Local regularity result for an optimal transportation problem
with rough measures in the plane
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Abstract

We investigate the properties of convex functions in R? that satisfy a local inequality which
generalizes the notion of sub-solution of Monge-Ampére equation for a Monge-Kantorovich prob-
lem with quadratic cost between non-absolutely continuous measures. For each measure, we
introduce a discrete scale so that the measure behaves as an absolutely continuous measure up
to that scale. Our main theorem then proves that such convex functions cannot exhibit any
flat part at a scale larger than the corresponding discrete scales on the measures. This, in turn,
implies a C' regularity result up to the discrete scale for the Legendre transform. Our result
applies in particular to any Kantorovich potential associated to an optimal transportation prob-
lem between two measures that are (possibly only locally) sums of uniformly distributed Dirac
masses. The proof relies on novel explicit estimates directly based on the optimal transportation
problem, instead of the Monge-Ampére equation.

1 Introduction

1.1 Generalized Monge-Ampére equation for rough measures

In this paper, we investigate the properties of convex functions in R? that can be seen as local
one-sided Kantorovich potentials. More specifically, we consider a (continuous) convex function
1 : R? — R that satisfies

w(A) <wv(0yY(A)) for all Borel sets A C (1)
where 1 and v are two non-negative Radon measures on R? and € is an open bounded subset of R2.
We recall that the subdifferential v of the function 1 is given by
o(z) ={z e R*; Y(y) > (z) + z- (y — ) for all y € R*}

and that 0Y(A) = Uyeadtp(x).
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shortly, Inequality (1)) appears naturally when 1 is a Kantorovich potential associated to the optimal
transportation problem between two probability measures (although we do not need to require p
and v have the same mass in our paper).

We note that is a local condition as it is only posed in a subset Q C R2. As we will explain
(i

When ¢ and v satisfy
1
du(z) > Xd:c in €, dv(z) < Mz in 0yY(Q) (2)
for some A > 0, then implies that

%\A| < |0y (A)| for all Borel sets A C

which says that 1 is a solution (in the Alezandrov sense) of the one-sided Monge-Ampére equation

1
2 .
det(D*y(z)) > 2 o Q. (3)
In the case of absolutely continuous measures, inequality is hence a reformulation of sub-solutions
to the Monge-Ampére equation in terms of optimal transportation.

In dimension 2, it is known that implies that 1) is strictly convex in Q (see Theorem
below) and the strict convexity of ¢ is the first step in the regularity theory for the solutions of
the full Monge-Ampére equation and the corresponding optimal transportation problem (see
Section for further presentation of relevant results and references). In dimension 2 and only
in dimension 2 (see below again), this is a local property in the sense that it does not require any
boundary condition on ¥: Whenever v satisfies on any subdomain 2, it is strictly convex in the
interior of that subdomain, independently of what occurs outside of €.

The goal of this paper is to extend this result when ) satisfies with measures 1 and v that are
not necessarily absolutely continuous with respect to the Lebesgue measure and satisfy some lower
and upper bounds only up to a certain scale (Assumption [I| below). This includes the case where u
and v are sums of uniformly distributed Dirac masses. Our main theorem (Theorem implies in
particular that ¢ is then strictly convex up to a certain scale (in Corollary we derive a bound
on the diameter of the flat parts of ¢). Equivalently, our result says that the Legendre transform of
1 is C! regular up to a certain scale (see Corollary on a subset of Q.

Outline of the paper: Our first result, Theorem in Section below, makes precise the
relation between inequality and optimal transportation theory. It is proved in Section [5| and is
of independent interest. The strict convexity "up to a certain scale", which is the main topic of this
paper is then presented in Section [I.3] together with several consequences. This is followed by an
overview of the existing literature and results related to our work (Section [1.4). The proof of our
main theorem is given in Section [2] while Sections [3] and [] are devoted to the proofs of Corollaries

[[3l and 4

1.2 Relation to Optimal transportation problem

Inequality is natural in the context of optimal transportation theory (in any dimension n > 1). To
explain this connection, we first recall that given two probability measures y € Z(R"), v € Z(R")



the Monge-Kantorovich Problem with quadratic cost is concerned with the minimization problem

min / @ — yPdn(, y) (4)
mEl(p,v) JrRn xRn

where II(u, v) denotes the set of all probability measures 7 € Z(R™ x R™) with marginals p and v,
i.e. such that m(A x R™) = pu(A) for all A C R" and n(R™ x B) = v(B) for all B C R™.

The existence of a minimizer w for problem (which will be called an optimal transport plan
between the measures p and v) is a classical result, see for example [23]. Moreover, it is known that
m € I(u,v) is a minimizer for if and only if it is supported on the graph of the subdifferential of
a lower semi-continuous convex function :

supp(m) C Graph(9y) := {(z,2) e R®" x R" | z € 0¢(z)} . (5)

The function 1 is called a Kantorovich potential for problem and we can easily check that it
satisfies (globally). Indeed, for all Borel sets A C R™, we can write

o= [ [ [ [ e[ [ an oy

We note that this inequality might be strict in general but that we can similarly prove the inequality

p(9y(A)) = v(4) (6)

where ¥* denotes the Legendre transform defined by

Y*(2) = sup (z-z —(x)).
ESING
(indeed, the duality relation z € dyY(z) < = € OY*(z) together with implies supp(w) C
{(z,2) e R" x R™ | z € Ov*(2)}.)

The purpose of this paper is to derive strict convexity estimates on ¢ when we assume only that
holds locally (and we do not require (). If we assume that both () and (6 hold (locally), then
we get some convexity estimates on 1*, which are equivalent to C! estimates on .

A question that arises naturally is whether assuming and (@ is equivalent to assuming that
is associated to an optimal transport plan between p and v. The answer is of course straightforward
for the Monge-Ampére equation since a function that is a sub-solution and a super-solution is
necessarily a solution. It is hence natural for and @ to imply a similar result, but the situation
is more delicate. We recall in particular that the Monge-Kantorovich potential is not unique when
the measures 1 and v are not absolutely continuous with respect to the Lebesgue Measure.

To the authors’ knowledge, this question has not been previously addressed in the literature and
we will show that if 1 satisfies and @ globally (so in R™) and if p and v have finite second
moment, then 1 must indeed be a Kantorovich potential associated to the optimal transportation
problem . More precisely, we prove the following result:

Theorem 1.1. Let p, v be two probability measures on R™ with finite second moment:

[ tePauta)+ [ i) < o



and let 1 be a proper lower semi-continuous convex function such that and @ hold for all
measurable sets A. Then there exists an optimal plan ® € I(pu,v) (minimizer of ) supported on
I’ = Graph 0¢ and the pair (¢¥,v*) is then a minimizer for the dual problem

wt { [ [odvioy <@ +ot) V).

This result is completely independent from the regularity theory that we develop in the rest of
this paper, but it clarifies the relation between equation and the optimal transportation problem.
The proof (see Section [5|) relies on the approximation of the measures g and v by sums of Dirac
masses to construct a plan 7 € II(u, v) supported on I' = Graph 9¢ (the optimality of such a plan
then follows from classical results from optimal transportation theory).

1.3 Local convexity and regularity

The main goal of this paper is to develop a regularity theory when we do not assume that p and v
are absolutely continuous with respect to the Lebesgue measure, but that they satisfy the following
assumption:

Assumption 1. Assume that there are constants hy,ha > 0 and A1, Ao > 0, such that the measures
w and v satisfy
|R|

u(R) = )\71

and v(R' NoY(Q)) < A2|R| (7)

for any rectangles R C Q, R’ C R? with dimensions at least hy and ho in every direction for R and
R’ respectively.

This assumption is less restrictive than and is relevant in the framework of optimal trans-
portation. In fact, the original problem considered by Kantorovich in [I8] included measures p and
v that are sums of Dirac masses rather than absolutely continuous measures. This setting is also
important for numerical applications: Measures satisfying Assumption [l] appear naturally when in-
troducing discrete approximations of absolutely continuous measures with bounded densities, as is
often done for computational purposes.

In order to state our main result, we introduce the set
Q° = {z € Q; dist(x,09) > 6}.

The main result of this paper is the derivation of the technical inequality below, which quantify
the strict convexity of ¥ up to a scale depending on hy and hs:

Theorem 1.2 (Strict convexity of Kantorovich potentials 1). Let 1) : R2 — R be a convex function
satisfying for some measures |1 and v satisfying Assumption. Given § > 0 and (x,y) € Q°xQI,
let K be any constant satisfying

K > diam 09 (Us) (8)

where Us is a §-neighborhood of the segment [x,y] (i.e. Us = U.¢[5Bs(2)) and define

e=- min ¥((1 -tz +1y) = [(1 = (@) + 1 (y)] 2 0.



