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Abstract
We consider the problem of explaining the pre-
dictions of graph neural networks (GNNs), which
otherwise are considered as black boxes. Exist-
ing methods invariably focus on explaining the
importance of graph nodes or edges but ignore
the substructures of graphs, which are more in-
tuitive and human-intelligible. In this work, we
propose a novel method, known as SubgraphX,
to explain GNNs by identifying important sub-
graphs. Given a trained GNN model and an input
graph, our SubgraphX explains its predictions
by efficiently exploring different subgraphs with
Monte Carlo tree search. To make the tree search
more effective, we propose to use Shapley values
as a measure of subgraph importance, which can
also capture the interactions among different sub-
graphs. To expedite computations, we propose
efficient approximation schemes to compute Shap-
ley values for graph data. Our work represents
the first attempt to explain GNNs via identifying
subgraphs explicitly and directly. Experimental
results show that our SubgraphX achieves sig-
nificantly improved explanations, while keeping
computations at a reasonable level.

1. Introduction
Graph neural networks have drawn significant attention re-
cently due to their promising performance on various graph
tasks, including graph classification, node classification,
link prediction, and graph generation. Different techniques
have been proposed to improve the performance of deep
graph models, such as graph convolution (Kipf & Welling,
2017; Gilmer et al., 2017; Gao et al., 2018; Wang et al.,
2020; Yuan & Ji, 2021), graph attention (Veličković et al.,
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2018; Wang et al., 2019), and graph pooling (Yuan & Ji,
2020; Gao & Ji, 2019; Zhang et al., 2018). However, these
models are still treated as black boxes, and their predictions
lack explanations. Without understanding and reasoning the
relationships behind the predictions, these models cannot be
understood and fully trusted, which prevents their applica-
tions in critical areas. This raises the need of investigating
the explainability of deep graph models.

Recently, extensive efforts have been made to study expla-
nation techniques for deep models on images and text (Si-
monyan et al., 2013; Yuan et al., 2019; Smilkov et al., 2017;
Yuan et al., 2020a; Yang et al., 2019; Du et al., 2018). These
methods can explain both general network behaviors and
input-specific predictions via different strategies. However,
the explainability of GNNs is still less explored. Unlike
images and texts, graphs are not grid-like data and contain
important structural information. Thus, methods for images
and texts cannot be applied directly. While several recent
studies have developed GNN explanation methods, such
as GNNExplainer (Ying et al., 2019), PGExplainer (Luo
et al., 2020), and PGM-Explainer (Vu & Thai, 2020), they
invariably focus on explainability at node, edge, or node
feature levels, and only consider subgraphs indirectly via
regularization terms. We argue that subgraph-level expla-
nations are more intuitive and useful, since subgraphs can
be simple building blocks of complex graphs and are highly
related to the functionalities of graphs (Alon, 2007; Milo
et al., 2002).

In this work, we propose the SubgraphX, a novel GNN
explanation method that can identify important subgraphs
to explain GNN predictions. Specifically, we propose to
employ the Monte Carlo tree search algorithm (Silver et al.,
2017) to efficiently explore different subgraphs for a given
input graph. Since the information aggregation procedures
in GNNs can be interpreted as interactions among differ-
ent graph structures, we propose to employ Shapley val-
ues (Kuhn & Tucker, 1953) to measure the importance of
subgraphs by capturing such interactions. Furthermore, we
propose efficient approximation schemes to Shapley values
by considering interactions only within the information ag-
gregation range. Altogether, our work represents the first at-
tempt to explain GNNs via identifying subgraphs explicitly.
We conduct both qualitative and quantitative experiments to
evaluate the effectiveness and efficiency of our SubgraphX.
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Experimental results show that our proposed SubgraphX
can provide better explanations for a variety of GNN mod-
els. In addition, our method has a reasonable computational
cost given its superior performance.

