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Abstract. We present a new feature extraction method for complex and large datasets, based on the concept4
of transport operators on graphs. The proposed approach generalizes and extends the many existing5
data representation methodologies built upon diffusion processes, to a new domain where dynamical6
systems play a key role. The main advantage of this approach comes from the ability to exploit7
different relationships than those arising in the context of e.g., graph Laplacians. Fundamental8
properties of the transport operators are proved. We demonstrate the flexibility of the method9
by introducing several diverse examples of transformations. We close the paper with a series of10
computational experiments and applications to the problem of image clustering and classification of11
hyperspectral data, to illustrate the practical implications of our algorithm and its ability to quantify12
new aspects of relationships within complicated datasets.13

Key words. feature extraction, dimension reduction, machine learning, semi-supervised, transport operator,14
advection.15

AMS subject classifications. 68Q25, 68R10, 68U0516

1. Introduction. Feature extraction has been at the core of many data science applications17

for more than a century. The goal of feature extraction is to derive new measurements18

(or features) from an initial set of measure data with the intention of retaining the core19

information while eliminating redundancies. A well-known feature extraction algorithm is20

principal components analysis (PCA) which can be traced back to the year 1901 [33]. However,21

due to the linear nature of PCA, the method falls short in capturing the intrinsic structure22

of the data when a non-linear relationship governs the underlying structure within the data.23

Since then, the complex, non-linear, and growing amount of data have led scientists to come up24

with new techniques. A few well-known techniques are: kernel PCA [37], isomap [42], locally25

linear embedding (LLE) [35], and Laplacian eigenmaps (LE) [2]. Today, the use of feature26

extraction techniques varies based on applications from the classification of hyperspectral27

images [6, 40, 41, 53] to the prediction of stock market prices [54].28

The aforementioned non-linear feature extraction methods lead to applications of linear29

operators, e.g., the Laplacian. In the present study, we have developed a more general ap-30

proach that constructs non-linear feature extraction algorithms based on non-linear operators,31

such as appropriately chosen transport by advection operators. A recent technique [23] sought32
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to find the optimal transport method between two point sets based on an adaptive multiscale33

decomposition, which itself is derived from diffusion wavelets and diffusion maps. In our work,34

we focus on the transport operator directed by velocity fields [8, 29, 45], because of its well-35

studied properties as well as its partial similarity to the Schroedinger Eigenmaps method [19].36

This transport model has not been used in the literature as a tool for building a feature extrac-37

tion algorithm. Nevertheless, some related work can be found in the fields of water resource38

management and in bio-medical research [28], where feature extraction is used to construct39

simplified transport models for cardiovascular flow.40

At its core, our work will focus on exploring and exploiting the differences and similarities41

of this novel approach to the state-of-the-art feature extraction algorithms used in cluster-42

ing and classification tasks. After providing some background in Section 2, we introduce the43

model in Section 3 together with key properties and the algorithm of the model. We pro-44

vide applications of the new algorithm for feature extraction and subsequent clustering and45

classification in Section 4 and Section 5. Some open problems are posed in the last section.46

2. Background. In many data science applications, high dimensional data tend to lie47

on low dimensional manifolds within the high dimensional space. To take advantage of48

this information, methods such as the Laplacian eigenmaps (LE) [2] and the Schroedinger49

eigenmaps (SE) [19], invoke the adjacency graph constructed from a set of initial points,50

X = {x1,x2, . . . ,xn} in Rd, in order to extract the most important features from the bunch.51

In LE, the first step is to construct a weighted graph based on the distances among given52

n points. A weight is assigned to each edge connecting two nearby points. Heat kernel is53

often used as the weight: wij = exp −kxi−xjk22
2σ2 . To make sure close points stay close after54

mapping, the problem can be phrased as a minimization problem and then be reduced to55

solving the generalized eigenvector problem L f = λD f , where L = D−W , viz., the Laplacian56

matrix, with W representing the (symmetric) weight matrix (wij) and D the diagonal matrix57

with entries dii =
P

j wij . Let {f0, f1, . . . , fn−1} be the solution set written in ascending58

order according to their eigenvalues. The m-dimensional Euclidean space mapping is given59

by xi → [f1(i), f2(i), . . . , fm(i)]. See Section 3.4 for the detailed algorithm (just replace T with60

the Laplacian matrix L).61

In SE, the m-dimensional Euclidean space mapping is given in a similar manner. As a62

generalization of the LE algorithm, SE uses partial knowledge about the data set X and63

fuses this information into the LE algorithm to obtain better representation or more desirable64

results. Additional work related to data fusion can be found in the following papers [5, 15, 21,65

26]. The problem in SE is reduced to solving the following generalized eigenvector problem,66

S f = λD f , where S = L+αV , viz., the Schroedinger matrix, with V as the potential matrix67

encoding the partial information and α as a real parameter keeping the balance between the68

matrices L and V .69

The algorithm we are developing in this article, transport eigenmaps (TE), has some70

similarities to SE in the sense that both algorithms use extra information about the data set71

to define a generalization of LE. Unlike supervised learning techniques which assume prior72

knowledge of the ground truth, SE and TE only assumes partial knowledge of said ground73

truth. This puts SE and TE in a class of machine learning techniques between supervised74

learning and unsupervised learning (no prior knowledge) called semi-supervised learning (see75

This manuscript is for review purposes only.