There exists a universal constant C' such that if the length ¢ := |x — y|/2 satisfies
0>2hy, P>CKMMhy, 9)

then the following inequality holds:
8 log (1 + i) < CAM KB, (10)

provided
Lha

= < .
vy max{ 2h1,CK}_5/2

We immediately make the following remarks:

1. The logarithm in the left hand side of goes to infinity when + goes to zero. So Theorem [1.2]
provides a lower bound on ~ depending on the quantity #ZKQ. Indeed we have that either
~ > §/2 or inequality (10| provides a lower bound for . So with the notations of the theorem,
we see that as long as (9) holds, we have

1 1
exp (04/\4>\4Ks> 12

Note that we can take K = diam 0y () which does not depends on Z.

(11)

v > dmin

2. The conditions @ are clearly satisfied in the absolutely continuous case h; = ho = 0. In that
case, (L1]) gives a lower bound on v = ¢/K and implies the strict convexity of . We actually
recover a classical result, see Theorem below.

3. The proof will make it clear that the assumption (z,y) € Q% x Q° in the theorem is not
necessary. The result holds for (z,y) € Q x Q provided there is a rectangle Rs(z,y), with base
equal to the line segment [z, y] and height equal to § which is contained in . In this setting
we can also take K = diam(9y(Rs(x,y))).

4. As mentioned above, the conditions @ are trivially satisfied when h; = ho = 0. When
hi,hy # 0, it is clear that we need some conditions on ¢ since we expect the potential v
to have flat parts and so € = 0 if £ is small enough. In the simple case where p and v are
uniformly distributed Dirac masses (on lattices of characteristic length h; and hs), then the
first condition in @ is necessary to have several lattice points in the set Us, while the second

condition in (9)) will guarantee that all those points cannot be sent onto a thin rectangle (of
height hs).

5. The result is consistent with the natural scaling of the problem. For example, if we replace
the measure v by the new measure 7 defined by 7(R) := v(7R) for some fixed 7 > 0, then
U satisfies the conditions of Assumption [If with hy = 77 1hy and /\2 = 72)y. Furthermore,
the function 1/1 = 7714 is a Kantorovich potential associated to the measures y and 7 which
satisfies inequality (with 7 instead of ). One can then check that the conditions (9) and
the inequality are unchanged by these transformations.

Theorem [I.2] provides a way to quantify how close 1 is to being strictly convex. For instance, we
can use Theorem to estimate the largest possible length of a "flat part" of ¢ by assuming that
€ = 0 and using to get an upper bound on ¢. We get:



Corollary 1.3. Under the conditions of Theorem assume furthermore that € = 0 (that is, ¥ is
affine on the segment [x,y]).

[fhl S (5/4, \/C)\l)\ghg S § and
hey C6
S G
K -2
then

¢ < max d 201, /Coing Ky, 2VCMA2 - KVEMA . (13)
1 112 2 [111(22 )]1/8 [hl (ﬁ>}1/8

We recall that we can take K = diam 0¢ () in which case reads fhy < C'diam 9v(Q)) and
gives an upper bound on ¢ which only depends on the data of the problem and goes to zero
when max{hi,ho} — 0. When h; = hy = 0, Corollary gives £ = 0, so we recover the classical
result that ¢» must be strictly convex in that case (no flat parts).

We can also take K = diam 0y(Us) (so that (13 is sharper) in which case we note that if
h2 SV A then we can use the estimate derlved further in the proof, to replace the condition
) with the following condition that does not depend on /:

363/2
VCAAhy < —

(diam Q5)1/2"

Going back to Theorem we observe that the control it provides on the convexity of 1) should
imply some C' regularity up to some length scale depending on hi,hy on the Legendre dual or
conjugate (see [20]) defined for all z € R? by

U (2) = sup (¢ = — (). (14)

zeQ
Indeed, we can show:

Corollary 1.4 (C! regularity of ¢*). Under the conditions of Theorem and given 6 > 0, there
exists some functions p(£), p1(€) and p2(€) monotone increasing, with limit 0 when £ — 07, and
depending only on &, MMz, D = diam Q and K such that for all z, 2" € 9p(Q?), we have

|z — 2’| <max (p(|z = 2']), p1(ha), p2(h2),) Vo € 0P™(2), o’ € O™ (). (15)

In particular if hy = hy = 0 then ¥* is C* in 9yY(Q°) with the explicit estimate on the modulus
of continuity of Vy*,
VAL A2 Lo
) 1/8
(108 (1+ zr==n))

where Lo, now denotes the Lipschitz bound of 1 over €.

V™ (2) = Vo™ ()| < C (16)

We conclude this presentation of our result by observing that in Assumption [I] we only require
a lower bound on g and an upper bound on v. Such bounds are all that we need to study the strict
convexity of 1. Opposite bounds would be required to prove the C' regularity of 1) up to a certain



length scale (recall that ¢* is associated to an optimal transportation problem in which the roles of
w and v are inverted). More precisely, if we assume that

1
WRNQ) <Xl and  v(R) > IR
1

for R C R? and R’ C A (up to a certain scale), then using inequality @ instead of our analysis
yields the C! regularity up to a certain scale for the potential 1) on the set

= [ Jop(r?)

6>0

where A° = {x € A; dist(z,0A) > §}.

1.4 Brief overview of the literature

When the measures p = f dr and v = g dx are absolutely continuous and concentrated on the open
sets Q and A, a classical result due to Brenier ([3, 4]) states that the solution of the minimization
problem is unique and is given by m = (Id x Vi))xp, where ¢ : R — R is a globally Lipschitz
convex function such that Viup = v.

If furthermore, there exists A > 0 such that 1/ < f, g < X on their respective supports, then
satisfies

1
1z X0 < det D*) < XNxq (17)

in a weak sense (the Brenier sense) together with the boundary condition Vi(R™) C A (see for
instance [, [10]).

Even in that case, it is classical that the regularity of i requires some condition on the support
of g (for example if ) is connected but A is not, then the map V¢ must be discontinuous). Caffarelli
proved in [§] that if we further assume that A is convex, then v is a strictly convex solution of the
Monge-Ampére equation in the following Alexandrov sense:

1
ﬁ'A NQ| < [0y(A)| < A ANQ for any Borel set A C R™. (18)

The regularity theory for Monge-Ampére equation developed by Caffarelli [5l [6] [7, [8, @] for strictly
convex solutions of then implies that 1 is che.

loc

Even in this absolutely continuous framework, our result requires only inequality - which is
equivalent to the lower bound in - and no assumption on A. We note that this inequality is
always satisfied by Brenier’s potential, while the upper bound in requires further assumptions
on A (e.g. convexity) to hold. When A is non-convex, the convex potential ¢/ cannot be expected
to be C' everywhere. However, partial regularity results have been derived that offer a useful
comparison, first in dimension 2 by Yu [24] and Figalli [I2] and then generalized to higher dimension
in [I3] and to more general cost functions in [IT]. These results show in particular that there exists
an open subset of € of full measure in which 9 is C1*® and strictly convex. In dimension 2, a
precise geometric description of the singular set can be given [I2]. Our argument provides explicit
quantitative estimates in that sense that extend to non absolutely continuous measures.

In this paper, we do not need to assume that v is associated to an optimal transportation problem
with nice properties globally. We only require inequality to hold for measures p and v that satisfy



some lower and upper bounds in some subsets of their supports. In dimension 3 and higher, functions
that satisfy in © might not be strictly convex, as shown by Pogorelov’s classical counterexample
[16] and the regularity theory for such solutions requires appropriate assumptions on the boundary
conditions [5] 6] [7, [9]. However, in dimension 2 (which is the setting of our main result), there is a
simple proof of the strict convexity of smooth local solutions of , which was originally proved in
[1] and [I7] by Aleksandrov and Heinz independently (see also [2I]). That result can be formulated
as follows:

Theorem 1.5 ([1], [17]). Forn =2, let ¢ € C3 (Q) satisfy

loc
det D*) > \"2 >0 in Q, (19)

and assume that ¥ > 0 in Q and Y(xg) = 0 for some xg in the interior of Q. Denote 6 :=
dist(xo,0Q) > 0 and let H be any line passing through xo. Then for all £ < g, the quantity

SupweBz(Io)ﬂH ¢(x)
VYl Lo ()

")/:

satisfies

Z1n (1 + j) <8NV () (20)

Inequality implies the following estimate:

[0
RN Eo G T
x€By(zo)NH exp ( oo) -1
02

>0 (21)

for all ¢ < g.

