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Abstract

We propose a model for memory-based movement of an individual. The
dynamics are modeled by a stochastic differential equation, coupled with an
eikonal equation, whose potential depends on the individual’s memory and
perception. Under a simple periodic environment, we discover that both
long and short-term memory with appropriate time scales are essential for
producing expected periodic migrations.
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1. Introduction

The interaction between dynamic landscapes and animal movements has
been an important research topic in biology, particularly with regard to the
process of migration. For instance, insufficient spatio-temporal change in
the distribution of resources may ’short-circuit’ migration in some seasons5

[1]. In other cases, the age structure of an animal population can create
new migratory patterns in response to environmental changes [2]. From
theoretical work, we know that gathering of nonlocal information is beneficial
for resource uptake in dynamic landscapes [3].

Among the long list of factors that one could consider as a variable in10

this rich topic, the effects of spatial memory on animal movements in dy-
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namic landscapes has attracted considerable recent attention. Many works
have demonstrated the essential role of memory in animal migration patterns
[4, 5, 6]. A variety of models have been proposed to explore this memory
effect, some of which have been quite complex [7, 8]. Memory and envi-15

ronmental persistence are both clearly connected with migratory movement
[9]. However, even with abundant existing results, the underlying memory
mechanism and its relation with animal movement remain unclear.

The goal of this work is to obtain a better understanding of the effects
of memory on animal migration patterns. For this purpose, we propose a20

memory-driven movement model at an individual level. Our model consists
of a stochastic transport equation, the evolution equations for memory and
fitness, and an eikonal equation with a potential depending on the animal’s
perception and memory. Our model explicitly describes a wide range of dif-
ferent memory mechanisms, and the corresponding migration patterns can be25

directly observed by numerical simulations. However, it should be pointed
out that the interactions between individuals have not been considered in
this work, and hence our model cannot be regarded as a mean-field approxi-
mation.

Migration patterns have long been known to follow seasonal changes in30

the environment and it is natural to expect that such periodic changes in the
environment are the main factor contributing to such migrations [1, 10]. We
thus test our model under a simple, idealized time-periodic environment to
investigate memory effects on the migration patterns.

The use of the eikonal equation was inspired by the Hughes model for35

pedestrians [11, 12]. There are many works in the Hughes model from both
analytical [13, 14] and numerical aspects [15, 16]. The Hughes model con-
tains a conservation law for pedestrian flow, and an eikonal equation with a
potential depending on the density of pedestrians. In our case, the potential
of the eikonal equation depends on the animal’s memory and perception.40

The article [17] combined both the conservation law of pedestrians and an
eikonal equation with memory to discuss the memory effect for pedestrian
flows.

One advantage of using the eikonal equation is that it provides a nat-
ural interpretation for an animal’s decision-making process under the con-45

text of optimal control theory. This view of optimal individual-level move-
ment strategies complements mathematical theory on optimal population-
level movement that has sought to identify the best movement strategies
for different resource landscapes in an evolutionary context using invasibil-
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ity criteria (e.g., [18, 19]). As an optimal control problem at the individual50

level, an animal’s migratory journey consists of a series of movements in
which the animal relocates to the region with the best resources by choosing
an optimal path that minimizes a certain cost function. The cost function
therefore offers an easy way of introducing environmentally based preferences
in the individual’s movement. A similar concept of utilizing a cost function55

for memory-based movements can also be seen in [20]. Another advantage of
the eikonal equation is that efficient algorithms are available; see for example
[21, 22, 23]. These algorithms help accelerate our computations and make
our numerical simulations much less expensive.

This paper is organized as follows. The mathematical model is introduced60

in Section 2. Its application to the migration behaviors under a periodic
environment is in Section 3. After the numerical simulations, we shall discuss
the model components and the time scales of memory in Section 4. Several
examples of simulations under more complicated environments are provided
in Section 5. Finally, we conclude our findings in Section 6.65

2. Mathematical model

2.1. Overview of the model

For this section we shall construct a model for an individual’s movement,
which depends on its health status, the local environment conditions, and
its memory for the global environment. The dynamics follow the following70

assumptions:

• The animal tries to move to, or stay in, the places with the most
resources that it remembers.

• An animal’s desire to move depends on its fitness and the condition of
the animal’s current location. We assume one would be less likely to75

move if it is in good health, or its surrounding is full of resources.

