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Abstract— We address path-planning for a mobile agent in
an unknown static environment. The environment is observed
by a sensor network where each sensor has a configurable
location and field of view. We propose a depth-first coupled
sensor configuration and path-planning (DF-CSCP) iterative
method, which iteratively finds an optimal sensor configuration
(location and FoV), applies Gaussian Process Regression to
construct a threat field estimate, and then finds a candidate
optimal path with minimum expected threat exposure. The
DF-CSCP method uses a two stage procedure, (1) Explore
and (2) Exploit, to drive the uncertainty of the candidate
path cost variance below a prespecified threshold. To maintain
tractability of GPR with increasing number of measurements,
we present a sparse-update scheme. The proposed method
relies on novel task-driven information gain (TDIG) metrics,
the maximization of which provides sensor configurations. The
TDIG metric quantifies the importance of acquiring sensor
data of highest relevance to the path-planning task. Through
numerical studies, we demonstrate the technical results that
the DF-CSCP algorithm finds near-optimal paths with signif-
icantly fewer sensor measurements compared to traditional
information-maximization methods.

I. INTRODUCTION

We study the path-planning problem of finding an optimal
path for a mobile agent in an unknown static environment
comprised of threats. A sensor network takes noisy obser-
vations of the threat. In contrast to standard practice, we
propose a coupled planning and sensing method that adapts
the sensor configuration to best suit the planning task.

By sensor configuration we refer to the location and field
of view (FoV), which we treat as tunable parameters of each
sensor in the network. For example, in Fig. 1(a), a unmanned
aerial vehicle (UAV) carries a camera and observes the
environment from a specific location and with a specified
FoV. An increase in the UAV’s altitude provides a larger
FoV, but at the expense of the measurement quality, namely,
decreased image resolution. Conversely, decreasing the FoV
improves the measurement quality.

The path-planning problem involves uncertainty in the
cost of a candidate path. Sensor placement strategies in the
existing literature do not directly address the reduction of
this uncertainty. In this paper, we adopt a depth-first strategy
within the coupled planning and sensing scheme to greedily
find a path that meets predefined criteria.

Related Work: Path-planning for objectives [1] such as
minimizing a traversal cost, maximizing utility, or avoiding
obstacles may be categorized into classical and heuristic
approaches. Classical methods include Voronoi diagrams,
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Fig. 1. (a) Threat field and sensor observation within its FoV. (b) Workspace
with true optimal path (white line) and sensor FoV from (a).

artificial potential fields, and cell decomposition based on
wavelet transforms, whereas heuristic approaches include A*
and its variants, fuzzy logic, and genetic algorithms [2]-
[6]. Probabilistic techniques for path-planning under uncer-
tainty are addressed in the robotics literature [7], [8]. Rein-
forcement learning has been used for calibrating objective
function weight parameters with a probabilistic policy and
Boltzmann distribution for likely actions [9]. Reinforcement
learning techniques based on Q-learning and SARSA have
been used for global path-planning [10]. Common technical
challenges include minimizing path length, ensuring com-
pleteness, robustness, and collision-avoidance [11].

The sensor placement literature is largely disjoint from
path-planning. Performance metrics for sensor placement
include entropy maximization, Kullback-Leibler (KL) di-
vergence, Hellinger distance, mutual information, and the
trace or determinant of the Fisher information matrix [12].
Objectives of sensor placement include uncertainty mini-
mization [13], spatial coverage, sensor network lifetime, and
communication range [14]. The pSPIEL algorithm [15] finds
optimal sensor placements with constrained communication
via Gaussian process regression (GPR).

GPR is a Bayesian nonparametric regression method that
uses mean and kernel functions to define the structural prop-
erties of the fit, and thereby quantifies uncertainty of a model
[16]-[18]. In this paper, we apply GPR for estimating the
threat field from sensor measurements. The computational
complexity of GPR is O(n?) due to the matrix inversion,
which can be reduced by methods such as reduced-rank
approximations of the Gram matrix, the Nystrom method,
and Bayesian committee machines [19]-[21].

