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Abstract

This paper focuses on an adaptive learning and control problem for a class of
discrete-time nonlinear uncertain systems operating under multiple environ-
ments. A novel intelligent learning control framework is proposed by using
a combination of offline and online learning methods. Specifically, in the of-
fline learning mode, a deterministic learning (DL) based adaptive dynamics
learning approach is first proposed to achieve locally-accurate identification
of associated nonlinear uncertain system dynamics under each anticipated
individual environment, and the learned knowledge is obtained and stored in
a set of constant radial basis function neural network models. Then, with the
learned knowledge, an online adaptive learning control scheme is further de-
veloped, which consists of: (i) an online adaptive learning control mechanism
composed by multiple experience-based controllers and a DL-based adaptive
learning controller, aiming to provide desired control performance for the
plant operating under each individual environment; and (ii) a learning-based
recognition mechanism composed by multiple recognition estimators and a
DL-based identifier, aiming to recognize the active environment and schedule
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appropriate control strategies in real time. To guarantee the system stabil-
ity during environment transition, a robust quasi-sliding-mode controller is
further developed and embedded in the overall controller architecture. With
this new intelligent adaptive learning control framework, the overall system is
capable of adapting not only to any anticipated (pre-defined) environment by
re-utilizing the knowledge obtained from both offline and online learning, but
also to unanticipated (new) environments by actively acquiring new knowl-
edge online. Simulation studies are conducted to verify the effectiveness and
advantages of this new framework.

Keywords: Offline and online learning, deterministic learning, adaptive
learning control, dynamic recognition, discrete-time nonlinear uncertain
system, neural networks.

1. Introduction

Many aspects of modern life involve the use of intelligent machines, such
as servant robots that assist humans in their daily activities and maintenance
machines that replace human workforce to operate in hazardous environ-
ments [1, 2, 3, 4]. Such machines are expected to successfully perform various
tasks that could involve complex system dynamics under varying operational
environments. Over the past decades, considerable efforts have been devoted
to developing advanced intelligent control schemes to enable autonomy of
such machines. For instance, [6] developed an optimal critic learning based
control scheme for enabling intelligent robots working under time-varying
environments. In [7], another important problem of pattern classification for
intelligent machines operating under nonstationary environments was inves-
tigated, and a new class of probabilistic neural networks was proposed for
classifying patterns of time-varying probability distributions. Moreover, [5]
discussed the application of intelligent control techniques for the humanoid
robotic systems operating in unstructured environments. However, these ex-
isting methods have their own limitations, for example, they largely require
the operation/control environments to vary slowly with time. For those cases
when the environments are changing rapidly, the associated intelligent con-
trol design problem becomes rather challenging and has obtained few success
in current literature.

When operating in rapidly time-varying environments, the system could
encounter large uncertainties, e.g., system faults, external disturbances, and
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changes in system parameters [8]. Adaptive control methods (e.g., [9, 10,
11, 12]), which are capable of accommodating various system uncertain-
ties caused by the environment changes [9], provide promising techniques
to overcome such issues. However, for those cases when the environment is
switched from one context to another, traditional adaptive controllers may
react too slowly to such abrupt changes, resulting in slow convergence and
large transient tracking errors, or even instability of the overall system [8].
To overcome this issue, an advanced adaptive control approach, i.e., multiple
model adaptive control (MMAC), was proposed in [8, 13, 15]. The non-
stationary environments considered therein were represented by switching
among a finite number of different stationary environments. Multiple adap-
tive estimators were developed to identify the active environment, and the
identification result was further used to guide the switching among multiple
adaptive controllers. However, such MMAC scheme did not well-explore the
learning capability in both processes of adaptive identification and control,
thereby lacking the real intelligent capabilities of knowledge acquisition and
re-utilization [16]. As a result, even when a same/similar environment recurs,
the processes of identification and control still need to repeat the online pa-
rameter tuning or adaptation, which are usually computationally expensive
and time-consuming.

The learning capability, i.e., learning from the dynamical environment
and using learned knowledge to improve control performance, is essential for
modern intelligent control systems [17]. Recently, the deterministic learning
(DL) theory proposed in [16, 18, 19] offers a new paradigm for the develop-
ment of advanced intelligent adaptive learning control schemes that possess
the real learning capability defined above. This theory has been demon-
strated successful in solving not only adaptive learning control problems, but
also many other intelligence-related problems, for example, pattern identi-
fication, representation, and recognition [14, 20, 21]. In particular, based
on the DL theory, a so-called pattern based neural network (NN) learning
control scheme was developed in [22, 23] for intelligent control of a class of
continuous-time nonlinear uncertain systems operating under multiple envi-
ronments. This approach requires all possible environments to be predefined
for offline NN training, so as to obtain the related knowledge for the subse-
quent development of online recognition and control. However, in those cases
when the system operates in an unanticipated/new environment that cannot
be predefined for offline training purpose, the schemes of [22, 23] may not be
applicable. Hence, to further enhance the system capability, it is necessary
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to incorporate online learning approaches that could actively acquire new
knowledge when encountering an unanticipated environment.

In this paper, we focus on the intelligent learning control problem for
a class of discrete-time nonlinear uncertain systems operating in multiple
environments, including anticipated/predefined environments and unantic-
ipated/new environments. We seek to address several interrelated intelli-
gent control issues, including: (i) how to provide desired tracking control
performance for the system operating in each individual environment; (ii)
how to guarantee the system stability when the operation environment is
abruptly changed from one to another; and (iii) how to rapidly recognize
in real time the active environment and thereby to schedule appropriate
real-time control strategies. To this end, a novel intelligent learning control
framework is proposed. One important feature of this new framework lies in
the combinational use of offline and online learning. The former is used to
acquire knowledge of associated nonlinear uncertain system dynamics under
each anticipated environment, such that improved system performance can
be achieved by using the resulting experience-based controllers/estimators;
the latter is operating in real-time to acquire new knowledge of an unan-
ticipated/new environment, so as to expand/enrich the knowledge library
online. The proposed framework develops the human-like intelligence capa-
bilities of knowledge acquisition and knowledge re-utilization, enabling that:
(i) when the controlled plant is operating in an anticipated environment, de-
sired performance of recognition and control can be achieved through learned
knowledge re-utilization; and (ii) when the controlled plant is operating in
an unanticipated environment, associated new knowledge can be acquired
through active online learning. We stress that this current work is developed
by significantly advancing the previous work [24], in which the multiple envi-
ronments were all considered as anticipated environments, while our present
work considers a more practical and challenging scenario with both antici-
pated and unanticipated environments.

The rest of this paper is organized as follows. Section 2 presents the prob-
lem statement and some preliminary results. Section 3 presents the adaptive
learning control scheme for the system in each fixed individual environment.
In Section 4, a quasi-sliding-mode control (QSMC) scheme is proposed for
stabilizing the system during the environment transition. Section 5 addresses
learning-based recognition of active environments. Section 6 summarizes the
overall learning, recognition, and control architecture. Extensive simulation
results are given in Section 7. Conclusions are drawn in Section 8.
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Notation. R, R+ and N+ denote, respectively, the set of real numbers, the
set of positive real numbers and the set of positive integers; Rm×n denotes
the set of m×n real matrices; Rn denotes the set of n×1 real column vectors;
| · | is the absolute value of a real number; ‖·‖ is the 2-norm of a vector or a

matrix, i.e. ‖x‖ = (xTx)
1
2 .

2. Preliminaries and Problem Formulation

2.1. Radial Basis Function Neural Networks (RBF NNs)

The RBF networks can be described by fnn(Z) =
∑Nn

i=1 wisi(Z) = W TS(Z)
[25], where Z ∈ ΩZ ⊂ Rq is the input vector, W = [w1, · · · , wNn ]T ∈ RNn is
the weight vector, Nn is the NN node number, and S(Z) = [s1(‖Z − ς1‖), · · · ,
sNn(‖Z − ςNn‖)]T , with si(·) being a radial basis function, and ςi (i = 1, 2, · · · ,
Nn) being distinct points in state space. The Gaussian function si(‖Z − ςi‖) =

exp[−(Z−ςi)T (Z−ςi)
η2i

] is one of the most commonly used radial basis functions,

where ςi = [ςi1, ςi2, · · · , ςiq]T is the center of the receptive field and ηi is
the width of the receptive field. The Gaussian function belongs to the
class of localized RBFs in the sense that si(‖Z − ςi‖) → 0 as ‖Z‖ → ∞.
It is easily seen that S(Z) is bounded and there exists a real constant
SM ∈ R+ such that ‖S(Z)‖ 6 SM [16]. As shown in [25, 26], for any
continuous function f(Z) : ΩZ → R where ΩZ ⊂ Rq is a compact set,
and for the NN approximator, where the node number Nn is sufficiently
large, there exists an ideal constant weight vector W ∗, such that for any
ε∗ > 0, f(Z) = W ∗TS(Z) + ε, ∀Z ∈ ΩZ , where |ε| < ε∗ is the ideal ap-
proximation error. The ideal weight vector W ∗ is an “artificial” quantity
required for analysis, and is defined as the value of W that minimizes |ε| for
all Z ∈ ΩZ ⊂ Rq, i.e. W ∗ , argminW∈RNn{supZ∈ΩZ

|f(Z) − W TS(Z)|}.
Moreover, based on the localization property of RBF NNs [16], for any
bounded trajectory Z(k) within the compact set ΩZ , f(Z) can be approx-
imated by using a finite number of neurons located in a local region along
the trajectory: f(Z) = W ∗T