TRANSPORT MODEL FOR FEATURE EXTRACTION 3

[4, 20, 22, 46, 52] for more examples). While SE uses potentials to encode to additional76

information, TE may use advection (the active transportation of a distribution by a flow77

field) or measure/weight modifiers. In contrast to SE, TE could come from a non-linear78

operator which we will describe in section 3.79

3. The transport model. Transport operators have been used in modeling and analyzing80

data in a variety of fields [1, 9, 10, 25, 27, 38, 39]. We aim to bring this idea into the graph81

setting to help with data representation.82

3.1. Notation and introduction. We first briefly present the basic setting for studying83

transport model on graphs. Fix a weighted simple graph G with n nodes. Let v be a function84

defined on the edges of G. Such as function can be represented by an n × n matrix with85

nonzeros only where there are edges. We will further assume v to be anti-symmetric since it86

will be used to model a velocity field. We formally define the transport or advection operator87

in conservative form, acting on a vector y as88

(3.1) T y = Ly− div(vy),89

which corresponds to the continuous continuity equation.90

In the continuous setting, transport or advection operators are easily defined, at least91

formally, on functions of Rd. Given a velocity field v : x ∈ Rd → v(x) ∈ Rd, the pure92

transport is defined similarly as93

T f(x) = div (v, f) =
dX
i=1

∂xi(vi(x)f(x)).94

for the conservative form. The solution to the transport equation95

∂tf(t, x) + T f = 096

is directly connected to the transport along the characteristics or flow of the differential97

equation98
d

dt
X(t) = v(X(t)), X(t = 0) = x0.99

In fact if the initial value x0 is chosen randomly with the probability density f0(x) then the100

solution f(t, x) to the transport equation with the initial condition f(t = 0, x) = f0(x) is the101

probability density of X(t).102

Instead of pure transport, it is also possible to consider advection-diffusion operators,103

which is what we are doing in the discrete setting below. In that case, one chooses104

T f(x) = div (v, f) − w∆f =

dX
i=1

∂xi(vi(x)f(x)) − w

dX
i=1

∂2
xi,xif,105

where we use here a constant diffusion w. The advection-diffusion equation106

∂tf(t, x) + T f = 0107
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is now connected to solutions to Stochastic Differential Equations.108

Many key properties of T can be derived based on properties of its continuous analogue.109

For example, self-adjointness of both T and its continuous analogue requires v to be of the110

form ∇a
a (see Section 3.2 below and the supplements for detailed discussions). Therefore it is111

important to first setup the rules to translate between the continuous and discrete settings.112

For any matrix A, which is viewed as a function defined on the edges, the divergence of A is113

a function defined on nodes, i.e., is a vector:114

(3.2) div(A)i :=
X
j

Aij .115

When A models a velocity field on the graph, div(A)i is the net flow out of the node i (here116

j indexes outgoing edges).117

For any function f defined on the nodes, its gradient, the dual operator of the divergence,118

is defined on the edges119

(3.3) (∇f)ij := (fj − fi)wij .120

A matrix A (e.g., a velocity field) can act on an f ∈ Rn (e.g., a probability distribution)
in the following way

(Af)ij = (fA)ij :=
fi + fj

2
Aij .

This corresponds to the standard centered discretization of the transport operator (after taking121

the divergence).122

The Laplacian of f , ∆f := div(∇f), is defined on the nodes:123

(3.4) (∆f)i =
X
j

(fj − fi)wij .124

This agrees with the graph Laplacian L up to a sign (recall that the graph Laplacian is positive125

semi-definite whereas the continuous Laplacian operator is negative semi-definite). See [14]126

for a comprehensive introduction of the graph Laplacian.127

Based on the above rules, we have (vy)ij = vij
yi+yj

2 and div(vy) =
P

j(vy)ij = 1
2

P
j(yi +128

yj)vij . Therefore, the definition of T (3.1) becomes129

(3.5) (T y)i =
X
j

(yi − yj)wij −
X
j

(yi + yj)
vij
2
.130

It is unclear from the expression (3.5) that a transport operator T would always produce real131

eigenvalues as the Laplacian and Schroedinger operators do. We will address this issue in the132

next subsection.133

3.2. Self-adjointness. As the properties of the transport operator ultimately depend on134

v, an anti-symmetric matrix, we aim to find v’s so that the corresponding transport operator135

T is self-adjoint, i.e., hTy, zi = hy, Tzi for some (possibly non-standard) inner product h, i.136

In the supplement, we show that the continuous transport operator F (y) = ∆y + div(vy) is137
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self-adjoint with respect to the inner product hf, gia :=
R
f(x) g(x) a(x) dx associated with a138

certain function a(x) whenever ∇xa = av or for every coordinate i, ∂xia = a vi. Although139

it turns out that our choice of formalism make it that the condition reads the same in the140

discrete setting, the full similarity stops and solutions for v in both cases are different.141

