Robust Meta-learning for Mixed Linear Regression
with Small Batches

Weihao Kong* Raghav Somani Sham Kakade! Sewoong Oh®

Abstract

A common challenge faced in practical supervised learning, such as medical
image processing and robotic interactions, is that there are plenty of tasks but each
task cannot afford to collect enough labeled examples to be learned in isolation.
However, by exploiting the similarities across those tasks, one can hope to overcome
such data scarcity. Under a canonical scenario where each task is drawn from a
mixture of k linear regressions, we study a fundamental question: can abundant
small-data tasks compensate for the lack of big-data tasks? Existing second moment
based approaches of [42]] show that such a trade-off is efficiently achievable,
with the help of medium-sized tasks with Q(k'/2) examples each. However, this
algorithm is brittle in two important scenarios. The predictions can be arbitrarily
bad (7) even with only a few outliers in the dataset; or (i¢) even if the medium-sized
tasks are slightly smaller with o(k'/?) examples each. We introduce a spectral
approach that is simultaneously robust under both scenarios. To this end, we first
design a novel outlier-robust principal component analysis algorithm that achieves
an optimal accuracy. This is followed by a sum-of-squares algorithm to exploit the
information from higher order moments. Together, this approach is robust against
outliers and achieves a graceful statistical trade-off; the lack of Q(k!/?)-size tasks
can be compensated for with smaller tasks, which can now be as small as O(log k).

1 Introduction

Modern machine learning tasks and corresponding training datasets exhibit a long-tailed behavior
[73]], where a large number of tasks do not have enough training examples to be trained to the
desired accuracy. Collecting high-quality labeled data can be time consuming or require expertise.
Consequently, in domains such as annotating medical images or processing robotic interactions,
there might be a large number of related but distinct tasks, yet each task is associated with only a
small batch of training data. However, one can hope to meta-train across those tasks, exploiting their
similarities, and collaboratively achieve accuracy far greater than what can be achieved for each task
in isolation [29} 58 141 152} 168} [61]. This is the goal of meta-learning [62,67].

Meta-learning is especially challenging under two practically important settings: (i) a few-shot
learning scenario where each task is associated with an extremely small dataset; and (7¢) an adversarial
scenario where a fraction of those datasets are corrupted. We design a novel meta-learning approach
that is robust to such data scarcity and adversarial corruption, under a canonical scenario where the
tasks are linear regressions in d-dimensions and the model parameters are drawn from a discrete
distribution of a support size k.
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First, consider a case where we have an uncorrupted dataset from a collection of n tasks, each with
t training examples. Concretely, the i-th task for ¢ € {1,...,n} is associated with a regression
parameter 3; € {ws, ..., wy} and a corresponding dataset {x; ; € R?, y; € R} -, drawn from

yij = 5; Xij + € for some noise ¢; ;. A formal definition of the generative model is provided
in §. 1.1} If each task has a large enough training data with ¢ = £(d) examples, it can be accurately
learned in isolation. This is illustrated by solid circles in Fig.[I] On the opposite extreme, where
each task has only a single example (i.e. ¢ = 1), significant efforts have been made to make training
statistically efficient [14}[77] 163l 178\ 147,16 |64]. However, even the best known result of [16] still

requires exponentially many such tasks: n = Q(de %) (details in related work in This is
illustrated by solid squares in Fig. [T} Perhaps surprlsmgly, this can be significantly reduced to quasi-
polynomial n = Q(k®{°%)) sample complexity and quasi-polynomial run-time, with a slightly
larger dataset that is only logarithmic in the problem parameters. This result is summarized in the
following, with the algorithm and proof presented in §A]of the supplementary material.

Corollary 1.1 (of our results with no corruption, informal). Given a collectton of n tasks each

associated with t = Q( ) labeled examples, if the effective sample size nt = (dk:2 + kOUogk)) then
Algorithmestimates the meta-parameters up to any desired accuracy of O(1) with high probability

. )2 . .
in time poly (d, k(o8 k)™ “under certain assumptions on the meta-parameters.