ζ Sζ(Z) + εζ , where εζ is the approximation
error, with εζ = O(ε) = O(ε∗), Sζ(Z) = [sj1(Z), · · · , sjζ(Z)]T ∈ RNζ ,
W ∗
ζ = [w∗j1, · · · , w∗jζ ]T ∈ RNζ , Nζ < Nn, and the integers ji = j1, · · · , jζ

are defined such that |sji(Zp)| > θ (θ > 0 is a small positive constant) for
some Zp ∈ Z(k).
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Lemma 1 ([16]). Consider any recurrent trajectory1 Z(k) that remains in
a bounded compact set ΩZ ⊂ Rq. For RBF network W TS(Z) with centers
placed on a regular lattice (large enough to cover compact set ΩZ), the re-
gressor subvector Sζ(Z) consisting of RBFs with centers located in a small
neighborhood of Z(k) satisfies the persistently exciting (PE) condition.

2.2. Problem Formulation

Consider the following discrete-time nonlinear uncertain system:{
xi(k + 1) = xi+1(k), i = 1, 2, · · · , n− 1,

xn(k + 1) = f j(x(k)) + u(k),
(1)

where x = [x1, · · · , xn]T ∈ Rn is the system state, u ∈ R is the system in-
put, f j(x) is unknown nonlinear function with the superscript j (j ∈ J =
{1, · · · , N}, N ∈ N+) indicating different system dynamics varying under
different environments. J is a finite set containing N number of different
operation environments. We assume that J is composed by an anticipated
environment set J1 ⊆ J , i.e., those environments that can be pre-defined and
the associated nonlinear uncertain system dynamics can be learned through
offline training; and an unanticipated environment set J2 = J − J1, i.e.,
those environments that are not known in a priori and have to be dealt with
through online learning. Only one environment will be active at each time
instant, which needs to be recognized in real time for controller implementa-
tion.

Assumption 1. The nominal model of system (1), denoted by f̄(x), is known
and satisfies

∣∣f̄(x)− f j(x)
∣∣ < H for some known constant H ∈ R+ and for

all j ∈ J .

The system state x of (1) will be required to track over the reference
signal xd generated from the following model:{

xdi(k + 1) = xdi+1
(k), i = 1, 2, · · · , n− 1,

xdn(k + 1) = fd(xd(k)),
(2)

1A recurrent trajectory represents a large set of periodic and periodic-like trajecto-
ries generated from linear/nonlinear dynamics systems. A detailed characterization of
recurrent trajectories can be found in [16].
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where xd = [xd1 , · · · , xdn ]T ∈ Rn is the reference state, fd(xd) is a known
nonlinear function.

Assumption 2. All state signals of the reference model (2) are bounded and
recurrent.

Figure 1: Illustration of the real-time control and recognition process under multiple
environments s ∈ J1, h ∈ J (s 6= h). k0 is the initial time; kc is the occurrence time
of environment switching; kd is the detection time of environment switching; kr is the
recognition time of active environment h.

In this paper, our objective is to develop a systematic and holistic frame-
work for intelligent adaptive learning control of system (1) such that its state
will track over the desired reference states of (2). We seek to answer three
specific questions: (i) how to deal with the system uncertainty f j(x) of (1);
(ii) how to ensure overall stability when the environment is abruptly changed
from one to another; and (iii) how to rapidly recognize active environment to
facilitate scheduling of proper control strategies online. The overall process
of real-time system operation and control under consideration is illustrated
in Fig. 1. Specifically, as shown in the upper part of Fig. 1, we assume that
the controlled plant (1) is initially operating under a known anticipated en-
vironment, say s ∈ J1, and at an unknown time kc, the active environment is
abruptly switched to an unknown environment, say h ∈ J (h 6= s). The new
active environment could be anticipated (i.e., h ∈ J1) or unanticipated (i.e.,
h ∈ J2). The proposed intelligent adaptive learning controller (as shown in
the lower part of Fig. 1) is expected to be capable of: (i) ensuring stable
tracking control under any fixed individual environment (e.g., environment s
during k0 ≤ k ≤ kc and environment h during k > kr in Fig. 1), which will be
addressed in Section 3 using a combination of offline and online adaptive NN
learning approaches; (ii) stabilizing the overall system during the transition
period when the operation environment is switching from environment s to
h (e.g., the time interval kd < k ≤ kr in Fig. 1), which will be addressed in
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Section 4 using a robust QSMC approach; and (iii) rapidly recognizing ac-
tive environment h (e.g., during the time interval kd < k ≤ kr in Fig. 1) for
efficient scheduling of appropriate control strategies, which will be addressed
in Section 5 using a dynamic recognition approach combined with an online
adaptive learning based estimation method.

3. Learning Control Under Individual Environment

In this section, to fulfill the first objective mentioned above, a novel adap-
tive learning control scheme will be proposed, which consists of an offline
learning mode and an online learning control mode.

3.1. Offline Learning Mode

In the offline learning/training mode, we assume that the controlled plant
(1) is operating under any fixed individual anticipated environment. A DL-
based dynamics learning control approach will be developed to achieve stable
tracking control and accurate learning of the associated nonlinear uncer-
tain system dynamics, such that the learned knowledge can be obtained and
stored in constant RBF NN models for later use.

Specifically, consider the plant (1) operating in any fixed individual an-
ticipated environment j ∈ J1, for the unknown dynamics f j(x), from Section
2.1, we know that there exists an ideal constant NN weight W j∗ ∈ RNn (with
Nn denoting the number of NN nodes) such that:

f j(x) = W j∗TS(x) + εj, (3)

where S(x) ∈ RNn is a smooth RBF vector; εj is the ideal approximation
error satisfying |εj| < ε∗, with ε∗ being a positive constant that can be made
arbitrarily small by constructing sufficiently large number of neurons. Based
on this, consider the plant (1) and the reference model (2), we propose to
design an adaptive dynamics learning controller using RBF NNs as follows:

ûj(k) = fd(xd(k))− Ŵ jT (k)S(x(k)) + ajcr(k)− λ1zn(k)− · · · − λn−1z2(k),

Ŵ j(k + 1) = Ŵ j(k) + cjcr(k + 1)S(x(k)),
(4)

where ûj is the control signal, Ŵ j is the estimate of the constant weight
W j∗ in (3), fd(xd) is from (2), ajc, c

j
c are design parameters, λ1, · · · , λn−1 are

design constants such that zn−1 + λ1z
n−2 + · · ·+ λn−1 is a Schur polynomial,
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zi = xi − xdi (i = 1, · · · , n) are state tracking errors, r is filtered tracking
error defined as:

r = zn + λ1zn−1 + · · ·+ λn−1z1. (5)

Theorem 1. Consider the closed-loop system consisting of the plant (1) with
any fixed j ∈ J1, the reference model (2), and the controller (4). Under
Assumption 2, given any initial conditions x(0) ∈ Ω0 (where Ω0 is a compact
set) and Ŵ j(0) = 0, if the controller coefficients satisfy 0 < cjc ≤ 1

3
, 0 <

ajc <
√

(cjc)2 + 1− cjc, then, it is guaranteed that: (i) all signals in the closed-

loop system remain uniformly ultimately bounded (UUB); (ii) there exists
a finite time Kc such that for all k > Kc, the state tracking error x(k) −
xd(k) converges to a small neighborhood around the origin; and (iii) a locally
accurate approximation of f j(x) in (1) is obtained by Ŵ jTS(x) as well as
W̄ jTS(x) along the NN input orbit Z, where W̄ j := 1

K2−K1+1

∑K2

k=K1
Ŵ j(k)

with K2 > K1 > Kc being a time segment after the transient process.

The proof of Theorem 1 can be readily completed by following a similar
line of that of [29, Th. 1], which will be omitted here.

Through the above training process, the knowledge of the dynamics in
f j(x) of (1) can be obtained and stored in the constant RBF NN model
W̄ jTS(x) for each j ∈ J1, i.e.,

f j(x) = W̄ jTS(x) + εj1, (6)

where εj1 = O(ε∗) is the approximation error. Moreover, according to [19, 22,
18], the accurate approximation in (6) can be achieved in a local region Ωj

c

(j ∈ J1) along the trajectory xd, with

Ωj
c := {x | dist(x, xd) < d∗c ⇒ |W̄ jTS(x)− f j(x)| < εj∗c }, (7)

where the constant d∗c characterizes the size of NN approximation region, and
εj∗c is the maximum NN approximation error within Ωj

c, which can be made
arbitrarily small by constructing a sufficiently large number of neurons in the
training process.