• The movement has a small stochastic effect for the explorations for the
local environment.

The dynamics are recorded by the individual’s position X(t) for time
t ∈ R+. The first two important factors that affect our dynamics are the
individual’s fitness and the environment condition. We consider the fitness
P (t), and the environment E(t, x) on R+×Rn. The value of E(t, x) indicates
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the condition of environment at time t and location x. The larger the value
is, the more resources (or fewer predators) are available for the individual.
P is therefore evolving according to the condition of local environment,

dP

dt
= E(t,X(t))(P − P (t)),

where P > 0 is the optimal fitness, which quantifies the maximal strength
that the individual possesses and is an intrinsic quality of the individual. The80

description for P and E in our model are simplified. As our main interest for
this model is the effect of memory on movement, we only keep those parts
necessary to our focus.

We model the dynamics with the above hypotheses by the following
stochastic differential equation:

dX = σdWt + χ(P (t), E(t, x))v dt,

where σ > 0, Wt is the Brownian motion, and χ(P,E) := (P−P )e−E is called
the desire function, which modifies the magnitude of velocity. Consistent85

with our second assumption of the dynamics, the value of χ is close to 0
when P is close to P , or when E is large.

The velocity v would be chosen according to the information in memory
and perception. We shall introduce our model for memory and perception in
Section 2.2, and clarify the choice of velocity in Section 2.3.90

2.2. Mechanism of memory

While a memory mechanism could be quite complicated (e.g. [7]), here we
extract only some basic features that we consider important for our purpose.
The assumptions are as follows.

• A memory system consists of multiple channels of memory.95

• Each channel of memory fades over time with a rate depending on the
intensity of the memory. The stronger the memory intensity is, the
slower it would be forgotten. The weaker, the faster.

• Each channel is updated independently over time with new information
gathered by the individual within its perception range.100

We assume all memory channels operate on the same principle but with
different decay and update rates. We first clarify the evolution of each chan-
nel, and finish this subsection with a description of a whole memory system.
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2.2.1. Evolution of one memory channel.

One memory channel is modeled by a memory function M(t, x) on R+×105

Rn. The value reflects how the individual remembers the situation of envi-
ronment at time t and point x.

The evolution of memory contains two terms, one is losing information,
another is gaining. Each channel is characterized by two positive indices, the
decay rate d and update rate u. We assume the two rates are in the same110

order, otherwise the channel would fail to capture information correctly over
time.

What the second assumption above suggests is a nonlinear term for the
fading memory. For the desired behavior we choose the function−sgn(M)

√
|M |.

(In fact every function in the form −sgn(M)|M |s, 0 < s < 1 will do.)115

−sgn(M) guarantees positive memory decays and negative memory increases.
Comparing to the linear function M , which has its slope identically 1, the

function
√
|M | possesses the characteristic that when |M | is large, its slope

is smaller than 1, while when |M | is small, it is larger than 1. This matches
our description that when the intensity of memory |M | is large, the change120

of the forgetting rate is slower than when the strength is small. Moreover,
another feature of using −sgn(M)

√
|M |, is any memory with finite intensity

shall return to zero within finite time.
The memory update is assumed to depend on the individual’s perception

of the actual environment. To introduce this factor, we define a perceptual125

kernel K(x, y) = k(|x − y|), where k is a positive function on R, decreases
to zero within a finite distance, and with maximum 1. The magnitude of
K(x, y) represents the percentage of information for E(x, t) that an animal
can gather when standing at location y.

Combining the above discussion, the evolution of M is governed by the
following equation:

∂tM(t, x) = τ−1
[
−d · sgn(M)

»
|M |+ u ·K(X(t), x)(E(t, x)−M(t, x))

]
,

(1)
where τ is the time scale of this channel. The introduction of τ is for conve-130

nience for later discussion when multiple channels are present.
The perception can also be included in our definition as one memory

channel, simply by taking its time scale close to zero. Indeed, when τ tends
to zero, the memory is forgotten and updated almost immediately. In this
case, the corresponding memory function works just like visual perception,135

which receives instant information for nearby landscapes, but with almost no
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persistence. As a result, this channel attains almost the same value as the
environment function within its perceptual range.

