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Abstract

Analyzing massive code bases is a staple of modern software engineering research – a welcome

side-effect of the advent of large-scale software repositories such as GitHub. Selecting which projects

one should analyze is a labor-intensive process, and a process that can lead to biased results if

the selection is not representative of the population of interest. One issue faced by researchers is

that the interface exposed by software repositories only allows the most basic of queries. CodeDJ is

an infrastructure for querying repositories composed of a persistent datastore, constantly updated

with data acquired from GitHub, and an in-memory database with a Rust query interface. CodeDJ

supports reproducibility, historical queries are answered deterministically using past states of the

datastore; thus researchers can reproduce published results. To illustrate the benefits of CodeDJ, we

identify biases in the data of a published study and, by repeating the analysis with new data, we

demonstrate that the study’s conclusions were sensitive to the choice of projects.
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1 Introduction

With over 190 million public projects, GitHub is our largest source of empirical data about

how software is developed. It is a treasure trove that must be mined if we want to distill

insights from its contents. Manual inspection is limited to small-scale case studies; even

automated analysis tools struggle with the sheer amount of data available. The software

engineering community has taken up this challenge, researchers examine increasingly larger

numbers of projects in order to test hypotheses and derive knowledge about the software

development process. Examples of such studies include investigations of testing practices [12],

changes to licensing over time [18], popularity trends [4] and configuration settings [17].

These works use samples of GitHub ranging from 15K to 100K projects filtered to exclude

projects considered as lacking in size, popularity, originality or importance.

For any scientific study of software, selecting the projects that make up the input of

that study is fraught with risks. Any given choice can introduce unwanted and sometimes

undetected bias. This bias may, in turn, taint the conclusions of the work. Much like the

task of polling voters before an election, choosing a subset of a larger population must be

1 These authors contributed equally.
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done carefully. In polls, the goal is to ensure appropriate representation of likely voters. The

chosen subset excludes citizens who are either not eligible or unlikely to vote, and balances

the various population groups. At the same time, for reasons of cost and practicality, the

size of this subset is kept as small as possible. Even when pollsters are careful, the accuracy

of predictions varies. In software engineering, we often look for some properties of “real”

code – where our definition of the term is sensitive to context and research goals. One may

exclude course assignments because the errors made by beginners are not relevant to deployed

software; on the other hand, if our goal is to shine a light on acquisition of programming

skills, then that kind of code may be exactly what is needed. Picking the right set of inputs

is thus the first challenge any researcher in the field must address.

With software, Nagappan et al. warned us that more is not always better [14]. Their

observations hold now more so than back in 2013 as anyone can create a GitHub repository

at no cost and house almost anything there. Manual inspection found that 37% of hosted

projects are not used for software development [11]. Thus, the quality of data gathered from

software repositories should always be questioned. A stark illustration why skepticism is in

order comes from the finding that ten common source corpora have up to 68% of bit-for-bit

identical file duplicates [1]. Furthermore, the same paper showed that clones impacted

the accuracy of results obtained with these corpora. We argue that more is worse: as the

number of projects to scrutinize grows, it becomes harder to check whether their data is

clean, consistent and well-formed. Consider the case of text files accidentally misidentified

as code [15], an error that went unnoticed for three years and was “fixed” by partially

invalidating the original paper’s conclusions [2]. As a result of this state of affairs, researchers

spend significant effort collecting and curating meaningful suites of open source projects.

Unfortunately, manual curation can not track the constantly changing software landscape.

In this paper, we aim to address a seemingly simple yet eminently practical question,

how does one find software projects in large-scale software repositories? The assumption

underlying our work, our hypothesis, is that it is possible to select thousands of projects

from millions by formulating queries on attributes found in the projects’ metadata and on

easily computed properties of their source code. To be concrete about the kinds of queries

we envision, consider looking for the one hundred most popular projects predominantly

written in Java, developed in the five years before the introduction of Lambdas by at least

two developers with five years of experience. Furthermore, let’s ensure that the selected

projects have no more than 5% duplicate files between each other. While the search interface

provided by software repositories may allow to query for projects by language, there is no

way to compute this query automatically without retrieving all projects.

This paper reports on the status of CodeDJ, an infrastructure for querying large-scale

software repositories. In its current incarnation our system is geared towards processing

data from any git-based software repository. For our experiments, we specifically target

GitHub. The three main engineering challenges we contend with are the sheer size of the

data source, the constant updates to its data, and the narrow, rate-limited, interface for

accessing projects. In addition, a key design requirement is reproducibility; not only should

queries execute deterministically, but the infrastructure should be able to replay a historical

query with identical results. Thus, researchers may take any query from the literature, even

years after it was originally run and its output was used in a publication, and match its

results. Furthermore, researchers should be able to modify a historical query and run it

based on the information available at any point in the past.
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To address these challenges and requirements, CodeDJ is architected in two distinct

subsystems. Interaction with the data source is mediated by Parasite, a time-indexed

datastore that automatically and continuously queries GitHub for data about projects.

Parasite is responsible for data acquisition and keeping that data up-to-date over time. Every

datum is logically time-stamped to enable reproducibility. To ensure that CodeDJ can scale,

Parasite can be split up into multiple distinct substores based on the projects’ main language.

The second subsystem, an in-memory database named Djanco handles user-written queries.

For each query, Djanco determines the portion of the datastore that is required, loads the

data, and executes the query. Queries evaluate with project metadata in memory while source

code remains on disk. The query syntax is based on data frame manipulation interfaces,

such as dplyr [19], popular in data science and is expressed in Rust. We claim the following

contributions:

The design of CodeDJ, a scalable infrastructure for querying large-scale software repositories

that supports reproducibility and continuously updated data sources.

A prototype implementation Parasite and Djanco written in Rust that shows scalability

to millions of projects.

A dataset consisting of 3.6 million software projects written in 17 languages obtained

from GitHub.

A case study illustrating that the choice of project can invalidate the conclusion of a

research project.