This is a special case of a more general class of algorithms we design, tailored for the following
practical scenario; the collection of tasks in hand are heterogeneous, each with varying sizes of
datasets (illustrated by the blue bar graphs below in Fig.[I). Inspired by the seminal work of [71]], we
exploit such heterogeneity by separating the roles of light tasks that have smaller datasets and heavy
tasks that have larger datasets. As we will show, the size of the heavy tasks determines the order of
the higher order moments we can reliably exploit. Concretely, we first use the light tasks to estimate
the subspace spanned by the regression parameters, and then cluster heavy tasks by projecting them
on the estimated subspace. The first such attempt was taken in [42], where a linkage-based clustering
was proposed. However, as this clustering method relies on the second moment statistics, it strictly
requires heavy tasks with Q(kl/ 2) examples (left panel in Fig. . In the absence of such heavy tasks,
the abundant light tasks are wasted as no existing algorithm can harness their structural similarities.
Such second moment barriers are common in even simpler problems, e.g. [43144].
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Figure 1: The blue bar graph summarizes the collection of tasks in hand, showing the cumulative
count of tasks with more than ¢ examples. Typically, this does not include extremely large data tasks
(circle) and extremely large number of small data tasks (square), where classical approaches succeed.
When any point in the light (green) region and any point in the heavy (yellow) region are both realized
by the blue graph, the corresponding algorithm succeeds. On the left, the collection in blue cannot be
learned by any existing methods including [42]]. Our approach in Corollary [I.2]significantly extends
the heavy region all the way down to log k, leading to a successful meta-learning in this example.

We exploit higher order statistics to break this barrier, using computationally tractable tools from
sum-of-squares methods [45]]. This gives a class of algorithms parameterized by an integer m (for
m-th order moment) to be chosen by the analyst tailored to the size of the heavy tasks in hand
ty = Q(k'/™). This allows for a graceful trade-off between ¢ and with the required number
of heavy tasks ny. We summarize the result below, with a proof in §A] and illustrate it in Fig.



(right). The choice of m = O(log k) gives the minimum required batch size, as we highlighted in
Corollary [I.1]
Corollary 1.2 (of our results with no corruption, informal). For any integer m, given two collections

of tasks, first collection of light tasks with t;, = Q(1), tzng, = Q(dk?), and the second collection of
heavy tasks with t g = Q(m k™), tyny = Q(k®™), the guarantees of Corollaryhold.

Next, consider an adversarial scenario. Outliers are common in meta-learning as diverse sources
contribute to the collection. Existing approaches are brittle to a few such outliers. [42] builds upon
principal component analysis and linear regression, both of which are known to be brittle to outliers
[40,[19]. For example, a single corrupted user can result in an arbitrarily bad subspace estimation in
the first step of [42]]. This causes the meta-learning algorithm to learn nothing about the true regression
parameters, resulting in a completely random prediction in the subsequent step. A fundamental
question of interest is, what can be meta-learned from past experience that is only partially trusted?
Following robust learning literature [45] 25]], we assume a general adversary who can adaptively
corrupt any « fraction of the tasks, formally defined in Assumption [2| This parameter « € [0, 1]
captures how powerful an adversary is. Among all adversaries that can corrupt an « fraction of the
dataset, we assume the strongest possible one that can adaptively select which samples to corrupt
and replace them with arbitrary data points. We make both subspace estimation and clustering steps
robust against adversarial corruption. The sum-of-squares approach is inherently robust, when used
within an iterative clustering [45]. However, existing robust subspace estimation approaches are

suboptimal, requiring (5(d2) samples [24]]. To this end, we introduce a novel algorithm, and prove
its optimality in both accuracy and dependence in the dimension d. This resolves an open question

posed in [64] on whether it is possible to robustly learn the subspace with (5(d) samples.

This achieves a similar sample complexity as the uncorrupted case in Corollary while tolerating
as much corruption as information theoretically possible: &« = O(e/k) for an € accuracy in parameter
estimation. Such condition is necessary as otherwise the adversary can focus its attack on one of the
mixtures, and incur €2(¢) error in estimating the parameter of that component.

Corollary 1.3 (of Theorem informal). For any e € (0,1/k3) and m € N, given two collections of
tasks, the first with t;, = Q(1),npt;, = Q(dke_2), and the second with tg = Q(mkl/m), ngty =
Q(k‘o(m)), if the fraction of corrupted tasks is o = 6(6/ k), Algorithmachieves up to € accuracy

with high probability in time poly(d, Em , €~ 1), under certain assumptions.