2.2.2. Description of a memory system

We call a collection of independent memory channels a memory system.
Assume we have m channels, Mi(t, x) where i = 1, ...,m. Each channel is
tagged with a decay rate di, an update rate ui, a time scale τi and a perceptual
kernel Ki. And each Mi is governed by the following evolution equation:

∂tMi(t, x) = τ−1
i

[
−di · sgn(Mi)

»
|Mi|+ ui ·Ki(X(t), x)(E(t, x)−Mi(t, x))

]
,

(2)
for i = 1, 2, ...,m.140

2.3. Choice of velocity and optimal control

An animals’ decision-making is modeled in the context of optimal con-
trol theory, with a cost function depending on the memory and perception
of its environment. Precisely, we consider the Hamilton-Jacobian-Bellman
equation:

∂tψ =
|∇xψ|2

2λ
− exp(−H(t, x)), (3)

where λ > 0 is a fixed parameter, and H(t, x) =
∑m

i=1wi(t,X(t), x)Mi(t, x),
with weight functions wi with (

∑m
i=1wi)(t, y, x) ≡ 1, for all t, x, y. The value

of H(t, x) represents how an individual evaluates the location x at time t,
using the information it gathered and stored in its memory system. The145

protocol for environment assessment is encoded in the weight functions.
A classical argument in optimal control theory [24] shows that the solution

ψ in (3) is the value realizing the minimum over of every route x(s), starting
from x at time s = t to s = T by the value function:

ψ(t, x) = inf
x(s),x(t)=x

C({x(s), T}), (4)

where

C({x(s), T}) =

∫ T

t

ï
exp(−H(s,x(s))) +

λ

2
|x′(s)|2

ò
ds,

with a fixed time horizon T > 0. The cost functional consists of the evalua-
tion of environment and the kinetic energy, which penalizes high speed. For
completeness, the derivation from (4) to (3) assuming ψ ∈ C1 can be found
in Appendix A.150
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As our setting does not carry a specific finite time horizon, we take time
horizon T to infinity. This leads us from (3) to the eikonal equation:

|∇xψ|2

2λ
= exp(−H(t, x)). (5)

We assume that the individual would choose to move along the path
that minimizes the cost function. The velocity of our choice is therefore the
gradient of ψ:

v = −λ−1∇xψ,

where ψ solves (5).

3. Migration behaviors under periodic environments

We shall now simulate our general model under a simple periodic envi-
ronment with two types of evaluation functions H. Our goal is to see which
settings allow the animal to successfully follow resources and generate a pe-155

riodic migration pattern.

3.1. Simple time-periodic environment

We assume there are two potential habitats, modeled by two disjoint
circular regions A and B; see Figure 1. The region with positive values of E
(good resources area) is alternating between A and B with a fixed duration T .
E is assumed uniformly negative (poor resources area) outside the one region
with positive values. For our interest in memory effect, we also assume A
and B are far enough from each other so that the individual cannot observe
the environmental condition of the other region when it locates inside one.
That is, we assume

d(A,B) = inf {|x− y| : x ∈ A, y ∈ B}
> sup {|x− y| : x, y ∈ supp(K)} ,

where K is the perceptual kernel. Note that there can be multiple points
inside A and B, which provides us an option to model environments with
finer resolutions. Nevertheless, it is assumed for now that each patch has a160

uniform environmental condition in this simple setting.

7



A B

Figure 1: Time-periodic Setting: The location of the good resources alternates between A
and B with duration T .

3.2. Two simple memory models

3.2.1. Memory model I: One single memory channel.

We first consider a memory system with only one memory channel M,
with H in the following form:

H = KE +M, (6)

where K is a perceptual kernel. This form means when a place x is close to
where the individual stands, the evaluation mainly depends on what it sees.165

For distant places, it depends mainly on memory.
To encourage the first migration from A to B, we initiated the memory

function M with positive values in both A and B, and zero otherwise. We
also set the decay rate d small and update rate u large. While memory model
I appears reasonable, it cannot produce a periodic migration pattern under170

the simple periodic environment as one expected, see Figure 2.
After the individual’s first return for A, the value of M was updated

negative in both A and B. The individual thus explores the other places
that haven’t been visited before, instead of returning to A or B.
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Figure 2: Trajectory for memory model I. The blue dashed line represents the trajectory
and the red dot is the location of the individual at the end of the experiment. In this case,
the individual was not able to repeat the migratory process because its memory structure
was mismatched to the dynamics of the resource landscape.