The distinction between fask-driven and information-
driven performance metrics for sensor configuration are
defined [22], where task-driven focuses on sensor placements
of direct relevance to the planning task. Such a task-driven
sensor placement method is exemplified in [23]. Although
pointwise sensor measurements are assumed (i.e., FoV is not



considered), [23] demonstrates near-optimal path-planning
under uncertainty using a small number of measurements
compared to information-maximizing methods.

In this paper, we propose an iterative depth-first method
for coupled sensor configuration and path-planning (CSCP).
At each iteration, the method finds an optimal sensor network
configuration, estimates the threat field using GPR, and then
finds a candidate optimal path with minimum estimated
threat exposure. The sensor configuration is coupled with
path-planning such that it aims to minimize the uncertainty
in the path cost estimate. The iterations terminate when the
path cost uncertainty reduces below a prespecified threshold.
For GPR we use an anisotropic squared exponential kernel.

Statement of Contributions: There are three novel con-
tributions of this work. First, we present a depth-first coupled
sensor configuration method. This method quickly finds a
near-optimal path by iteratively configuring sensors in either
an exploratory or greedy manner. This sensor configuration
method finds solutions to each sensor’s location and FoV,
thus addressing a “quantity versus quality” FoV trade-off.
Specifically, “quantity” is achieved through large FoV (noisy
measurements over large areas) and “quality” is achieved
through small FoV (precise measurements over small areas).

Second, we present a procedure to reduce the computation
time of the field estimation procedure by utilizing a sparse
observation procedure before GPR. We define a notion of
sufficiently dense and strictly dense FoV observations, and
leverage the latter to limit the amount of data required during
the GPR. Third, we demonstrate that, in comparison to
traditional information-maximization methods, the proposed
depth-first coupled sensor configuration and path-planning
method reduces by orders of magnitude the number of
measured required to find near-optimal paths.

This paper is organized as follows. We provide the prob-
lem formulation in §II, present the proposed method in §III,
demonstrate numerical results and discussion in §IV, and
conclude the paper in §V.

II. PROBLEM FORMULATION

We denote by R and N the sets of real and natural
numbers, respectively, and by [N] the set {1,2,..., N} for
any N € N. For any a € RV, ai] is the i*" element of
a and diag(a) denotes the N x N diagonal matrix with
the elements of a on the principal diagonal. For any matrix
A € RMXN " A[j, j] is the element in the i*" row and ;'
column. Iy denotes the identity matrix of size N.

The agent operates in a prespecified closed square region
called the workspace VV, which belongs to an environment £
such that W C £ C R2. Consider a uniformly-spaced grid of
points labeled by integers i = 1,2,..., Ng. Consider a graph
G = (V, E) whose vertices V' = [N,] are uniquely associated
with these grid points, and whose edges E consist of pairs
of geometrically adjacent grid points. In a minor abuse of
notation, we label the vertices the same as grid points. We
denote by p; = (Piz,piy) the coordinates of the i*" grid
point and by Ap the distance between adjacent grid points.

A threat field c & — Ry, is a strictly positive
temporally static scalar field. We are interested in a path-

planning problem of minimizing the agent’s threat exposure.
A path w = (w[0],7[1],...,7[A]) between prespecified
initial and goal vertices %gtart, igoal € V' is a finite sequence,
without repetition, of successively adjacent vertices such that
70[0] = istars and 7[A] = igoa1 for some A € N. We define
the path incidence vector v, € RNe such that v, [i] = 1 if
i = m[j] for j € [A]\O and v [i] = 0 otherwise.

The cost of this path 7 is the total threat exposure along
the path: J(w) := Ap Zj‘:l ¢(p,,). The main problem of
interest is to find a path w* of minimum cost.