3.2. Online Learning Control Mode

In the online learning control mode, the active environment, say h ∈ J ,
could be either anticipated, i.e., h ∈ J1, or unanticipated, i.e., h ∈ J2. Our
objective in this section is to develop an efficient learning control scheme
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such that (i) when the active environment h is anticipated, the desired sta-
ble tracking control performance can be achieved by re-utilizing the related
knowledge learned from the previous subsection; and (ii) when the active en-
vironment h is unanticipated, in addition to achieving stable tracking control,
the associated new knowledge can also be learned accurately in real-time.

To this end, we first consider the case that the plant (1) is operating in
an anticipated environment with h ∈ J1. By utilizing the learned knowl-
edge from the offline training mode in Section 3.1, a family of the so-called
experience-based controllers (EBCs) are designed as follows:

uj = fd(xd)− W̄ jTS(x) + bcr−λ1zn − · · · − λn−1z2, (8)

for all j ∈ J1, where j denotes the corresponding environment index, W̄ jTS(x)
is the constant NN model given in (6), which is used as an accurate approx-
imation of f j(x) in (1), 0 ≤ bc < 1 is a design parameter. When the plant
(1) is operating under the h ∈ J1 environment, the associated h-th controller
from the above EBC family will be activated accordingly for stable tracking
control.

Theorem 2. Consider the closed-loop system consisting of the plant (1) with
a fixed h ∈ J1, the reference model (2), the h-th EBC of (8). Under Assump-
tion 2, given the same recurrent reference orbits xd that are experienced in
the offline learning mode of Section 3.1, and with initial condition x(0) in
a close vicinity of xd(0), we have that: (i) all signals in the closed-loop sys-
tem remain UUB; (ii) the state tracking error x − xd converges to a small
neighborhood around the origin.

The proof of Theorem 1 can be readily completed by following a similar
line of that of [29, Th. 2], which will be omitted here.

We then proceed to consider the case that the plant (1) is operating in an
unanticipated environment with h ∈ J2. In this case, since no corresponding
EBC is available from the offline training mode, an online adaptive learn-
ing controller is needed to address the uncertainty issues for stable tracking
control. To this end, an adaptive learning controller (ALC) is designed as
follows:

û(k) = fd(xd(k))− Ŵ T (k)S(x(k)) + acr(k)− λ1zn(k)− · · · − λn−1z2(k),

Ŵ (k + 1) = Ŵ (k) + ccr(k + 1)S(x(k)),
(9)

10



where û is the control signal, S(x) is an RBF network, Ŵ is an associated
NN weight vector, r is the filtered tracking error defined in (5), and ac, cc
are two design parameters satisfying 0 < cc ≤ 1

3
, 0 < ac <

√
c2
c + 1 −

cc, respectively. With such a controller, the resulting closed-loop stability
and state tracking performance can be verified by following a similar line of
Theorem 1. Specifically, for the plant (1), the controller (9) will render not
only stable tracking control, but also locally accurate learning of associated
uncertain dynamics fh(x) of (1). As a result, the related knowledge will be
obtained and stored in a constant RBF model W̄ hTS(x) in the form of (6).
Then, a new EBC can be further constructed as:

uh = fd(xd)− W̄ hTS(x) + bcr − λ1zn − · · · − λn−1z2, (10)

which will be added as a new member to the family of EBCs as described in
(8).

4. Quasi-Sliding-Mode Control for Stable Environment Transition

In the previous section, the resulting family of EBCs have one-to-one cor-
respondence with the anticipated environments, i.e., each individual EBC is
guaranteed stabilizing only when the plant is steadily operating under the
matched environment. This means that the EBCs might not guarantee the
system’s overall stability when the active environment is abruptly transi-
tioning from one to another. To address this issue, we propose to develop a
robust quasi-sliding-mode controller (QSMC) to stabilize the system during
such a transition process. Specifically, corresponding to Fig. 1, we formulate
the plant dynamics during the transition process (i.e., for kc < k ≤ kr as
shown in Fig. 1) in the following form:

xi(k + 1) = xi+1(k), i = 1, 2, · · · , n− 1

xn(k + 1) =


f s(x(k)) + us(k), k0 ≤ k ≤ kc

fh(x(k)) + us(k), kc < k ≤ kd,

fh(x(k)) + u0(k), kd < k ≤ kr

(11)

where k0, kc, kd and kr are all defined in Fig. 1. In particular, kd denotes
also the activation time of QSMC. s ∈ J1 and h ∈ J (s 6= h) denote re-
spectively the pre-switching and post-switching active environment indexes,
us represents the s-th EBC from (8), and u0 represents the QSMC to be
developed.
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Since the environment switching time kc is unknown, prior to the design
of the QSMC, we will need to first design a detection mechanism to rapidly
detect occurrence of environment switching and thereby to determine the
activation time kd of the QSMC. For this purpose, we first consider the time
interval k0 ≤ k ≤ kc in (11), during which the operating controller, i.e., the
s-th EBC, matches the active environment s. From (2), (7), and (8), the
filtered tracking error r of (5) can be readily proved to satisfy:

|r(k)| =
∣∣bcr(k − 1) + f s(x(k − 1))− W̄ sTS(x(k − 1))

∣∣
< bc |r(k − 1)|+ εs∗c < bk−k0c |r(k0)|+ 1− bk−k0c

1− bc
εs∗c .

(12)

Note that 0 < bc < 1 and r(k0) has a known small value, we use µ̄c to denote
such a constant number that µ̄c ≥ bk−k0c r(k0). Then, we have:

|r(k)| < µ̄c +
1

1− bc
εs∗c , (13)

Based on this, we can design a threshold as:

ēc := µ̄c +
1

1− bc
ε∗cm , (14)

where ε∗cm := maxj∈J1 {εj∗c }, in which εj∗c is the NN approximation error
given in (7). The detection time kd can be deduced by evaluating the filtered
tracking error |r| of (5) against the threshold ēc of (14). The rationale behind
this is as follows. The threshold ēc of (14) can be considered as a maximum
tolerable tracking error under the proposed EBCs of (8). Specifically, for
the system (11), as long as the real-time filtered tracking error |r| of (5)
maintains smaller than the designed threshold ēc of (14), the active EBC is
considered to be able to guarantee desired tracking control performance under
the active environment. Whenever |r| becomes larger than ēc, it indicates
that the active environment is changed and the operating EBC is no longer
competent/matched.

Remark 1. Note that the threshold of (14) is designed with the parameters
εj∗c (∀j ∈ J1), which are related to the EBCs of (8). It requires that whenever
constructing a new EBC (e.g., the h-th EBC of (10) from the online learning
mode in Section 3.2), the corresponding parameter (i.e., εh∗c ) should be ob-
tained simultaneously to update the design of the threshold (14). According
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to (7), this parameter εh∗c can be computed online as the upper bound of the
absolute steady approximation error between W̄ hTS(x(k−1)) and the system
signal fh(x(k − 1)) = xn(k)− uh(k − 1), according to (7).

Once the switching of the active environment in (11) is detected (at time
kd), a robust QSMC will be activated immediately to stabilize the system
(11). The design of such a QSMC is as follows. We first design an s function:

s(k) = s(k − 2) + α0zn(k) + · · ·+ αn−1z1(k), (15)

where zi = xi − xdi (i = 1, · · · , n) are state tracking errors, the parameters
α0, · · · , αn−1 are selected such that α0zn+ · · ·+αn−1z1 is a Schur polynomial.
The QSMC is constructed as:

u0(k) = fd(xd(k))− f̄(x(k))− 1

α0

(α1zn(k) + · · ·+ αn−1z2(k)

+ s(k − 1) + ρ sgn(s(k))),
(16)

where f̄(x) is known from Assumption 1, fd(xd) is from (2), ρ is a design
constant.

Theorem 3. Consider the plant (11), the reference model (2), and the
QSMC (16). Under Assumption 1, if the controller coefficient ρ satisfies
ρ > α0H with H given in Assumption 1, then, it is guaranteed that: (i) the
closed-loop system is stable; and (ii) the state tracking error x−xd converges
to a close vicinity of the origin.

Proof. With the closed-loop system consisting of (2), (11) and (16), the func-
tion s(k) of (15) will be governed by the following dynamics:

s(k + 1) = α0(fh(x(k))− f̄(x(k)))− ρsgn(s(k)). (17)

Note that
∣∣fh(x)− f̄(x)

∣∣ < H under Assumption 1, following a similar line
of the analysis in [28, Sec. III], if the design parameter ρ satisfies ρ > α0H,
it can be guaranteed that:

s(k)(s(k + 1)− s(k)) < 0,

sgn(s(k + 1)) = −sgn(s(k))⇒

{
sgn(s(k + 2)) = sgn(s(k)),

|s(k + 1)| ≤ α0H + ρ.