3.2.2. Memory model II: Long and short-term memory.175

Because memory model I is too simple to produce a periodic movement
in a periodic environment, we increase the complexity and introduce the
concept of short-term memory.

Memory model II contains two memory channels, including the long-term
memory M`(t, x) and short-term memory Ms(t, x). We assume Ms has larger180

decay and update rates than M`, so that it takes longer time to update and
forget for information in M`, while Ms responds to changes quickly, and fades
easily.

In this model, we define H as:

H(t, x) = Ms +M`. (7)

With (7), the individual makes a decision depending more on its local en-
vironment when it is in an extreme condition. Otherwise, it tends to rely185

more on the long-term memory. The following experiment shows a successful
result.

Under the same simple periodic environment, memory model II success-
fully produced the desired migration patterns, see Figure 3. Observe that the
individual will leave an exhausted region after a bit of explorations because190

of Ms, and return to A or B according to M`.
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Figure 3: Trajectory for memory model II. In this case, a periodic migration pattern is
successfully produced.

4. Discussion

4.1. Remarks on model components

Our main model components include the position, memory, and fitness.
The eikonal equation is also important as a policy that utilizes the informa-195

tion in memory to make travel decisions. To investigate memory effects on
animal migrations, the position and memory are indispensable in our model.

The fitness P has two roles in this work. It not only provides a universal
measurement for different experiments, but also becomes an index to indicate
when an animal would have the desire to move. Recall that we assume an200

animal would not want to move when the value of P is large.
Note that one could easily increase the complexity of memory and fitness

models, by adding more assumptions or even introducing more functions to
describe them. Here we intended to keep our model as simple as possible,
and only considered essential features.205

The eikonal equation, on the other hand, can be replaced by any other
reasonable policy. Even though it is not the only option, the existence of
efficient algorithms for the eikonal equation accelerates the numerical simu-
lations. This advantage makes the eikonal equation a practical choice for us
here.210
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4.2. Cognitive capacity of our memory model

Our memory model can be utilized to simulate a wide range of cognitive
capacity, owing to its flexibility in the number of memory channels. Each
channel can be considered as a single cognitive map that stores certain spatial215

information in the individual’s memory. It has been agreed among biologists
that cognitive maps are at least parts of the memory mechanism that numer-
ous taxa utilize for different types of movement. For instance, it is employed
to record the flower locations for the trapline nectaring of bees [25] and hum-
mingbirds [26]. For the case with at least two channels, long and short-term220

memory can be imitated. From a biological perspective, long and short-term
memory are believed to be relied on by diverse species (including inverte-
brates and vertebrates) for seasonal or long-distance migration [27]. More
examples of memory-aided movement and its corresponding mechanism can
be found in [10].225

4.3. Comparison between memory model I and II: Time scales of memory
channels

Both memory model I and II have two memory channels but with dif-
ferent time scales. In fact, the perception in memory model I can be seen
as a channel with its scale close to zero. This observation combining with230

the experimental outcomes in Section 3.2, shows that the time scales play
a decisive role on whether periodic dynamics can be produced. We shall
demonstrate the relation between time scales and dynamic patterns with
simulation results.

Consider 0 < τ2 < τ1, where τ1 is the time scale for the long-term memory,235

and τ2 for the short-term. We again perform experiments with the same
environment introduced in Section 3.1, and initiate M` with positive value
in both A and B. Figure 4 shows the simulation results for time scales in
different orders.
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Figure 4: This graph shows the outcomes for several combinations of time scales. The
different symbols correspond to different qualitative outcomes, whereas the color bar on
the right hand side indicates the time step at which the periodic dynamic breaks.

We see from Figure 4 that there are roughly three different issues that240

could prevent us from having periodic dynamics:

1. The individual does not return to habitats if τ1 is not large
enough.
The larger τ1 is, the more enduring the long-term memory would be.
With a rather small τ1, the individual would lose a positive long-term245

memory of both habitats A and B relatively quickly. Hence the in-
dividual ends up wandering around, instead of returning to A or B
directly. See Figure 5 as an example.
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Figure 5: Trajectory when τ1 ∼ τ2 ∼ 0.1. In this case the animal does not return to A
directly after visiting B.