For any positive definite matrix A, we use h, iA to denote the inner product142

hy, ziA := ytAz.143

When A is the identity matrix, this agrees with the standard inner-product.144

Set vij = 0 if the nodes i and j are not connected. Let

v̄ij :=
vij

2wij
if i and j are connected,

and v̄ij = 0 otherwise. Then v̄ is also anti-symmetric,
vij
2 = v̄ijwij , and145

(T y)i =
X
j

(yi − yj)wij −
X
j

(yi + yj) v̄ij wij146

=
X
j

[(1 − v̄ij) yi − (1 + v̄ij) yj ]wij147

148

Our goal is to find a suitable flow v̄ so that T is self-adjoint with respect to certain inner149

product h, iX . A simple and natural anti-symmetric choice of v̄ is of the form v̄ij = aj − ai,150

where ai can be viewed as a positive potential on the node i. This v̄ is invariant under151

translation of ai. Another modified version is v̄ij =
aj−ai
aj+ai

, which is invariant under rescaling152

of ai. This scaling-invariant property plays a key role in establishing the self-ajointness of T153

with arbitrary ai (see the Supplementary Materials for a discussion and comparison of the154

two choices).155

Theorem 3.1. Let W = (wij) be a symmetric matrix. Assume v̄ij =
aj−ai
aj+ai

for some positive156

ai’s. Then the operator (T y)i =
P

j [yi− yj − v̄ij(yi + yj)]wij is self-adjoint with respect to the157

inner product h, iX , with X = diag(cai) for some positive c.158

Proof. For the convenience of future discussion, denote X = diag(xi) and we try to “solve”159

for xi. In general, X could be non-diagonal. We need to verify that for any vectors y and z160

(3.6)
X
i

(T y)i zi xi =
X
i

yi (T z)i xi161

The left-hand-side (LHS) of (3.6) is162 X
i

(T y)i zi xi =
X
i,j

[(1 − v̄ij) yi − (1 + v̄ij) yj ] zi xiwij163

=
X
ij

[(1 − v̄ij) yi zi xi − (1 − v̄ij) yi zj xj ]wij164

=
X
i

yi
X
j

[(1 − v̄ij) zi xi − (1 − v̄ij) zj xj ]wij165

166
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Compare this with the right-hand-side (RHS) of (3.6)167 X
i

yi (Tz)i xi =
X
i

yi
X
j

[(1 − v̄ij) zi xi − (1 + v̄ij) zj xi]wij ,168

and we see that in order to make (3.6) hold,169

(3.7) (1 − v̄ij)xj = (1 + v̄ij)xi170

must be true for any pair of connected nodes i and j.171

Now make use of the assumption v̄ij =
aj−ai
aj+ai

. In this case, the key condition (3.7) becomes172

1 − aj − ai
aj + ai

xj = 1 +
aj − ai
aj + ai

xi,173

which is174

ai xj = aj xi.175

This clearly holds as xi = cai by the assumption of the theorem.176

We can immediately extend this theorem to a more general model by introducing a sym-177

metric matrix R. This new collection of parameters will allow us to implement the transport178

eigenmap method in various settings.179

Theorem 3.2. Let R = (rij) and W = (wij) be symmetric matrices. Define TRv to be the180

operator such that181

(3.8) (TRv y)i =
X
j

[rij (yi − yj) − v̄ij (yi + yj)]wij .182

Assume v̄ij =
aj−ai
aj+ai

rij for some positive ai’s. Then TRv is self-adjoint with respect to the inner183

product h, iX , with X = diag(cai) for some positive c.184

Proof. Simply notice that the symmetric matrix R can be incorporated into the symmetric185

matrix W and thus the operator TRv has the same form as T in Theorem 3.1.186

When v̄ij =
aj−ai
aj+ai

rij , the general transport operator TRv can be rewritten as187

(3.9) (TRv y)i =
X
j

2ai
ai + aj

yi −
2aj

ai + aj
yj wij =

X
j

(aiyi − ajyj)wij
2rij

ai + aj
.188

This expression also indicates that TRv is non-negative when v̄ij =
aj−ai
aj+ai

rij .189

Theorem 3.3. The operator defined by (3.9) is non-negative in ‘2X , where X = diag(cai)190

for some positive c. More precisely,191

(3.10) hy, TRv yiX =
c

2

X
i,j

(ỹi − ỹj)
2 w̃ij ≥ 0,192

with w̃ij := wij
2rij
ai+aj

and ỹi := ai yi. In particular, TRv y = 0 iff the quantity aiyi is constant193

on every connected component of the graph.194
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Proof. By a straightforward computation,

hy, TRv yiX = c
X
i

yi ai (TRv y)i = c
X
i,j

ỹi (ỹi − ỹj) w̃ij =
c

2

X
i,j

(ỹi − ỹj)
2 w̃ij ≥ 0.

When TRv y = 0, the above expression is 0 and thus ỹi must the constant on any connected195

component. The converse is trivial by (3.9).196

The above theorem ensures that TRv is diagonalizable, with real-valued and negative eigen-197

values. In applications, we will however look for the generalized eigenvectors of TRv (see Section198

3.4 for the algorithm): eigenvectors that are normalized by the degree on the graph, i.e. vec-199

tors u s.t.200

TRv u = λD u,201

where D is the degree matrix as before: dii =
P

j wij . Equivalently we are looking for the202

eigenvectors y of D−1/2 TRv D−1/2 with y = D1/2 u or u = D−1/2 y and the same generalized203

eigenvalues. From Theorem 3.3, it is now straightforward to deduce that204

Corollary 3.4. Let TRv be given by (3.9) and let D be the degree matrix. Then the operator205

D−1/2 TRv D−1/2 is self-adjoint in ‘2X and non-negative, where X = diag(cai) for some positive206

c. Furthermore, D−1/2 TµD
−1/2 u = 0 iff (D−1/2 u)iai is constant on connected components207

of the graph.208

Proof. D is self-adjoint on ‘2X , simply because D is diagonal and so is the metric provided209

by h, iX . It would be very different if we had to use non-diagonal metric (and we would have210

to study directly D−1/2 TRv D−1/2 instead of TRv ).211

The operator D−1/2 TRv D−1/2 is still non-negative with212

hu, D−1/2 TRv D−1/2 uiX = hD−1/2 u, TRv D−1/2 uiX ≥ 0,213

and by Theorem 3.3, equality holds iff (D−1/2 u)iai is constant on connected components of214

the graph.215

Compared with the Laplacian operator (Ly)i =
P

j(yi−yj)wij , we see that TRv generalizes216

L in the following ways:217

• ai modifies the measure/coordinate and thus makes the representation of i-th point218

closer to the origin if ai is large or further away from the origin if ai is small.219