Our Theorem with h; = he = 0 gives a proof of this result, and in particular estimate ,
when we assume only that 1 is an Alexandrov solution of , that is a convex function satisfying

|Ov(A)] > %\A N Q| for all Borel sets in €.

But the main interest of our result is that we consider measures that may not be absolutely con-
tinuous with respect to the Lebesgue measure. In this case, the Kantorovich potential ¢ (which
still exists but may not be unique) does not solve the Monge-Ampére equation (either or (L8)).
To our knowledge, no quantitative estimates on the convex function 1 are known in this setting.
Brenier’s result does not apply (there might not be any measurable map T such that Tuu = v),
and Kantorovich potentials are not expected to be either convex (they will have ‘flat parts’) nor C'*
(they will have ‘corners’).

Theorem is the derivation of an inequality similar to when is replaced by with
measures satisfying Assumption [1] with A> = A\; )y and 7 replaced by

max {’y, 2hq, éh;{} .

This implies in particular that (in dimension 2) any Kantorovich potential % is strictly convex up to
some scale depending on h; and hs in any open set in which the lower and upper bounds hold.



Although our result is similar to Theorem [I.5] the proof is completely different since we cannot
use the Monge-Ampére equation in this non absolutely continuous setting and instead we must
rely solely on the measure inequality . In the groundbreaking work of Caffarelli as well as in
the partial regularity theory of [24] [12] [13], a key tool is the use of some variants of the maximum
principle for the Monge-Ampére equation and the use of appropriate barriers. This is not possible
in our framework. Instead, the proof of our Theorem relies on the derivation of upper and lower
bounds for an integral quantity defined in —. Note that a variational approach (relying on
optimal transportation arguments rather than using some barriers for Monge-Ampére equation) to
the partial regularity theory of [I3] was recently developed in [15] [14].

It is natural to ask whether our result could be extended to dimension n > 3. It turns out
that even in the absolutely continuous case, the result of Theorem does not hold in dimension
3 and higher. Indeed, a classical example by Pogorelov shows that i) can have a flat part and is
thus not necessarily strictly convex (see [16]). A natural extension of Theorem can however be
found in |2, Theorem 2.34] : Under conditions similar to Theorem but in dimension n > 3, the
convex function ¢ cannot be affine on a set of dimension larger than or equal to n/2. For the sake
of completeness, we present in Appendix [B|a short proof, based on the ideas of [2], of the following
quantitative estimate

Theorem 1.6. Let n > 3 and let v € C?, ¢p > 0 satisfy det D*p > X\=2 > 0 and assume that
Y(xg) =0 with § := dist(xg, Q) > 0. Let H be an affine surface of dimension d passing through xq,
then for all £ < g, the quantity
SUPze By (wo)NH ¥(x)

VY] L0y

’y:

satisfies
CPAo(8/7) < CN|[VY|| 7 ()8 (22)

dr.

. _ K n—d—1
with ¢(s) = 24" [ NCEma

We note that ¢ satisfies lims_, o ©(8) = oo if and only if d > n/2 and so implies the following
lower bound:

sup w(x) Z min {5||V¢||007 (C/\QHVW@S*“) } lf d > n/2

I (23)
x€BY (z0)NH 6||v'(/}Hoo exp <_C)‘2H37n¢”oc) if d = n/2

In view of this result, it seems that the main result of this paper (Theorem could be extended
to higher dimensions, provided one considers hypersurfaces of dimension n/2. However, the basic
tool of our proof, the integral quantity —, is not well suited for such a generalization, and a
new quantity would need to be introduced. This question will thus be addressed in a future work.

2 Proof of Theorem [1.2

2.1 Preliminaries

The Kantorovich problem with the quadratic cost function is invariant under rigid motions. Up
to a translation and a rotation of 2, we can thus assume that the points z,y in Theorem are



a:=(—¢,0) and b := (¢£,0) and that the rectangle [—¢, ¢] x [0, J] is contained in .
Up to subtracting an affine function, we can also assume that 1 satisfies

W(—£,0) =1(¢,0)=0 and 0 € d([a,b]). (24)

Throughout the proofs, = (z,2.) or y = (y;,y.) will denote points in Q C R? with x|, Y|
the first coordinate parallel to the segment [a,b]. Similarly z = (z),2.) will denote a point in
op(Q) C R2.

We will also use the following notation:
Furthermore, implies that 0 € 9¥(Us) and so for any K > diam 99 (Us) we have

K > |0 o (rs) = sup sup |z|. (26)
YERs 2€9Y(y)

We also note that

€:=— min ¥(ta+ (1 —1)b) > 0. (27)
t€[0,1]

Throughout the proofs, C' denotes a numerical constant, which depends only on the dimension
d = 2 and whose value may change from line to line in the calculations.

Before moving to the heart of the proof, we state the following simple lemma which we will use
repeatedly,

Lemma 2.1. Let ¢ : [—£,£] x [0,26] — R be a convex function satisfying and . Then for
all y € Q such that |y)| < £/2 we have

2
2| < 7 (K |yL|+¢), Vz € 0Y(y).

Proof. Consider any y € Q with |y| <£/2,0 <y, <26 and any z € 09(y). Then we have by the
definition of subdifferential

Y() > (y) +2-(b—y)=v(y) + 2 (b —yy) + 20 (b —yL)-

Since b —y =€ —y; > £/2, and a; = 0, this lets us deduce that:

S e [ (e — 00) + (00) — $(0)]
=Y
< 7oy (6(0) — ()
< (K sl +),

where we have used so (b)) = 0, so 1(y) > —¢ and the fact that |2, | < K (by (26)). This
completes the proof of Lemma [2:1] O

10



We conclude these preliminaries by noting that the quantity diam 91 (Us) a priori depends on £.
We obviously have
diam 0v(Us) < diam 0¢(2) (28)

and we can show the following lower bound:

Lemma 2.2. If hy < min {5, ¢} and h3 < %, then

50\ 12
diam 0y (Us) > <>\1)\2> . (29)

Proof. Inequality gives
1w(Us) < v(0¢(Us)).

Since the dimensions of Us satisfy min{d, £} > hy, Assumption [1| implies

w(Us) > f\—f, and  v(0(Us)) < Ao max{(diam 0y (Us))?, ha}.

We deduce
< max{(diam 9 (Us))?, h3}
A1 A2
and the condition h3 < % implies . O

2.2 Proof of Theorem [1.2|

We now describe our strategy for proving Theorem [1.2] First, we note that since v is a convex
function in , it is differentiable in a subset 2 C  of full measure (|Q2\ Q2| = 0), see for instance [19].

We can thus define a map T : § — R? which satisfies
T(z):=Vip(z) Vze (30)

Our proof of Theorem relies on some careful estimates (upper and lower bounds) of the
integral quantity

[ ) - T el dy s (31)
RsXxRs
where the weight function p(z,y) is given by
1
(P((E,y) = (xl+7)2 1{%IL§yL§2mL}7 (32)

for some v > 0. The exponent 2 is chosen to obtain the right logarithmic divergence in the estimates.

Using the notations from Theorem [T.2] we will first prove the following upper bound which does
not require (|1f):

11



Proposition 2.3. Assume that ¢ : [—(,{] x [0,26] — R is a convez function satisfying (24). Then
there exists a universal constant C > 0 s.t. the following inequality holds for all v > /K

5\11/2
/ T (y) — Ty (z)| (x,y)dyde < C K £? [log (1—1—)} +1], (33)
RsXRs ’Y
where we recall that K and € satisfy and .
The proof of this upper bound is fairly straightforward (see Section and only makes use of

the convexity of ¢ and Lemma [2.1

Next, we will prove the following lower bound for :

Proposition 2.4. Let ¢ be a convex function satisfying for some measure p and v satisfying
Assumption . Assume further than v satisfies . There exists a universal constant C s.t.
assuming that ¢ satisfies @, which we recall is

0>2hy, 02>CKMN M\ ho,
and defining

Lh
~ := max (;(7 2hq, C’12(> , (34)

then the following inequality holds

[ ) -n@lete.)dyds
RsXRs

> ¢ 1A e lo 1+i
S CMAK M kz) B 2Ty )

provided v < ¢ and where we recall the notation a A'b = min(a, b).

The proof of this proposition, which is presented in Section [2.4] is more delicate. This is where we
use the fact that 1 satisfy the Monge-Ampére like condition (1) with measures p and v satisfying .