2. The individual does not leave an exhausted habitat, if τ2 is
not small enough.250

The smaller τ2 is, the faster the short-term memory is updated. If the
short-term memory is not updated fast enough, the individual cannot
respond to the environmental change rapidly. Therefore, in this case
the individual never leaves its current habitat; see for example Figure
6.255
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Figure 6: Trajectory when τ1 ∼ τ2 ∼ 10. The individual never leaves A because of the
large τ2.
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3. The individual could have an early return and never reach
the other habitat, when τ2 is too small while τ1 is large.

We mentioned in the second case that τ2 needs to be small enough
for the fast update of short-term memory, but there is also a lower
bound for τ2. The purpose of this lower bound is to make sure that the260

short-term memory has a high enough strength, so that the individual
remembers the previous habitat is exhausted at least until it moves
past the middle point of A and B. Otherwise, an early return could
happen and the migration would not be successful.

See Figure 7 as an example. The individual starts to leave A when265

the resources in A become exhausted, but the individual forgets that
A lacks of resources before it moves past the middle point of its jour-
ney. Because the individual has a positive long-term memory of both
habitats and it is closer to A, the individual chooses to return before
reaching B.270
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Figure 7: Trajectory when τ1 ∼ 100, τ2 ∼ 0.01. Because of the small τ2 the information
of Ms has been lost before the individual moves past the middle point of A and B. Hence
the return to A happens early and the individual never reaches B.
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5. Examples of Further Experiments

Beyond the simple time-periodic environment introduced in Section 3.1,
several different environments could also be tested for further experiments.
Four examples are given in the following:

• Three Habitats. Our model was tested under a time-periodic envi-275

ronment with three habitats A, B and C. With the appropriate time
scales of long and short-term memory, a periodic dynamic in this envi-
ronment can also be recovered; see Figure 8.

• Changing habitats. Here we again have two habitats A and B, but
with A shrinking and B growing. At the end of the experiment, the280

region A disappears entirely. See Figure 9 for an example of resulting
trajectory of this experiment.

• Intermediate Habitats/Dangerous Locations. In this example,
dangerous areas in the middle of A and B and two intermediate habi-
tats above the dangerous regions were added; see Figure 10. Our sim-285

ulation shows that the dangerous regions are always avoided and the
intermediate habitats are good enough to retain the migrants. This
type of phenomena has been observed in nature; see for example the
article [2].

0 0.5 1 1.5 2

x

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

Three Habitats: trajectory at time step: 531
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Figure 8: Here we have periodic dynamics, but the migration dynamics and environmental
change do not have the same period. This result can be observed from the animation:
https://github.com/hsinyilin19/memory_model/blob/master/habi3_movie.gif
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Figure 9: This is a result with an relatively small τ1. The trajectory shows that the
individual does not return to the area of A after the disappearance of that habitat. The
animation can be found in: https://github.com/hsinyilin19/memory_model/blob/

master/change_movie.gif
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Figure 10: We see from the trajectory that the individual always avoids the danger-
ous areas, and sometimes chooses to reside in the intermediate habitats over A and
B. Those intermediate habitats could retain the migrants. An example of simula-
tion can be found in: https://github.com/hsinyilin19/memory_model/blob/master/
intermediate_movie.gif
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• Two Habitats with Random Seasonal Changes. In this example,290

it is again assumed that the good habitat alternates between A and B.
But different from before, each duration that resources stay in A or B
is a random variable. The random variable is positive and uniformly
distributed with the mean T and variance σ2.

We say the individual succeeds one journey, if it reaches one habitat295

from the other before the destination becomes exhausted. If the lo-
cation of good resources changes n times across an experiment, it is
considered there are totally n possible journeys.

In our experiments the time scales of long and short-term memory are
fixed, and T is chosen such that the individual can succeed all possible300

journeys when the environment is time-periodic with T as the fixed
duration for both habitats.

Recall from Section 4.3, we showed there is only a small region of appro-
priate time scales that the individual can successfully produce periodic
dynamics under a time-periodic environment. When the duration of305

resources changes, the appropriate time scales change accordingly. The
appropriate time scales should be smaller for a shorter duration, while
larger when the duration is longer.

Now the duration of resources staying in one habitat is random each
time, the appropriate time scales for each possible journey can be dif-310

ferent. Every time our prior fixed time scales locate outside of the
appropriate region corresponding to a certain duration in the experi-
ment, the corresponding possible journey fails. For instance, if one of
the duration of resources is really short, the individual could miss the
corresponding possible journey because the fixed τ2 is not small enough315

to respond to the fast environmental change, (which is the second case
discussed in Section 4.3).