Equally important is what we don’t do. We do not provide guidance how to use our

infrastructure. The determination of what is the right input for a given analysis is problem

specific and the choice remains something individual researchers must grapple with. We have

not shown scalability of our infrastructure to the whole of GitHub, we are comfortable with

datastores of up to 10 million projects. A larger size may require more work. We do not

support interactive queries, our infrastructure was designed with the understanding that

queries can take hours to run. We did not focus on optimizing query evaluation by, e.g.

parallelizing their execution. Lastly, we do not index any artifacts other than code. Adding

images, configuration files and documentation is possible but was not considered as one of

our targets.

Availability. CodeDJ is an open source infrastructure. Readers interested in repeatability,

will find our reproduction package at:

https://github.com/PRL-PRG/codedj-ecoop-artifact

The source code of Parasite and Djanco are on GitHub at:

https://github.com/PRL-PRG/codedj-parasite

https://github.com/PRL-PRG/djanco

As our datastore is too large to easily share, Sec. 3.3.4 discusses how external users can run

queries on our servers. Another alternative is for users to set up their own CodeDJ instance

and gather their own data to execute queries. Our reproduction package contains a complete

walk-through of the set up procedure. Of course, users must publish their dataset to enable

reproducibility.

ECOOP
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2 Related Work

Table 1 gives a high-level comparison with eight systems with aims similar to ours. The

first column (Active) indicates if the system is actively maintained. Some research projects

have fallen into disrepair and their web pages are unreachable. The second column (Updated)

indicates if continuous update are supported. Given the rate of addition to GitHub, most

systems struggle to keep up. The third column (Reproducible) indicates if results are

reproducible. Reproducibility is only relevant when the data is updated, systems built on

a single static snapshot trivially support reproducibility. The fourth column (Consistent)

indicates that the data is consistent. Inconsistencies arise when some earlier data (such as

parent commits) can be missed. The fifth column (Queries) describes the nature of the query

interface exposed to users. Some systems have a simple filtering mechanism for a fixed set of

attributes, such as the language of the project, others have their own query language. In

our case, we express queries in Rust. The sixth column (Sources) indicates where the data

comes from. Mostly this is GitHub, but the Apache Software Foundation and various other

sources have also been used in the past. The seventh column (Size) is an estimate of how

many projects are available. Finally the last column (Contents) indicates if source code can

be queried. Most systems only include metadata about projects due to the size of the code.
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Stress [8] – – Y Y Filter Apache 211 –

Flossmetrics [9] – – Y Y Filter Many 2.8K –

Orion [3] – – Y Y Own Many 185K Y

Boa [7] Y – Y Y Own Java 380K Y

Black Duck Y Y – Y Filter Many 680K –

Sourcerer [16] – – Y Y Filter GitHub 4.5M –

GHTorrent [10] Y Y – Y SQL GitHub 157M –

GitHub Y Y – – Filter GitHub 190M Y

CodeDJ Y Y Y Y Rust GitHub 3.6M Y

Table 1 Systems comparison

Stress: This system aims to help choose projects in a reproducible manner [8]. Its corpus

consists of 211 projects which can be filtered on 100 pre-computed attributes such as bug

tickets, or lifetime. The corpus can be sorted and sampled randomly. Queries can be exported

so they can be repeated later. Source code is not available for querying. Stress is inactive.

CodeDJ scales to larger corpora and allows to specify richer queries. In terms of reproducibility,

we support updates to the corpus.

Flossmetrics: This work analyzed 2800 open source projects and computed statistics about

various aspects of their development process, such as number of commits and developers [9].

Information from additional sources such as project mailing lists and issue trackers was

included. Queries could be formulated on metrics such as COCOMO effort, core team

members, evolution and dynamics of bugs. Filtering based on these criteria was supported.

The project is inactive and it did not support updates.
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Orion: This system aimed to enable retrieving projects using complex search queries linking

different artifacts of software development, such as source code, version control metadata, bug

tracker tickets, developer activities and interactions extracted from the hosting platform [3].

The project is no longer maintained, it scaled to about 185K projects. CodeDJ is designed to

scale to larger corpora and offers a more flexible query interface.

Boa: This system focuses on semantics queries over Java programs [7]. A corpus of 380K

Java projects can be queried using a dedicated query language that supports automatic

parallelization and pluggable mining functions. Source code can be queried in sophisticated

ways as Boa is able to parse and analyze Java. A larger corpus of 7.5M projects can be queried

on project summaries. Boa provides reproducibility by ensuring its queries are deterministic

wrt dataset’s version, which are created and archived infrequently (i.e. 2013, 2015, 2019,

2020). CodeDJ differs from Boa in that it is language agnostic, geared towards project

selection, as opposed to project analysis. Furthermore, CodeDJ provides full reproducibility

in the presence of a continuously evolving dataset.

Black Duck Open Hub: A public directory of open source software (www.openhub.net) that

offers search services for discovering, evaluating, tracking, and comparing projects. It analyzes

both the code’s history and ongoing updates to provide reports about the composition and

activity of code bases. CodeDJ allows researchers to write their own queries and supports

reproducibility.

SourcererCC: The aim of this project is to detect code clones [16]. The tool scales to large

datasets and can detect near-identical code at various granularities. It has been used to

analyze cloning across large corpora of Java, JavaScript, Python, C and C++ projects on

GitHub [13]. It can be used by researchers to detect duplication in their samples which is a

source of bias. The project’s web page appears to be inactive.

GHTorrent: This database of metadata about GitHub projects offers an SQL interface

for queries [10]. It monitors GitHub events to constantly update the available data. The

limitation of the approach is that GitHub’s events do not have all commit details and file

contents, thus these are not stored by GHTorrent. In our experience, the database is not

always consistent, this may be due to missed events. We have attempted to upload queries

through the public SQL interface but the queries timed out.

GitHub: This service provides two ways to query metadata and contents. A REST API can

be used for requesting information about projects and listing them, its search queries provide

filtering capabilities across a small set of fixed attributes. A web API provides extended

filtering options such as searching within repositories written in a particular language. These

interfaces are rate-limited and thus return partial results. The results are non-deterministic

and non-reproducible as projects may be added and deleted at any time. CodeDJ provides a

view of a subset of GitHub on which we support reproducibility and our queries are richer

and deterministic.