• rij can enlarge or reduce the weight wij between two nodes i and j, serving as a weight220

modifier.221

We can then use these two sets of parameters to guide data representation given by LE.222

3.3. Two examples of TE. We will use TE to denote the general transport operator223

(3.9). Although the matrix R can be used to fuse extra information, the implementation with224

R could be more time-consuming as the size of R is n2. We will therefore first look at two225

examples (denoted by TA and TG respectively) using ai only. As Section 5.4 will show, TA226

and TG are often good enough to handle classification tasks when one class is known. The227

general TE, however, is needed when more than one classes are known.228
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3.3.1. Transport by advection (TA). Advection is the active transportation of a distri-229

bution by a flow field. Let µ = [µ1, µ2, . . . , µn]t be a vector that will direct the clustering230

process. Let β be a real parameter which can be used to control the influence of µ on the231

Laplacian. Set ai = 1 + βµi, rij = (aj + ai)/2, and v̄ij = (aj − ai)/2. Clearly v̄ij =
aj−ai
aj+ai

rij .232

By Theorem 3.2, the operator Tµ := TRv with233

(3.11) (Tµ y)i =
X
j

[(1 + βµi) yi − (1 + βµj) yj ]wij234

is self-adjoint and enjoys other desired properties.235

The operator Tµ can also be derived directly from the general operator T (3.5) by choosing236

the velocity field v = β∇y, β ∈ R. In this case, vij = β (yj − yi)wij and T becomes237

(3.12) (T y)i =
X
j

(yi − yj)wij −
β

2

X
j

(y2j − y2i )wij ,238

which is no longer linear. We can then linearize the second term in (3.12) in the direction of239

µ and T will be exactly Tµ (see [32] for details).240

This choice of operator is inspired by the porous medium equation, for which we refer for241

example to [43] for a thorough discussion of this type of non-linear diffusion on Rd. In the242

present context, the idea behind having v(y) = β∇y is to use the distribution y itself to help243

with clustering. The velocity field v(y) naturally points in the direction of the higher values of244

y if β < 0 or towards lower values if β > 0. Similarly solving the advection-diffusion equation245

dt y + T y = 0,246

would naturally lead to concentration around higher values of y if β < 0 (limited by the247

dispersive effects of the graph Laplacian) or a contrario to faster dispersion if β > 0. The248

ability to control concentrations and hence clustering is of obvious interest for our purpose.249

3.3.2. Transport by gradient flows (TG). Set rij ≡ 1 in (3.9). Then the general transport250

operator TRv becomes251

(3.13) (Tv y)i =
X
j

(aiyi − ajyj)wij
2

ai + aj
.252

Note that this is in fact the same operator appeared in Theorem 3.1, where v is an253

scaling-invariant gradient of a = [a1, . . . , an]t. Here ai plays a similar role as 1 + βµi in the254

first example of the transport by advection. One advantage of having the extra term 2
ai+aj

255

is that even the weight modifier r is constant, the weight wij could still be changed. In256

applications, the default value for the measure modifier ai is 1 and some of them may be257

greater than 1 if extra information is known. When ai 6= aj , which often indicates that the258

two points i and j belong to different clusters, the factor 2
ai+aj

< 1, weakening the original259

weight wij . Therefore, the formulation of the operator Tv achieves measure modification and260

weight modification simultaneously without using r.261
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3.4. The algorithm. We describe the implementation of our new TE (short for transport262

eigenmap) algorithm, including TA and TG as two important special cases.263

The steps are identical to those of LE and SE. We only need to modify the matrix used in264

the generalized eigenvalue problem. Given a set of n points X = {x1,x2, . . . ,xn} in Rd, the265

goal is to find a map266

Φ : Rd −→ Rm,267

so that the n points Y = {y1,y2, . . . ,yn} in Rm given by yi = Φ(xi) represents xi for all i268

from 1 to n.269

The goal is typically to have a lower dimensional representation Y of the set of points X270

with m d while still keeping the main features of the original set X. For example if the271

points lie on a m-dimensional manifold where m d, the hope would be to take as map Φ a272

good approximation of the projection on the manifold.273

• Step 1: Construct the adjacency graph using the k-nearest neighbor (kNN) algorithm.274

This is done by putting an edge connecting nodes i and j given that xi is among the k275

nearest neighbors of xj according to the Euclidean metric. We choose k large enough276

so that the graph that we obtain is connected. This step can make the matrix W in277

the next step sparser.278

• Step 2: Define the weight matrix, W , on the graph. The weights wij in W are chosen279

using the heat kernel with some parameter σ. If nodes i and j are connected,280

wij = exp −kxi − xjk22
2σ2

;281

otherwise, wij = 0.282

• Step 3: Construct the matrix representing the transport operator. Recall the general
transport operator given in (3.9)

(T y)i =
X
j

(aiyi − ajyj)wij
2rij

ai + aj
.