Therefore, the larger the variance in environmental duration is, the
more likely that migratory journeys will fail. To visualize this ten-
dency, we ran a series of experiments. All experiments have a total of320

10 possible journeys and the time scales are fixed (τ1 ∼ 10, τ2 ∼ 0.1). T
is set at 60 time steps, such that all 10 possible journeys are successful
when there is no variance. A small (σ2 ∼ 10), moderate (σ2 ∼ 100)
and large variance (σ2 ∼ 1000) case are then considered. We run 10
trials for each case. There are on average 9.5 successful journeys for325
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the small variance case, 7.7 for moderate variance, and only 3.3 for
large variance; see Figure 11. Roughly speaking, it becomes harder for
the individual to follow the resources when the variance in the resource
duration is increased. From this point of view, environmental per-
sistence is very important for a memory-based migration to have a330

periodic pattern.
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Figure 11: This chart indicates how many journeys on average the individual succeeds
for the entire experiment time. A tendency is shown from this chart that the larger the
variance in environmental duration is, the less successful journeys the individual has.

6. Conclusion

In this paper we develop a model for memory-based migrations of one
individual over a broad range of memory mechanisms. Through numerical
simulations under a simple time-periodic environment, periodic migration335

patterns are successfully recovered. Furthermore, we discover that in order to
produce a periodic movement, the individual must be able to gather and carry
enough information from both short and long-term memory, and capable of
discriminating which information is more important with appropriate time
scales.340

While periodic movements can be recovered, the memory systems in our
model do not include any intrinsic, a priori periodicity. The resulting peri-
odic migration patterns are developed by the individual as its adaptation to
periodic environmental changes.

A memory model with spatio-temporal information that leads to avoid-345

ance of recently visited locations can be used to discuss the efficiency of
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resource detection [8], and can even give rise to territoriality [28]. Our model
can simulate a similar avoidance process by initiating a memory channel
to record the last visited region, with the length of avoidance time as its
timescale. With the ability to model avoidance from memory, our model350

renders a general framework for memory effects in applications such as ter-
ritoriality, foraging, and home residency.

Here we have considered the dynamics of one individual. For future re-
search, it would be interesting to extend this memory-based model to a model
for multiple individuals. Information sharing behaviors have been observed355

in many different species and shown beneficial for foraging efficiency [29].
For a future extension, the spatial memory of the individual will be regarded
as a type of information that can be exchanged among individuals within
a population. In this way, memory could be not only updated by percep-
tion, but also affected by the memory of another individual. Consequently,360

the interplay between information exchanges, individual memory, and group
dynamics can be further explored.
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Appendix A. Derivation of Hamilton-Jacobian-Bellman equation

Proposition 1. Assume the value function ψ is C1 in (x, t), then ψ solves

∂tψ = sup
p

ß
−p · ∇xψ − exp(−H)− λ

2
|p|2
™
.

Moreover, the optimal trajectory is the one starting with velocity −λ−1∇xψ,
in which case gives the Hamilton-Jacobian-Bellman equation

∂tψ =
|∇xψ|2

2λ
− exp(−H(t, x)).

Proof. For a h > 0, for any vector p, we consider the line segment `(s) =
x + p(s − t) from s = t to s = t + h. Connecting ` and any path x(s) from
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the point x + ph at time s = t + h to s = T , we get a path x̃ starting from
x at time s = t and end at time s = T. By the definition of ψ,

ψ(t, x) ≤ inf
p,x̃
C(x̃) =

∫ t+h

t

ï
exp(−H(s, `(s))) +

λ

2
|p|2
ò
ds+ ψ(t+ h, x+ ph)

So

ψ(t+ h, x+ ph)− ψ(t, x)

h
≥ −1

h

∫ t+h

t

ï
exp(−H(s, `(s))) +

λ

2
|p|2
ò

Taking h→ 0, we derive

∂tψ ≥ −p · ∇xψ − exp(−H(t, x))− λ

2
|p|2.

This inequality holds for every p, hence

inf
p

ß
∂tψ + p · ∇xψ + exp(−H(t, x)) +

λ

2
|p|2
™
≥ 0.