We would be remiss if we failed to mention the Software Heritage Archive which aims

to preserve all publicly available source code; currently upwards of 9.5B source files, 2B

commits and 150M projects [6]. It only allows retrieval of single objects. The authors point

to the fragility of current arrangements and the dynamic nature of source code repositories

makes it difficult to reproduce studies that use them. We have encountered this ourselves:

we see projects deleted from GitHub, changing names, or visibility. In the future, CodeDJ

can be extended to query the heritage corpus as well as other repositories.

ECOOP
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from the data source is deduplicated and stored in a dedicated format on disk. At irregular

intervals projects are refreshed, and the new information is appended to the datastore. When

an end-user query is submitted for execution, it comes as a Rust function calling the Djanco

query API, a database instance is created for that query. The database will load the data

needed for query execution from Parasite. The output of a query is some results, usually as a

text file and a record of that query in a reproducibility archive.

The remainder of this section describes our implementation, the design of the query

interface and our support for reproducibility.

3.2 The Parasite datastore

Parasite is a dedicated, perpetually running application whose task is to synchronize its

on-disk representation with GitHub. This task is complicated by these four constraints:

Scalable: We expect to grow to hundreds of millions of projects, the disk format must

be space efficient and its in memory format must be compact and fast to access.

Peaceful co-existence: We must abide by GitHub’s terms of service. Parasite must be

economical in both the number requests to the GitHub API calls and raw git operations.

Time-indexed: Every datum in the store must be associated with its acquisition date,

this feature must have a minimal overhead so as not to increase our footprint.

Robust: Backups are not possible due to limited resources, the datastore must thus be

resilient to corruption.

Our description focuses on three aspects, the data acquisition process, the data storage format

and the interface exposed to Djanco. We also explain how we meet the above constraints.

3.2.1 Acquisition

While, in theory, the GitHub API is sufficient to fulfill all our needs, the fact that GitHub

defends itself against denial of service attacks limiting users to 5,000 requests per hour causes

a practical problem. As every commit requires one request, the interface is too restrictive to

collect data within a reasonable amount of time. Therefore, instead of relying on the API

alone, Parasite combines a number of interfaces:

Git: we use the git clone command to retrieve source code files and commit histories

from repositories;

GitHub: we use the REST API for project metadata (stars, watchers, issues, etc.),

information that cannot be obtained through git alone;

GHTorrent: instead of querying GitHub for projects directly, we seeded Parasite with

the URLs of projects obtained from GHTorrent.2

Parasite continuously downloads data from its data sources on a per-project basis. The

projects known to Parasite are maintained in a priority queue. Projects are visited in inverse

order of last access time. Thus, given any group of projects, the lower bound on their last

visit times determines the last point when Parasite had a consistent view of those projects

modulo destructive git history rewrites.

When a project is visited, the download procedure begins. First, the project’s metadata

is retrieved via a call to the REST API. This yields a JSON file with metadata and sundry

2 While GHTorrent has over 100M URLs, they are not all valid. Out of 5.5M URLs we visited, only 3.6M
were usable, the remaining are either duplicates, have been deleted, or become private.

ECOOP
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information. The metadata is stripped of non-essential information (such as URLs for various

REST API requests) and stored. The project’s current and last known URLs are compared

to detect renaming and the new URL is recorded if a change occurred. Next, the project’s

heads are checked against the heads in the datastore. Each head correspond to a branch in

git. If any of the heads changed, the project is cloned and data about new commits and the

content of changed files is extracted and stored. We clone projects because using the REST

API to get new commits is slow and rate limited. We clone repeatedly at each visit, caching

projects is not feasible due to space limitations (in the future, we plan to cache the most

active projects to reduce the amount of data unnecessarily transferred via full clones).

Once a local copy of a project exists, we determine which substore that project belongs to

and append new commits and files to it. Substores are partitions of the dataset that Parasite

uses to organize its disk structures around. Projects are matched to a single substore by

properties such as size (a substore for small projects) or dominant language (a substore of

Python projects).

When processing a chain of commits, a simple optimization is achieved by observing that

if we find a commit that is already in the datastore, then all of its parent commits must also

already be present. The final step is to record the time of the visit, and move to next project

in the queue. Any error during the processing, terminates the visit and the project is flagged

as potentially invalid.

Parasite is written in Rust using libgit2. It has been parallelized at project-level

granularity and scales up to 32 threads. With more threads, the bottleneck shifts from local

repository analysis to network bandwidth and ultimately to the GitHub rate limit. When

adding projects, Parasite processes 244 projects per thread per hour. As GitHub limits are

attached to users (identified by tokens), Parasite supports rotating multiple tokens which

allow us to sustain a download rate of 7821 projects per hour using 32 threads. Since Parasite

is still in accretion mode, we cannot report on the update rate alone, but we expect it to be

limited by GitHub to a rate of 120K active project updates per day per token.

Records Size Ratio

Users 4.8M 200M <0.01%

Projects 3.6M 4.9G 0.2%

Commits 167M 88G 3.2%

Paths 848M 80G 2.9%

Files 463M 2603G 93.7%

Table 2 Current dataset composition

Parasite has visited 3.6M composed from all non-fork C++ and Python projects available

in GHTorrent and a random subset of 50k projects in 17 popular languages. In total, the

datastore has 3.6M projects and occupies 2.8TB on disk. Table 2 shows that the majority of

the datastore is taken by source code.

3.2.2 Storage

The storage format of Parasite is designed to ensure a low disk footprint, to scale to hundreds

of millions of projects. The store is append-only to allow reverting to historic states and

to simplify recovery from data corruption. Parasite can be thought of as storing records.

Records of same kind are backed by a single record file. Records compose together to form

entities. The following entities are stored by Parasite:
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Projects: A project is identified by unique git clone URL, it has a set of heads (one

per branch) and other information from GitHub metadata.

Commits: A commit is identified by its SHA hash, it has a message, changes, parents,

an author, a committer, and a time.

Paths: A path is identified by the hash of its string value.

Users: A user is identified by their email.

Snapshots: A snapshot of a file containing source code is identified by its hash.

Records are the smallest unit of information in the datastore, the only way to update an

entity is to add a new record. The decomposition of entities to records has been designed

along the lines of what information can be updated in isolation. Entities are assigned unique

numeric identifiers based on their contents. One of the key internal data structures in Parasite

are the multiple mappings from entity hashes to identifiers. These mappings are used for

deduplication.