Proof of Theorem[1.4 The key to conclude the proof of Theorem is that the bounds provided
by Propositions 2.3] and [2.4] scale differently in £ and . Combining the two will hence naturally lead
either to an upper bound on ¢ or to a lower bound on . More precisely we directly obtain from

and that

2 0 15 s\1"?
1 1 -+ — | < 1 1+ — 1].
M K2 < AA1A2K2> og<2+27)_C’ <[°g< Wﬂ i

Since we assumed in the theorem that § > 2+, we have log (1 + %) < C log (% + %) so that we

can simplify the inequality above to:
22 72 s\1Y/2 s\171/2
— 1IN — 1 14 = < 1 1 142 <C
Ao K2 ( AAl/\fsz) [Og< +7>} =¢ +{Og( +7)] <G 30

12




Moreover we also get log (1 + %) > log 3 (still using the assumption that § > 2+) so gives

Iz Iz ”
1 < Cllog 3]
e K2 < " )\1/\2K2> < Cllog 3777,

which can be used to show that

2 2o\ 2o\
A >0 —) .
MAak2 A\ NN K2 MoK 2

for some (different) constant C. Together with , this finally implies

£2 2 6 1/2
_ log {1+ — <C
()\1)\2K2) [ g( ’Y)]

which completes the proof of Theorem [I.2} O

2.3 Upper bound: Proof of Proposition 2.3

Proof of Proposition[2.3 We first assume that ¢ is C? so that all the computations below make
sense. We can write

[ ) -l ete) dyds
RsXRs

/R,5><R5

< / / OVT L ( + ty — 2)) - () — 2p)| dtp(,y) dy da
RsxRs JO

/0 VT (z+tly—2)) - (y—2z)dt|p(z,y)dydz

1
+ / / 0LTy (2 + ty —2)) - (g1 — 21)] dt p(a,y) dy da,
RsxRs J0

where 0 denotes the derivative with respect to the first component and 9, is the derivative in the
orthogonal direction. Using the symmetry of the expression in z and y, we have

[ ) - T@ley dyda
RsXRs
1
=7 /RsXRa /1/2 91T (@ +t(y — ) - (g — )| dt ol y) dy da

1
2 / / LT (+ 1y — ) - (ye —2)| d ol y)dyde,  (37)
Rs X Rs 1/2

13



To bound the first term in the right-hand side, we note that by definition of Rs, |y — 2| < £ so
that using the change of variable y — z =z + t(y — x)

1
/ / |6I\Tl(m+t(y—17)) “(y —I||)| p(z,y) dt dy dx
RsXRs 1/2
1
S5/ / / |0 T (x + t(y — x))| p(x,y) dy dt dzx
Rs 1/2 Rs
1
— 1
= f/ / / T ()] Ly e ey (x,:c+ ”) = dzdt do
Rs J1/2 JRs t t t
<t [ ree)| e i 58)
Rs
Using the definition of ¢(z,y) (see (32))) and the notation
1
0. = {y et/ /2 x 0.8 jor <y <20, ],

we get that the weight J;(2) is equal to

1
z—x
Jl(z):2/1/2/R 1o smscp, (x,x—l—t) dx dt
5
! 1
:2/ / 711 z—x d.’ljdt.
o S, a7 o seeen,

Observe that the definition of €2, is actually symmetric on Rs: y € ., iff 2 € §,, since
x> 0. Consequently z € Q,  implies that x € 2, as x € Rs and

J(z)<0/1/ 1 dxdt<L/ da
B (e )2 Jige oy mEEL TS ([ 490 o,
C c/

(lzLl+7)

< sl <
(lzl+7)?

Going back to , we find

04T (2)|

AT R

1
/ / VT (& + tly — 2) - (g — )| oo, y)dt dyda < C 72 /
RsXRs 1/2 Rs

Next, we note that the convexity of ¢) implies that the matrix

Ty 0LT
3\|TL 8LTL

is symmetric and non-negative with a non-negative determinant: 97} (2)0. T (z) — O TLOL T} > 0,
which implies that |07 (z)| < [0)T)(2)|*/? |0, T (2)[*/?. This lets us deduce that

T Ty
Rs |7l +7 rs (12L[+7)

< [/R mwrﬂ [/R |8LTL(z)|dzz} v (40)
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Using the fact that 9|7} > 0 from the convexity of v,

Ty () O T(0/2,20) = Ty (—£/2,21) C [*(KzL+e)
Ju o= /

dz, <
(2L +7)? + (2L +7)2

d
(21 + )2 =7 o

)

CK [° 1
<22 | = gy =CK/¢! dzy,
= / Lty o

0 ZJ_"’_’Y

by using Lemma and the fact that v > ¢/K.

Similarly, we have that 9, T, > 0 so that

£/2
Rs £/2

Combining and into and inserting the result into , we conclude that

1 25 1/2
1
/ / 0| T (x +t(y — x)) (1 — 21)| @(z,y)dt dy de < C P K / dzi | .
RsxRs J1/2 0o 2Lt

which gives a bound for the first term in the right hand side of .

(43)

(44)

We now proceed similarly to bound the second term in the right-hand side of . First we

write, recalling that 9,7, > 0,
1
[ 10Tt tly - o)) (o~ )| dtplay) dyda
RsxRs J1/2

1
S/ / T (x+tly—=x))|lyr —x1|p(x,y) dy dt du.
Rs J1/2 JRs

Note that the definition of ¢ in implies that

lyr — x|
lyL — xﬂ <P($,y) = m {$z1<yi<2z,}

1
<

=2 +71{%$LSyLS21L}.

We perform the same change of variable z = z + t(y — z) as we used after (38)) to find that

1
/ / 0LT, (2 4ty — 2)) (g — 21)| dt p(z,y) dy da
R(;XR(; 1/2

1
1
< 0T (2) ——1, 20 dzdtdx
/1%5/1/21%5 ()CELﬂL”Y +E357E€Q,

< 01T (2) J2(2) dz,
Rs

with

1

1
Ja(z) =2 1 - dz dt.
@ =2 [ e,

15
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Proceeding as with the weight J;(z) above (the only difference lies in the power of (x; + 7)), we

find that lx—&-%EQmL S 1z€QzJ_

C
ZLt

Jo(z) < 1., | <Ce

Inserting this bound in , we obtain

1
[ Tttty =) (s - 5| deglog) dyda
RsxRs J1/2

£/2
Rs —£/2

Combining and in (37), we obtain that
5\11/2
[ ime) - Tl dyde < Cr ([mg (1+2)] + 1) Rt
Rs X Ras Y

which proves the proposition if 7' is C' and hence ¢ is C2.

When 9 is only convex but not C?, we naturally introduce the convex function 1" = 1 x; py,
where p,, is a standard mollifier. We may then apply to 9" and find for T = V"

5\11/2
[ m@-niwlee <o, e (g (1+2)] 7 41),
Ros X Ras v
where we observe that, in this case, since we only integrate over Rs, K, is given by
Ky, = S;p|v¢n| < ||0¢|Le=(ry) < K,
5
for n < §. At the same time, since 9 is convex then T' = V4 belongs to BV (Rs) and therefore

|T" = T||z1(rs) — 0 as n — 0. Since ¢ is bounded for any fixed v > 0, we may directly pass to the
limit n» — 0 and obtain on T O

2.4 Lower bound: Proof of Proposition 2.4

We now turn to the proof of the lower bound (35). Given z, € (0,4), we recall for convenience the
definition of the set €2, , the following sets

T
1
Q= {ye [—0/2,£/2] x [0,6]; 7 %L <y, < 21]_},
together with the more restricted set
3
Ay = {ye [—4/4,€/4] x [0,6]; ), <y, < 2@_}.

Since we are trying to show that T'| (y) cannot be concentrated, instead of looking at |1, (y)—T (z)],
we define, for £ € R and n > 0, the more general set

Qo ={yeQu, i |z — & >nforall z€dy(y)}. (48)
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Our first task, in Lemma [2.5] below, is to show that for an appropriate value of 7 and for all £ € R,
the set Q,, , is non empty, and more precisely A, NQy, , # 0. This will allow us to construct a
half-cone within €, , in Lemma and finally to obtain a lower bound for |2, ,| in Lemma
This will finally let us conclude the proof of Prop. and obtain the lower bound .

2.4.1 Non-emptyness of the set (), ,

First we have the following lemma, which implies in particular that the set Q;, ,(&) is not empty.

Lemma 2.5. Let ¢ be a convexr function satisfying for some measure p and v satisfying As-
sumption and let K satisfy . There exists a universal constant C' such that defining

1 2
== 4
T oMLK (49)

and assuming furthermore that £ satisfies

0>2hy, 02>CKM A hs,

then for all x1 > v = max(4, 2h1, éhf() and for all £ € R, there is at least one point y* € A, such

that for some z € 0Y(y*) we have |z, —&| > 3n.