According to [28, Sec. II.B.], the closed-loop system can be guaranteed to
be stable and the state tracking error x− xd converges to a close vicinity of
the origin.
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Remark 2. The QSMC of (16) is capable of guaranteeing global stability
of the overall control system. Note that the EBC of (10) and ALC of (9)
proposed in the previous section can provide stable control only when the
associated system trajectory lies in the local region Ωj

c of (7). When the
system trajectory is not belonging to the region Ωj

c, e.g., during the transient
process of environments switching, activating the QSMC can guarantee the
system’s overall stability, and will drive the system trajectory back into the
region Ωj

c.

5. Learning-Based Recognition of Active Environment

As illustrated in Fig. 1, once the QSMC of (16) is activated at time
kd, an online recognition mechanism will be activated at the same time to
identify the index of the new active environment, such that the corresponding
EBC/ALC from Section 3.2 can be subsequently activated to replace the
QSMC for stabilizing the overall tracking control system. In this section,
we will specify how such an online recognition mechanism can be designed,
which involves an offline training mode and an online recognition mode.

5.1. Offline Training Mode

In the offline training mode, we will first assume that the plant is oper-
ating under any fixed anticipated environment with the QSMC, whose dy-
namics is governed by:{

xi(k + 1) = xi+1(k), i = 1, 2, · · · , n− 1

xn(k + 1) = f j(x(k)) + u0(k),
(18)

for any fixed j ∈ J1, where u0 is the control signal generated from the QSMC
in (16). Our objective is to develop a DL-based dynamics learning approach
to achieve locally-accurate identification of the unknown nonlinear dynamics
f j(x) + u0 in (18), such that the obtained knowledge can be stored and
re-utilized for online recognition as will be discussed in the next subsection.

To this end, according to Section 2.1, there exists an ideal constant NN
weight W j∗

r ∈ RNn (with Nn denoting the number of NN nodes) such that:

f j(x) + u0 = W j∗T
r Sr(x, u

0) + εjr (19)

with Sr(x, u
0) being a smooth RBF NN vector, (x, u0) being the system

trajectory of (18), εjr being an ideal approximation error satisfying |εjr| <
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ε∗r, and ε∗r being a positive constant that can be made arbitrarily small by
constructing sufficiently large number of neurons. Based on this, we propose
to design an adaptive identifier as:

x̂jr(k + 1) = ajr(x̂
j
r(k)− xn(k)) + Ŵ jT

r (k)Sr(x(k), u0(k)),

Ŵ j
r (k + 1) = Ŵ j

r (k)− cjrx̃jr(k + 1)Sr(x(k), u0(k)),
(20)

where x̃jr = x̂jr−xn, xn is the n-th state of (18), ajr, c
j
r are design parameters,

and Ŵ j
r is the estimate of W j∗

r in (19).

Theorem 4. Consider the adaptive learning system consisting of the plant
(18) with a fixed j ∈ J1, and the identifier (20). Under Assumption 2,
with initial conditions (x(0), u0(0)) ∈ Ωr0 (where Ωr0 is a compact set) and

Ŵ j
r (0) = 0, if the associated coefficients in (20) satisfy 0 < ajr <

√
5−1
2

and
0 < cjr <

1

S2
rM

(2+ajr)
with SrM being the upper bound of ‖Sr(x, u0)‖, then, we

have: (i) all signals in the system remain UUB; (ii) there exists a finite time
Kr such that for all k > Kr, the estimation error x̂jr(k)−xn(k) converges to a
small neighborhood around the origin; and (iii) a locally accurate approxima-
tion of the nonlinear uncertain system dynamics f j(x) + u0 can be obtained
by Ŵ jT

r Sr(x, u
0) as well as W̄ jT

r Sr(x, u
0) along the recurrent NN input orbit

(x, u0), where W̄ j
r = 1

K2−K1+1

∑K2

k=K1
Ŵ j
r (k) and K2 > K1 > Kr represents a

time segment after the transient process.

Detailed proof can be completed by following the same process of the
proof of [20, Th. 1], which is omitted here.

Through the offline training process, the nonlinear uncertain system dy-
namics f j(x) + u0 in (18) can ultimately be approximated and represented
by the constant RBF NN model W̄ jT

r Sr(x, u
0) for each j ∈ J1, i.e.,

f j(x) + u0 = W̄ jT
r Sr(x, u

0) + εjr1 , (21)

where εjr1 = O(ε∗r) is the approximation error. Furthermore, according to [20],
accurate approximation of f j(x)+u0 in (21) remains valid in a local region Ωj

r

along the experienced recurrent trajectory (denoted by ϕjr) generated from
system (18), where Ωj

r can be characterized as:

Ωj
r := {(x, u) | dist((x, u), ϕjr) < d∗r ⇒ |f j(x) + u0 − W̄ jT

r Sr(x, u)| < εj∗r },
(22)

where d∗r characterizes the size of NN approximation region; εj∗r is the NN es-
timation error within Ωj

r, which can be made arbitrarily small by constructing
a sufficiently large number of neurons in the training process.
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5.2. Online Recognition Mode

In the online recognition mode, a learning-based recognition scheme will
be developed to achieve rapid recognition of the active environment in (11),
and to determine the time kr for activating the corresponding EBC/ALC.
Such a scheme will be operating for time kd < k ≤ kr as shown in Fig. 1,
i.e., after the active controller is switched to the QSMC of (16) and before
switching back to a matched EBC/ALC. Note that the active environment
to be recognized could be either anticipated or unanticipated. To ensure
successful recognition under the proposed scheme, the following assumption
is needed, which imposes sufficient differences among the system dynamics
under different environments.

Assumption 3. The difference between the system dynamics induced by dif-
ferent environments for each pair of h, h̄ ∈ J (h 6= h̄), denoted as %h,h̄(x, u0) :=
(f h̄(x) + u0) − (fh(x) + u0), satisfies |%h,h̄(x, u0)| > %̄, where %̄ > 2ε∗r is a
known constant with ε∗r := maxj∈J1{εj∗r } and εj∗r being the NN approximation
error of (22).

We first consider the case when system (11) is operating in an anticipated
environment (with index h ∈ J1) for kd < k ≤ kr. Resorting to the learned
knowledge from the offline training mode in Section 5.1, we can design a
bank of recognition estimators as follows:

ejr(k) = bre
j
r(k − 1) +

∣∣W̄ jT
r S(x(k − 1), u0(k − 1))− xn(k)

∣∣ , (23)

where ejr(k) (∀j ∈ J1) is called a recognition residual signal with ejr(kd) = 0;
0 < br < 1 is a design parameter; (x, u0) is the system signals of (11);
xn is the n-th state of system (11); W̄ jT

r Sr(x, u
0) is the constant RBF NN

model obtained from the offline training mode (as specified in (21)) to locally
accurately approximate f j(x)+u0 of (18). The residual signal ejr can be used
for real-time recognition decision making, the details are given below.

With the recognition estimators (23), motivated by the methodology from
[27], we propose to develop an adaptive threshold based online recognition
scheme. Specifically, an adaptive threshold (denoted as ēr) is designed as
follows, such that it will upper bound the residual signal ejr of (23) in real
time whenever the corresponding estimator index j ∈ J1 matches the active
environment index h of (11):

ēr(k) =
(1− bk−kdr )qrε

∗
r

1− br
, (24)
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where br is the design parameter from (23), 1 < qr ≤ %̄−ε∗r
ε∗r

is a tunable

auxiliary parameter, ε∗r = maxj∈J1{εj∗r }, and %̄ is a known constant defined
in Assumption 3.

The key idea of achieving rapid active environment recognition based
on (23) and (24) is that: under Assumption 3, the residual signal generated
from one and only one of the recognition estimators of (23), say the h-th one,
will ultimately become smaller than the threshold ēr of (24), while all other
residual signals remain larger than the threshold, then the active environment
undergone by system (11) can be readily recognized as the h-th environment.

Theorem 5. Consider the system (11), the online recognition estimators
(23) and the adaptive threshold (24). Under Assumption 3, we have: (i) there
exists a unique h ∈ J1 and a finite time kr > kd such that ehr (k) < ēr(k) holds
for k ≥ kr, and it can be recognized at time kr that the system (11) is operating
in the h-th anticipated environment; and (ii) if ∀j ∈ J1, ejr(k) ≥ ēr(k) holds
for all k > kd, then it can be deduced that the system (11) is operating in an
unanticipated environment.