Here, the vector a = [a1, . . . , an]t and the matrix (rij) are the parameters to be chosen.283

Let W r denote the matrix with entries wrij = wij
2rij
ai+aj

. Then the matrix form of T is284

(3.14) T = diag(ai
X
j

wrij) −W rdiag(ai).285

To get the matrix form of the special operator TA, we can either set ai = 1 + βµi and286

rij = (ai + aj)/2 in (3.14), or use the operator form (3.11) to derive its matrix form287

directly288

TA = L(I + βdiag(µi)),289

where L = D −W is the Laplacian matrix and I is the identity.290
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10 W. CZAJA, D. DONG, P-E. JABIN, AND F. NJEUNJE

Similarly, for the operator TG, we can let rij = 1 in (3.14) or use the expression in291

Theorem 3.1 to get292

TG = L− (Dv + Wv),293

where Dv = diag(
P

j wijvij), Wv = (wijvij) and vij = (aj − ai)/(aj + ai).294

• Step 4: Find the m-dimensional transport mapping ΦT by solving the generalized295

eigenvector problem,296

T u = λD u,(3.15)297

This can be done because of Corollary 3.4. Denote {u0, u1, . . . , un−1} be the solution298

set to (3.15) written in ascending order according to their eigenvalues. Since there is299

hence no additional information in u0, we define the mapping ΦT by300

xi −→ ΦT (xi) = [u1i , u
2
i , . . . , u

m
i ].301

4. The transport eigenmap for clustering.302

4.1. Intuition of the parameters: a case study . We illustrate the behavior of LE, SE303

and TE (including TA and TG) with a toy example. The first picture in Figure 1 is a dataset304

with 500 points. The ground truth is that there are 5 clusters (labelled by different colors),305

each containing 100 points.306

LE is an unsupervised method that preserves local distance. We chose k = 50 for KNN307

in Step 1 and σ = 1 in Step 2 for simplicity.308

SE, which uses the matrix S = L+αV , requires extra parameters: α ≥ 0 and the diagonal309

potential matrix V . Suppose experts suggests that the red points should be identified as one310

cluster (this is an extreme example of extra ground truth knowledge). Simply let Vi = 1 if311

the i-th point is red and Vi = 0 otherwise. Let α = α̂ · tr (L)/tr (V ). This new parameter312

α̂ will allow us to balance the impact of the Laplacian matrix L and the potential V in the313

algorithm. We chose α̂ = 10. As expected, points with non-zero potential (the red ones in this314

example) are pushed towards the origin. As L tries to preserve local distance, other points315

close to the red are dragged towards the origin as well.316

For TA, we chose β = 10 and µ in the same way as V : µi = 1 for red and µi = 0317

for other points. The red go to the origin because of rescaling of the coordinates, but the318

surrounding points don’t “see” any changes in distance. This explains the less dragging effect319

in TA compared with SE.320

In TG, we set ai = 1 by default and ai = 10 for the red points. The red are even better321

separated from others. This is because the factor 2
ai+aj

in (3.13) is less than 1 and thus322

weakens the original weight wij if i and j are not both red.323

For the general TE, the matrix R needs to be determined. The default is rij = 1. Then324

it is natural to set325

rij =


small(< 1), if i and j belong to different clusters,

big(> 1), if i and j belong to the same cluster

1, if unknown

(4.1)326
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The size of rij depends on how strong one believes i and j are in the same/different clusters.327

For example, we may set rij = 1010 if one is very certain that i and j are alike. We set328

small = 0.5 and big = 100 in this toy experiment. This will further help gathering the red329

points.330

If the pre-identified cluster is not near the center of the data points, e.g., the blue points,331

then we can set ai to be less than 1 for the blue to push them away from the origin. The332

weight modifier R in TE is always helpful to gather these points to their natural location. See333

Figure 1 for the case ai = 0.5 for the blue and 1 otherwise in TE (R remains to be in (4.1)).334

The general TE can even handle the case when more than one cluster are known. Let335

ai = 10 for red and ai = 0.5 for blue. R is still given by (4.1). We can see in Figure 1 that336

both red and blue are well-separated from others.337

Figure 1. The first plot presents the dataset, 500 points grouped in 5 clusters of 100 points each. The next
plots show the results of various mappings.

The above experiment shows how TE can be used to help with clustering. Next we will338

test our methods on a real image clustering task.339

4.2. Image clustering tasks. Most of our numerical investigations have been performed340

on hyperspectral datasets. However as a complement and to further evaluate the quality of our341

feature extraction method and its ability in helping with clustering, we consider the challeng-342

ing problem of clustering the CIFAR-100 dataset [31] and STL-10 dataset [16]. CIFAR-100343

consists of 60000 images of size 32 × 32 × 3 in 100 classes, which can be further grouped344

into 20 superclasses. This multi-tiered structure could be incorporated in TE ([18]), but for345

simplicity we use the 20 coarse labels in the test. The STL-10 dataset has 13000 images of size346

96× 96× 3 in 10 classes. We apply kmeans clustering after mapping by TE. We compare our347

method with many clustering methods listed in the following table. The metrics used here are348

normalized mutual information (NMI), accuracy (ACC) and the adjusted Rand index (ARI,349

[36]). The measurements of other methods are taken from the papers [13, 47].350
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Datasets CIFAR-100 STL-10

Method NMI ACC ARI NMI ACC ARI

K-means 0.084 0.130 0.028 0.125 0.192 0.061
SC [51] 0.090 0.136 0.022 0.098 0.159 0.048
AC [24] 0.098 0.138 0.034 0.239 0.332 0.140

