblems differ from previous work as
we can make some assumptions about our input. We first define bounded bins and systems,
then define the three subproblems, and show their complexity.

» Definition 25 (Bounded). Given a bin b= (S, 7) in a staged system where S is the set of
initial assemblies and T is the temperature. Let Py, be the set of producible assemblies in bin
b. The bin is bounded by an integer k € Z* if for each a € Py, |a| < k. A staged system is
bounded if all bins are bounded by some k.

6.7 Problem Definitions

» Problem 26 (Bounded Producibility (BPRODy)). Given a bounded staged system T, an
integer k (described in unary), a bin b in stage s bounded by k, and an assembly A, is A
producible in b?
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Table 3 Base case complexity of these problems in 1 stage (2HAM) and their complexity in s
stages

» Problem 27 (Bounded Terminal Assembly with producibility promise (BTERM,)). Given a
bounded staged system T, an integer k (described in unary), a bin b in stage s bounded by k,
and an assembly A € Py, is A terminal in b?

» Problem 28 (Bounded Bin (BBIN,)). Given a staged system T', a bin b in stage s, an
integer k (described in unary), assuming all bins in stages before s are bounded by k, is b

bounded by k?

6.8 Base Cases

For the base cases we look at each problem in a 2HAM system.

BPROD; Producibility in the 2HAM is known to be solvable in polynomial time (P = XF)
[12].

BTERM; To verify that an assembly A is not terminal, a producible assembly B that
can attach to A is provided as a certificate. This assembly is polynomial in the input size
since the bin is bounded. Thus, we can verify that it is producible in polynomial time.

BBIN; We can verify if there exists some assembly larger than & by providing an assembly
C such that k < C < 2k. Any assembly larger than 2k must have been built using at least
one assembly greater than size k. This smaller assembly could be used as the certificate
instead.

6.9 BPROD, Membership

BPROD; is a X2 algorithm to solve the Bounded Producibility problem for a bin b in stage
s. The details of this algorithm can be found in Algorithm 2. At a high level this algorithm
works by nondeterministically selecting a polynomially-sized set of assemblies I (Figure
16a). We will say an assembly is valid input assembly if it is producible and terminal in the
previous stage. We check if an assembly is valid input assembly by first calling an oracle
(BPROD,_1) to check if it is producible in that bin. If we find the assembly is producible
we can now use the oracle for the BTERM;_; to verify that is terminal and a valid input
assembly. (Figure 16b). If each assembly in 7 is terminal in a bin in stage s — 1 that connects
to b in the mix graph, then I is a set of possible assemblies input into b (I is a valid input
set). We use I to nondeterminsically build an assembly B (Figure 16c¢),

6.10 BTERM, Membership

BTERM; is a II? algorithm to solve the Bounded Terminal Assembly problem with produ-
cibility promise for a bin b in stage s. Algorithm 3 functions similar to BPROD; by first
finding a set of valid input assemblies and using that set to nondeterministically build an
assembly B. We then check if B can attach to A (the assembly we are checking is terminal)
and if it can attach, then we know A is not terminal.
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Data: Given a bounded staged system I', an integer k (described in unary), a bin b
that is bounded by k, and an assembly A
Result: Is A producible in b7
Nondeterministically select a set of assemblies I with |I| < k and each assembly
i€ 1,]i| <k for each assembly i € I do
for each bin b’ in stage s — 1 that connects to b in the miz graph do
if BPROD,_(T,k,b',i) then
if BTERM;_1(T,k,b’,i) then
| Mark i as valid,;
If any i € [ is not valid reject;
Nondeterminiscally build an assembly B with |B| < |A];
if B = A then
| Accept
Reject;
Algorithm 2 BPROD, Membership

I HE BO
: =]
‘
l | ‘ J L
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Figure 16 (a) Nondeterministically chosen set I (b) We check if an assembly in [ is valid by
checking if it is producible and terminal in each bin in the previous stage. If the assembly is not
producible as in Bin 2 then we do not check if it’s terminal (c) If I is a valid set we nondeterminiscally
build an assembly using assemblies in

6.11 BBIN, Membership

BBIN; is a II2 algorithm to solve the Bounded Bin problem for a bin b in stage s. Again we
utilize the same first step as the previous algorithms with full steps at Algorithm 4. We first
use oracles to find a set of valid input assemblies, and then use these assemblies to construct
an assembly B of size less than 2k. We then check if B is larger than the k we are given and
if it is we reject.

» Lemma 29. For a bin b in stage s of a staged self-assembly system,
the Bounded Producibility problem is in X,
the Bounded Terminal Assembly problem with producibility promise is in II2, and
the Bounded Bin problem is in IIZ

Proof. We prove this using induction on the number of stages. The base case of all these
problem (s = 1) is shown in Section 6.8.