We cannot solve this problem as stated because the threat
field is unknown. The threat field can be observed by a
network of Ny € N sensors. Each of these sensors measures
the threat in a circular field of view (FoV), which is a
subregion of £.The center and radius of this circular FoV
Sk C &, denoted s, € W and g, € Ry, for the k'"
sensor, are parameters that we may choose for each k €
[Ns]. Maximum and minimum FoV radius constraints are
specified as o™?* and o™, respectively. The set of all sensor
parameters is called a configuration, which we denote by
C= {817Q17827"'aQNs}‘

Consider the set Vs := {Upecn,) Sk NV} of vertices with
grid points within the union of FoVs of all sensors. We define
the sensor cover incidence vector v € Rz such that v[i] = 1
if i € Vs and v[i] = 0 otherwise.

Within S, the k" sensor takes M) € N pointwise and
noisy measurements of the threat field. The spatial points
Tgm € Sk, for m = 1,2,..., My, where these measure-
ments are taken are uniformly distributed within Sy. Each of
these measurements is: zg, = ¢(Tgm)+Mkm, k € [Ns], m €
[My]. The i.i.d measurement error 7, ~ N(0,0%) is
normally distributed with o7 := 1 log(1 +exp™ek) —0.1505,
where || denotes area and is monotonically increasing
for g > 0. We denote sensor measurements by z =
(211, ceey ZNSMNS).

Sensor observations are used to construct a stochastic
estimate of the threat field, and in turn, use this estimate
to find an optimal path that minimizes the expected cost.
Conceptually, at each iteration ¢/ = 1,2,...,L, the sensor
configuration C} is chosen, the threat field estimate is
updated using the new measurements, and an optimal path
is computed. The main problem of interest is as follows.

Problem 1. Over a finite number of iterations ¢ =
1,2,..., L, find sensor configurations Cy and a path w*
of minimum expected cost J = E[J(n*)] that satisfies
E[(J(5*)—=T )2 < &, for a prespecified threshold e € R .

III. DEPTH-FIRST CSCP

The proposed method provides an alternative methodology
to the iterative CSCP algorithm of [24], which provided a
solution that finds the optimal sensor configuration along the
entire path each iteration. We refer to this CSCP method as
Direct CSCP to distinguish between the proposed approach.
In contrast, the approach herein details an alternative that
more aptly suits situations requiring quick locally optimal
solutions. Specifically, it differs from the former approach by
using a two stage approach: (1) Exploration, which focuses



DF-CSCP Algorithm

1: Initialization: set £ := 0, Z = (), and =} per §III-A.

2. while Vary(w}) >¢ and =w; ¢ Z do

3:  Perform SENSOR CONFIGURATION.

4. Record measurements z and optionally combine
sparse measurements per §III-C.

5:  Increment iteration counter ¢ := ¢ + 1.
Find GPR-based threat field estimate f, and error
covariance Pj.

7. Use Dijkstra’s algorithm to find path 7} with mini-
mum expected cost J(7}).

SENSOR CONFIGURATION

1. if |Z5| > N; then

2:  Exploration-based sensor configuration per §III-B.1.

3: else

4:  Exploitation-based sensor configuration per §III-B.2.

Fig. 2. Pseudocode for an iterative algorithm to solve Problem 1.

sensor FoV along unidentified vertices, and (2) Exploitation,
which assumes that a fully identified path is the true optimal
path, and thus configures sensor FoVs accounting for poten-
tial future observations to drive the path variance below a
termination threshold.