Deduplication is crucial as up to 94% of files can be duplicates [13]. Mappings are costly

as they must be kept in memory. For our corpus, the deduplication mappings for all entities

require 89GB. While not a concern at this time, as our dataset grows, mappings will become

a bottleneck. To decrease their size, we split Parasite into substores. Each substore manages

a disjoint partition of the projects. We perform deduplication only within substores. This

means that mappings are smaller at the price of some duplication across substores. Our

implementation assigns projects to substores based on their size and dominant language;

small projects (less than 10 commits) are kept distinct from projects written in targeted

languages. A drawback of this design is that identifiers are not unique, if multiple substores

must be accessed, extra care must be taken when merging their contents. On the other

hand, this compartmentalization has immediate benefits: In terms of robustness, different

substores can be stored in different location and loss of one does not impact the others. In

terms of performance, queries can trivially skip reading irrelevant substores. We measured

the duplication across substores, it is only 5.1%.

As source code (snapshots) dominate the datastore, Parasite internally splits snapshots

by language, storing each language separately. This improves reading times for queries that

filter by language.

Parasite avoids storing information that is expensive to update and that can be computed

readily. For instance, the relation between commits and their project is not stored; it can

be recovered from project heads and commit parents. To further reduce footprint, larger

records are compressed. For snapshots, the compression ratio is 70%.

To quickly find the latest records for a particular entity, Parasite computes indices, which

are stored in dedicated index files that provide, for each entity, the location of the latest

version of its constituent records. These index files are updated in place as new records are

added which exposes them to the risk of being inconsistent. If this occurs, they can always

be recomputed from scratch. As of this writing, all indices in the datastore comprised 0.6%

of our disk footprint.

To ensure that it is possible to associate a time to every datum on disk, Parasite introduces

the notion of savepoint. Since the store is append-only, to time-index Parasite boils down

to simply associating a time to the current position of each substore. For consistency,

savepoints can only be created between visits of projects. They are thus both a mechanism

for reproducibility and robustness. Any query can be re-executed at any savepoint and will

see the same information. The datastore can be rolled back to a savepoint in case of data

corruption.

ECOOP
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3.2.3 Interfaces

Parasite has two interfaces, one for a data acquisition and another for reading data.

For monitoring purposes data acquisition exposes a detailed breakdown of running tasks,

their progress and the usage of GitHub resources. Parasite has both an interactive text-based

interface and a command-line interface for automation via scripts. These interfaces allow to

create savepoints, verify integrity of the datastore and repair data corruption by reverting

to previous savepoints. Parasite monitors available memory to keep as many mappings in

memory as it can. Most of the datastore management can be done without reloading any

mappings; the initial load takes 26 minutes.

The read interface allows to access records. Iterators are created relative to a savepoint

and return records in the order they were added up to that savepoint. Many records are

never superseded, for these iterator return values can be used as such. For records can be

overridden with newer values, iterator return updates in reverse chronological order. For

projects, Parasite assembles their information; this takes some time as URLs, heads, update

status, substore, and metadata must be loaded first, assembly discards all but the most

recent versions. Iterators are geared towards sequential access to all elements, but the index

files kept by Parasite can be used for random access as well.

3.3 The Djanco database

The Djanco database acts as an intermediary between Parasite and the end-user. It provides

a robust query engine that manages loading and pre-processing data and a domain-specific

language to express queries easily and concisely. Finally, it supports replaying historical

queries. Djanco is designed under the following simplifying assumptions:

Single-user: Djanco is used by a single user for a single query at a time; any parallelism

is internal and transparent.

Determinism: Queries are fully replayable on the basis of parameters explicitly provided

by the end-users such as random seeds, timestamps, and data source.

Read-only: Queries cannot update the datastore, changes are limited to local objects

and are not persisted.

Fixed-schema: Djanco only contains data and metadata pertaining to GitHub.

The need for Djanco comes from the structure of Parasite. The datastore is designed to allow

continuous updates and to decrease footprint. This complicates answering research questions.

For instance, Parasite elides the relation from a project to its commits. A simple question

such as how many commits in a project requires recomputing that relation by looking up

one the of project’s branches and its most recent commit. From that commit, one can follow

the parent commits and recursively enumerate them all. Then, repeat for all branches. The

database layer compute relations such as these and caches data persistently to speed up

queries.

The rationale for a dedicated database rather than an off-the-shelf one are threefold.

First, and most arguably, our experience using MySQL on a related project suggested that

scalability to large data size (2.8TB and growing) can lead to significant execution overheads.

Secondly, we can leverage the assumptions above to implement a domain-specific database as

many features of traditional databases (transaction, locks, general schema) are superfluous.

Instead, we implement a solution specialized to our schema that lazily loads selected data

from the datastore. Finally, some of our queries are difficult to express in the relational

model. Queries can become lengthy and involve multiple joins, nesting and views, which

makes them difficult to debug and maintain.
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project and other entities: heads, commits, users, authors, committers, paths, and snapshots.

Except for heads, all the relations need to be computed.

Commits have IDs, hashes, messages, as well as timestamps at which they were authored

and pushed. Each commit is associated with users, having an author and a committer. A

commit also has a list of changes: a change is a modification to a file represented by a path

in the repository and the contents of the file after the change. Finally, commits reference a

list of zero or more parent commits in the commit tree.

Users have IDs and emails. In addition, experience is computed for authors and committers

as the timespan between first and last commit. Users also have a method to acquire the list

of commits they authored or committed.

Paths represent file system locations within the project (eg. "arc/main.c"). They are

identified by a synthetic ID and contain a string representing the path. A method to guess

the language of a file from its extension is provided. Snapshots are the stream of bytes that

are contents of a file at some point in time. For instance, if a file is edited during a commit,

the contents of that file before and after the edit are two separate snapshots.

3.3.2 Queries

Queries can be expressed either through a low-level interface or via a DSL. The former

accesses the schema directly with Rust iterators and methods. The DSL is a more compact

way to implement common queries.