Proof. When the active environment h of (11) is anticipated, i.e., h ∈ J1,
we first consider the matched recognition estimator, i.e., the h-th estima-
tor of (23). In the recognition process, according to (22), its embedded
constant RBF NN model W̄ hT

r S(x, u0) will quickly recall the stored knowl-
edge to provide accurate approximation of the uncertain dynamics xn(k) =
fh(x(k−1))+u0(k−1) of (11), such that: |W̄ hT

r S(x(k−1), u0(k−1))−xn(k)| <
εh∗r < ε∗r. Based on this, following a similar line of the proof of [27, Th. 1], it
can be deduced that there exists a finite time kr > kd such that the residual

signal generated from the h-th estimator satisfies ehr (k) < (1−bk−kdr )qrε∗r
1−br = ēr(k)

for all k > kr. On the other hand, we consider all the other mismatched
recognition estimators of (23), e.g., the h̄-th estimator with ∀h̄ ∈ J1 (h̄ 6= h).

Under Assumption 3, we have:
∑k−1

i=kd
bk−1−kd
r |%h,h̄(x(i), u0(i))| > (1−bk−kdr )%̄

1−br ≥
(1−bk−kdr )(qr+1)ε∗r

1−br , ∀k > kd, where %̄ ≥ (qr + 1)ε∗r is guaranteed by the con-

straint on the design parameter qr, i.e., 1 < qr ≤ %̄−ε∗r
ε∗r

. By following the

similar method of the proof of [27, Th. 1], the associated residual signal

eh̄r (k) can be proved to satisfy eh̄r (k) ≥ (1−bk−kdr )qrε∗r
1−br = ēr(k) for all k > kd.

Consequently, we obtain: ehr (k) < ēr(k) and eh̄r (k) ≥ ēr(k) for all k ≥ kr,
indicating that the active environment of (11) can be identified as the h-th
anticipated environment at time kr.
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When the active environment is unanticipated, i.e., h ∈ J2, according to
the above analysis, no corresponding recognition residual signal of (23) will
become smaller than the threshold ēr of (24). In other words, all residual
signals ejr(k) (∀j ∈ J1) will satisfy ejr(k) ≥ ēr(k) for all k > kd. In such cases,
the active environment of system (11) will be identified as an unanticipated
environment. This ends the proof.

From Theorem 5, an unanticipated environment can be recognized us-
ing the online recognition scheme proposed above when all residuals of (23)
maintain no smaller than the threshold of (24). In this case, we will fur-
ther develop an online adaptive identifier to enable accurate learning of the
associated nonlinear uncertain system dynamics under an unanticipated en-
vironment, such that the learned knowledge can be reused to construct a
new recognition estimator in the form of (23), which will be added as a new
member to the estimator family for later online recognition use. To this end,
an online adaptive identifier is designed as follows:

x̂r(k + 1) = ar(x̂r(k)− xn(k)) + Ŵ T
r (k)Sr(x(k), u0(k)),

Ŵr(k + 1) = Ŵr(k)− crx̃r(k + 1)Sr(x(k), u0(k)),
(25)

where x̃r = x̂r − xn, xn is the n-th state of system (11), (x, u0) is the system
signal generated from (11), ar and cr are two design parameters satisfying

0 < ar <
√

5−1
2

and 0 < cr <
1

S2
rM

(2+ar)
, respectively, with SrM being the

upper bound of ‖Sr(x, u)‖. The identifier (25), which operates in parallel
with the recognition systems (23)–(24), is used to online learn the dynamics
fh(x) + u0 of system (11) during the recognition process for kd < k ≤ kr (as
shown in Fig. 1). According to Theorem 4, with (25), the learned knowl-
edge will finally be obtained and stored in a new constant RBF NN model
W̄ hT
r S(x, u0). As a result, a new recognition estimator can be constructed

as:
ehr (k) = bre

h
r (k − 1) + |W̄ hT

r S(x(k − 1), u0(k − 1))− xn(k)|, (26)

which is added as a new member into (23) to enrich the recognition estimator
family.

Remark 3. When the new recognition estimator of (26) is constructed and
added into (23), the recognition threshold of (24) needs to be re-designed.
This is because the threshold of (24) is designed with the parameter ε∗r =
maxj∈J1{εj∗r }, in which the set {εj∗r , ∀j ∈ J1} is related to the recognition
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estimators of (23). Thus, when a new estimator of (26) is constructed, a
new parameter εh∗r needs to be obtained and added correspondingly into such
a parameter set. Note that εh∗r can be computed online as the upper bound
of absolute steady error between W̄ hT

r S(x(k − 1), u0(k − 1)) of (26) and the
real-time system signal xn(k) = fh(x(k − 1)) + u0(k − 1) of (11), according
to (22).

Remark 4. In online recognition mode, it is impossible to have the identi-
fier of (25) operate only after the active environment h of (11) is recognized
unanticipated. It requires us to keep activating the identifier of (25) when-
ever the recognition process is ongoing. This will result in the following two
situations: (i) when the active environment is finally recognized anticipated
at time kr, the identifier of (25) will be deactivated and reset immediately;
and (ii) when the active environment is recognized unanticipated, the iden-
tifier will keep operating until the learning process is completed, which also
yields the recognition time kr. An example will be provided in the simulation
section for illustration.

Remark 5. Rapid recognition for anticipated environments j ∈ J1 can be
achieved with our recognition scheme. Specifically, note that the recognition
estimators of (23) are designed with the constant models W̄ jT

r S(x, u0), which
represent the associated knowledge of each anticipated environment j ∈ J1

that is obtained through the offline learning mode of Section 5.1. The oper-
ations of such estimators do not need any parameter adaptation, which help
significantly shorten the recognition time, such that the recognition for antic-
ipated environments can be achieved in a rapid manner. This would facilitate
our control scheme to schedule proper control actions under rapidly-varying
environments.

Remark 6. Achieving accurate and rapid recognition for an unanticipated
environment j ∈ J2 is a quite challenging problem. One critical difficulty lies
in that unanticipated environments cannot be pre-defined and their knowledge
cannot be obtained through the offline learning process. To overcome this is-
sue, our recognition scheme is developed with a combination of the adaptive-
threshold-based recognition system of (23)–(24) and an adaptive identifier
of (25). Specifically, the recognition system of (23)–(24) is capable of distin-
guishing the unanticipated environment from other anticipated environments;
and the identifier (25) can online actively acquire the knowledge of the ac-
tive unanticipated environment. With the learned knowledge, whenever a
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same/similar unanticipated environment recurs in the future, accurate and
rapid recognition can be achieved.

Figure 2: Schematic of the overall intelligent learning, recognition, and control archi-
tecture. (a) Quasi-sliding-mode control during environments transition (Section 4); (b)
online learning control under environment h ∈ J (Section 3.2); and (c) online recognition
of active environment h ∈ J (Section 5.2).

6. The Overall Architecture

In this section, we will present the overall architecture of the proposed
intelligent adaptive learning control framework by summarizing all the com-
ponents developed from the previous sections. This summary will consider
two cases: (i) when the active environment is switched to an anticipated
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environment; and (ii) when the active environment is switched to an unan-
ticipated environment.

6.1. Anticipated Environment Case

In the following, we consider the case that the new active environment
is an anticipated environment, i.e., h ∈ J1 in Fig. 1. The overall processes
of control and recognition are illustrated in Fig. 2. Specifically, when the
environment switching occurs (at time kc), the real-time filtered tracking
error |r| of (5) will start increasing; when it becomes larger than the detection
threshold ēc of (14) (at time kd), detection of environment switching can be
achieved. Meanwhile, the QSMC of (16) will be activated for stabilizing the
overall tracking control system, and the online recognition scheme of (23)–
(25) is activated at the same time kd for recognizing the active environment
index h. Accurate recognition (see Fig. 2c) will be achieved (at time kr) when
the matched residual signal ehr of (23) becomes smaller than the recognition
threshold ēr of (24). Based on this, the corresponding h-th EBC from (8) will
be immediately activated at time kr to replace the QSMC for stable tracking
control. The overall control system dynamics can be summarized as follows:

xi(k + 1) = xi+1(k), i = 1, 2, · · · , n− 1

xn(k + 1) =


f s(x(k)) + us(k), k0 ≤ k ≤ kc

fh(x(k)) + us(k), kc < k ≤ kd

fh(x(k)) + u0(k), kd < k ≤ kr

fh(x(k)) + uh(k), kr < k,

(27)

where s, h ∈ J1 (h 6= s); us and uh are the control signals generated from the
s-th and the h-th EBCs of (8), respectively; u0 is the control signal generated
from the QSMC of (16); k0, kc, kd and kr are defined in Fig. 1.

Theorem 6. Consider the system (27). Under Assumptions 1–3, given the
recurrent reference orbit xd, and with initial condition x(k0) in a close vicinity
of xd(k0), we have: (i) all signals in the closed-loop system remain UUB; and
(ii) the state tracking error x− xd converges to a small neighborhood around
zero.