2. Related Work
2.1. Graph Neural Networks

Graph neural networks have demonstrated their effective-
ness on different graph tasks. Several approaches are pro-
posed to learn representations for nodes and graphs, such
as GCNs (Kipf & Welling, 2017), GATs (Veličković et al.,
2018), and GINs (Xu et al., 2019), etc. These methods gen-
erally follow an information aggregation scheme that the
features of a target node are obtained by aggregating and
combining the features from its neighboring nodes. Here
we use GCNs as an example to illustrate such information
aggregation procedures. Formally, a graph G with m nodes
can be represented by an adjacency matrix A ∈ {0, 1}m×m
and a feature matrix X ∈ Rm×d assuming that each node
is associated with a d-dimensional feature vector. Then the
aggregation operation in GCNs can be mathematically writ-
ten as Xi+1 = σ(D−

1
2 ÂD−

1
2XiWi), where Xi denotes

the output feature matrix of i−th GCN layer and X0 is
set to X0 = X . The node features are transformed from
Xi ∈ Rm×ci to Xi+1 ∈ Rm×ci+1 . Note that Â = A + I
is employed to add self-loops and D is a diagonal node
degree matrix to perform normalization on Â. In addition,
Wi ∈ Rci×ci+1 is a learnable weight matrix to perform lin-
ear transformations on features and σ(·) is the non-linear
activation function.

2.2. Explainability in Graph Neural Networks

Even though explaining GNNs is crucial to understand and
trust deep graph models, the explainability of GNNs is still
less studied, compared with the image and text domains.
Recently, several methods are proposed specifically to ex-
plain deep graph models. These methods mainly focus on
explaining GNNs by identifying important nodes, edges,
node features. However, none of them can provide input-
dependent subgraph-level explanations, which is important
for understanding graph models. Following a recent survey
work (Yuan et al., 2020c), we categorize these methods into
several classes; those are, gradients/features-based meth-
ods, decomposition methods, surrogate methods, generation-
based methods, and perturbation-based methods.

First, several methods employ gradient values or feature
values to study the importance of input graph nodes, edges,
or node features (Baldassarre & Azizpour, 2019; Pope et al.,
2019). These methods generally extend existing image ex-
planation techniques to the graph domain, such as SA (Zeiler
& Fergus, 2014), CAM (Zhou et al., 2016), and Guided

BP (Springenberg et al., 2015). While these methods are
simple and efficient, they cannot incorporate the special
properties of graph data. Meanwhile, decomposition meth-
ods, such as LRP (Schwarzenberg et al., 2019), Excitation
BP (Pope et al., 2019), and GNN-LRP (Schnake et al., 2020),
explain GNNs by decomposing the original model predic-
tions into several terms and associating these terms with
graph nodes or edges. These methods generally follow a
backpropagation manner to decompose predictions layer by
layer until input space. In addition, existing methods (Huang
et al., 2020; Vu & Thai, 2020) employ a simple and inter-
pretable model as the surrogate method to capture local
relationships of deep graph models around the input data.
Then the explanations of the surrogate method are treated
as the explanations of the original predictions. Furthermore,
recent work XGNN (Yuan et al., 2020b) proposes to study
general and high-level explanations of GNNs by generating
graph patterns to maximize a certain prediction.

In addition, a popular direction to explain GNNs is known
as the perturbation-based method. It monitors the changes
in the predictions by perturbing different input features and
identifies the features affecting predictions the most. For
example, GNNExplainer (Ying et al., 2019) optimizes soft
masks for edges and node features to maximize the mutual
information between the original predictions and new pre-
dictions. Then the optimized masks can identify important
edges and features. Meanwhile, PGExplainer (Luo et al.,
2020) learns a parameterized model to predict whether an
edge is important, which is trained using all edges in the
dataset. It employs the reparameterization trick (Jang et al.,
2016) to obtain approximated discrete masks instead of soft
masks. In addition, GraphMask (Schlichtkrull et al., 2021a)
follows a similar idea as PGExplainer that train a classifier
to predict if an edge can be dropped without affecting model
predictions. However, it studies the edges in every GNN
layer while PGExplainer only focuses on the input space.

3. The Proposed SubgraphX
While most current methods for GNN explanations are in-
variably based on directly identifying important nodes or
edges, we argue that directly studying important subgraphs
is more natural and may lead to better explainability. In this
work, we propose a novel approach, known as SubgraphX,
to explain GNNs by exploring and identifying important
subgraphs.