The first step for all queries is to construct a database instance. Since an instance wraps

around a specific view of the datastore, constructing it requires specifying a path, a savepoint

and substores. The following snippet constructs an instance for small projects available on

December 1st, 2016:

let db = Djanco::new(PATH, timestamp!(December 2016), substore!(SmallProjects))?;

Alternatively, an instance for C, C++, and Python programs is constructed like this:

let db = Djanco::new(PATH, timestamp!(December 2016), substores!(C, C++, Python))?;

Parameters can be skipped; an instance from all substores at their most recent savepoint is

constructed thus (values of defaults are recorded for reproducibility):

let db = Djanco::from(PATH)?;

Iterators offers access to entities. The snapshot iterator is lazy, the others eagerly load

information from the datastore. Iterators are entry points to queries; they return objects that

conform to the schema of Fig. 2. This snippet extracts a vector of all languages occurring in

projects:

let all_languages = db.projects()
.map(|project| project.language())
.unique()
.collect()::<Vec<Language>>;

While iterators suffice for just about any query, most queries can be expressed more concisely

in our DSL. The DSL uses a pipeline paradigm, where an initial data structure is transformed

by a series of methods (aka verbs) that do part of the processing in each step. We provide

the following verbs: group, filter, sort_by, sample, and map_into. We also provide to

access any attribute in the schema. In addition, objects and their attributes are composable

into complex statements expressing comparisons (eg. AtLeast, AtMost, Matches, Contains),

basic statistical functions (Count, Max, Median), sampling methods (Top, Random), and many

others. The code below showcases a few of these:



Maj, Siek, et al. 23:13

let selection = db.projects()
.group_by(project::Language)
.filter_by(AtLeast(Count(project::Users), 5))
.sort_by(project::Stars)
.sample(Top(50));

Projects are grouped according to their language, then filtered so that only projects that

have at least 5 users are kept, these are sorted by the number of stars in each project and,

finally, a sample of top 50 projects is returned.

A useful feature is the ability to deduplicate projects while sampling them according to

specific criteria. For example, in the following snippet projects will not be added to the

result set unless 90% of their commits are unique with respect to any single other project

already within the result set:

selection.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)))

The final step of a query is to output its results; here we show to write results to a CSV file:

selection.into_csv(OUTPUT_PATH)?;

Each object serializes verbosely, including all information about itself. If only specific

information is required, an appropriate format may be imposed by using the map verb to

translate an object into its attributes. Here each project is translated into its ID and URL:

selection
.map_into(Select!(project::Id, project::URL))
.into_csv(OUTPUT_PATH)?;

We also provide a function that outputs all information related to a project, including

commits, users, paths and snapshots associated. This creates multiple CSV files.

selection.dump_all_info_to(OUTPUT_DIR_PATH)?;

Crucially, end-users can do their own use-case–specific formatting by resorting to Rust:

selection.for_each(|project|{ println!("{}:␣{}", project.url(), project.has_wiki());})

Further details about our query facilities can be found in the DjancoGitHub repository.

A friend in need: We had an opportunity to test our system when posed a question that

was difficult to answer with GitHub’s REST API. The query had to retrieve popular C++

repositories that use custom allocators. Finding out whether a project is using a custom

1 let wanted: HashMap<SnapshotId> = db
2 .snapshots()
3 .filter(|snapshot|
4 snapshot.contains(
5 "#include␣<memory_resource>"))
6 .map(|snapshot| snapshot.id())
7 .collect();
8

9 let projects = db.projects()
10 .filter(|project| {
11 project.snapshots()
12 .map_or(false, |snapshots| {
13 snapshots.iter()
14 .map(|snapshot| snapshot.id())
15 .any(|snapshot_id| {
16 wanted.contains(snapshot_id)
17 })
18 })
19 .sorted_by_key(|project|
20 project.star_count());

1 let wanted: HashSet<SnapshotId> = db
2 .snapshots()
3 .filter_by(
4 Contains(snapshot::Contents,
5 "#include␣<memory_resource>"))
6 .map_into(snapshot::Id)
7 .collect();
8

9 let projects = db.projects()
10 .filter_by(
11 AnyIn(project::SnapshotIds, wanted))
12 .sort_by(project::Stars);
13

14

15

16

17

18

19

20

Figure 3 Emery query
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allocator requires checking if it imports a library called memory_resource. Therefore, we

grep through source code for the string "#include␣<memory_resource>". In a second step, we

iterate over projects and find those, which contain one of the selected snapshots. At that

point, we order them by popularity and retrieve some number of the most popular projects.

For comparison we wrote the query in pure Rust and then in the DSL. Both implementations

are in Fig. 3. As expected the DSL is more compact and more readable. We ran the query

on a store with 3M projects and 429M snapshots. The first part of the query found 1724

snapshots in 12 hours. The second part of the query retrieved 1197 projects and their

metadata in 24 hours. Then, an additional 6 hours was spent on preparing the project

metadata for CSV export.

3.3.3 Data management

Djanco transparently manages the loading and pre-processing of data from the datastore.

This involves two mechanisms: lazy loading and caching. Given the size of the data, loading

it all into memory is not desirable. Most queries are interested with a small slice of the data,

usually filtering out most projects and neglecting most attributes. Therefore, Djanco uses

lazy loading to tailor the in-memory data to the needs of each specific query. Snapshots

(source code files) are bulky and cannot be split into independent attributes. Only a single

snapshot is held in memory at once. The database retrieves them from the datastore only

when needed either by scanning the store sequentially or by using the datastore’s ability to

seek and access a specific snapshot. For the other objects (projects, commits, paths, and

users), their attributes are loaded independently on request. Attributes are cached in the

database as they can be needed several times.

Memory usage is not the only concern while loading data from the store. From our

experiences in querying GitHub, we find that many similar queries are executed on the same

datastore view, especially when a query is being developed. Loading attributes from the

datastore can be costly, especially in places where the Djanco schema requires the values to

be calculated, e.g. for mappings between entities. Therefore, we found it beneficial to avoid

recalculating some attributes across queries by implementing on-disk attribute caching, thus

improving performance of similar or repeated queries.