In fact the equality holds as zero is realized when p is chosen as the
velocity of the optimal trajectory at s = t. Let xop be the optimal trajectory
from s = t to t+ h, then

ψ(t, x) =

∫ t+h

t

ï
exp(−H(s,xop(s))) +

λ

2
|x′op|2

ò
ds+ ψ(t+ h,xop(t+ h)).

So

ψ(t+ h,xop(t+ h))− ψ(t, x)

h
= −1

h

∫ t+h

t

ï
exp(−H(s,xop(s))) +

λ

2
|x′op|2

ò
ds

Taking h→ 0,

∂tψ(t, x) = −x′op · ∇xψ − exp(−H(t, x))− λ

2
|x′op|2,

for some vector x′op.
We rewrite

inf
p

ß
∂tψ + p · ∇xψ + exp(−H(t, x)) +

λ

2
|p|2
™

= 0
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as

∂tψ = sup
p

ß
−p · ∇xψ − exp(−H(t, x))− λ

2
|p|2
™
.

Notice inside the parentheses is a quadratic form in p,

∂tψ = sup
p

ß
−p · ∇xψ − exp(−H(t, x))− λ

2
|p|2
™

= sup
p

®
−λ

2

Å
p+
∇xψ

λ

ã2

+
|∇xψ|2

2λ
− exp(−H(t, x))

´
=
|∇xψ|2

2λ
− exp(−H(t, x)),

which is realized when p = −λ−1∇xψ.

Appendix B. Implementation details for memory model II370

Consider Ω = [0, 1]×[0, 1] and the final time T > 0.We discretize [0, T ]×Ω
uniformly for Nt ×N2 increments.

1. Update the fitness P with the implicit scheme if E is positive and
explicit if negative:

P (tk+1) =

{
P (tk)+E(tk,X(tk),Y (tk))P∆t

1+E(tk,X(tk),Y (tk))∆t

P (tk) + E(tk, X(tk), Y (tk))(P − P (tk))∆t.

Stop if P (tk) ≤ P .

2. Update the memory functions M`, Ms:

M`(tk+1, xi, yj) = M`(tk, xi, yj)+

∆t τ
{
−d
»
|M`(tk, xi, yj)||M`(tk, xi, yj)|+ Perception

}
,

where Perception = uK(X(tk), Y (tk), xi, yj)[E(tk, xi, yj)−M`(tk, xi, yj)].

If M` changes sign, M` is updated zero. Ms is updated similarly.375

3. Update H:

H(tk+1, xi, yj) = Ms(tk, xi, yj) +M`(tk, xi, yj).
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4. Solve the eikonal equation |∇xψ
b| =

√
2λexp(−H) with boundaries

{x : H(x) = b} for infΩ(H) ≤ b ≤ supΩ(H). Then take ψ = ψb0 where
b0 minimizes the total cost cψb(X, Y ) + exp(−b), with the penalty co-
efficient c for moving around. exp(−b) is the exit cost imposed on the
boundary.380

5. Update the position (X, Y ):

∆X =


[ψ(tk, xi+1, yj)− ψ(tk, xi−1, yj)] /(2∆x) if 1

N
< X < 1− 1

N

−ψ(tk, x1, yj)/(2∆x) if 0 ≤ X ≤ 1
N

ψ(tk, xN−1, yj)/(2∆x) if 1
N
≤ X ≤ 1.

∆Y is defined similarly. Let (rx, ry) be the normal distribution with
zero mean and variance σ2 in 2d. Then take®

X(tk+1) = X(tk)− χ(P, (E(t,X(tk), Y (tk))))∆X∆t+ rx
√

∆t

Y (tk+1) = Y (tk)− χ(P, (E(t,X(tk), Y (tk))))∆Y∆t+ ry
√

∆t.

Repeat this procedure until t = T.

We conclude this section with two remarks as follows: First, because
sgn(M)

√
|M | is not smooth and the finite difference method is unstable

near zero, whenever M changes sign, we put it as zero at the new step.
Second, to contain the experiment inside a bounded domain Ω for all385

time, we solve the eikonal equation for multiple level sets inside Ω, instead
of ∂Ω, and choose the path with the smallest cost. Otherwise the dynamics
will eventually escape as the cost of moving around forever will eventually
become larger than one fixed exit cost.
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