NMF [12] 0.079 0.118 0.026 0.096 0.180 0.046
AE [7] 0.100 0.165 0.048 0.250 0.303 0.161

DAE [44] 0.111 0.151 0.046 0.224 0.302 0.152
GAN [34] 0.120 0.151 0.045 0.210 0.298 0.139

DeCNN [50] 0.092 0.133 0.038 0.227 0.299 0.162
VAE [30] 0.108 0.152 0.040 0.200 0.282 0.146
JULE [49] 0.103 0.137 0.033 0.182 0.277 0.164
DEC [48] 0.136 0.185 0.050 0.276 0.359 0.186

TE 0.157 0.167 0.052 0.352 0.360 0.199
DAC [13] 0.185 0.238 0.088 0.366 0.470 0.257

DCCM [47] 0.285 0.327 0.173 0.376 0.482 0.262
Table 1

Clustering results by various methods

On CIFAR-100, we assume the first class is pre-identified (The results do not change351

much if another class is used). That corresponds to only 5% of the ground truth. If we use352

90% of points in the first class, the measurements will decrease slightly to NMI: 0.139, ACC:353

0.159, ARI: 0.046. Due to the size of this dataset, the TA version of TE is used to speed up354

computations. On the smaller STL-10 dataset, we can just use the general TE, which is also355

suitable for handling more than one preidentified classes (e.g., Table 6 and Table 7 in Section356

5.4). We randomly selected 90% of the points from two classes to supervise TE to get the357

results in the above table.358

The table shows that TE is better than all but the recent methods DAC and DCCM. Al-359

though TE is semi-supervised, this performance is satisfied since TE only handles the feature360

extraction part: the clustering is done by kmeans. At present we emphasize that our inves-361

tigations have necessarily been limited. Being a new method with a rich set of parameters,362

those partial results shows that TE has the potential to gain better performance given further363

understanding about the optimal choice of parameters.364

Figure 2. Classification performance measures for TA (red diamonds) as a function of the amount of
information provided, from 0% to 100% with increments of 5%.

5. The transport eigenmap for classification. We turn to test the feature extraction by365

TE with classification tasks, using hyperspectral images as examples.366
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5.1. The datasets. We consider two famous hyperspectral data sets: Indian Pines and367

Salinas. The Indian Pines dataset (cf. an example in Figure SM1 in the supplementary368

document) was gathered by AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor369

over the Indian Pines test site in North-western Indiana. The Indian Pines dataset consists of370

145×145 pixels images that contain 224 spectral bands in the wavelength range 0.4×10−6 to371

2.5×10−6 meters. The ground truth available is designated into sixteen classes (see Table SM1372

in the supplement). The number of bands has been reduced to 200 by removing bands covering373

the region of water absorption.374

The Salinas dataset was similarly gathered by AVIRIS sensor over Salinas Valley, Califor-375

nia (see Figure SM2 in the supplementary document). With again a similar structure, Salinas376

images are 512 × 217 pixels with 224 spectral bands of approximately 3.7 meter high spatial377

resolution. The ground truth available is also clustered into sixteen classes (see Table SM2378

in the supplement). We again reduce the number of bands to 204 by removing those bands379

covering the region of water absorption.380

For easier testing purposes, we have also used a small sub-scene of the Salinas dataset,381

which we denote Salinas-B (shown in Figure SM3 in the supplement). Salinas-B consists of a382

150× 100× 204 data cube located within the same scene at [samples, lines]=[200:349, 40:139]383

and includes only eight classes (see Table SM3 in the supplement). The Salinas-B dataset was384

used to allow for a faster and more thorough exploration of the parameters’ space.385

After the various mappings, we employ Matlab’s 1-nearest neighbor algorithm to classify386

the data sets. We use 10% of the data from each class to train the classifier and the remaining387

number of data points as the validation set. We took an average of ten runs to produce the388

confusion matrices, each using a disjoint set of data to train the classifier.389

5.2. Choice of parameters. Following the description of the mapping algorithms for the390

various methods under consideration in subsection 3.4, we made the following choices to391

construct the graph over which all methods rely392

• The adjacency graph is built using k = 12 nearest neighbors;393

• The weight matrix was obtained by using σ = 1;394

• We calculated m = 50 generalized eigenvectors for the Indian Pines dataset and m = 25395

for the Salinas-B dataset. The final mappings were obtained from those generalized396

eigenvectors as described in Step 4 of subsection 3.4.397

For SE, TA and TG, we also need to choose the potential V , the vector µ and a. In our testing,398

for example, we have assumed prior knowledge of either class 2-corn-notill or class 11-soybean-399

mintill in the Indian Pines dataset. This leads to the typical choice in the 11−soybean−mintill400

case401

Vi, µi =

(
1, if xi ∈ Class 11–soybean-mintill,

0, elsewhere.
402

In TG, the default is ai = 1 and we will set ai = β for the known points. It remains to chose403

the parameters α and β. For SE, recall that in Section 4.1 we introduced the parameter α̂404

given by α = α̂ · tr (∆)/tr (V ). To obtain the results listed in the next subsection, we used405

• α̂ = 104 for the Indian Pines data set and α̂ = 102 for the Salinas-B data set for SE;406

• β = 20 for both the Indian Pines and the Salinas-B data set for TA and TG.407
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The particular choices of parameters summarized here were obtained after a more thorough408

investigation and optimization among possible values. This parameter exploration is shown409

in Section SM3 in the supplementary material.410

5.3. Measuring accuracy. We will compare the performance of several feature extraction411

methods in the next section. To obtain a more complete perspective, we consider several412

measurements of accuracy including the adjusted Rand index (ARI) [36], the overall accuracy413