For each attribute that has been requested by a query, the database creates an in-memory

map, mapping an entity ID to that entity’s value for a given attribute. After an attribute

has been loaded, the caching extension serializes it onto disk using the CBOR serialization

format. The on-disk cache structure preserves information about which datastore, savepoint,

and substore a particular attribute map was read from. Subsequent queries requesting this

attribute for this particular datastore view then always prefer loading data from the cache, if

extracting writing reading size
from store to cache from cache on disk cached?

commit::Parents+commit::Users 1h 21m 28s 35m 16s 7m 25s 2.3GB Y
user::Experience 1h 10m 19s 1s 1s 5.7MB Y

user::CommitterExperience 1h 9m 52s 1s 1s 5.6MB Y
user::AuthoredCommits 1h 8m 47s 1m 1s 39s 213MB Y

project::Commits 1h 8m 33s 5m 29s 3m 25s 1.1GB Y
commit::Changes 52m 29s 2h 53m 53s 1h 21m 28s 20GB N

commit::CommitterTimestamp 41m 49s 1m 55s 1m 21s 418MB Y
commit::Message 41m 24s 3m 20s 1h 38m 3s 6GB N

Table 3 Caching performance
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it is present, rather than from the datastore. This process is completely transparent to the

end-user, and can be turned off to save disk space.

However, while the cache uses up disk space, reading an attribute from CBOR is potentially

orders of magnitude faster than loading it from the store. On the other hand, when loading

from the store is simple and the data is difficult to serialize (eg. it consists of large string

vectors) caching is not indicated. We have benchmarked and pre-tuned the database to cache

only when it is clearly advantageous. Table 3 shows the performance impact of caching while

extracting selected attributes on a dataset containing 130K projects and 44M commits. The

table lists a few representative attributes in the first column. Columns two and three present

what happens when the attribute is requested for the first time: how long it takes to extract

it from the datastore and how long it takes to subsequently serialize it onto disk. The fourth

and fifth columns show the impact of caching: how long it takes to read the argument from

cache (eg. when the query is re-executed or when another query requires the same attribute

from the same datastore view) and how much disk space has to be devoted to the CBOR file.

The final column shows our decision whether to cache this attribute or not.

3.3.4 Availability

While users can download their own datasets and run queries on them, doing so requires

time and computational resources. Therefore, we also provide procedure for running queries

on our servers. This procedure plugs into the Rust toolchain. To submit a query, one must

first generates a Cargo crate using a cargo command and a template we provide.3

cargo generate --git https://github.com/PRL-PRG/djanco-query-template --name my-crate

The template includes all the necessary dependencies and boilerplate code. A query needs a

function annotated as djanco with three arguments: a database, a logger, and an output

path. An example of a such a function is:

#[djanco(May, 2021, subsets(All))]
pub fn my_query(database: &Database, log: &Log, output: &Path) -> Result<(), Error> {
database.projects()
.group_by(project::Language)
.sort_by(project::Stars)
.sample(Top(1))
.into_csv_in_dir(output, "top_1_project_by_stars_in_each_language.csv")

}

The djanco annotation also specifies reproducibility parameters: the date of the snapshot

at which the query should be executed and the subsets of the dataset that will be used.

These can be omitted, in which case default values will be used (current month and all

available subsets) and baked into the source code when it is executed. Other reproducibility

parameters (random seeds) are inserted directly into the code of the queries. The crate can

contain more than one query function.

The user can execute the code locally to test it on a toy dataset. To do this, they generate

an execution harness with a cargo command.4

cargo djanco

This generates Rust source code that executes all the functions tagged as djanco using an

appropriate snapshot and substores of the datastore. The code is executed using a Cargo

run command whose parameters are paths to the dataset and the output directory.

3 https://github.com/PRL-PRG/djanco-query-template#template
4 https://github.com/PRL-PRG/cargo-djanco
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cargo --bin djanco --release -- --dataset-path=PATH --output-path=PATH

To submit the crate for execution on our servers, the user uploads their query to GitHub.

The crate is already a git repository, so this is only a matter of specifying its remote.

As of this writing queries are scheduled manually by the authors. Users should contact

us by email with a link to the repository. The query will undergo a manual inspection. The

query is executed on our hardware and dataset using the same generated harness as above.

After the query is executed, a snapshot of the crate is stored in the query archive. The

snapshot contains the complete source code of all the queries, the generated harness used

for execution, logs, and the results of the query—files generated to the designated output

directory. Any result file exceeding 50MB is ignored (if the resulting query produces large

files we contact the user to advise on compaction or to negotiate different means of delivery).

In the future, we will extend our infrastructure to include a web API that will allow

users to execute queries. These queries will be expressed in a limited query language (to

obviate security risks) and the volume of results will be limited. Queries and results will

also be archived and accessible publicly with a receipt. Another extension we foresee is to

extend the existing mechanism to allow automatic query execution. This would resemble our

current process but it would remove the need for a manual check and emailing the authors

as submission could be automated. This option is contingent on our ability to create a static

checker for incoming crates and sufficiently isolating their processes.

Finally, storing user emails has privacy issues. we are considering whether it is appropriate

to expose emails for external queries. If retaining emails becomes problematic, we may have

to obfuscate the emails and replace them with numeric identifiers.

3.3.5 Reproducibility

To further support reproducibility, above and beyond the ability to deterministically run

historical queries, every query executed by Djanco is stored in a public query archive.

The query archive is a git repository hosted on GitHub.5 Each query is hosted in a

separate branch in the repository. We expect queries to undergo revisions. Each query

version and execution results from that version are archived as separate commits in a single

branch. This produces a development history of the query.

Each query execution produces a receipt—a hash representing a specific commit in the

archive repository representing the execution. The hash can be used to share queries (exactly

as executed) and their results (exactly as produced). It can be used to retrieve the cargo

crate and used to re-execute the code (eg. on a different dataset). Code re-execution is helped

by the fact that query execution is deterministic and the snapshot of the crate contains a list

of all depedencies, a timestamp, a list of all subsets, and all random seeds.

5 https://github.com/PRL-PRG/codedj-query-archive
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4 A Case Study: Of Bugs and Languages

The work’s motivation is the claim that the selection of inputs matters in empirical studies

of software and that CodeDJ can assist researchers in that process. We illustrate these points

with a case study. We start from prior work, and show that input selection impacts scientific

claims, and that CodeDJ allows rapid exploration of the input space.