The proposed iterative method called “Depth-First” CSCP
(DF-CSCP) follows three main steps: (1) finding optimal
sensor configurations (location and FoV), (2) updating the
threat field estimate and error covariance matrix, and (3)
finding an optimal path, as shown in Fig. 2. At each iteration,
the algorithm maintains a pointwise estimated mean threat
f, € RMe at each grid point and an estimation error
covariance matrix P, € RVe*Ns, The expected cost of any
path 7 is J,(w) = E[J (7)] = Ap f]vx. An optimal path
77 with minimum expected cost is computed using Dijkstra’s
algorithm. The path cost variance at iteration ¢ is

Vary(m) := E[(J(7) — To(7))?] = (Ap)*vL Povg. (1)

The method relies on GPR for estimating the threat field.
For brevity, a description of GPR is omitted; the reader in-
terested is referred to [16]. We employ an anisotropic squared
exponential automatic relevance detection (SE-ARD) kernel.

A. Algorithm Initialization

The algorithm initializes “optimistically” by setting f, =
0. The initial uncertainty in the threat estimate is quantified
by initializing the estimation error covariance matrix with
uniformly large values, e.g., P = xI(y,), where x > 1 is an
arbitrary large number. Due to this “optimistic” initialization,
the initial optimal path 7r(j is of minimum length.

We define a set of vertices identified by Z € [N,] and
initialize it as an empty set Z = (). At each iteration it is
updated to reflect sensor FoV configuration placements as
¥ = {I(Zfl) U Vs}. Next we define the identified path
incidence vector as T, € RN¢ such that Z,[i] = 1if i €
I r[j] for j € [A]\O and Z[i] = O otherwise. In contrast,
the unidentified path incidence vector I5. :=1— T .

B. Sensor Configuration

At each iteration ¢ = 0,1, ..., L, we pose the sensor con-
figuration problem as two conditional and separate stages for
maximizing a task-driven information gain (TDIG), which is
a reduction in cost variance along the path 7}. If [Z| > Ny,
then we follow the procedure in Exploration, else we perform
the Exploitation stage, described as follows.

1) Exploration Stage: We define an Exploratory-TDIG as:

hexplore(CZ) = (AP)Q(IS})T(PZ - PEJrl)I:r‘ 2

We approximate the posterior covariance by P[Jrl, defined
as follows. First consider the correlation matrix I'y, :=
D;ngDe_l, where Dy is a diagonal matrix with Dy[i,i] =
v/ Pyli,i]. We define a reduction factor

8(C;i) := Pyl i)~ + a2 07 2, for each i € [Ng]. (3)

We define the unidentified reduction incidence vector
Uy = (v & I;), ie., ux[i] =1 if and only if v[i] = 1 and
T:[i] = 1 for each i € [Ng]. We define Qr € RNeXNe ag:

Qm = {5(C£;i)1’ ifun(i] =1,

0 otherwise,

“4)

We estimate the posterior diagonal variances as q.,[i] =
Pyli,1](1 — urn) + Qrur. The posterior covariance matrix

is then approximated as Ppy1 := diag(,/q,.) I diag(,/q,,)-
The approximation to the Exploratory-TDIG is:

iLexplore(CZ) = (Ap)Q(I;-)T(PZ - PE+1)I~ (5)

The sensor configuration problem is to find C; maximizing
ﬁexplore subject to s, € W and o™ < gf < 0™, k € [N

2) Exploitation Stage: The exploitation stage occurs
whenever 77 has strictly less unidentified vertices than there
are available sensors. However, in this stage we iteratively
add another batch of sensors to the total sensor count until
we find the approximated terminal iteration L. The procedure
is demonstrated in Fig. 3. We define a Sequential-TDIG as:

hseq(Cp) = (Ap)* 0] (Pr = Py)vn. (©6)
Similar to the process leading to (5), we redefine
§5(C;0)7h, ifrglil =1,
T = 7
@ {O otherwise, ™

and 7, as the reduction incidence vector v, := (v & vy),

ie, r[i] = 1 if and only if v[i] = 1 and wvg[i] =
1 for each i € [Ng]. The estimated posterior diagonal
variances are then q.[i] = P[i,i](1 — rx) + QrTx.