We provide the algorithm (Algorithm|[T)) and the analysis (Theorem|[T)) under the adversarial scenario
in the main text. When there is no corruption, the algorithm can be made statistically more efficient
with tighter guarantees, which is provided in

1.1 Problem formulation and notations

We present the probabilistic perspective on few-shot supervised learning following [31], but focusing
on a simple yet canonical case where the tasks are linear regressions. A collection of n tasks are
independently drawn according to some prior distribution. The i-th task is associated with a model
parameter ¢; = (B3; € R%, 0; € Ry), and a meta-train dataset {(x; j,y; ;) € R? x R}?:l of size t;.
Each example (x; ;,vi ;) ~ Pg, (y|x)P(x) is independently drawn from a linear model, such that

vij = B xij+eij, 9]

where x; ; ~ N(0,1;) and €; ; ~ N(0,02). If x; ; is from N(0, X), we assume to have enough
x; ;s (not necessarily labeled) for whitening, and P(x) can be made sufficiently close to isotropic.

The goal of meta-learning is to train a model for a new arriving task ¢pew ~ Pg(¢) from a small size
training dataset D = {(x}V, y2V) ~ Py, (y[x)P(x)}7_, of size 7. This is achieved by exploiting
some structural similarities to the meta-train dataset, drawn from the same prior distribution Py(¢).
To capture such structural similarities, we make a mild assumption that Py(¢) is a finite discrete
distribution of a support size k. This is also known as mixture of linear experts [[14]. Concretely,
Py(¢) is fully defined by a meta-parameter = (W € R¥* s € R% 'p € S*~1) with k candidate
model parameters W = [w1q, ..., wy] and k candidate noise parameters s = [sy, ..., si]. The i-th
task is drawn from ¢; ~ Py(¢), where first a z; ~ multinomial(p) selects a component that the task
belongs to, and training data is independently drawn from Eq. (1)) with 3; = w, and 0; = s,,.



Following the definition of [31]], the meta-learning problem refers to solving the following:

0* € argmax log P(0|Dmeta—train) , 2)
0

which estimates the most likely meta-parameter given meta-training dataset defined as Dyyeta—train =
{(xij,vi;) € RY x R}z;l}?ﬂ. This is a special case of empirical Bayes methods [[13]]. Our goal
is to solve this meta-learning problem robustly against an adversarial corruption of Dyeta—train aS
formally defined in Assumption 2] Once meta-learning is solved, the model parameter of the newly
arriving task can be estimated with a Maximum a Posteriori (MAP) or a Bayes optimal estimator:

&EMAP € arg;nax log P(¢|D,0%), and $Bayes € arg;ninEWNp(mp_’g*)[g(gﬁ,gzb’)]7 3)

for some choice of a loss (), which is straightforward. This is subsequently used to predict the label

of a new data point x from @pe. Concretely, § € arg max, ]P(;MAP/Bayes (y|x).

Notations. We define [n] := {1,...,n}, Vn € N; S*¥~1 as the standard k-dimensional probability

simplex; x|, = (Z;‘i=1|xi‘p)1/p as the standard vector £,-norm of a vector x € R?V d €
NVp > 1 |A]l, = S mmmml 5 (A), ||Allp = (32742, A7 ;)!/? as the standard nuclear norm

and Frobenius norm of matrix A € R™*", where o;(A) denotes the i-th singular value of A
respectively; A'(p, ) is the multivariate normal distribution with mean g and covariance X; 1{-}
is the indicator function. We define p? := s2 + ||w., Hg as the variance of a label y; ; in the i-th
task, and p? := max; p7. We define priy ‘= minjcp pj, and A == min, jepiz, Wi — wyl,
and assume pyin, A > 0. We use O and © notations that are extensions of the standard O and ©
Bachmann-Landau notations to hide poly-logarithmic factors.

1.2 Algorithm and intuitions

Following the recipe of spectral algorithms for clustering [[71] and few-shot learning [42], we propose
the following approach consisting of three steps. Clustering step requires heavy tasks; each task
has many labeled examples, but we need a smaller number of such tasks. Subspace estimation
and classification steps require light tasks; each task has a few labeled examples, but we need a
larger number of such tasks. Here, we provide the intuition behind each step and the corresponding
requirements. The details are deferred to where we emphasize robustness to corruption of the

data. The estimated § = (W,g, ﬁ) is subsequently used in prediction, when a new task arrives.

Algorithm 1

Meta-learning

1. Subspace estimation: Compute subspace U which approximates span{wi, ..., W }.
2. Clustering: Project the heavy tasks onto the subspace of U, perform k clustering, and
estimate w, for each cluster £ € [k].
3. Classification: Perform likelihood-based classification of the light tasks using {w,}5_,
estimated from the Clustering step; compute refined estimates {Wy, ¢, p¢ }5_, of 6.
Prediction
4. Prediction: Perform MAP or Bayes optimal prediction using the estimated meta-parameter.