The starting point is a Foundation of Software Engineering (FSE) paper published in

2014 [15].6 One contribution of that work is to establish that some programming languages

have a greater association with defects than others (RQ1 in [15]). Their methodology can be

summarized as follows. For 17 popular languages, select 50 projects hosted on GitHub that

have at least 28 commits. For each commit touching a file that contains code in one of the

target languages, label the commit as bug-fixing if its message contains a bug-related keyword.

Fit a Negative Binomial Regression (NBR) against the labeled data and obtain, for each

language, a coefficient and a p-value. The coefficient indicates the strength of the association

(positive means more bugs), and the p-value tells us about statistical significance (less than

.05 means the coefficient is significant). The FSE paper concluded that TypeScript, Clojure,

Haskell, Ruby and Scala were associated with fewer bugs, while C, C++, Objective-C,

JavaScript, PHP and Python were associated with more bugs. The remaining languages did

not have statistically significant coefficients.7

4.1 Corpus

For this experiment we created a datastore using stratified sampling of data available on

GHTorrent. We started with 11,000 projects with at least 28 commits written in each of the

17 languages. For each language, we added 6,000 projects randomly selected from GitHub

(including smaller projects). In total, our dataset had 172K projects with 28 or more commits

and 230K projects in total. Only 3.8K large Erlang projects were available. The dataset has

47M unique commits (and 66M commits in total, suggesting a commit-duplication of 30%,

high given forks were excluded). The datastore occupies 51GB on disk. Our goal was to

have enough variety to represent the richness of GitHub. Unlike the FSE paper, which was

written in 2013, our corpus goes all the way to 2020.

4.2 Random input selection

Our first experiment explores the distribution of possible analysis outcomes. For this, we

repeatedly pick a random subset of 50 projects of each of the 17 languages and fit them with

NBR. Fig 4 shows the distribution of the coefficients obtained by 1000 such random selections

compared to the results obtained in [15] (shown as a tick to the right of the distribution).

Positive values indicate a higher association of the language with defects.

The spread of each distribution is a measure of the sensitivity of the analysis to its inputs.

Intuitively, consider the distribution of coefficients for Objective-C, it is roughly centered

around 0. This means, that a random input is about equally likely to say that the language

has a positive association with defects as a negative one. One could argue that picking close

to the median of the distribution could give a representative answer. As we can see the FSE

6 A revised version of the work appeared in the Communications of the ACM in 2017 with some issues
fixed, notably the removal of TypeScript from the analyzed languages.

7 These results were questioned, but the issues raised in [2] are orthogonal to the selection of inputs.
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rather large shift over a short period. The language was released in 2012, so there were few

projects on GitHub in 2013. Furthermore, a number of human language translation files

were misidentified as TypeScript; these files did not have bugs, biasing the result. The rising

popularity of TypeScript quickly caused real code to crowd out the translation files, and the

association with bugs settled to around 0.2.

Discussion: Using CodeDJ to prepare inputs at different time points can help researchers spot

trends in the data. For some properties of interest one expects changes over time, for others

changes may be an indication of bias that needs to be controlled for. For instance, one would

expect the association with bugs of an established, popular, language to be stable.

4.4 Introducing domain knowledge

Choosing any subset of a larger population introduces bias, but this may be intentional,

reflecting domain knowledge about the relative importance of observations. For instance,

small projects with few commits may be less interesting as they correlate with student

projects. These projects have fewer descriptive commit messages and their defects reflect

beginner mistakes. It stands to reason to exclude such projects from consideration. Justifying

the choice of any particular selection criterion is beyond the scope of our work. CodeDJ

allows researchers to explore the impact of various subsets. Our next experiment looks at 6

different criteria for selecting projects and compares them to the original paper’s criterion.

The Djanco code for those queries is in Fig. 8 in the appendix.

Stars: Pick projects with most stars. Rationale: starred projects are popular and thus

likely to be well written and maintained. [Used in FSE 2014]

Touched Files: compute #files changed by commits, pick projects that changed the

most files. Rationale: indicative of projects where commits represent larger units of work.

Experienced Author: experienced developers are those on GitHub for at least two

years; pick a sample of projects with at least one experienced contributor. Rationale: less

likely to be throw-away projects.

50% Experienced: projects with two or more developers, half of which experienced.

Rationale: focus on larger teams.

Message Size: Compute size in bytes of commit messages; pick projects with the largest

size. Rationale: empty or trivial commit messages indicate uninteresting projects.

Number of Commits: Compute the number of commits; pick projects with the most

commits. Rationale: larger projects are more mature.

Issues: Pick projects with the most issues. Rationale: issues indicate a more structured

development process.

Fig. 6 shows, for each language, the value of the coefficients (higher means more bugs);

the queries returned 50 projects in each of the 17 target languages: Coefficients that are

not statistically significant are shown in faded colors. If the input set did not matter for

the model, one could expect the different queries to give roughly the same coefficients with

the same significance. This is not the case. If we focus on how many languages have

statistically significant coefficients: The touched files query is highly predictive, 14 of the

languages are significant, but the coefficients are frequently opposite from those of other

queries. Specifically, C is associated with slightly fewer bugs, so are C#, CoffeeScript, Java,

JavaScript, Objective-C, Perl, PHP, Python, Ruby and TypeScript. On the other hand C++,

Erlang, Go and Haskell are associated with more defects. This is striking as it goes against

expectations. The stars query is the least informative. It only gives 7 statistically significant

coefficients with remarkably low values.
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5 Conclusions

Finding projects on GitHub is akin to looking for the proverbial needle in a haystack.

While having a wealth of data at our fingertips is an undeniable asset to empirical software

engineering research, the sheer size of the code being hosted is a challenge to any data

processing pipeline. Selecting manageable subsets of available projects can introduce subtle,

but significant biases that, in turn, can influence or even invalidate the conclusion of the

analysis being conducted. The case study we conducted in this paper illustrates this problem

— we have demonstrated that by choosing various, apparently sensible, subsets of the data at

hand, we could significantly change the observed association between programming languages

and software defects.