(OA), the average or weighted accuracy (AA), the average F-score (FS) and Cohen’s kappa414

coefficient (κ).415

5.4. Results. We summarize the main results of our numerical experiments on the real416

hyperspectral images introduced in the previous section. More details are available in the417

supplementary document.418

5.4.1. Overall performance. The following feature extraction algorithms are used in the419

experiment: principal components analysis [33] (PCA), Laplacian eigenmaps [3] (LE), diffusion420

maps [17] (DIF), isomap [42] (ISO), Schroedinger eigenmaps [11] (SE), transport eigenmaps421

(TE, including TA and TG). The classification maps for each of the results can be found in422

the supplement.423

We especially focus on the Adjusted Rand Index, Overall Accuracy, and on the Cohen’s424

kappa coefficient (emphasized in bold in the tables) as the main indicators for the performance425

of the algorithms.426

Testing on two examples. We first test TA on the Salinas-B dataset (Table 2), assuming427

the class “lettuce” is known in SE and TA. Unsurprisingly, the semi-supervised algorithms, SE428

and TA, outperform the unsupervised algorithms, PCA, LE, DIF and ISO. The performance429

of the SE and TA is roughly similar, but with a small but consistent advantage to TA.430

SB PCA LE DIF ISO SE TA

ARI 0.9429 0.9346 0.9164 0.9440 0.9439 0.9463
OA 0.9729 0.9685 0.9603 0.9733 0.9762 0.9780
AA 0.9690 0.9643 0.9564 0.9700 0.9777 0.9802
FS 0.9693 0.9638 0.9557 0.9696 0.9766 0.9795
κ 0.9682 0.9630 0.9534 0.9687 0.9720 0.9742

Table 2
Classification results for Salinas-B (SB): assume lettuce (class 14) is known

Classification algorithms frequently mis-classify samples of similar classes due to the sim-431

ilarities in their spectra information. For this reason, we tested the algorithms by grouping432

similar classes within the Indian Pines and Salinas-B data set to make new ground truths433

which we denote Indian Pines-G and Salinas-B-G (see Table SM4 and Table SM5 in the434

supplement).435

It turns out SE and TA indeed perform better on grouped Salinas-B (Table 3) than on436

Salinas-B. TA remains to be the best method for the grouped dataset.437
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SBG PCA LE DIF ISO SE TA

ARI 0.9460 0.9421 0.9154 0.9480 0.9711 0.9767
OA 0.9791 0.9767 0.9677 0.9795 0.9858 0.9880
AA 0.9769 0.9750 0.9669 0.9784 0.9819 0.9840
FS 0.9797 0.9763 0.9697 0.9797 0.9829 0.9850
κ 0.9725 0.9694 0.9576 0.9731 0.9814 0.9843

Table 3
Classification results for Salinas-B-G (SBG): assume lettuce (class 11) is known

Using TA on the Salinas-B-G as an example, we also give the accuracy per class in the438

supplement, which shows that the improvement of accuracy comes from both preidentifed439

class and other classes. The results can be found in the supplements.440

We then test TG on Indian Pines dataset and its grouped version, assuming the class441

“soybean” is known. In this difficult image, the gain of performance in using TG is significant.442

See Table 4 and Table 5 below.443

IP PCA LE DIF ISO SE TG

ARI 0.4426 0.3745 0.4210 0.3930 0.6955 0.7104
OA 0.6761 0.6133 0.6557 0.6309 0.7354 0.7431
AA 0.6403 0.5782 0.6219 0.5979 0.6249 0.6248
FS 0.6471 0.5784 0.6212 0.5996 0.6255 0.6250
κ 0.6301 0.5592 0.6065 0.5785 0.6982 0.7071

Table 4
Classification results for Indian Pines (IP): assume soybean (class 11) is known.

IPG PCA LE DIF ISO SE TG

ARI 0.5330 0.4785 0.5102 0.4902 0.8929 0.9264
OA 0.7744 0.7307 0.7575 0.7418 0.9088 0.9155
AA 0.6987 0.6462 0.6883 0.6671 0.7111 0.7072
FS 0.7111 0.6479 0.6905 0.6739 0.7157 0.7087
κ 0.6996 0.6423 0.6770 0.6563 0.8788 0.8877

Table 5
Classification results for Indian Pines-G (IPG): assume soybean (class 10) is known

We remark that ideally the way to implement TE (e.g. TA or TG) should depend on444

physical interpretation of the data. The above tables show that TA and TG are good for445

“arbitrary” datasets.446

Testing the general TE. Although being expensive in computation, the use of general447

TE is needed if information about more than one classes is known. Table 7 and Table 6 show448

that SE, TA and TG can often perform worse when two classes are known. However, TE gives449

significant improvements. Here we use r given by (4.1) with small = 0.9 and big = 104, and450

set ai = 10 and ai = 20 on the two known classes.451
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IP SE TG TE IPG SE TG TE

ARI 0.5272 0.7693 0.8169 ARI 0.4351 0.8547 0.9372
OA 0.6855 0.8091 0.8268 OA 0.6858 0.8967 0.9252
AA 0.6221 0.6759 0.6864 AA 0.6431 0.7055 0.7221
FS 0.6229 0.6766 0.6855 FS 0.6467 0.7083 0.7242
κ 0.6409 0.7818 0.8024 κ 0.5821 0.8620 0.9004

Table 6
Classification results for Indian Pines (IP) and its grouped version (IPG): assume both corn and soybean

are known.