Proof. For the time interval k0 ≤ k ≤ kc, system (27) operates in the envi-
ronment s with the matched s-th EBC us. Then, according to Theorem 2,
with the given initial conditions, we have that all signals in the closed-loop
system remain UUB.
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At time kc, the active environment is switched to h ∈ J1 (h 6= s), which
is detected at time kd, at which the QSMC u0 of (16) is activated. According
to the results of Theorem 3, during the time interval kd < k ≤ kr, it is
guaranteed that the overall system of (27) is stable and the system state x
stays close to the reference state xd of (2). At time kr when rapid recognition
of the active environment h is achieved and the h-th EBC of (8) is activated,
according to Theorem 2, all signals in the closed-loop system (27) remain
UUB, and the state tracking error will converge to a small neighborhood
around zero.

Remark 7. Note that when the system (27) is operating in an anticipated
environment h ∈ J1, both online recognition and control are realized with
knowledge/experience that was obtained and pre-stored through the offline
training processes in Section 5.2 for recognition and Section 3.2 for control,
which do not involve any real-time parameter adaptations. This could signif-
icantly reduce the computational complexity and time consumption while still
ensuring satisfactory recognition and control performance.

6.2. Unanticipated Environment Case

We further consider another case that the new active environment in
Fig. 1 is an unanticipated environment, i.e., h ∈ J2. As illustrated in Fig.
2, when the environment switching occurs (at time kc), it will be detected
(at time kd) when the filtered tracking error |r| of (5) becomes larger than
the detection threshold of (14). At the same time kd, both QSMC of (16)
and online recognition scheme of (23)–(25) will be activated. In the online
recognition process (see Fig. 2c), the active environment index h will be
recognized (at time kr) when the identifier of (25) completes the dynamics
learning, such that a new recognition estimator of (26) can be constructed
and added into the family of recognition estimators in (23). At the same time
kr, the ALC of (9) will be immediately activated to achieve stable tracking
control and accurate learning of the associated nonlinear uncertain system
dynamics. Once the learning process is completed (say, at time kh), a new
EBC of (10) can be constructed and activated immediately to replace the
ALC for stable tracking control. Such a new EBC will be added as a new
member into the family of EBCs in (8), and the unanticipated environment
will thus become an anticipated environment. The overall control system
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dynamics is summarized as follows:

xi(k + 1) = xi+1(k), i = 1, 2, · · · , n− 1

xn(k + 1) =



f s(x(k)) + us(k), k0 ≤ k ≤ kc

fh(x(k)) + us(k), kc < k ≤ kd

fh(x(k)) + u0(k), kd < k ≤ kr

fh(x(k)) + û(k), kr < k ≤ kh

fh(x(k)) + uh(k), kh < k,

(28)

where s ∈ J1, h ∈ J2, us, u0, û, uh are control signals generated from the
s-th EBC of (8), the QSMC of (16), the ALC of (9), and the new EBC of
(10), respectively, k0, kc, kd and kr are defined in Fig. 1, kh is the time when
the learning process of ALC is completed.

Theorem 7. Consider the system (28). Under Assumptions 1–3, given the
recurrent reference orbit xd, and with initial condition x(k0) in a close vicinity
of xd(k0), we have: (i) all signals in the closed-loop system remain UUB; (ii)
the state tracking error x − xd converges to a small neighborhood around
the origin; and (iii) through the processes of control and recognition, a new
EBC of (10) and a new recognition estimator of (26) are obtained and added
into (8) and (23), respectively, such that the corresponding environment h
becomes a new anticipated environment, leading to J1 = {h} ∪ J1, ∀k > kh.

Detailed proofs can be conducted by following a similar line of the proof
of Theorem 6.

Remark 8. The recognition time kr in (28) can be determined when the
learning process of identifier (25) is completed. It can be estimated by ob-
serving when the NN weight Ŵr of (25) converges to constant steady-state
values, and the associated identification error x̂r − xn converges to a close
vicinity of the origin, as illustrated in Fig. 2c. Similarly, kh in (28) can be
obtained by observing when the learning process of ALC in (9) is completed,
i.e., the NN weight Ŵ of (9) converges to constant steady-state values, and
the associated tracking error x−xd converges to a close vicinity of the origin,
as illustrated in Fig. 2b. An example will be provided in the next section for
further illustration.

Remark 9. Existing pattern-based NN learning control methods of [22, 23]
are not applicable to the unanticipated environment case as discussed in Sec-
tion 6.2. The main reason lies in that these methods are developed with an
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offline learning mechanism, which does not possess online learning capabil-
ity to deal with an unanticipated environment. This issue is overcome with
our method by incorporating the active online learning approaches (i.e., the
identifier (25) and the ALC (9)) in the real-time recognition and control pro-
cesses, which can online acquire the associated knowledge of the operating
unanticipated environment.

Remark 10. Existing MMAC methods of [13, 15] cannot guarantee satis-
faction of the PE condition, thus lacking the capability of accurate learning
of system uncertainties. As a result, (i) these methods cannot realize accu-
rate learning of the uncertain system dynamics under each individual envi-
ronment, thus multiple adaptive models are required to operate in parallel;
(ii) their implementation needs to repeat parameter adaptation even for a
recurred anticipated environment, which suffers high computational burdens
and is time consuming; (iii) they cannot achieve accurate and rapid recogni-
tion of the operating environments, which could deteriorate tracking control
performance. In contrast to [13, 15], our approach can guarantee satisfaction
of the PE condition with the utilization of the DL-based learning approach.
For the system dynamics under each individual environment, accurate iden-
tification can be achieved and the associated knowledge can be obtained and
represented by a constant model (instead of multiple adaptive models). In
particular, for anticipated environments, the real-time recognition and con-
trol processes do not involve any parameter adaptation, while still ensuring
satisfactory recognition and control performance, as discussed in Remark 7.
These advantages distinguish our method from those existing ones of [13, 15].

7. Simulation Studies

In this section, we consider a discrete-time nonlinear uncertain system
(1) operating under multiple environments with n = 2, j ∈ J = {1, 2, 3},
and f 1(x) = sinx1

0.8+x22
+ 0.2x1x2, f 2(x) = 0.8 sinx1+x1

1+cosx1+x22
+ 0.2 cosx2, f 3(x) =

x1
1+2x22

+ 0.15(1−x2
1)x2. The nominal model of f j(x) (∀j ∈ J) is f̄(x) = x1

1+x22
.

For simulation purpose, it is assumed that the environments j = 1, 2 are
anticipated, i.e., J1 = {1, 2}, and the environment j = 3 is unanticipated,
i.e., J2 = {3}. The reference model in the form of (2) is constructed with
n = 2 and fd(xd(k)) = sin(0.5(k + 1)).
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7.1. Performance of Learning and Control Under Individual Environment

We first implement and evaluate the adaptive learning control scheme
developed from Section 3 for (1) under each fixed individual environment
j ∈ J . In the offline learning mode, uncertain nonlinear dynamics of f j(x)
for each j ∈ J1 will be learned with the learning controller (4). The RBF
network Ŵ jTS(x) (j = 1, 2) is constructed in a regular lattice with nodes
Nn = 169, the centers evenly spaced on [−1.2, 1.2] × [−1.2, 1.2] and the
width ηt = 0.2. The learning controller (4) is implemented with parameters
ajc = 0.6, λ1 = 0.2, and cjc = 0.1. The initial conditions are set as Ŵ j(0) = 0,
x(0) = [0.7, 0.5]T , and xd(0) = [0, 0]T . The simulation results corresponding
to the environment j = 1 are plotted in Fig. 3. Fig. 3a shows the conver-
gence of NN weights Ŵ 1, Fig. 3b shows the accurate learning performance for
unknown dynamics f 1(x), and Fig. 3c illustrates the stable tracking control
performance. Through the offline training process, the knowledge associ-
ated with f 1(x) can be obtained and stored by an constant RBF NN model
W̄ 1TS(x) with W̄ 1 = 1

100

∑1200
k=1101 Ŵ

1(k). For the case of the environment
j = 2, the associated simulation results are similar and thus not included.
Based on these learning results, according to Remark 1, the parameter that
is needed for the design of (14) is obtained as ε∗cm = maxi=1,2{εj∗c } = 0.0023.
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Figure 3: Learning control performance under fixed environment j = 1 using controller
(4). (a) Convergence of NN weight Ŵ 1. (b) Function approximation: Ŵ 1TS(x) and f1(x).
(c) State tracking control performance: x1 and xd1

.

In the online learning control mode, based on the learned knowledge, we
implement the EBCs of (8) and the ALC of (9) with bc = 0.6, λ1 = 0.2,
ac = 0.6 and cc = 0.1. The tracking control performance and the corre-
sponding filtered tracking error r = (x2 − xd2) + λ1(x1 − xd1) are plotted in
Fig. 4. It is seen that compared to the ALC in Fig. 4c, the EBCs in Figs.
4a and 4b achieve better control performance in terms of smaller transient
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tracking errors and faster convergence rate. One important reason for such a
performance gain is that the EBCs leverage the knowledge learned from the
training process to provide stable tracking control without repeating online
adaptation of NN weights.
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Figure 4: Control performance under different environments. (a) The 1-st EBC under
environment j = 1; (b) The 2-nd EBC under environment j = 2; (c) The ALC under
environment j = 3.