This paper introduces CodeDJ, an infrastructure designed to support the reproducible

specification of selection criteria for projects hosted on large-scale software repositories. Our

implementation is geared towards GitHub. As GitHub is a living system undergoing constant

change, ensuring reproducibility requires extra work. The same project downloaded today

and last month may contain different code, different commit histories, or the project may

disappear entirely. Our infrastructure mitigates this problem by building on a time-indexed,

append-only datastore. Queries are expressed in a front-end database that can access a view

of the data at a specific point in the history of the datastore.

For future work, three directions stand out: Expanding the datastore, improving the

query evaluation performance, and extending accessibility of the our dataset. The dataset

provided contains only a fraction of the data we expect to eventually need. As the data

grows in volume, our downloading, storage, and processing capabilities will be put to the test

and adjusted accordingly to ensure they scale up. We will explore how to ensure backwards

compatibility and determinism of queries in the face of changes to the implementation, and

to the data format (e.g. adding new information, such as issues, or new file kinds). In terms

of performance, our implementation does not try any optimizations of the query evaluation.

We intend to parallelize queries and explore ideas from the database community regarding

query compilation strategies. Finally, we plan on extending our infrastructure. We will

create a web API and a limited query language to make our dataset more generally accessible.

We will also investigate an infrastructure for automatic security checking and execution

scheduling for query crates which would allow for their automated submission.
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A Analysis with GitHub toolkits

This section considers how users could implement the queries in the case study without

CodeDJ. Since the data is accessible on GitHub, is our infrastructure necessary? We argue

that it is with the example of two queries: stars and touched files.

GitHub exposes a REST API that can be used to obtain any object and its metadata.

The API has limited capabilities. It allows filtering by language and sorting by stars, but it

does not support sorting by touched files. Furthermore it only returns the top 1000 results.

Therefore, we can’t get directly the 17K projects used in the case study.

While repositories can be obtained by their numeric IDs, we could try to sample randomly.

However, given the rarity of some of languages such as Erlang mean that we may end up, in

the worst case, sampling every project on GitHub.

Repository URLs can be retrieved with the /repositories query. Assuming 150M

repositories and that a query retrieves 100 URLs, 1.5M queries are needed to find all

repositories. The rate limit is 5K queries/user/hr, so getting information on all repositories

is 12 days. We also need the language and number of commits to perform stratified sampling.

Getting languages is another 12 days. However, there is no straightforward way to obtain

commit counts. Iterating over a repository’s log is unaffordable in terms of queries. An

alternative is to get list of contributors and sum up their contributions. This is more work,

but only requires one query per repository, so another 12 days. So the stratified sampling

requires approximately a month.

The GitHub data is retrieved in the form of JSON, which is not easy to query. Having

retrieved the data, we can convert the JSON data into a more useful format, such as a

relational database. We can then turn our attention to retrieving top 50 most-starred projects

in each language within that dataset. Getting the stars will then be as simple as say:

select id
from (
select id, row_number() over(partition by language order by stars desc) as place
from projects

) ranks
where place <= 50;

The second query requires us to order projects by the average number of changes per commit.

To answer this we need information about all commits within each project in the dataset.

This information is not present in the data we have retrieved so far. We can use the REST

API to list all commits in a project, but this does not give changes. To get those, we need to
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retrieve the detailed metadata of each commit. This requires one query per commit, and

with 66M commits, this is 550 days. Deduplicating commits before retrieval shaves this down

to 391 days. Having retrieved the data, we can now proceed with the actual project selection:

select id
from (
select id, row_number() over(partition by lang order by avg_touched desc) as place
from (
select id, language as lang, avg(touched) as avg_touched
from project_commits
join (
select commit_id, count(path_id) as touched
from commit_changes
group by commit_id

) touched on project_commits.commit_id = touched.commit_id
join projects on projects.id = project_commits.project_id
group by project_id, language

) projects
) ranks
where place <= 50;

The query can easily become complex and difficult to optimize. An alternative is to

precompute the needed attributes and update the dataset.

As the reader may have gathered using GitHub is impractical. A way out is to use multiple

sources of information. Project URLSs, stars and commit counts can be obtained from

GHTorrent, commits can be obtained much faster by cloning the repositories and analyzing

their git logs locally. However, these sources are not without their own shortcomings.

GHTorrent does not contain all information, and the information it contains often does not

exactly mirror reality. For instance, we find commit and star counts to be off by orders of

magnitude. Cloning repositories takes time (especially in the presence of throttling) and

requires massive bandwidths. In addition, care must be taken in the case of large projects

which take weeks to analyze if approached naïvely. In addition, gathering data never goes

smoothly. There will be mistakes in the code and costly restarts. The code will likely run for

weeks even if massively parallel and then fail on some unexpected corner case.

If the user then takes care to continuously and incrementally update their dataset and

improve on the complexity of the query language over simple SQL they will have essentially

reinvented CodeDJ.
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B Domain queries

Fig. 8 gives the queries used to inject domain knowledge in the analysis discussed in Sec. 4.

Stars:

Djanco::from(PATH).projects()
.group_by(project::Language)
.sort_by(project::Stars)
.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Touched Files:

Djanco::from(PATH).projects()
.group_by(project::Language)
.sort_by(Median(FromEach(project::Commits, Count(commit::Paths))))
.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Experienced Author:

Djanco::from(PATH).projects()
.group_by(project::Language)
.filter_by(AtLeast(Count(FromEachIf(project::Users,

AtLeast(user::Experience,
Duration::from_years(2)))), 1))

.sort_by(Count(project::Commits))

.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

50% Experienced:

Djanco::from(PATH).projects()
.group_by(project::Language)
.filter_by(AtLeast(Count(project::Users), 2))
.filter_by(AtLeast(Ratio(FromEachIf(project::Users,

AtLeast(user::Experience,
Duration::from_years(2))),

project::Users),
Fraction::new(1,2)))

.sample(Distinct(Random(50, Seed(42)), MinRatio(project::Commits, 0.9)));

Message Size:

Djanco::from(PATH).projects()
.group_by(project::Language)
.sort_by(Mean(FromEach(project::Commits, commit::MessageLength)))
.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Number of Commits:

Djanco::from(PATH).projects()
.group_by(project::Language)
.sort_by(Count(project::Commits))
.sample(Distinct(Top(50), MinRatio(project::Commits, 0.9)));

Figure 8 Domain queries
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