Subspace estimation. As 3 := ]E[yf X, szj] =cly+2 Zif:l nggWZ for some constant ¢ > 0,
the subspace spanned by the regression vectors, span{wy, ..., wy}, can be efficiently estimated
by Principal Component Analysis (PCA), if we have uncorrupted data. This only requires Q(d)
samples. With a-fraction of the tasks adversarially corrupted, existing approaches of outlier-robust
PCA attempt to simultaneously estimate the principal subspace while filtering out the outliers [[75].
This removes many uncorrupted data points, and hence can either only tolerate up to o = O(1/k®)
fraction of corruption (assuming well-separated w,’s). We introduce a new approach in Algorithm 2]
that uses a second filter to recover those erroneously removed data points. This improves the tolerance
to a = O(1/k*) while requiring only (d) samples (see Remark . We call this step robust
subspace estimation (Algorithm 2]in §2.2).



Clustering. Once we have the subspace, we project the estimates of [3;’s to the k-dimensional
subspace and cluster those points to find the centers. As k < d in typical settings, this significantly
reduces the sample complexity from poly(d) to poly(k). Existing meta-learning algorithm of [42]
proposed a linkage based clustering algorithm. This utilizes the bounded property of the second
moment only. Hence, strictly requires heavy tasks with t = Q(kl/ 2). We break this second moment
barrier by exploiting the boundedness of higher order moments. The heavy tasks are now allowed to be
much smaller, but at the cost of requiring a larger number of such tasks and additional computations.

One challenge is that the (empirical) higher order moments are tensors, and tensor norms are not
efficiently computable. Hence boundedness alone does not give an efficient clustering algorithm. We
need a stronger condition that the moments are Sum-of-Squares (SOS) bounded, i.e. there exist SOS
proofs showing that the moments are bounded [45] 35]]. This SOS boundedness is now tractable with
a convex program, leading to a polynomial time algorithm that is also robust against outliers [435]].
One caveat is that existing method in [45] requires data generated from a Poincaré distribution. As
shown in Remark the distribution of our estimate 3; = (1/t) E;Zl Yi,jXi,; is not Poincaré.
Interestingly, as we prove in Lemma the higher order moments are still SOS bounded. This
ensures that we can apply the robust clustering algorithm of [45]]. We call this step robust clustering
(Algorithm [7)in §H.

Classification and parameter estimation. Given rough estimates w,’s as center of those clusters,
we grow each cluster by classifying remaining light tasks. Classification only requires ¢ = (log k).
Once we have sufficiently grown each cluster, we can estimate the parameters to a desired level of
accuracy. There are two reasons we need this refinement step. First, in the small corruption regime,
where the fraction of corrupted tasks « is much smaller than the desired level of accuracy e, this
separation is significantly more sample efficient. The subspace estimation and clustering steps require
only O(A/p) accuracy, and the burden of matching the desired e level of error is left to the final
classification step, which is more sample efficient. Next, the classification step ensures an adaptive
guarantee. As parameter estimation is done for each cluster separately, a cluster with small noise s;
can be more accurately estimated. This ensures a more accurate prediction for newly arriving tasks.
We call this step classification and robust parameter estimation (Algorithm [O]in §I).

2 Main results

To give a more fine grained analysis, we assume there are two types of light tasks. In meta-learning,
subspace estimation uses Dy 1, clustering uses Dy, and classification uses Dy,o.

Assumption 1. The heavy dataset Dy consists of ng heavy tasks, each with at least t samples.
The first light dataset Dy consists of np1 light tasks, each with at least t11 samples. The second
light dataset Dy consists of nyo tasks, each with at least t 5 samples. We assume ty1,tro < d.

The three batches of meta-train datasets are corrupted by an adversary.

Assumption 2. From the datasets Dy, D11, and Dy, the adversary controls iy, a1, and oo
[fractions of the tasks, respectively. The adversary is allowed to inspect all the examples, remove
those examples associated with three subsets of tasks (of sizes at most agny, apingi, and aping
tasks from Dy, Dy1, and Dy2), and replace the examples associated with those tasks with arbitrary
points. The corrupted meta-train datasets are then presented to the algorithm.