3.1. From Node and Edge to Subgraph Explanations

Unlike images and texts, graph data contain important struc-
tural information, which is highly related to the properties
of graphs. For example, network motifs, which can be con-
sidered as graph substructures, are simple building blocks of
complex networks and may determine the functionalities of
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Figure 1. An illustration of our proposed SubgraphX. The bottom shows one selected path from the root to leaves in the search tree, which
corresponds to one iteration of MCTS. For each node, its subgraph is evaluated by computing the Shapley value via Monte-Carlo sampling.
In this example, we show the computation of Shapley value for the middle node (shown in red dashed box) where three coalitions are
sampled to compute the marginal contributions. Note that nodes that are not selected are ignored for simplicity.

graphs in many domains, such as biochemistry, ecology, neu-
robiology, and engineering (Alon, 2007; Milo et al., 2002;
Shen-Orr et al., 2002; Alon, 2019). Hence, investigating
graph substructures is a crucial step towards the reverse en-
gineering and understanding of the underlying mechanisms
of GNNs. In addition, subgraphs are more intuitive and
human-intelligible (Yuan et al., 2020c).

While different methods are proposed to explain GNNs,
none of them can directly provide subgraph-level explana-
tions for individual input examples. The XGNN can obtain
graph patterns to explain GNNs but its explanations are not
input-dependent and less precise. The other methods, such
as GNNExplainer and PGExplainer, may obtain subgraph-
level explanations by combining nodes or edges to form
subgraphs in a post-processing manner. However, the impor-
tant nodes or edges in their explanations are not guaranteed
to be connected. Meanwhile, since GNNs are very com-
plex, node/edge importance cannot be directly converted to
subgraph importance. Furthermore, these methods ignore
the interactions among different nodes and edges, which
may contain important information. Hence, in this work, we
propose a novel method, known as SubgraphX, to directly
study the subgraphs to provide explanations. The explana-
tions of our SubgraphX are connected subgraphs, which are
more human-intelligible. In addition, by incorporating Shap-
ley values, our method can capture the interactions among
different graph structures when providing explanations.

3.2. Explaining GNNs with Subgraphs

We first present a formal problem formulation. Let f(·)
denote the trained GNNs to be explained. Without loss

of generality, we introduce our proposed SubgraphX by
considering f(·) as a graph classification model. Given an
input graph G, its predicted class is represented as y. The
goal of our explanation task is to find the most important
subgraph for the prediction y. Since disconnected nodes are
hard to understand, we only consider connected subgraphs
to enable the explanations to be more human-intelligible.
Then the set of connected subgraphs of G is denoted as
{G1, · · · ,Gi, · · · ,Gn} where n is the number of different
connected subgraphs in G. The explanation of prediction y
for input graph G can then be defined as

G∗ = argmax
|Gi|≤Nmin

Score(f(·),G,Gi), (1)

where Score(·, ·, ·) is a scoring function for evaluating the
importance of a subgraph given the trained GNNs and the
input graph. We use Nmin as an upper bound on the size
of subgraphs so that the obtained explanations are succinct
enough. A straightforward way to obtain G∗ is to enumerate
all possible Gi and select the most important one as the ex-
planation. However, such a brute-force method is intractable
when the graph is complex and large-scale. Hence, in this
work, we propose to incorporate search algorithms to ex-
plore subgraphs efficiently. Specifically, we propose to em-
ploy Monte Carlo Tree Search (MCTS) (Silver et al., 2017;
Jin et al., 2020) as the search algorithm. In addition, since
the information aggregation procedures in GNNs can be un-
derstood as interactions between different graph structures,
we propose to employ the Shapley value (Kuhn & Tucker,
1953) as the scoring function to measure the importance of
different subgraphs by considering such interactions. We
illustrate our proposed SubgraphX in Figure 1. After search-
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ing, the subgraph with the highest score is considered as
the explanation of the prediction y for input graph G. Note
that our proposed SubgraphX can be easily extended to use
other search algorithms and scoring functions.

3.3. Subgraph Exploration via MCTS

In our proposed SubgraphX, we employ the MCTS as the
search algorithm to guide our subgraph explorations. We
build a search tree in which the root is associated with the
input graph and each of other nodes corresponds to a con-
nected subgraph. Each edge in our search tree denotes that
the graph associated with a child node can be obtained by
performing node-pruning from the graph associated with its
parent node. Formally, we define a node in this search tree as
Ni, and N0 denotes the root node. The edges in the search
tree represent the pruning actions a. Note that each node
may have many pruning actions, and these actions can be
defined based on the dataset at hand or domain knowledge.
Then the MCTS algorithm records the statistics of visiting
counts and rewards to guide the exploration and reduce the
search space. Specifically, for the node and pruning action
pair (Ni, aj), we assume that the subgraph Gj is obtained
by action aj from Gi. Then the MCTS algorithm records
four variables for (Ni, aj), which are defined as:

• C(Ni, aj) denotes the number of counts for selecting
action aj for node Ni.