7.2. Performance of the QSMC for Stable Environment Transition

We further examine the control performance of the QSMC (16) during
environment transitions. The associated parameters are set as α0 = 1, α1 =
0.2, and ρ = 5. The initial conditions are set as x(0) = [1, 1]T , xd(0) = [0, 0]T ,
s(0) = 4.9+α0z2(0)+α1z1(0) and s(1) = −4.89+α0z2(1)+α1z1(1). With the
QSMC, we examine three cases when the active environment of (1) is abruptly
switched (i) from j = 1 to j = 2, (ii) from j = 2 to j = 3, and (iii) from j = 3
to j = 1, all at time k = 1000, respectively. The corresponding simulation
results are plotted in Fig. 5, showing that the QSMC can guarantee the
system stability during the environment transition, and the system trajectory
x of (1) can be guaranteed to converge to a close vicinity of the reference
orbit xd of (2).

7.3. Performance of Adaptive Learning for Recognition of Active Environ-
ment

In the following, we continue to examine the recognition scheme proposed
in Section 5. Offline training is first implemented for each fixed anticipated
environment j ∈ J1. The associated nonlinear uncertain system dynamics
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Figure 5: Performance of the QSMC (16) during environment transition. Active environ-
ment is switched at time k = 1000 from (a) j = 1 to j = 2; (b) j = 2 to j = 3; (c) j = 3
to j = 1.

f j(x)+u0 is learned by using the identifier (20). The RBF NN Ŵ jT
r Sr(x, u

0)
(j = 1, 2) is constructed in a regular lattice with nodes Nn = 2366, the
centers evenly spaced on [−1.2, 1.2]× [−1.2, 1.2]× [−1.4, 1.2] and the width
ηt = 0.2. The NN weights Ŵ j

r are updated according to (20) with ajr = 0.2,
cjr = 0.2 and the initial conditions Ŵ j

r (0) = 0, x̂jr(0) = 0. The simulation
results corresponding to the environment j = 1 are shown in Fig. 6. Fig. 6a
shows the convergence of NN weights Ŵ 1

r , and Fig. 6b shows the accurate
learning of f 1(x)+u0 by Ŵ 1T

r S(x, u0). The knowledge is obtained and stored
in W̄ 1T

r Sr(x, u) with W̄ 1
r = 1

100

∑1000
k=901 Ŵ

1
r (k), which also accurately approx-

imates f 1(x) + u0, as seen in Fig. 6c. For the case of the environment j = 2,
the associated simulation results are similar and thus not included. Based
on the identification results, from Remark 3, the learning accuracy level that
is needed for the design of (24) is obtained as ε1∗

r = 0.0042, ε2∗
r = 0.0100.
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Figure 6: Learning performance of (20). (a) Convergence of NN weight Ŵ 1
r . (b) Function

approximation: Ŵ 1T
r Sr(x, u0) and f1(x)+u0. (c) Function approximation: W̄ 1T

r Sr(x, u0)
and f1(x) + u0.
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In the online recognition mode, the recognition estimators of (23) will be
constructed by utilizing W̄ jT

r Sr(x, u
0) for all j ∈ J1, and the adaptive thresh-

old of (24) and the identifier of (25) will be implemented. The associated
simulation results by following a specific environment switching sequence will
be given and discussed in the next subsection.

7.4. Real-Time Control and Recognition Performance of the Overall Archi-
tecture
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Figure 7: Real-time control performance under multiple environments. (a) Active envi-
ronments with indexes j = 1, 2, 3. (b) Operating controllers with indexes 0: QSMC of
(16); 1, 2: EBCs of (8); 3: new EBC of (10); 4: ALC of (9). (c) State tracking error:
x1 − xd1 .

To examine the effectiveness of the overall control and recognition archi-
tecture, we assume that the active environment of (1) will follow the switch-
ing sequence of: 2 (0 < k ≤ 3000) → 3 (3000 < k ≤ 9000) → 2 (9000 < k ≤
12000) → 1 (12000 < k ≤ 15000) → 3 (15000 < k), as illustrated in Fig. 7a.
We first examine the process of control and recognition when the plant (1)
operates in the unanticipated environment j = 3 for time 3000 < k ≤ 9000.
Specifically, when the active environment is switched from j = 2 to j = 3
at time kc = 3000, which is detected rapidly in one step at time kc = 3001
when the filtered tracking error |r| becomes larger than the threshold ēc of
(14) (with µ̄c = 0.05, bc = 0.6, ε∗cm = 0.0023), as shown in Fig. 8a. Then,
the QSMC of (16) and the recognition scheme of (23)–(25) (with ar = 0.2,
cr = 0.2, qr = 5, br = 0.95 and ε∗r = 0.01) are both activated at time
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Figure 8: Detection of environment transition. The active environment switching: (a)
2 → 3 occurred at time kc = 3000, detected at time kd = 3001; (b) 3 → 2 occurred at
time kc = 9000, detected at time kd = 9001; (c) 2 → 1 occurred at time kc = 12000,
detected at time kd = 12001; and (d) 1→ 3 occurred at time kc = 15000, detected at time
kd = 15001.

Figure 9: Recognition of active environment: (a) environment j = 3 for time 3000 < k ≤
9000, (b) environment j = 2 for time 9000 < k ≤ 12000, (c) environment j = 1 for time
12000 < k ≤ 15000, and (d) environment j = 3 for time k > 15000.

kd = 3001, as indicated in Fig. 7b. The real-time recognition performance
is illustrated in Fig. 9a. It is seen from first row of Fig. 9a that all resid-
uals ejr (j = 1, 2) of (23) remain no smaller than the threshold ēr of (24),
according to Theorem 5, the active environment can thus be identified as
an unanticipated environment. In this case, the online adaptive learning
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Figure 10: Tracking control performance with different methods. (a) Active environment
switching sequence: 1 (0 < k ≤ 1000) → 2 (1000 < k ≤ 2000) → 3 (2000 < k); (b) State
tracking error x1−xd1

with our method; (c) State tracking error x1−xd1
with the method

of [30]; (d) State tracking error x1 − xd1
with the method of [28].

mechanism of (25), which is activated also at time kd = 3001, completes the
associated online learning mission at time kr = 4047 when the identification
state error x̂r − x2 of (25) converges close to zero and the NN weights Ŵr

of (25) converge to steady constant values, as shown in the second and third
rows of Fig. 9a, respectively. According to Section 5.2, whenever the online
adaptive learning process of the unanticipated environment is completed, the
corresponding recognition process is completed, i.e., at time kr = 4047. As
a result, a new recognition estimator (i.e., the 3-rd estimator in the form of
(26)) can be constructed for later online recognition use; and the recognition
threshold of (24) can be updated with a new parameter ε3∗

r = 0.0115, accord-
ing to Remark 3. Based on this, the ALC of (9) (with ac = 0.6, cc = 0.1) is
activated at time kr = 4047 to replace the QSMC for active online learning
control over the time interval 4047 < k ≤ 5736, as indicated in Fig. 7b.
At time kh = 5736 when the learning process of ALC is completed (i.e.,
when the NN weights Ŵ of (9) converge to steady constant values and the
associated tracking error x− xd converges into a close vicinity of the origin,
the associated simulation results are similar to those in Figs. 3a and 4c and
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thus omitted here), a new EBC (i.e., the 3-rd EBC in the form of (10)) can
be constructed and activated immediately to replace the ALC for stabilizing
tracking control without repeating parameter adaptations over the time in-
terval 5736 < k ≤ 9001, as illustrated in Fig. 7b. When such a new EBC
is constructed, from Remark 1, the detection threshold of (14) is updated
with parameter ε∗cm = maxj=1,2,3{εj∗c } = 0.0077. The overall control perfor-
mance under the environment j = 3 (during time interval 3000 < k < 9000)
is plotted in Fig. 7c. It should be noted that once the learning process is
completed (at time kh = 5736), the environment j = 3 will become a new
“anticipated environment”, leading to J1 = {1, 2, 3}. As a result, when the
environment j = 3 recurs (for example, k > 15000 as shown in Fig. 7a), its
associated recognition estimator of (26) and EBC of (10) can be used read-
ily to achieve rapid recognition and desired tracking control performance,
respectively, without resorting to any online adaptive learning any more.
The associated simulation results are summarized in Figs. 9d and 7c (for
k > 15000).