2.1 Meta-learning and prediction

We characterize the achievable accuracy in estimating the meta-parameters § = (W, s, p).

Theorem 1. For any § € (0,1/2) and € > 0, given three batches of samples under Assumptions
and the meta-learning step ofAlgorithmachieves the following accuracy for all i € [k],

(Wi —willy, <es;, |7 —sF| <es?/Vire, and |p;—pil < etra/dpi + oups,

with probability 1 — 0, if the numbers of tasks, samples in each task, and the corruption levels satisfy
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of 2?21 ijjoT, and m € N is a parameter chosen by the analyst.

We refer to §I.1]for the setup and notations, and provide key lemmas in §BJand a complete proof in
We discuss each of the conditions in the following remarks assuming A = Q(p), for simplicity.

Remark 2.1 (Separating two types of light tasks). As tr, can be as small as one, the conditions
on Dy does not cover the conditions for Dy1. The conditions on a1 and nr1 can be significantly
more strict than what is required for Dro. Hence, we separate the analysis for Dr1 and Dr».

Remark 2.2 (Dependency in Dy1). Since we are interested the large d small t11 setting, the dominant
terminnry is dkz/&tm. The effective sample size ny 1t scaling as d is information theoretically
necessary. The min{1/a2. '1/p2. } dependence of npitr1 allows sample efficiency even when
Omin IS arbitrarily small, including zero. This is a significant improvement over the poly(1/oy,)
sample complexity of typical spectral methods, e.g. [14, 77], where o}, is the k-th singular value
of 25:1 ngng. This critically relies on an extension of the gap-free spectral bound of [1| 47]].
Our tolerance of ay = O(p? .. /k?) significantly improves upon the state-of-the-art guarantee of
pt . /k* as detailed in §2.2| Further, we show it is information theoretically optimal. This assumes
only bounded fourth moment, which makes our analysis more generally applicable. However, this
can be tightened under a stricter conditions of the distribution, as we discuss in §4|

Remark 2.3 (Dependency in D). Assuming pmin = Q(1/k), the dominant term in ny is
Q((km)®™) /poin), which is Q(k®™) and the result is trivial when m > log(k). This implies
ang = QECT), ty = Q(m - k?/™) trade-off for any integer m, breaking the tyy = Q(k/?)
barrier of [42)]. In fact, for an optimal choice of m = ©(log k) to minimize the required examples, it
can tolerate as small as t; = Q(log k) examples, at the cost of requiring ngy = Q(k®1°8k)) such
heavy tasks. We conjecture tyr = Q(log k) is also necessary for any polynomial sample complexity.
For the case of learning mixtures of isotropic Gaussians, [59] shows that super-polynomially many
number of samples are information theoretically necessary when the centers are o(+/log k) apart.
This translates to t = o(log k) in our setting. The requirement a g = O(Pmin) is optimal. Otherwise,
the adversary can remove an entire cluster.

Remark 2.4 (Dependency in Dys). The requirement nys - trs = ﬁ(d /Pmin€?) is optimal in d, puin
and € due to the lower bound for linear regression. The requirement on cups = O(Pmine/ log(1/¢))
is also necessary upto a log factor, from lower bound on robust linear regression [26].

At test time, we use the estimated g = (\/7\\7, S, D) to approximate the prior distribution on a new task.
On a new arriving task with training data D = {(x}", y;°")}7_,, we propose the standard MAP or
Bayes optimal estimators to make predictions on this new task. The following guarantee is a corollary
of Theorem|l|and [42, Theorem 2]. The term ;. p;s? is due to the noise in the test data (x, )
and cannot be avoided. We can get arbitrarily close to this fundamental limit with only 7 = Q(log k)
samples. This is a minimax optimal sample complexity as shown in [42].

Corollary 2.5 (Prediction). Under the hypotheses of Theorem|[I} the expected prediction errors of both
the MAP and Bayes optimal estimators (3(D) defined in Eq. (§) are bound as E[(x" 3(D) — y)?] <
§+ (1+¢€%) Zlepisf, if 7 = Q((p*/A%) log(k/6)) and e < min{A/(10p), A%V/d/(50p%)},
where the expectation is over the new task with model parameter ¢"V = ("W o"V) ~ Py,
training data (3, y5°") ~ Pynew, and test data (X, y) ~ Pgnew.
2.2 Novel robust subspace estimation

Our main result relies on making each step of Algorithmﬂ] robust, as detailed in However, as our
key innovation is a novel robust subspace estimation in the first step, we highlight it in this section.