• W (Ni, aj) is the total reward for all (Ni, aj) visits.
• Q(Ni, aj) = W (Ni, aj)/C(Ni, aj) and denotes the av-

eraged reward for multiple visits.
• R(Ni, aj) is the immediate reward for selecting aj onNi,

which is used to measure the importance of subgraph Gj .
We propose to use R(Ni, aj) = Score(f(·),G,Gj).

In each iteration, the MCTS selects a path starting from the
root N0 to a leaf node N`. Note that the leaf nodes can be
defined based on the numbers of nodes in subgraphs such
that |N`| ≤ Nmin. Formally, the action selection criteria of
node Ni are defined as

a∗ = argmax
aj

Q(Ni, aj) + U(Ni, aj), (2)

U(Ni, aj) = λR(Ni, aj)

√∑
k C(Ni, ak)

1 + C(Ni, aj)
, (3)

where λ is a hyperparameter to control the trade-off between
exploration and exploitation. In addition,

∑
k C(Ni, ak)

denotes the total visiting counts for all possible actions of
nodeNi. Then the subgraph in the leaf nodeN` is evaluated
and the importance score is denoted as Score(f(·),G,G`).
Finally, all node and action pairs selected in this path are
updated as

C(Ni, aj) = C(Ni, aj) + 1, (4)
W (Ni, aj) =W (Ni, aj) + Score(f(·),G,G`). (5)

After searching for several iterations, we select the subgraph
with the highest score from the leaves as the explanation.
Note that in early iterations, the MCTS tends to select child
nodes with low visit counts in order to explore different
possible pruning actions. In later iterations, the MCTS
tends to select child nodes that yield higher rewards, i.e.,
more important subgraphs.

3.4. A Game-Theoretical Scoring Function

In our proposed SubgraphX, both the MCTS rewards and the
explanation selection are highly depending on the scoring
function Score(·, ·, ·). It is crucial to properly measure the
importance of different subgraphs. One possible solution is
to directly feed the subgraphs to the trained GNNs f(·) and
use the predicted scores as the importance scores. However,
it cannot capture the interactions between different graph
structures, thus affecting the explanation results. Hence, in
this work, we propose to adopt the Shapley values (Kuhn &
Tucker, 1953; Lundberg & Lee, 2017; Chen et al., 2018a) as
the scoring function. The Shapley value is a solution concept
from the cooperative game theory for fairly assigning a total
game gain to different game players. To apply it to graph
model explanation tasks, we use the GNN prediction as the
game gain and different graph structures as players.

Formally, given the input graph G with m nodes and the
trained GNN f(·), we study the Shapley value for a target
subgraph Gi with k nodes. Let V = {v1, · · · , vi, · · · , vm}
denote all nodes in G and we assume that the nodes in Gi
are {v1, · · · , vk} while the other nodes {vk+1, · · · , vm}
belong to G \ Gi. Then the set of players is defined as
P = {Gi, vk+1, · · · , vm}, where we consider the whole
subgraph Gi as one player. Finally, the Shapley value of the
player Gi can be computed as

φ(Gi) =
∑

S⊆P\{Gi}

|S|! (|P | − |S| − 1)!

|P |!
m(S,Gi), (6)

m(S,Gi) = f (S ∪ {Gi})− f(S), (7)

where S is the possible coalition set of players. Note that
m(S,Gi) represents the marginalized contribution of player
Gi given the coalition set S. It can be computed by the
difference of predictions between incorporating Gi with and
without the coalition set S. The obtained Shapley value
φ(Gi) considers all different coalitions to capture the in-
teractions. It is the only solution that satisfies four de-
sirable axioms, including efficiency, symmetry, linearity,
and dummy axiom (Lundberg & Lee, 2017), which can
guarantee the correctness and fairness of the explanations.
However, computing Shapley values using Eqs. (6) and (7)
is time-consuming as it enumerates all possible coalitions,
especially for large-scale and complex graphs. Hence, in
this work, we propose to incorporate the GNN architecture
information f(·) to efficiently approximate Shapley values.