The idea of the proof is to look at the image of the set A, by the subdifferential dv. By
Lemma this image is bounded in the horizontal (i.e. z) directions. However, together with
Assumption [1| gives a lower bound on the measure of this image, which is where the fact that 1 is the
Kantorovich potential for an optimal transportation problem is crucial. Therefore the image cannot
be too small in the vertical (i.e. z)) directions, which is essentially the statement of Lemma
The lower bounds on ¢ and x; in Lemma are necessary so that we can use on the measures
wand v.

Proof of Lemma[2.5. We start by noticing that for all z € (A, ), Lemma implies that

2 3
2| < 7 (szj_ —|—5).

This leads to defining the rectangle

~ 2K (3
R= {zERQ; | 7| < max (f (2@_—&—;) ,hg) and |z, —¢| <max(3777h2)}.

We show the existence of y* as in Lemma by contradiction: Suppose there is no such point y*,
then we must have that 9y (A, ) C R and inequality (1) gives

s, ) S v(O¥(As,)) < v(RNOV(Q)). (50)

We now want to use Assumption [1| to estimate the left and right hand side of . The rectangle

A, has size (%) x &L Since £ > 2hy and x| > vy > 2hy, the rectangle A, has size at least hy in

all directions and Assumption [I] (see (7)) implies that p(Ay, ) > [Ay, |/ A1

Similarly, the definition of the set R guarantees that R has size at least hs in all directions and
so V(RN OY(2)) < A2|R|. Equation thus yields

Ao, | < M A2 R (51)
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We now note that
|AM_| = C£$L7 (52)

while the assumption z; > v with v > % and v > £ hy/C K implies
- 2K (3 €
|R| = C max (E <2 x1 + K) , hg) (max(3n, h))

K
<C <€ I’L) (max(3n, hz2)).
Together with the definition of 7 this shows that
. K 12
<c(= - 4
R|_C(£xL>maX(C>\l)\2K,h2) (54)

Equation then proves that

lx
Clx, < TL (55)
which is a contraction by taking C' large enough and concludes the second part of the proof. O

2.4.2 Lower Bound on |, ,|

We now show that the measure |Q;, ,| is bounded from below. We first need, as an intermediary
result, the following lemma which only relies on the convexity of the function . This lemma mostly
states that if the subdifferentials corresponding to two points 3’ and y”’ is concentrated in the vertical
direction and the segment [y/, y”'] is almost vertical, then the subdifferential corresponding to any
point in that segment also has to be concentrated.

We will later use this lemma together with Lemma to obtain contradictions and ensures the
absence of concentration in the subdifferential over half a cone.

Lemma 2.6. Let v satisfy , consider any x; >y = max(%, 2h, é%) and fix any £ € R.
Assume that y', y"' € Q. are such thaty' # y" and

(y)N{z € la =&l <np#0,  0v(y")N{z € Qs |21 — & <n} #0.
There exists a universal constant C' s.t., if

{n
C’le’

[ tan((y', ¥"), er)| <

where (v, y"), el) is the angle between the vertical direction e and the segment [y, y"], then for
ally = sy + (1 —s)y" with s € (0,1) we have

I(y) < {z; [z — & < 2n}.
Proof. Take 2/ € 0y(y)N{|lzL — & < n} and y = sy + (1 — s)y” for some fixed s € (0,1). We

can assume (without loss of generality) that y, —y, > 0 and 3| —y, < 0. For any z € 0¢(y), the
convexity of ¥ implies (cyclical monotonicity of the sub-differential):

(' =2)-(y —y) 20,

18



and therefore
(Z —20) (VL —y1) > = (2 — 2| —yp)-
We hence deduce that

(2 = 2) (=) v =yl
a2+ LT < (ef g )
Y, — YL Yy, —yL
since |z, — &| <. Using now Lemma [2.1] we then get that
2 2 f—
et |2 (K40 + 2 (K + )] L4
Y4 l Y, — YL

C
sEtn+yKay |tan((y”,y'), eL)] < &+ 2n,

by the definition of the tangent and where we used the fact that z; > v > ¢/K, that v/, v € Q,
soy € Q,, and as a consequence ¥, yi < 2x,.

Proceeding similarly using y” instead of ', we can get the inequality z; > £ — 27 and the result
follows. O

Using Lemmas and we can now get a lower bound on the measure of the set Q, ()
(which we recall is defined by ) This will be the key estimate in the proof of Proposition

Lemma 2.7. Let ¢ be a convexr function satisfying for some measure p and v satisfying As-
sumption . Assume further that 1 satisfies . Recall that K satisfies and that n is defined
by . Assume furthermore that £ satisfies, for an appropriate universal constant C,

0>2hy, 2>CKM M ho.

Then, for all x; >~ = max (%, 2hy, éhf(), and for all £ € R, one has the lower bound
é.TL . EZ
Q2,5 (€)] 2 o n (17 >\1)\2K2> : (56)

Proof. Start by using Lemma to obtain the existence of one § € A,, be such that for some
zZ € 0Y(y) we have |2, — €| > 3n. Define now Cy as the cone (see figure [I]) with vertex § and angle
0 with the vertical direction e , such that

tan 0 = min L 6777
h QIL?CKSCL '

Define furthermore the truncated cone Sy = {y € Cy | |y — 71| < z1/2}.

We first observe that Sy C Q,, as for any y € Sy, we have first g, — 2, /2 <y, <g, +x,/2
and hence %~ <y, <2z, since z; <g; < %Z‘J_. Second, since |g| < £/4, we have that

~ ~ Y4 T Y4
Iyl < gyl + [tan 8] Jyr — g | < — 4 [tanf] — < |
4 2 2

which is the reason for the condition tand < £/(2x, ).

The next step is to use Lemma to prove that |, , N Sp| > |Se|/2. For this consider any
segment in the truncated cone Sp with hence angle ' <  with e;. Denote by L}, and L2, the two
half-parts of the segment from g.
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Figure 1: Cones Cy and Sy

We can show that either L}, C Q,, , or L2, C Q,, ,. Indeed by contradiction, if this was not
the case we would have some y' € L}, \ Q. . " € L3, \ Qy, . By the definition of €, ,, there
exists 2’ € 0Y(y') with |2 —&| < n and similarly 2" € 9y(y”) with |2/ —&| <n.

Of course by definition

ln

t "y, =tanf <tanf < —————,
an((y', ¥"), el1) an @’ < tan ST

and we can directly apply Lemma As §j is a convex combination of ', 3", this implies that
oY(y) C {z] |zL — &| < 2n} contradicting the fact that Z € 9¢(g) but |2, — & > 3.

This proves as claimed that either L}, C 2, , or L2, C ,, , and integrating over all possible
segments with all possible angles that [Q,, , N .Sy| > |Se|/2.

To conclude the proof, it is hence enough to bound from below |Sy|,

1So] = C 2y (31 tanf) > éxlﬂ (min (1, 1))

Using the definition of 7 in , we eventually obtain that

le 52
> in (1, —— ).
1501 = =5 mm(’ApbK2>

2.4.3 Proof of Proposition
We now have all the estimates required to prove Proposition [2.4
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Proof of Proposition[2.4} Using the definition of ¢ as given in (32)), and the set 2, ,,(€) introduced
in , we get,

/ Ty () — T ()] ol ) dy de = / !
RsXRs

Raw/g T (y) — T (x)| dy dz.

Now fix £ =T (x) and calculate

/Q|Tl<y>—n<:c>|dyzn/ﬂ dy = 0|, -

T x| ,n

Observe that the assumptions on ¢ and the definition of v in Proposition exactly coincide with
Lemma Hence we may apply the lemma whenever z; > « to find

leyn . 2
_ > 2o -
/ T (y) —To(x)| dy > o min (17 e )

Q|
= 7€3 Tl min | 1 762
CCAM K T M A K2
by the definition of 5. This leads to

/ 1T (y) = TiL(2)| p(z,y) dy dz > / 1T (y) — TL(x)| p(z,y) dy dz
Rs X Rs

Rsn{z1 >~}

> L min (1 €2> / d‘ril
“CMMK T MMNK? ) it sy (@L+7)

>Lmin 1 L /5 dr
_C>\1)\2K ’)\1>\2K2 5 7’+’7’

and we may conclude that

[ W - T e dyda
Rs X Rs

S A (1 2 | 1 n 1)

———— min ] -+ —

SO K "M KZ) B\ T o )
which completes the proof. O
3 Proof of Corollary
Proof of Corollary[1.5 We now have that e = 0 and so

’y:maX{th,gZ}.

If the length ¢ does not satisfy @ then we have

either ¢ <2hy, or (%< CM\AyKhs, (57)
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which gives the first two terms in .

If ¢ satisfies (9)), then we note that since hy < §/4, condition implies v < §/2 and so we can
use Theorem [[.2] to find A
2 5
" )\ 1n yto <1
CAM A K? v

Setting u := #m7 we rewrite this inequality as

ﬁm(wﬁgé>gL (58)

where v(u) = max {2h1, )\1(;\2 hgu}.