We aim to estimate the subspace spanned by the true meta-parameters {wy,...,wi}. As X =
~ k k S, . .
E[ﬂi,j@j] = {31 pe(s? 4 [wel3)M+ 2, pewew/ for B; ; in Algorlthmhne we can



Algorithm 2 Robust subspace estimation

1: Input: Data Dy = {{(xi;,vi;)}= }ikt, o € (0,1/36], 6 € (0,0.5), k € N,and v € Ry,

: B\m- < yijXij, forallie [nr1],7 € [tri]
: SO <~ {ﬁi,j@j}ie[nLl],je[tLl] ) and Smax «—0
cfore=1,...,logs (2/6) do
t+0and S_; « 0
while ¢ < [9an] and Sy # S;—1 do
t«+t+1,and S; < Double-Filtering(S;_1, k, v, ) [See Algorithm[3]
if |Smax| < |St| then Spax < St
: Output: U + k_SVD( ZEMGS Bw-@j)

max

use the k£ empirical principal components; this requires uncorrupted data. To remove the corrupted
datapoints, we introduce double filtering. We repeat logs(2/6) times for a high probability result.

Algorithm 3 Double-Filtering
1: Input: a set of PSD matrices S' = {Xi € Rdx‘i}i

kEeN ae(0,1/36]and v € Ry

€[n)

2: 8o+ [n], Ug < k_SVD( Y ;cs, Xi). and z; = Tr[Ug X;Ug] forall i € S

3: Sg < First-Filter({2; },c 5., @) [Remove the upper and lower 2« quantiles]
4: S0 (1/n) Zieso z and pSo (1/18a)) ZiESG 2

5: if uSo — puSe < 48(auS¢ + vv/ka) then Output: S [Sample mean not large, no need to filter.]
6: else [Run a second filter if sample mean is corrupted]
7: Z ~UJ0,1], WeZmaX{zi—MSG}iGSO\SG

8: S+ Squ{ieS\Sq| 2 —p’c <W} [Add some removed points back.]
9: Output: 5" = {X,; }ies,

If the adversarial examples have the outer product X; = @/1 I ﬁj,r '8 with small norms, then they are
challenging to detect. However, such undetectable corruptions can only perturb the subspace by little.
Hence, Algorithm [3]focuses on detecting large corruptions. Ideally, we want to find a subspace by

U « arg max minimize Z Tr[UTX,U],
UeRdxk.uTUu=1, S'C[n]:[S'[>(1-a)n s —_———
=z;
for n = npitr1, which is computationally intractable. This relies on the intuition that a good
subspace preserves the second moment, even when large (potentially corrupted) points are removed.

We propose a filtering approach in Algorithm [3] At each iteration, we alternate between finding a
candidate semi-orthogonal matrix Uy € R?** containing the top-k singular vectors using the k_SVD
routine and then filtering out suspected corrupted data points, which have large trace norms in Uj.
Existing filtering approaches (e.g. [73]]) use a single filter to remove examples with large trace norm
(denoted by z; in Algorithm 3)). This suffers from removing too many uncorrupted examples. We
give a precise comparison in Eq. (6). We instead use two filters to add back some of those mistakenly
removed points. The First-Filter partitions the input set into a good set S and a bad set Sp \ Sg. If
the bad set contributed to a significant portion of the projected trace (this can be detected by the shift
in the mean of the remaining points ;25¢), a second filter is applied to the bad set, recovering some of
the uncorrupted examples.

This algorithm and our analysis applies more generally to any random vector, and may be of
independent interest in other applications requiring robust PCA. Under a mild assumption that
x; ~ P has a bounded fourth-moment, we prove the following, with a proof in §D.1]

Proposition 2.6 (Robust PCA for general PSD matrices). Let S = {x; ~ P},_, where ¥ =
Ex~p [XXT] is the second moment of P supported on R Given k € N, § € (0,0.5), and
a corrupted dataset S" with o € (0,1/36] fraction corrupted arbitrarily, if P has a bounded
support such that |xx' — Z||s < B for x ~ P with probability one, and a bounded 4-th

moment such that maxa||_ <1 rank(A)<k Ex~P [( <A,xxT — E> )2} < V2 and n = Q((dk?® +



(B/v)Vka)log(d/(da)) /), then with probability at least 1 — 6,

Te[PL()] - Tr [ﬁTzﬁ} - (’)(a TP ()] + VM) : @)
and Hz - ﬁﬂTzﬁﬁTH* <= - Pu®)|, + o(anm(z)u* + 1/%) NG,

where U is the output of Algorithm and Py (+) is the best rank-k approximation of a matrix in .