On Explainability of Graph Neural Networks via Subgraph Explorations

Algorithm 1 The algorithm of our proposed SubgraphX.
Input: GNN model f(·), input graph G, MCTS iteration
number M , the leaf threshold node number Nmin, h(Ni)
denotes the associated subgraph of tree node Ni.
Initialization: for each (Ni, aj) pair , initialize its C,W ,
Q, and R variables as 0. The root of search tree is N0

associated with graph G. The leaf set is set to S` = {}.
for i = 1 to M do
curNode = N0, curPath = [N0]
while h(curNode) has more node than Nmin do

for all possible pruning actions of h(curNode) do
Obtain child node Nj and its subgraph Gj .
ComputeR(curNode, aj) = Score(f(·),G,Gj))
with Algorithm 2.

end for
Select the child Nnext following Eq.(2, 3).
curNode = Nnext, curPath = curPath+Nnext.

end while
S` = S` ∪ {curNode}
Update nodes in curPath following Eq.(4, 5).

end for
Select subgraph with the highest score from S`.

3.5. Graph Inspired Efficient Computations

In graph neural networks, the new features of a target node
are obtained by aggregating information from a limited
neighboring region. Assuming there are L layers of GNN
in the graph model f(·), then only the neighboring nodes
within L-hops are used for information aggregation. Note
that the information aggregation schema can be considered
as interactions between different graph structures. Hence,
the subgraph Gi mostly interacts with the neighbors within
L-hops. Based on such observations, we propose to com-
pute the Shapley value of Gi by only considering its L-
hop neighboring nodes. Specifically, assuming there are
r (r ≤ m − k) nodes within L-hop neighboring of sub-
graph Gi, we denote these nodes as {vk+1, · · · , vr}. Then
the new set of players we need to consider is represented as
P ′ = {Gi, vk+1, · · · , vr}. By incorporating P ′, the Shapley
value of Gi can be defined as

φ(Gi) =
∑

S⊆P ′\{Gi}

|S|! (|P ′| − |S| − 1)!

|P ′|!
m(S,Gi). (8)

However, since graph data are complex that different nodes
have variable numbers of neighbors, then P ′ may still con-
tain a large number of players, thus affecting the efficiency
of computation. Hence, in our SubgraphX, we further incor-
porate the Monte-Carlo sampling (Štrumbelj & Kononenko,
2014) to compute φ(Gi). Specifically, for sampling step i,
we sample a coalition set Si from the player set P ′ \ {Gi}
and compute its marginalized contribution m(Si,Gi). Then

Algorithm 2 The algorithm of subgraph Shapley value.
Input: GNN model f(·) with L layers, input graph G
with nodes V = {v1, . . . , vm}, subgraph Gi with k nodes
{v1, . . . , vk}, Monte-Carlo sampling steps T .
Initialization: Obtain the L-hop neighboring nodes of
Gi, denoted as {vk+1, · · · , vr}. Then the set of players is
P ′ = {Gi, vk+1, · · · , vr}.
for i = 1 to T do

Sampling a coalition set Si from P ′ \ {Gi}.
Set nodes from V \ (Si ∪ {Gi}) with zero features and
feed to the GNNs f(·) to obtain f(Si ∪ {Gi}).
Set nodes from V \ Si with zero features and feed to
the GNNs f(·) to obtain f(Si).
Then m(Si,Gi) = f(Si ∪ {Gi})− f(Si).

end for
Return: Score(f(·),G,Gi) = 1

T

∑T
t=1m(Si,Gi).

the averaged contribution score for multiple sampling steps
is regarded as the approximation of φ(Gi). Formally, it can
be mathematically written as

φ(Gi) =
1

T

T∑
t=1

(f (Si ∪ {Gi})− f(Si)), (9)

where T is the total sampling steps. In addition, to compute
the marginalized contribution, we follow a zero-padding
strategy. Specifically, to compute f (Si ∪ {Gi}), we con-
sider the nodes V \ (Si ∪ {Gi}) which are not belonging to
the coalition or the subgraph and set their node features to
all zeros. Then we feed the new graph to the GNNs f(·) and
use the predicted probability as f (Si ∪ {Gi}). Similarly,
we can compute f(Si) by setting nodes V \ Si with zero
features and feeding to the GNNs. It is noteworthy that
we only perturb the node features instead of removing the
nodes from the input graph because graphs are very sensitive
to structural changes (Schlichtkrull et al., 2021b). Finally,
we conclude the computation steps of our proposed Sub-
graphX in Algorithm 1 and 2. Note that Nmin determines
the stop condition in MCTS, and we can select subgraphs
with specific sizes from internal nodes of the search tree as
needed.