For our induction step assume the complexity of these problems is true for all stages less
than s. All three algorithms can be divided into four steps, 1) Nondeterministically select a
set of assemblies, 2) check if that set is a valid input set, 3) if it is build an assembly, and
4) then check something about that assembly. Each of the problems is given a k written in
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Data: Given a bounded staged system I', an integer k (described in unary), a bin b
that is bounded by k, and an producible assembly A
Result: Is A terminal in b?
Nondeterministically select a set of assemblies I with |I| < k and each assembly
i € 1,]i| <k for each assembly i € I do
for each bin b’ in stage s — 1 that connects to b in the miz graph do
if BPROD,_+(T,k,b',i) then
if BTERM,_1(T,k,b,i) then
‘ Mark ¢ as valid;
If any 7 € I is not valid accept ;
Nondeterminiscally build an assembly B with |B| < k ;
if B can attach to A then
‘ Reject;
Accept;
Algorithm 3 BTERM, Algorithm

Data: Given a staged system T, a bin b in stage s, an integer k (described in unary),
assuming all bins in stages before s are bounded by &
Result: Is b bounded by k?
Nondeterministically select a set of assemblies I with |I| < 2k and each assembly
i € 1,|i] <k for each assembly i € I do
for each bin b’ in stage s — 1 that connects to b in the mizx graph do
if BPROD,_1(T',k,V', B) then
if BTERM;_1(T,k,b', B) then
‘ Mark i as valid;
If any 4 € I is not valid accept ;
Nondeterministically build an assembly B with |B| <k ;
if B can attach to A then
‘ Reject;
Accept;
Algorithm 4 BBIN, Membership

unary. When we first select our set of assemblies I, we build assemblies up to size k. We do
not need to check anything larger than & because we know the system is bounded for the first
two problems and for the Bounded Bin problem we assume all previous stages are bounded
by k. The size of I for the first two algorithms is less than or equal to k since we will not
produce anything larger than k. For the Bounded Bin problem, the size of I is less than or
equal to 2k since we only need to check assemblies of size less than 2k by the argument in
the base case.

To check if I is valid we utilize a polynomial number of oracle calls to BPROD,_; and
BTERM,_;. For each assembly ¢ € I, we check each bin V' in stage s — 1 that connects

to b to see if i is terminal in . We first call BPROD,_; to see if ¢ is producible in ¥'.

If it is producible in ', we call BTERM;_; to check if it is terminal. For each i € I, we
must find at least one bin where ¢ is terminal. If it is not we end the branch by either
rejecting for BPRODy or accepting for BTERM, and BBIN,. At this point, there will be a
nondeterministic branch for each set of valid input assemblies.

Once we have a valid input set I, we know that any assembly we build using those
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Data: Given a staged system I' with n stages, and an Assembly A
Result: Does I' uniquely assemble A and is I' bounded?
for each stage s’ starting with s’ = 1 do
for each bin b in stage s’ do
if Not BBIN, (T, |A|, V) then
‘ Reject;
for each bin b in stage n do
if Not BPROD, (T, |Al,b, A) then
‘ Reject;
if Not BTERM,, (T, |A|,b, A) then
‘ Reject;
Nondeterministically select an assembly B with |B| < |A] ;
for each bin b’ in stage n do
if BPROD,(T,|A|, V', B) then
if BTERM, (T, |A|, V', B) then
‘ Reject;

Accept;
Algorithm 5 Staged Unique Assembly Verification Membership

assemblies is producible in b. By nondeterministically building an assembly B, we have a
branch of the algorithm for every producible assembly (up to a certain size). With this
assembly we can make the algorithm specific check. For BPRODy, if any branch builds A
(B = A), then we accept. If A is not producible then all branches will reject. For BTERMj,
if A is not terminal then there exists some producible assembly that attaches to A, so there
is some branch that rejects. If A is terminal, then all producible assemblies can not attach
to A, so all branches will accept. For BBINy, if there exists a producible assembly of size
greater than k, the branch that builds it will reject. |

6.12 UAV, Membership

We now present a co-nondeterministic algorithm using oracles for the previous problems to
solve UAV. For clarity, we use an alternate but equivalent definition of UAV.

» Problem 30 (Staged Unique Assembly Verification). Given a staged tile-assembly system T’
and an assembly A, is T’ bounded by |A|, and for each bin in the last stage, is A the only
terminal assembly?

» Theorem 31. The n-stage Unique Assembly Verification problem in the staged assembly
model is in 11} ;.

Proof. The algorithm starts by verifying that the system is bounded by |A|. It calls BBINy
on each bin in the first stage. For each subsequent stage s’, BBIN,: can be called since all
the previous stages are known to also be bounded by |A|. If any bin is not bounded the
algorithm rejects.

The next step verifies that A is a terminal assembly in each bin. For each bin b, the
algorithm first checks that A is a producible assembly in b by calling BPROD,,. If A is not
producible the algorithm rejects. If A is producible, the algorithm calls BTERM,, to verify
that A is terminal. If A is not terminal the algorithm rejects.
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The final step of the algorithm verifies that A is uniquely produced by nondeterministically
selecting an assembly B, and checking if B is terminal in the final stage. For each bin ¥’, the
algorithm checks if B is producible in " using BPROD,,. If yes, it calls BTERM,, to check if
B is terminal in o', and rejects if the oracle returns true. If B is not terminal in any bin,
then the algorithm accepts.

If any bin contains a producible assembly larger than A the algorithm will reject in the
first loop. If A is not a terminal assembly in a bin in stage n, then the algorithm will reject in
the second loop. Finally, if there exists any other terminal assembly in stage s, the algorithm
will reject in the final loop. The run time of the algorithm is linear in the number of bins in
the system and the size of A. It also makes a linear number of oracle calls to a ¥? oracle
for the three subproblems defined earlier. This algorithm is a co-nondeterministic algorithm
that runs in polynomial time using an oracle for the class ¥ and solves UAV for staged
assembly with n stages, so this problem is in IT¥ Y1 <
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