Next, we examine the case that the plant (1) is operating under the
anticipated environment j = 2 for time 9000 < k ≤ 12000. Detection of
the occurrence of environment switching (i.e., from environment j = 3 to
environment j = 2 at kc = 9000) is achieved at time kd = 9001 when the
filtered tracking error |r| becomes larger than the threshold ēc of (14) (with
µ̄c = 0.05, bc = 0.6, ε∗cm = 0.0077), as shown in Fig. 8b. Recognition
of the new active environment j = 2 is achieved at time kr = 9041 when
the matched residual e2

r of (23) remains smaller than the threshold ēr of
(24) (with br = 0.95, qr = 5, ε∗r = 0.0115) for 15 time steps, as shown
in Fig. 9b. At time kr = 9041, the active controller is switched to the
corresponding 2-nd EBC, as indicated in Fig. 7b. The overall tracking control
performance under environment j = 2 (for time 9000 < k ≤ 12000) is plotted
in Fig. 7c. For another anticipated environment j = 1 (operating during
12000 < k ≤ 15000), the corresponding simulation results are summarized
in Figs. 7, 8c and 9c. These results demonstrate the effectiveness of our
scheme.

To verify the superiority of our framework, in the following, we will com-
pare the control performance with those obtained by using the existing meth-
ods of [30, 28]. For fair comparison, our method is developed by assuming
that all the environments j = 1, 2, 3 are anticipated, and the associated offline
training (corresponding to Sections 3.1 and 5.1) have been completed. With
the method of [30], the adaptive controller is constructed specifically accord-
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ing to [30, Eqs. (8)-(10)] with the associated design parameters λ1 = 0.2,
A = 0.2, α = 0.06. With the method of [28], the robust sliding mode con-
troller can be constructed in the form of (16). With each of these three
different types of methods, simulation studies are carried out by considering
the plant (1) operating in switching environments with the same switching
sequence of 1 (0 < k ≤ 1000) → 2 (1000 < k ≤ 2000) → 3 (2000 < k), as
shown in Fig. 10a. All simulation results are given in Fig. 10. It is seen from
Fig. 10c that when the active environment is switched from one to another
(e.g., at time instants k = 1000, k = 2000, respectively), the adaptive control
of [30] will render slow convergence and large tracking errors. In Fig. 10d,
the tracking control performance under the method of [28] is fairly satisfac-
tory; while significantly improved performance can be witnessed in Fig. 10b
with our method.

8. Conclusions

In this paper, we have proposed a novel, systematic and holistic intelli-
gent adaptive learning control framework for a class of discrete-time nonlinear
uncertain systems operating in multiple environments, which could be antic-
ipated/predefined or unanticipated/new. This framework consists of three
important components: (i) learning-based control when the system operates
under each fixed individual environment; (ii) robust QSMC when the sys-
tem operates in environment transition; and (iii) learning-based recognition
of active environments. Offline and online learning approaches are incorpo-
rated in the algorithmic design of each component, equipping the proposed
framework two important intelligence capabilities of (i) adapting to any an-
ticipated environment through knowledge re-utilization; and (ii) adapting
to unanticipated environments through active real-time acquisition of new
knowledge. Extensive simulation studies have been conducted to verify the
effectiveness and advantages of the proposed results.
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[5] D. Katić and M. Vukobratović, “Survey of intelligent control tech-
niques for humanoid robots,” Journal of Intelligent and Robotic Systems,
vol. 37, no. 2, pp. 117–141, 2003.

[6] C. Wang, Y. Li, S. S. Ge, and T. H. Lee, “Optimal critic learning for
robot control in time-varying environments,” IEEE transactions on neu-
ral networks and learning systems, vol. 26, no. 10, pp. 2301–2310, 2015.

[7] L. Rutkowski, “Adaptive probabilistic neural networks for pattern clas-
sification in time-varying environment,” IEEE transactions on neural
networks, vol. 15, no. 4, pp. 811–827, 2004.

[8] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” IEEE transactions on automatic control, vol. 42, no. 2, pp.
171–187, 1997.

[9] G. Tao, “Multivariable adaptive control: A survey,” Automatica, vol. 50,
no. 11, pp. 2737–2764, 2014.

[10] W. He, Z. Li, Y. Dong, and T. Zhao, “Design and adaptive control for an
upper limb robotic exoskeleton in presence of input saturation,” IEEE

33



Transactions on Neural Networks and Learning Systems, vol. 30, no. 1,
pp. 97–108, 2019.

[11] G. Tao, Adaptive control design and analysis. New York, NY: John
Wiley & Sons, 2003, vol. 37.

[12] W. He and Y. Dong, “Adaptive fuzzy neural network control for a con-
strained robot using impedance learning,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 4, pp. 1174–1186, 2018.

[13] K. S. Narendra and C. Xiang, “Adaptive control of discrete-time sys-
tems using multiple models,” IEEE Transactions on Automatic Control,
vol. 45, no. 9, pp. 1669–1686, 2000.

[14] J. Zhang, C. Yuan, P. Stegagno, W. Zeng, and C. Wang “Small fault
detection from discrete-time closed-loop control using fault dynamics
residuals,” Neurocomputing, vol. 365, pp. 239–248, 2019.

[15] K. S. Narendra, O. A. Driollet, M. Feiler, and K. George, “Adaptive con-
trol using multiple models, switching and tuning,” International journal
of adaptive control and signal processing, vol. 17, no. 2, pp. 87–102, 2003.

[16] C. Wang and D. J. Hill, Deterministic learning theory for identification,
recognition, and control. Boca Raton, FL: CRC Press, 2009.

[17] K.-S. Fu, “Learning control systems-review and outlook,” IEEE trans-
actions on pattern analysis and machine intelligence, no. 3, pp. 327–342,
1986.

[18] C. Yuan and C. Wang, “Persistency of excitation and performance of
deterministic learning,” Systems & Control Letters, vol. 60, no. 12, pp.
952–959, 2011.

[19] J. Zhang, C. Yuan, W. Cong, P. Stegagno, and W. Zeng, “Composite
adaptive nn learning and control for discrete-time nonlinear uncertain
systems in normal form,” Neurocomputing, vol. 390, pp. 168–184, 2020.

[20] J. Zhang, C. Yuan, P. Stegagno, H. He, and C. Wang, “Small fault detec-
tion of discrete-time nonlinear uncertain systems,” IEEE Transactions
on Cybernetics, 2019, doi: 10.1109/TCYB.2019.2945629.

34



[21] T. Chen, C. Wang, and D. J. Hill, “Rapid oscillation fault detection
and isolation for distributed systems via deterministic learning,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 6,
pp. 1187–1199, 2013.

[22] F. Yang and C. Wang, “Pattern-based nn control of a class of uncertain
nonlinear systems,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 4, pp. 1108–1119, 2017.

[23] F. Zhang, C. Wang, and F. Yang, “Pattern-based nn control for uncer-
tain pure-feedback nonlinear systems,” Journal of the Franklin Institute,
vol. 356, no. 5, pp. 2530–2558, 2019.

[24] J. Zhang, C. Yuan, and P. Stegagno, “A novel intelligent learning con-
trol scheme for discrete-time nonlinear uncertain systems in multiple
environments,” Proceedings of the ASME Dynamic Systems and Con-
trol Conference, Pittsburgh, Pennsylvania, 2020, Oct. 4-7.

[25] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural computation, vol. 3, no. 2, pp. 246–257,
1991.

[26] M. POEWELL, The Theory of Radial Basis Function Approximation.
Oxford, U.K.: Clarendon Press, 1992.

[27] J. Zhang, Q. Gao, C. Yuan, W. Zeng, S.-L. Dai, and C. Wang, “Similar
fault isolation of discrete-time nonlinear uncertain systems: An adaptive
threshold based approach,” IEEE Access, vol. 8, pp. 80 755–80 770, 2020.

[28] D. Munoz and D. Sbarbaro, “An adaptive sliding-mode controller for
discrete nonlinear systems,” IEEE transactions on industrial electronics,
vol. 47, no. 3, pp. 574–581, 2000.

[29] W. Chen, S. Hua and S.S. Ge, “Consensus-based distributed cooperative
learning control for a group of discrete-time nonlinear multi-agent sys-
tems using neural networks,” Automatica, vol. 50, no. 9, pp. 2254–2268,
2013.

[30] T. Chen and C. Wang, “Learning from neural control for a class of
discrete-time nonlinear systems,” Proceedings of the 48h IEEE Confer-
ence on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pp. 6732–6737, 2009.

35


	Introduction
	Preliminaries and Problem Formulation
	Radial Basis Function Neural Networks (RBF NNs)
	Problem Formulation

	Learning Control Under Individual Environment
	Offline Learning Mode
	Online Learning Control Mode

	Quasi-Sliding-Mode Control for Stable Environment Transition
	Learning-Based Recognition of Active Environment
	Offline Training Mode
	Online Recognition Mode

	The Overall Architecture
	Anticipated Environment Case
	Unanticipated Environment Case

	Simulation Studies
	Performance of Learning and Control Under Individual Environment
	Performance of the QSMC for Stable Environment Transition
	Performance of Adaptive Learning for Recognition of Active Environment
	Real-Time Control and Recognition Performance of the Overall Architecture

	Conclusions