The first term in the RHS of Eq. (3)) is unavoidable, as we are outputting a rank-k subspace. In
the setting of Theorem |1{in which we are interested in, the last term of vv/ka in Equation @
dominates the second term. We next show that this cannot be improved upon; no algorithm can
learn the subspace with an additive error smaller than Q(rvk«) under « fraction of corruption,
even with infinite samples. In the following minimax lower bound, since the total variation distance
D1v(P,P’) < «, the adversary can corrupted the datapoints from P’ to match the distribution P,
by changing just the « fraction. It is impossible to tell if the corrupted samples came from P or P’,
resulting in an O(vv/ka) error.

Proposition 2.7 (Information theoretic lower bound). Let U({x;}!_,) be any subspace estimator
that takes n samples from distribution ‘P as input, and estimates the k principal components of
3= Exopr [XXT] Sfrom another distribution P’ that is a-close in total variation Drv. Then,

inf max max E HE—GGTEGGTH —||2—7>k(2)||*} - Qka),

U P'€Ou,B P:Drv(P,P)<a{x;}7 ~P"

forany k > 16,d > k’2/0z, and B > 2dv, where O, p is a set of all distributions D' on R such that
maxA| <1 IEXND/[(<A,XXT — E>)2] < 12, and Py . [ ’xxT — E[XXT] H2 < B] =1.

Comparisons with [75]. Outlier-Robust Principal Component Analysis (ORPCA) [75} 28l [76]]
studies a similar problem under a Gaussian model. For carison, we can modify the best known

ORPCA estimator from [75] to our setting in Proposition 2.6} to get a semi-orthogonal U achieving
Hz - ﬁﬁTzﬁﬁTH = |IZ = Pu(D)|l, + O( a2 Pu(S)|, + vka'/t) . ©)

We significantly improve in the dominant third term (see Eq. (3)). Simulation results supporting our
theoretical prediction are shown in Fig.[2] For the analysis and the experimental setup we refer to §K]
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Figure 2: Algorithm 2] performs close to an oracle which knows the corrupted points, improving
upon HRPCA of [75]], by removing more corrupted points and less uncorrupted ones.

3 Related work

Mixed linear regression. Previous work on mixed linear regression focus on the setting where
each task has only one sample, i.e. ¢, = 1. As a consequence, all the previous work suffer from
either the sample complexity or the running time that scale exponentially in k (specifically at least
exp(\/E)) [78.147, 16} 164]. In other cases, such blow-up in complexity is hidden in the dependence
of the inverse of k-th singular value of a moment matrix, which can be arbitrarily large [[14}[77,63]].

Multi-task learning. [8| 3| 160} 53 4}, 32| 2| |54} [7] [11]] address a similar problem as our setting,
but focusing on finding a common low-dimensional linear representation, where all tasks can be



accurately solved. Typically, the batch size is fixed and the performance is evaluated on the past
tasks used in training. Close to ours are a few concurrent work [27, 169]], but their focus is still on
recovering the common subspace, and not the meta-parameters.

Robust regression. There are several work on robust linear regression and sparse regression problems,
[10, 9, 16l 130L 155) 140, 23, 48, 39, 1211, 151} [15, 157, 138]]. The recent advances in the list-decodable
setting [[15, 157, 38]] can potentially be applied to our mixture setting, but the sample complexity is
exponentially large. Recently, [64]] studies the robust mixed linear regression problem. In contrast to
our setting which allows random noise on the label and adversarial corruption on both covariate x
and label y, their setting assumes no noise on label y’s, and the adversary is only allowed to corrupt
a-fraction the label y’s. Although their algorithm requires only O(dk) samples, the running time is

(5(k’“nd) and also requires a good estimate of the subspace spanned by {we}ﬁzl.

Sum-of-squares algorithms. Our work is inspired by sum-of-squares algorithms that have recently
been studied on many learning problems, including linear regression [38},157]], mixture models [35} 46,
37,156, 22]], mean estimation [34} 20]], subspace estimation [5]]. This provides the key building block
of our approach, in breaking the second moment barrier of linkage-based clustering algorithms.