SB SE TA TE SBG SE TA TE

ARI 0.9381 0.9805 0.9812 ARI 0.7916 0.9773 0.9823
OA 0.9702 0.9909 0.9914 OA 0.9211 0.9902 0.9921
AA 0.9671 0.9903 0.9908 AA 0.9877 0.9877 0.9900
FS 0.9666 0.9902 0.9909 FS 0.9365 0.9889 0.9906
κ 0.9651 0.9894 0.9899 κ 0.8966 0.9871 0.9896

Table 7
Classification results for Salinas-B (SB) and its grouped version (SBG): assume both corn and lettuce are

known

In SE, points with positive potential will always be mapped towards the origin. There is452

no mechanism to handle two different clusters. This explains that SE often perform worse in453

the above tests. In TA and TG, although the distance from the points to the origin can be454

modified in different ways by varying ai, points from different classes could still collide after455

mapping because of their initial locations. The general TE has the power of minimizing the456

possibility of mixing two known classes since the matrix r provides internal force to group457

points in the same class.458

5.4.2. Dependence on the amount of the information. We performed further experi-459

ments on Indian Pines-G and Salinas-G to see how the amount of information available from460

one particular class affects the performance measures for SE and transport methods TA and461

TG.462

SE and transport methods have very close overall performance on the Indian Pines-G and463

Salinas-B-G datasets so the comparison may help to understand better the differences between464

them. As the amount of information increases, so do the performance measures. Figure 3465

shows the change in performance of SE, TA and TG from using 0% to using 100% of the466

ground truth with increments of 5% from a particular class.467
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Figure 3. Classification performance measures for SE (blue squares), TA (red diamonds) and TG (green
x’s) as a function of the amount of information provided, from 0% to 100% with increments of 5%. The Indian
Pines-G data set (top row) is used with the advection and potential placed on class 10–soybean. The Salinas-
B-G (bottom row) is used with the advection and potential placed on class 10–corn-senesced-green-weeds.

Over most of the figure, the SE actually performs slightly better than the TA and TG,468

with TA and TG only surpassing SE when we have close to 100% of the information on the469

class. However the difference between the two algorithms remains very small in those two470

simplified datasets; this is especially striking on the Indian Pines-G.471

5.4.3. Robustness of Transport eigenmaps. In a last set of experiments, we investigate472

the robustness of transport methods TA and TG and some of our other feature extraction473

algorithms such as PCA, LE, and SE. For this experiment, we have added Gaussian noise474

to individual data points in the data set before it is processed by the feature extraction475

algorithms. The added Gaussian noise has a mean of 0 and we selected 20 logarithmically476

spaced values for the standard deviation varying from 100 to 105 which covers the range for477

values taken by the individual data points in both set of data. For SE and transport methods,478

the ground truths for class 10–soybean (Indian Pines-G) and class 11–lettuce (Salinas-B-G)479

are added to the algorithms. The results are shown on Figure 4.480
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Figure 4. Classification performance measures for TA (red diamonds), TG (cyan diamonds), SE (blue
squares), PCA (green x’s), and LE (black circles) as a function of noise. For Indian Pines-G (top row)
the potential and advection are placed on class 10–soybean. For Salinas-B-G (bottom row) the potential and
advection are placed on class 11–lettuce-romaine.

We first gather from the experiments that SE and transport methods are more resilient481

to noise than PCA and LE. While the performance of all algorithms naturally decreases very482

significantly (and interestingly at almost the same mark), SE and transport methods resist483

better. On the Indian Pines-G, transport methods also end up being the best algorithm484

by a significant margin, performing ∼ 30% better than SE for large noise whereas they are485

comparable for small noise. This again suggests that our new Transport algorithm is especially486

useful in difficult settings where previous methods do not perform well.487

6. Conclusion. In this manuscript, we propose a novel approach to semi-supervised non-488

linear feature extraction extending the Laplacian eigenmaps. Similar in spirit to previous489

extension such as Schroedinger eigenmaps, our algorithm is derived from non-linear transport490

model. We first test this transport model on clustering some famous image datasets. Then491

we provide a set of experiments on hyperspectral data sets to compare the new method’s492

performance to a variety of algorithms for reducing the dimension of the data provided to493

a standard classification algorithm. The experiments show intriguing possibilities for the494

new method, which has proved competitive with other algorithms in both clustering and495

classification tasks.496

Our method performs the best when there are extra information about data points that497

are similar. In real-life applications, the extra information provided to the algorithms of498

transport methods usually does not come directly from the ground truth. Ideally, better and499

richer cluster information than the ground truth are produced using laboratory measurements.500

For example, in hyperspectral imaging, the laboratory measurements could include various501
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signals representing different materials in a wide range of conditions such as lighting and502

weather.503

Our experiments demonstrate a strong potential for new methods using advection/gradient504

flow operators, with in particular the following open questions505

• How to further generalize the transport operator? The choice of the velocity field506

v in Theorem 3.1 makes the transport operator self-adjoint with respect to an inner507

product associated with a diagonal matrix A. It is natural to investigate the case with508

a non-diagonal, positive definite A.509

• Can we better relate the choice of an algorithm to the expected structure of the510

problem? A good example might be time-dependent data, where a clear direction511

of propagation of the signal would lead to conjecture a even better performance of512

advection-based eigenmaps.513

• What is the best way to choose the parameters in the general transport method. The514

intuition provided in Section 4.1 is good only for low dimensional data. When the515

dimension is high or there are two or more clusters, the choice of r and ai can be very516

complicated. We plan to use neural network to attack this problem.517
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