The posterior covariance matrix is then approximated as
Pi := diag(,/q,) T'¢ diag(,/q, ). The final key difference
is that the optimization stage is performed iteratively, using
additional measurements until the Sequential-TDIG value
reduces below the termination threshold e.

Proposition 1. The Sequential-TDIG procedure terminates
in a finite number of iterations with Ng > (.

Proof. With Ny > 0, at least one sensor covers a path vertex
such that v has at least one nonzero entry. Additionally,



Sequential-TDIG Procedure

Sparse-Update Procedure

1: Initialization: set L = .

2: while hg., > € do

3. Increment batch counter L := L + 1.

4;  Perform sensor configuration with N, := N,(L — ()
sensors as per §III-B.2.

Fig. 3. Pseudocode for determining the approximated terminal iteration
and the maximization of the Sequential-TDIG metric.
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Fig. 4. Mg (blue dots), M,f (gray dots), Sy (gray region), identified vertex
region (green-dotted region), unidentified vertex region (red-dotted region).
(a) Sufficiently dense measurements. (b) Strictly dense measurements.

at each iteration with ﬁseqs, we add another batch of Ny
sensors. We note that the path cost variance is monotonically
decreasing in this case and is bounded by 0 and the prior path
cost variance Vary (7)), therefore by monotone convergence
theorem we converge to inf{f.,} = 0 < . O

Initial guesses for optimization of the TDIG are found
using a data partition technique common in unsupervised
learning applications known as k-means [25]. We partition
the path into Ng equally sized clusters. The farthest dis-
tance from the center of a cluster to its furthest member
becomes gy, and the center of each cluster si,,.. There-
fore, the resulting initial configuration becomes Cgyess 1=

{Sl,GueSS7 01,Guess; - - - » SN,,Guess» QNS,Guess}'

C. Observation Sparsification

The computational complexity of GPR is O(n?), where n
is the number of training data points. If we keep aggregating
sensor observations each iteration, the number of training
data points grows quickly. To alleviate this problem, we
propose a data sparsification method. First, we must define
the notion of sufficiently dense observations.

Definition 1. The measurements M), drawn from S, are said
to be sufficiently dense if Vi € Vs, Im € [My] s.t. ||p; —
ZTpm|| < min A, where A is the characteristic length scale
matrix of the SE-ARD kernel.

Informally, for an n—D ball around a vertex, there ex-
ists at least one measurement contained within that region
(Fig. 7(a)). This definition may be assumed in practice since
sensors such as cameras obtain compact rectangular pixel-
based observations of an entire area, and there is always at
least one pixel intersecting this region. Similarly:

1: Input: M,?,Mkﬂ € N, given Sk.

2: Obtain measurements satisfying strictly dense assump-
tion with prespecified counts M, M, .

3: for all Vs N [Mp] at position = do

4: 2y = ZkmOy+t2Za0y

512

2UTQ+UIC
5: O = 3 52
Uz O'k

6: Combine measurements z and create sensor noise co-
variance matrix R.

Fig. 5. Pseudocode for the sparse-update procedure.

(®)

Fig. 6. Final iteration example: (a) estimated optimal path (green), true
optimal (white); (b) threat field estimate and identified vertices (green).

Definition 2. The measurements M drawn from Sj are
strictly dense if Vi € Vs, Im € [My] s.t. ||p; — Txm|| = 0.

Using this definition, we can partition the measurements
into two groups to reduce data volume. We define M}* and
M ,f as the number of measurements taken within the bounds
of A, and the number of uniformly distributed measurements
taken within the entirety of Sy, respectively. Thus, for M >
0 we can satisfy that our strictly dense assumption holds.

This assumption reduces the number of measurements
required by a sensor to characterize the region it measures
with My, = Mg U M]f This enables a GPR update for
identified vertices each iteration in Fig. 5. In a slight abuse of
notation, z, and ag refer to location specific observation and
noise at location x. It enforces that the upper bound of our
training data is Ng+¢(M —|v| +M,f), since we encapsulate
the measurements taken at each vertex each iteration. If we
take M =1 and Mkﬂ = 0 this upper bound becomes Ng.