When v(u) = 2hy < §/2, then implies

ug[m(;;”_ué (59)

When v(u) = 2122 hoq, the assumption V€M A2 < q implies v(u) < %% and so the inequality
C 5 C

(8) gives
8 ¢ 8 g
wWhn(l4+—)<u’In|{l+—) <1
u v(u)

Thus we obtain u < C (since C > 1 and u — u®In (14 €) < u® is increasing). It follows that

v(u) = \/%hgu < v/CA1Aahs and Inequality then yields:

s\ 5 -
8
u°® < |In 1—|—>} < {ln ()] . 60
[ ( 7 (u) VCOA Azho (60)
Inequalities and gives the last two terms in and conclude the proof of this first
corollary. O

4 Proof of corollary

Before proving Corollary we state the following lemma which is proved at the end of this section.

Lemma 4.1. Let 1) be a convex function on Q and let x,2" € Q x Q. Denote { = |x — 2’| and
= = i V(1= o+ 1) — [(1 = (o) + 10(a)] (61)
Then, for any z € OY(z) and 2’ € OY(z'), we have that
|- 2| 2 25. (62)
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Proof of Corollary[1.} We recall that
T € M (2) <= z € IY(x)

so we want to use to prove . But in order to apply , we first need to prove that the
conditions of Theorem are satisfied. We will first prove that

I*(2) € Q2 Yz € dp(Q7). (63)

This is not obvious, since the definition of 91(€°) only guarantees that there exists at least one
T € Q9 such that z € 9(z) (in other words 9v*(2)NQ°/2 £ (). We will prove by contradiction:
Assume that there exists also 2 € Q\ Q9/2 such that z € 9y(z). Since v is convex, this implies that
1 must have a flat part along the segment [Z, z]. Indeed, the definition of the subdifferential implies
that

Y+ (1 —t)z) > P(T) +tz- (z — T) vt € [0, 1]

and
Yir+ (1 -0)z) > Yx)+ (1 -tz (T —x) vt € [0,1]

and a linear combination of those inequality yields
Ytz + (1 —=t)z) > (1 —6)Y(T) + t(x) vt € [0,1].
The convexity of 1 implies that we must have equality in this inequality.
After possibly replacing = with the point [z, 2] N 0Q%/2, we deduce (since z € Q9) that ¢ has a
flat part of size at least 6/2 in the set Q°/2. By Corollary this is impossible if hy < k() and

hy < ko(6) for some functions ki, ks depending only on A\; Ay and L. This proves that must
hold.

Next, we use Theorem We denote £ = |z — 2’| and assume that hy < 0 and that ¢ satisfies:

y4 Z 2h1, J4 Z max {\/ C/\l)\g th, )\1;\2}7,2} (64)

Then hy and ho satisfy

Y4 02
< mi < mi _ = .
fu s min{s, £/2} hz < min {\/;7 CAi )2 K} (65)

In particular, k1 and ho satisfies @D and so we can apply Theorem to get (see (11))

1
4y4
o ()

Furthermore, under conditions we can use Lemma to write

6£ 1/2
K > .
- <>\1>\2>

It follows that (recall that D = diam ),

COMME® (0N . L6\
DS S S s > —_
wz0(3) 2o(3)

max {e, h1 K, lho} > 0K min ,1
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and so
1 1

TN IO
o (BB 1 = o (e ()] 1

We deduce (using ) that there exists a constant Cp, depending on D, § and the dimension such
that

1 K
IIlaX{€,Kh1,Dh2} Z —_ .
Co exp <c4,\§€;\31<8> -1
We now observe the following elementary fact:
Ya > 0, w— ———~ is monotone decreasing in u. (66)

exp (aud) — 1
This implies in particular that for all ¢ we have
K L
>

C4)NANA 8 — C4N4)\AL8 ?
exp (71[82 ) —1 exp <7282 °°) —1

and so . I
max {e, Kh1,Dho} > o(f) := Co (C“ff;;Lio) ’ (67)
exp (—g27=) -1
where the function o(¢) is monotone increasing and satisfies lim,_,g+ o(¢) = 0. In other words
) e _ol)
either 7 > 5 or Khy > o(¢) or Dhy > o(¥).

Since both functions ¢ — o (¢) and ¢ — # are monotone increasing (for the second one, this is a

consequence of again), we can introduce their inverses o and o3. The conditions above are
then equivalent to

l < max{ag (%) ,Ul(Khl),al(Dhg)}.

Combining this with , we deduce that for all £ > 0 we have

J4 S max{ag (%) , max {O‘l(Khl),th} ,max{al(Dhg), vV C)\l)\g Loohg, th}}

]

and the general result follows, recalling that ¢ = |x — 2’| and that Lemma gives [z — 2/| > 2%.

It remains to treat the special case hy = ho = 0, where we immediately obtain that
|z — 2’| < oa(]z = 2)),
proving that for any given z the sub-differential of ¢* is always reduced to one point (take z = 2’
and any z, ' € 9¢*(z)). Consequently 1* is C! as claimed.
To bound o9, we trivially observe that
U a~1/8

<2 .
exp(aud) —1 =  exp(aud/2) —1

Consequently for some numerical constant C

1 —1/2 \—1/2
o' =27W > L e

CANENLLS ’
Cexp (71@82 °°) -1
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Therefore for some C'

VAL A2 Lo

) 1/8°

which concludes the proof. [

oa(w) < C

Proof of lemma[{.1 By definition of e, there exists y € (x,2’), with y = tx + (1 — )2’ for some
t € (0,1) such that

P(y) = t(x) + (L - t)y(a’) —e. (68)
By the definition of subdifferential we have that
P(2) > ¥(@) +y' - (2 —2) (69)

U(z) 2 (@) +y" - (2 —a”).
Plugging into the inequalities yields

y - (@ —a") 2 Ya) ") + T
" (2 =) > $(a") — () + <,

so that finally, by adding both inequalities, we get

> 4e,

2wy ~y'| 2 (¢ —y") @ ) 2

which concludes the proof. O

5 Proof of Theorem [1.1]

Theorem [I.] follows from the following result together with well known facts from the theory of
optimal transportation:

Theorem 5.1. Let p, v be two probability measures on R™. Assume I' C R?" is a closed set such
that for any Borel set O there holds:

wO)<v({yeR"|[Jx €0, (v,y) €T},

V(0) < u({a €R" Iy € O, (z,y) € T}). (70)

Then there exists m € II(u,v) concentrated on T' (that is Supp(w) C T).

Proof of Theorem[1.1, We note that when I' = Graph dv) for some convex function 1, then is
equivalent to the conditions and (6). Theorem thus implies that there exists m € II(u,v)
such that Supp(w) C I'. The result then follows from a classical result of measure theory (see for
example Theorem 2.12 in [22]). O

We now turn to the proof of Theorem The first step is to prove the result when p and v are
both sums of Dirac masses with identical mass:

—1N5 _ ! 1)
b IS I
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In that case, we define the N x N matrix A = (A4;;) by

Y71 0 otherwise

and Theorem is equivalent to

Proposition 5.2. Let A be a N x N matriz with A;; € {0, 1} and such that for any I, J subsets
of {1,...,N}, we have

1< G| YAy >0, [JI< il YAy >0}, (71)

iel jeJ

Then there exists a stochastic matriz m = (m;;) such that m;; € {0,1}, Zj mi; =1, >, m; =1 and
satisfying m;; = 0 whenever A;; = 0.

Proof of Proposition[5.2 The proof proceeds by induction on N, the result being obvious for N = 1.
We distinguish two cases: Whether there are strict subsets Iy or Jy for which there is equality in

or not.

Case 1: We assume that for all strict subsets I or J of {1,..., N}, we have a strict inequality in

(71), that is
HE< {1 YA > 03 |JI < [{i] Y Ay >0},

il jeJ
We then choose any ig, jo such that A; ;, = 1. Up to relabeling the rows and columns of A, we
can always assume that we can take i = jo = N and we consider the N — 1 x N — 1 matrix A
consisting of the first N — 1 rows and columns of A. We claim that A satisfies : Indeed, for any
Ic{1,...,N—1}, by applying to A, we have that

I <Hje{l,....N}| > A >0} -1
el
<SWied{l,....N—=1}| Y A;; >0}
icl
={jl > Ai; > 0}.
iel
and a similar inequality for J C {1,...,N —1}.