3.6. SubgraphX for Generic Graph Tasks

We have described our proposed SubgraphX using graph
classification models as an example. It is noteworthy that
our SubgraphX can be easily generalized to explain graph
models on other tasks, such as node classification and link
prediction. For node classification models, the explanation
target is the prediction of a single node vi given the input
graph G. Assuming there are L layers in the GNN models,
the prediction of vi only relies on its L-hop computation
graph, denoted as Gc. Then instead of searching from the
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Table 1. Statistics and properties of five datasets.

Dataset

MUTAG BBBP GRAPH-SST2 BA-2MOTIFS BA-SHAPE

# of Edges (avg) 19.79 25.95 9.20 25.48 2055
# of Nodes (avg) 17.93 24.06 10.19 25.0 700
# of Graphs 188 2039 70042 1000 1
# of Classes 2 2 2 2 4

input graph G, our SubgraphX sets Gc as the correspond-
ing graph of the search tree root N0. In addition, when
computing the marginalized contributions, the zero-padding
strategy should exclude the target node vi. Meanwhile, for
link prediction tasks, the explanation target is the prediction
of a single link (vi, vj). Then the root of the search tree
corresponds to the L-hop computation graph of node vi and
vj . Similarly, the zero-padding strategy ignores the vi and
vj when perturbing node features. Note that our SubgraphX
treats the GNNs as black boxes during the explanation stage
and only needs to access the inputs and outputs. Hence, our
proposed SubgraphX can be applied to a general family of
GNN models, including but not limited to GCNs (Kipf &
Welling, 2017), GATs (Veličković et al., 2018), GINs (Xu
et al., 2019), and Line-Graph NNs (Chen et al., 2018b).

4. Experimental Studies
4.1. Datasets and Experimental Settings

We conduct extensive experiments on different datasets and
GNN models to demonstrate the effectiveness of our pro-
posed method. The statistics and properties of the datasets
are reported in Table 1. We evaluate our SubgraphX with
five datasets for both graph classification and node classifi-
cation tasks, including synthetic data, biological data, and
text data. We summarize these datasets as below:

• MUTAG (Debnath et al., 1991) and BBBP (Wu et al.,
2018) are molecular datasets for graph classification tasks.
In these datasets, each graph represents a molecule while
nodes are atoms and edges are bonds. The labels are
determined by the chemical functionalities of molecules.

• Graph-SST2 (Yuan et al., 2020c) is sentiment graph
dataset for graph classification. It converts text sentences
to graphs with Biaffine parser (Gardner et al., 2018) that
nodes denote words and edges represent the relationships
between words. Note that node embeddings are initialized
as the pre-trained BERT word embeddings (Devlin et al.,
2019). Each graph is labeled by its sentiment, which can
be positive or negative.

• BA-2Motifs is a synthetic graph classification dataset.
Each graph contains a based graph generated by Barabási-
Albert (BA) model, which is connected with a house-like

motif or a five-node cycle motif. The graphs are labeled
based on the type of motifs. All node embeddings are
initialized as vectors containing all 1s.

• BA-Shape is a synthetic node classification dataset. Each
graph contains a base BA graph and several house-like
five-node motifs. The node labels are determined by the
memberships and locations of different nodes. All node
embeddings are initialized as vectors containing all 1s.

We explore three variants of GNNs on these datasets, includ-
ing GCNs, GATs, and GINs. All GNN models used in our
experimental studies are trained to obtain reasonable per-
formance. Then we compare our SubgraphX with several
baselines, including MCTS GNN, GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020). Note that GN-
NExplainer and PGExplainer represent the state-of-the-art
methods for GNN explanations. Here MCTS GNN denotes
the method using MCTS to explore subgraphs but directly
employing the GNN predictions of these subgraphs as the
scoring function. We wish to mention that all methods are
compared with a fair setting. We use the same number to
control the maximum number of nodes in the explanations
for all methods.