4 Conclusion

By exploiting similarities on a collection of related but different tasks, meta-learning predicts a
newly arriving task with a far greater accuracy than what can be achieved in isolation. We ask two
fundamental questions under a canonical model of k-mixed linear regression: (¢) can we meta-learn
from tasks with only a few training examples each?; and (4i) can we meta-learn from tasks when
only part of the data can be trusted? We introduce a novel spectral approach that achieves both
simultaneously, significantly improving the required batch size from Q(k'/2) to Q(log k) while being
robust to adversarial corruption. We use a sum-of-squares algorithm to exploit the higher order
moments and design a novel robust subspace estimation algorithm that achieves optimal guarantees.

Closing the gap in robust subspace estimation. [75] 28| (76l [19]] study robust PCA under the
Gaussian assumption. For the reasons explained in §2.2] the rate is sub-optimal in ¢ in comparisons
to an information theoretic lower bound with a multiplicative factor of (1 — ©(«)). Applying the
proposed Algorithm 2] it is possible to generalize Proposition [2.6]to this Gaussian setting and achieve
an optimal upper bound. We leave this as a future research direction, and provide a sketch of how to
adapt the proof of our algorithm to the exponential tail setting in §E}

Concretely, our analysis of Algorithm [2]assumes only a bounded 4-th moment of the input vector
z;, of the form P[| (v "z;)? — v Xv| > t] < ¢t~2. Our current proof proceeds by focusing on that

1 — « probability mass, which falls in the interval [—+/1/c, y/1/a]. This is tight with only the
second moment assumption. More generally, one can consider a family of distributions satisfying
P[|(v2;)? — v Sv| > variance - t| < exp(—t?). If we have such an exponential concentration,

we can instead focus on the subset of examples with second moment ’(szi)Q — VTEV‘ falling
in the interval [—log'/7(1/a),log!/?(1/a)]. This bounded distribution has a sub-Gaussian norm
VEklogt (1 /), and thus we can apply the sub-Gaussian filter (Proposition A.7 of [24]) to learn

E[(vT2:)?] with error We can obtain an error of av/k log'/”(1/c). We provide a sketch of how to
adapt the proof of our algorithm to the exponential tail setting in §E]

After submission, we became aware of an independent and concurrent result by Jambulapati et
al. [36]] which studies the robust PCA problem under the assumption that each datapoint x follows a
sub-Gaussian distribution. Their algorithm is very similar to ours, except that it is only applied to
estimating the top eigenvector of the covariance matrix, which corresponds to the £ = 1 special case
in our setting. Their sample complexity and recovery guarantee are identical to ours in

Removing the Gaussianity assumption. Our approach relies on the special structure of the 4-th
moment of x; ; and the SOS boundedness of higher order moments of x; ;. The approach in [42] is
able to get around the 4-th moment requirement, and it is an interesting open problem to make the
approach robust to outliers and still preserve the O(d) sample complexity. while this class of SOS
bounded distributions is fairly broad, as noted in [45]], one could hope to establish sum-of-squares
bounds for even broader families. For examples, it remains open that whether sum-of-squares certifies
moment tensors for all sub-Gaussian distributions.



Broader Impact

One of the main contribution of this paper is to protect meta-learning approaches against data
poisoning attacks. Such robustness encourages participation from data contributors, as they can
collaborate without necessarily trusting the other data contributors. This facilitates participation of
minor contributors who suffer from data scarcity. This fosters democratization of machine learning
by allowing minor contributors to enjoy the benefit of big data through collaboration. Such ecosystem
will also encourage data sharing, thus improving transparency.

The adaptive guarantee we provide in Theorem I]is fair, in the sense that a group that provides low
noise data will receive a model with better accuracy. However, one potential risk in fairness is that
meta-learning might result in varying accuracy across the groups. This can be problematic as an
under-represented group in training data could suffer from inaccurate prediction for that population.
This is an active area of research in the fairness community, but there is no strong experimental
evidence that this can be mitigated with algorithmic innovations that do not involve collecting more
data from the under-represented population.

Another concern in meta-learning with data sharing is privacy. Without proper system to regulate the
usage of shared data, sensitive information could be leaked or protected features could be inferred.
One silver lining is that robust methods are naturally private, as the trained model is by definition not
sensitive to any one particular data point. On the other hand, if the system relies on the participation of
various individuals, then either a technological solution needs to be implemented with cryptographic
or privacy preserving primitives, or a proper regulation must be enforced.
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