Therefore by induction, there exists a stochastic (N — 1) x (N — 1) matrix 7 with 7 € {0, 1},
7i; =0if Ajj =0and 3, 715 = 1, >_; Tij = 1. We can then define the matrix m by setting m;; = 7;;
ifi<N—-1landj<N-—1,nmyy =1and m;; =0 otherwise. It is straightforward to check that 7
satisfies all requirements.

Case 2: We assume that there exists a strict subset Iy or Jy of {1,..., N} for which we have equality
in . For example, we assume that there is a strict subset I such that

ol = 1{j| Y Aij > 0} (72)

i€l

and we denote Jo = {j| D¢y, Aij > 0}
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Since |Ip| = |Jo|, we can define the square matrices P and @ by
Pij = AijLicry jesy,  Qij = AijLicrg jess-
and we are going to show that P and @ satisfy on Iy x Jo, and I§ x J§ respectively.

We start with P: for any I C I, implies:

1< {5 Ay > 0}

icl

The definition of Jy implies that A;; = 0if ¢ € Iy and j € Jy. Since I C Iy, we can thus write:

{1 Ay>0y={jedo|l Y Ay>0y={j€do| Y Py>0}

i€l i€l i€l
and we deduce that
I <{jeol Y Py>0} for all I C I, (73)
il
which shows that P satisfies the first inequality in . To prove the second inequality, we proceed
by contradiction: Assume that there is a subset J C Jy such that

|J| > ‘{Z'EI()| Zpij >0}| = |{i€[0| ZA” >O}|,

jed jeJ

then denote I = {i € Iy| 3.
that

jeg Aij > 0} and define I' = Io\I, J' = Jy\ J. Since |J| > |I|, we have

I’ = To| = 11| > ol = || = |Jo| = [T = |J'. (74)

Consider any j' s.t. >, Aijr > 0. Since A;j = 0 for i € Iy and j° ¢ Jy, we have that j' € Jo.
Next, let i’ € I’ be such that Ay ; > 0 (which exists by the choice of j'). Since i’ € I' = I\ I, the
definition of I implies that A;; = 0 for all j € J. So we must have j’ ¢ J. We thus have j' € J'.
We just proved that

{j/| Z Ai/j/ > 0} = {j/ € J0| Z Ai/j/ > 0} cJ.

iel’ iel’

Together with , this implies that

1> ') = 5| ) Ay > 0},
iel’

which contradict . We can then conclude that P satisfies on Iy x Jy.

We now turn to @) and start by considering any J C J§. We recall that A;; = 0 for i € Iy and
jedJCJ§andsince {1,..., N} = Iy U I§ we have:

{i] > Ay >0y={icI§| > A >0}

JjeJ jeJ
Applying on A for J, we get

I< il oAy >0} =I{ieI5| Y Qi >0},

jeJ jeJ
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proving the corresponding half of for Q.

Next, for any I C I§, we apply with I = Iy U I:

iel
We recall that Jo = {j| > ;c; Aij > 0} and denote J = {j € J§| > ;c; Aij > 0}. We have
JUJo D {jl > ;cr Aij > 0}, and since

T=41 Y Ay >0 ] D Ay >0}

i€l i€l

(Dol + 1| =

we have J = Jy U J. This implies that |Iy| + |I| < |J| < |Jo| + |J|, that is
I < || =Kie5| > Ay >0},
iel
which completes the proof that ) satisfies .

We can now complete the proof: Since Iy # 0 and Iy # {1,...,N}, P and Q have dimensions
strictly less than N and we may apply our induction assumption. This gives us p;; on Iy x Jy and
gi; on I§ x Jg, stochastic matrices,

Zpijzl Vi € Iy, quzl V’LGIS,

J J
Zpijzl Vj € Jo, Z(Iijzl Vj € Jg,
J J

with p;; = 0 if Pj; = 0 and ¢;; = 0 if Q;; = 0. We simply extend p and ¢ by 0 on the whole
{1,...,N}? and define 7 = p +q.

O

Proposition proves Theorem when the measures 1 and v are both sums of Dirac masses
with identical mass. Our next step is to extend that result to general sums of Dirac masses.

Proposition 5.3. Assume that

M1 M2
U= E M Oy,, V= E nj Oy,
i=1 j=1

for some points x1,...,xn, and y1,...,ym, in R™ and some (positive) masses my,...,mpr, and
ni,...,0nm,. Then Theorem holds.

Proof of Proposition[5.3 By splitting points if needed, we can always assume that My = My = M
and that m;,n; > 0 for all 4, j. We can also assume that I' is concentrated on |J; ;{(z:,y;)}. For this
reason, we define y as the set of indices (7,7) s.t. (z;,2;) € I'. In that discrete setting, Assumption
is then equivalent to

VIC{l,...,M}, Y m< > nj,
el {7 |3l s.t. (1,5)€v}
vJ c{1,...,M}, Znig Z m;.

= {i|3jeT s.t. (i,5)ev}
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In order to use the result of Proposition [5.2] we want to approximate p and v by measures uy, vy
that are sums of Dirac masses with identical mass. To do this, given N > 2 M, we replace the mass
m; at x; (respectively the mass n; at y;) into k(i) masses (respectively {(j) masses) % all located
at that same point, with k() and I(j) such that

1 k(3) 1 1U(j)
<M ey - <A
L e A A
(we can always assume that 1/N < inf(inf; m;, inf;n;) so that k(i),1(j) > 0). We note that we

have some left over mass m; — % at each points. By summing over all ¢ (and all j), the total left

over masses are

1—21?:]{96(0,%>7 1—ZKJ@=Z(]3)<16(07%).

( J

U

where k(0) = N — 37, k(i) < M and [(0) = N — >, 1(j) < M. We thus add k(0) (resp. /(0)) masses
1/N at some point xg # z; (resp. yo # y;)-

We can write
1Y 1Y
NN:N;&EM VN:N;(S@

where the points Zy, (resp. ;) are the same points as the x; or the additional distinct point zq (resp.
y; and yo) which we just subdivide. It is useful to introduce K (i) (resp. L(j)), the set of indices k
such that Zp = x; (resp. yr = y;). We have in particular |K(7)| = k(i) and |L(j)| = I(j).

Observe that uy and vy converge strongly to u and v when N — oo since

2M 2M
/d|/~LN*N‘§T, /d|VN*V|§W

(since there is a mass discrepancy of at most 1/N at each of the M points z1,...,zp and an
additional mass of at most M/N at x¢).

We now define vy as

w={ U K@xLG) | JE©O) x ({L....N}\ L(0)))

(i,5)€v
U{1,.... N\ K(0) x L(0)).

The first component of vy is the natural extension from v: If z; and y; were connected, then any z
s.t. T = x; is still connected to any y; with y; = y;. Because we lose a bit of mass on the points Z
and ¥, this may not be enough to ensure that holds on py and vy. For this reason, K(0) and
L(0) serve as a mass reservoir: K (0) is connected to all I > 1 and L(0) to all k£ > 1, but of course
K(0) is not connected with L(0).

We now check that holds for this yy. Let I be a subset of {1,..., N}. We consider three
cases:

If I ¢ K(0) then {I|3k €I s.t. (k,1) € yn} ={L1,...,N}\ L(0). Therefore

M
T <1-
N

==

pn (1) < pn(K(0) < =vn({l, Ik el st. (k1) €yn}),

[\
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since N > 2 M.

If INK(0)# 0 but I ¢ K(0), then {I|3k €I s.t. (k,1) € yv} ={1,..., N}. Trivially

un(I) <1=wvn{l, Ik eI st. (k1) €vn}).

If 1N K(0) =0, then denote I = {i| K(i) NI # 0}. Observe that if (k,l) € vy and k € K(i), | €
L(j) then for any k' € K(i), I’ € L(j) one also has that (k',l') € yn by the definition of .
Therefore

{113k €T st. (k1) €y} = L(0)J U L) | - (76)
4, el s.t. (i,5)Ey
Consequently by the definition of I we have
7] k(7)
= — < _—
p (1) N = Z N
iel
and since k(1) < N m; from the construction of uy we deduce

Z <Zml—

icl iel
Applying to u, we get

pn(I) < pd) <v({j, Ji e st (i,§) €4}) = >
j, Jel s.t. (i,5)€y

From the construction of vy, we have n; > 1) and

N
1(5) 1(5)
MN(I)S. Z Nt _Z TN
j, el s.t. (i,5)€ j, el s.t. (i,5)€y

IN

M ‘M .M
2\5
Mz
=S

IA

J, Hel s.t. (i,5)€y

Using , we deduce
un(I) <vn({{l, 3k €I s.t. (k,1) € yn}),

which proves that holds for the measures uy, vn and the set vy .