D. Algorithm Termination

After finding the optimal path 7}, the path cost variance
Vary(m}) is computed per (1). If Var,(mw;) < ¢ and
7; C Z, then the algorithm terminates. Here € > 0 is an
arbitrarily small user-specified threshold that indicates the
desired confidence in the estimated path cost.

An example near-optimal path was found in 6 iterations as
shown in Fig. 6(a) in green, and is close to fully overlapping
the true optimal path in white. The estimated threat field and
identified vertices are shown in Fig. 6(b). Only 64.4% of the
vertices had to be identified.

The properties of the CSCP algorithm are summarized in
the following technical results.



Proposition 2. The DF-CSCP algorithm terminates in a
finite number of iterations L € N for Ng > 0.

Proof. Each iteration, two scenarios are possible: (1) we
place at least one sensor at unidentified vertices along 7
or (2) we place at least one sensor anywhere along ;. In
either case, the path cost variance is bounded by 0 and the
prior path cost variance Var,(7}) and we note that it is
monotonically decreasing. Thus, we can say by monotone
convergence theorem we converge to inf{Vary(7%)} =0 <
€. By the optimization of the sensor configuration, if the path
cost variance does converge, the individual elements must
also converge, and consequentially a sensor configuration
must cover an unidentified workspace vertex. O

Proposition 3. The DF-CSCP algorithm solves Problem 1.

Proof. We note that the path 7} satisfies the conditions
stated in Problem 1, namely, that is has minimum expected
cost J© = Jp(m%) and E[(J, — T )?] = Vary(n3) < e
per the termination criterion enforced by Line 2 in Fig. 2. [

Corollary 1. The path w7} is near-optimal in the following
sense. Let J* denote the cost of the true optimal path. Then:

P||T" — T <3vz| > 0.9973.

Proof. Due to GPR-based field estimation and linearity of
the path cost, the path cost is normally distributed, and the
result follows from the standard normal table. O

IV. RESULTS AND DISCUSSION

In this section, we provide a sampling of results of
numerical simulations of the DF-CSCP algorithm and its
comparison to the Direct CSCP approach, an information-
maximization approach, and random sensor configuration.

A. Performance Analysis on Randomly Generated Fields

We conducted a study with randomly generated threat
fields in the series form c(xz) = ZnNil 0,0 (x), where
¢n, are radial basis functions that cover £. Threat intensity
0, values were set to 100 for all basis functions N,. The
number of bases N, is indicative of the “richness” in spatial
variations in the threat field: fields with small IV, have a
few peaks and several flat regions whereas fields with very
large IV, have closely spaced peaks, which may cause several
flat regions. To better compare the DF-CSCP to pointwise
information maximization sensor placement methods, we
assumed that My, = 0 with My, = 1. From our results in
[24], increasing workspace resolution has a near linear effect
on iterations, so we choose a set N, = 212 for this exper-
imentation. The results also showed that the performance
scales proportionally to the termination threshold, so for
these experiments we consider a fixed termination threshold
€ = 0.05. To simulate the minimum and maximum heights
for UAVs, we constrained the sensor FoV to ¢,,;, = 0.01km
and 9,4, = 1 km. The parameters used in this experiment
are shown in Table 1.

Results in this paper were obtained in part using a high-
performance computing system acquired through NSF MRI
grant DMS-1337943 to Worcester Polytechnic Institute.

DF-CSCP Results Direct-CSCP Results

10 _= / . } / f/
=

1 4 s 16 25 1 4 S 16 25
Environment Area [km?] Environ:

ment Area [km?]
(@) (b)

MI Results

Random Configuration Results

Fig. 7. Average iterations given environment area for each sensor count
and for each sensor configuration method.

TABLE I
SET OF PARAMETERS USED IN NUMERICAL PERFORMANCE ANALYSIS.