We now apply Proposition 5.2 to uy and vy. We obtain 7 a transference plan

N
Tl ]
=Y e Somi =1 doali=1 wlh=0if (k1) .
l k

k.l
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Because the z; and g, are equal to the z;, y; or to xg, yo, we can also express 7y as
- N - N - N
TN = D T 0w )+ D0 ) + D W0 s, yo)- (77)
1,521 j=1 1>1
Moreover for any ¢ > 1, or any j > 1
k(i) 1(4)
_N N - N N
ZﬁijJFTrio:T, Zﬂij +710:W.
Jj=1 Jj=1
By the construction of uy, vy, this yields that
1 _N N 1 - N N
mi—NSZ’ﬂ'U— +7Ti0 Smi, ni—NSZWU +7r0j§ni. (78)
j>1 i>1
On the other hand,
. (79)

=is

N k(O) M )

N N

E‘ :”Oj - 77\7 <— ﬁ’ E Ti0 = 77\7 <—
J

i
Since the points x;, y; together with zg, yo are fixed, we may simply pass to the limit in 7 — 7
using by extracting subsequences such that all 7y — 7;; for all 4, j > 0. By (79), we have that

7Troj = T = 0 so that
™= }: ﬁhj&xmyﬂ'
i,52>1
By and given that 7,0 = Tg; = 0, we get
Zﬁ'ij =m;, Zﬁ'ij = nyj,
§>1 i>1

and so 7 is a transference plan between p and v. It only remains to check that 7 is concentrated
on I': Given any (4,7) ¢ -, then for any N and any k € K (i), | € L(j), we have that (k,l) & .

['herefore m;';, = 0 and
7 _N Z W}i\é

kEK (), lEL()

so that we also have that 7;; = 0, thus proving that 7 is indeed concentrated on I'.

We are now ready to prove Theorem [5.1]

Proof of Theorem[5.1} First of all by density, we can assume that both p and v are compactly
supported on some large ball B(0, R).
Define I';, and I'y the projections of I',
I',={zeR"|yeR”, (z,y)el'}, I'y={yecR"| Iz eR", (z,y) €T}

Of course I'y, I'y are closed. Moreover 1 is supported on I'y: For any open set O with ONT', =
then for any y € R™ and any = € O, (z, y) €T so

{yeR" |z €O, (x,y) eT} =0,
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and therefore ;(O) = 0 by assumption (70). Similarly v is supported on T',.

For any k € N, we define the hypercubes CF of diameter 27%, centered at points x; € 27*Z"
and that cover a fixed selected hypercube Cy s.t. B(0,R) C Cy. This decomposition is obviously
hierarchical since CF is composed of exactly 2" small hypercubes CJ’-“H.

By shifting the hypercubes if necessary, we may assume that p (Ul 86’;’3) = 0. For any k, we
define an approximation py with N = C 25" points,

N
pv =Y my 8n, myY = p(CF).
i=1

. . 1. . N .
We also define vy in the same manner. Both py and vy remain probability measures since Zl m; =

S n(CF) = p(UCF) as (U, 0CE) = 0.

Finally we define I'y as the union (J; ;). Cf x CF where
w =A{(,5)| 3z € Cf, Iy € C}, (x,y) €T}
We observe of course that I' C 'y and that d(T'y,I') < C27% = 0as N — co.

Consider now any subset I of indices i and define O = J;¢; Ck. By our construction and
assumption
pO)=> m) <v({yeR*| 3z e0, (v,y) €T}).
i€l
By the definition of O, we have

{yeR"|3w €O, (x,y) €Tt =|J{yeR"| Tz € Cf, (x,y) €T}
el

And since I C T'y, we deduce

{yeR"| 3z €0, (z,y) T} | J{yeR"| Tz € Cf, (2,y) €Tn}
el

c U cr,

{3134l s.t. (i,))€Vn}

by the definition of v5. Hence, since v (UZ 805) =0

v{yeR"|Jz €0, (x,y) €T} < Z V(Cf) = Z njv
{j|3iel s.t. (i,5)€Evn} {j|3€el s.t. (i,j)€Evn}
Therefore
Sere YW
i€l {713is.t. (¢,7)€EvN}

which is the first inequality in . The proof is similar when reversing the roles of uy and vy and
this allows us to conclude that py and vy satisfy with Ty

We can thus apply Proposition [5.3] to get the existence of a transference plan my concentrated
on 'y and with marginals pux and vy.
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By the tightness of 7y, we can extract a converging subsequence (still denoted by N for simplic-
ity) s.t. mny — 7 for the weak-* topology of measures. Trivially 7 has marginals 1 and v.

To conclude the proof, we need to show that 7 is concentrated on I': Consider any open set O
with O NT = () and any continuous function ¢ on R?" with compact support on O.

We claim that supp [¢| — 0 as N tends to co. Indeed assume, by contradiction, that there
exists (zn, yn) € Ty and n > 0 s.t. d(zn,yn) > 1. Since I'y C B(0,2R) then we can extract
converging subsequences zy — x and yy — y. Since d(I'y,T') — 0 then (z,y) € T but, since ¢ is
continuous, we have that ¢(x,y) > 7. Recalling that ¢ has compact support in O with ONT =
gives a contradiction.

We thus have
/(bdmv:/ ¢pdry <sup|d| — 0, as N — oo,
I'n I'n

which gives [ ¢ dm = 0, proving that 7 is concentrated on I and completing the proof of Theorem
O

A Proof of Theorem [1.5

As in the proof of our main theorem, we denote by x = (x|, z1) the points in  C R? where x|
is the coordinate along the line H and x, the orthogonal coordinate. We then have (the proof is
similar to that of Lemma [2.1)) that for all z € ©; such that |z| < /2 there holds

0w 0@ < 25 (zal +9). (50)

Next, we note that the fact that det D%y > A~2 implies that
-2
6szHw8wLwlw2)\ bl
and the convexity of ¢ gives 0y 2 ¥, Oz, 4, % > 0. We deduce
L 2 ‘ 2
2 2
(/ , >\_1 d.’L‘|> < (/ ) |6x||zw|1/281Lw4w1/2dx|>

-3 -3

£ £
S/ afuznd’dxl\/e Oy 2, ¢ d
<

2
2

¢ ¢ B
[axw <27CCL) 0,9 (—2,:@)] [ 0,0 i,

03 H
B R Ty
ANK (71| +7) _[ R

which implies (using (80))

£
2
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Finally, integrating with respect to z we get

63 1 d.’I,'J_ % 5
dr; < 2z, ¥dr d
4A2KA T _|_,Y Tl > ‘/_ , /0 a 1 L’(/} L1 :EH

S/[[axj_d](xﬂa(;)78961_1/}(‘%”’0)](11:”

[V

[VEN

2

< 2KV,

and follows.

B Proof of Theorem (1.6

We have 1 < d < n and we choose a system of coordinates
r=(r),rL)€ RY x R"™  with )= (21,...2q) and | = (Tay1,...Tn),

so that H = {z; = 0}. For £ < §/2, we have BZ(0) x Bg/gd(O) C Q, and the following lemma is the
equivalent of Lemma in this higher dimensional setting (the proof is similar),

Lemma B.1. For all x| € Bg/Q(O) and for all z, € Bg/;d we have

Ve bl 2] < 2K (o] +7). (s1)

The starting point of the proof of Theorem [I.6]is the following consequence of Fischer’s inequality
det (Di,H w) det (D2 ) > det(D?p) > A2, (82)

Integrating (82) with respect to x| after taking the square root, we get for all x; € Bg/_Qd

1/2

AT LY(BY,) < / (detDinw)l/Q (det D2 o) '~ dx
Ba

/2

1/2

< </Bd detD§¢dx|> </Bg/2 detDiLwdm)
< (e (vutnt ) ([

£/2
where we used the fact that for a convex function ¢, the integral |, y det D?¢ dx is the volume of the
image of U under V.

1/2

1/2
i detDill/J(xth_)dm) ,
e/2
Using we deduce

d
1
\—2p2d <C (ZK(|$J_| +’7)) /d det DiL’(/J(CCH“'L‘J_)d.%'”,

£/2
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which implies in particular

/\—2£3d 5
———dx; <C / det D ¢ dzdx
/B;/Zd Ko [+ =7 Jpnoa B L dmdes

5/2

gc/ / det D2, d 1 da|
B¢ JBy ¢

5/2
< c/ £ (Vo vy} x ByY) day
B}

< Crigna,

We finally obtain that

1
0% / —— dx, <CNK", 83
o Q]+ )t S (83)

n—d
5/2

where we can write

1 6/2 ,rn—d—l o &6/2v ,rn—d—l
7dau=/ ——dr ="~ / ——dr
/B (lzL[+7) o (r+7)e o (r+1)

n—d
§/2

and follows.
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