Set of simulated values
{25, 50, 75,100}

{1,3,5,7,9}
{1km?, 4km?, 9km?, 16km?, 25km?}

Parameter

# basis functions IV,
# sensors Ng
Environment Area |£|

The average number of iterations to converge with DF-
CSCP was 10.174 and it took 49.239 observations on aver-
age. The estimation error and incurred error were 0.33% and
0.061% respectively, enforcing our claim of near-optimality.

B. Comparison with Direct CSCP

We studied the performance of Direct CSCP on the same
controlled environments. Notably, the DF-CSCP requires less
iterations, shown in Fig. 7(a), on average in larger |£|, but
the Direct CSCP, shown in Fig. 7(b), has a slight edge in
very small ||, given our aforementioned sensor constraints.

DF-CSCP takes less iterations than Direct CSCP on av-
erage over all experiments and significantly less runtime as
shown in Table II. Both exhibit nearly identical observation
count, indicating DF-CSCP sensor configuration efficiency
given lower iteration count. Both methods maintain around
only 76% field identification required on average.

C. Comparison to an Information-Maximization Approach

We compare the proposed approach to a sensor placement
strategy based on maximization of mutual information [15].
Therein, pointwise measurements are assumed, i.e., sensor
FoV is not considered. Optimization relies on submodularity,
which cannot be guaranteed when considering overlapping
sensor configurations as considered in this paper. To develop
a fair comparison, we append the approach of [15] with



TABLE 11
AVERAGE RESULTS OF THE NUMERICAL STUDY

Incurred Error % Field ID % Runtime [sec]

Iterations Observations Estimation Error %
Direct CSCP 10.581 + 6.280 48.874 +£32.393 0.314 £ 0.911
DF-CSCP 10.174 + 5.205  49.239 + 32.235 0.330 4+ 0.995
MI 49.161 4+ 46.709 140.231 £ 28.709 0.579 + 5.225
Random 24.973 £+ 45.303 70.868 + 78.536 0.696 + 1.915

0.058 + 0.246 76.241 +12.666  671.147 £ 774.227

0.061 + 0.262 76.266 £ 12.656 446.274 £+ 506.172
2.033 £41.33 96.725 £+ 6.437 647.795 + 669.255
0.755 £ 6.547 96.463 £ 6.093 951.652 + 1730.718

a fixed sensor FoV of g, = Ap. The main distinction is
that DF-CSCP configures sensors to maximize knowledge of
the path region whereas information-maximization attempts
to place sensors to maximize knowledge of the entire threat
field. Results in Fig. 7(c) show that the method requires many
sensors to even begin matching the performance of Direct
or DF-CSCP as it does not explicitly consider sensor FoV
optimization. In addition, Table II shows that the method
requires 96.725% of the field to be observed, more than
either CSCP approach.

D. Comparison to Random Placement

Random configuration was trialed with randomly gener-
ated locations and FoV within aforementioned constraints.
We use the maximum between 0,,;, and the minimum
radius required to guarantee intersection with a workspace
vertex. Results in Fig. 7(d) show the number of iterations
exponentially increase with |£]|. Table II shows that random
placement takes nearly 2.5 times more iterations and signif-
icantly longer computational runtime.

V. CONCLUSIONS

We propose a depth-first strategy to coupled sensor config-
uration and path-planning (DF-CSCP) in unknown static en-
vironments. This method depends on a two-stage approach of
“explore” and “exploit”, each having specific task-driven in-
formation gain (TDIG) metrics and approximation methods.
We also provide a sparse-update scheme for reducing com-
putational runtime. By utilizing DF-CSCP we achieve near-
optimal path plans and reduce the number of required itera-
tions and runtime. We numerically demonstrate the benefits
of DF-CSCP over Direct CSCP in large environmental areas.
We demonstrate its superiority over traditional information-
maximization approaches and random placement.
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