We conduct our experiments using one Nvidia V100 GPU
on an Intel Xeon Gold 6248 CPU. Our implementations are
based on Python 3.7.6, PyTorch 1.6.0, and Torch-geometric
1.6.3. For our proposed SubgraphX and other algorithms
with MCTS, the MCTS iteration number M is set to 20.
To explore a suitable trade-off between exploration and ex-
ploitation, we set the hyperparameter λ in Eq.(3) to 5 for
Graph-SST2 (GATs) and BBBP (GCNs) models, and 10
for other models. Since all GNN models contain 3 network
layers, we consider 3-hop computational graphs to compute
Shapley values for our SubgraphX. For the Monte-Carlo
sampling in our SubgraphX, we set the Monte-Carlo sam-
pling steps T to 100 for all datasets. For MCTS†, we set
Monte-Carlo sampling steps to 1000 to obtain good approx-
imations since it samples from all nodes in a graph. More
details regarding the datasets, trained GNN models, and
experimental settings can be found in Supplementary Sec-
tion A. Our code and data are now publicly available in the
DIG library (Liu et al., 2021)1.

1https://github.com/divelab/DIG

https://github.com/divelab/DIG
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“lathan and diggs have considerable personal charm, and their screen rapport makes the old story new.”

“maybe it is asking too much, but if a movie is truly going to inspire me, I want a little more than this.”
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Figure 2. Explanation results on the Graph-SST2 dataset with a GAT graph classifier. The input sentences are shown on the top of
explanations. Note that some “unimportant” words are ignored for simplicity. The first row shows explanations for a correct prediction
and the second row reports the results for an incorrect prediction.

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 3. Explanation results on the BA-2Motifs dataset with a
GCN graph classifier. The first row shows explanations for a
correct prediction and the second row reports the results for an
incorrect prediction.

4.2. Explanations for Graph Classification Models

We first visually compare our SubgraphX with the other
baselines using graph classification models. The results are
reported in Figure 3, 4, and 2 where important substructures
are shown in the bold.

The explanation results of the BA-2Motifs dataset are visu-
alized in Figure 3. We use the GCNs as the graph classifier
and report explanations for both correct and incorrect pre-
dictions. Since it is a synthetic dataset, we may consider the
motifs as reasonable approximations of explanation ground
truth. In the first row, the model prediction is correct and
our SubgraphX can precisely identify the house-like motif
as the most important subgraph. In the second row, our
SubgraphX explains the incorrect prediction that the GNN
model cannot capture the five-node cycle motif as the impor-
tant structure, and hence the prediction is wrong. For both
cases, our SubgraphX can provide better visual explana-
tions since our method can precisely identifies the succinct
subgraphs that can reasonably explain the predictions. In
addition, our explanations are connected subgraphs while

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 4. Explanation results on the MUTAG dataset with a GIN
graph classifier. We show the explanations for two correct predic-
tions. Here Carbon, Oxygen, and Nitrogen are shown in yellow,
red, and blue, respectively.

PGExplainer and GNNExplainer identify discrete edges.

We also show the explanation results of the MUTAG dataset
in Figure 4. Note that GINs are employed as the graph
classification model to be explained. Since the MUTAG
dataset is a real-world dataset and there is no ground truth
for explanations, we evaluate the explanation results based
on chemical domain knowledge. The graphs in MUTAG
are labeled based on the mutagenic effects on a bacterium.
It is known that carbon rings and NO2 groups tend to be
mutagenic (Debnath et al., 1991). We study whether the
explanations provided by different methods can match the
carbon rings and NO2 groups identified in chemistry. In
both examples, the predictions are “mutagenic” and our
SubgraphX successfully and precisely identifies the carbon
rings as important subgraphs. Meanwhile, the MCTS GNN
can capture the key subgraphs but include several additional
edges. The results of the PGExplainer and GNNExplainer
still contain several discrete edges.

For the dataset Graph-SST2, we employ GATs as the graph
model and report the results in Figure 2. In the first row,
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Figure 5. The quantitative studies for different explanation methods. Note that since the Sparsity scores cannot be fully controlled, we
compare different methods with Fidelity scores under similar similar levels of Sparsity.

the prediction is correct and the label is positive. Both our
SubgraphX and the MCTS GNN can find word phrases with
positive semantic meaning, such as “makes old story new”,
which can reasonably explain the prediction. The expla-
nations provided by PGExplainer and GNNExplainer are,
however, less semantically related. In the second row, the
input is negative but the prediction is positive. All methods
except PGExplainer can explain the decision that the GNN
model regards positive phrases “truly going to inspire” as
important, thus yielding a positive but incorrect prediction.
It is noteworthy that our method tends to include fewer
neural words, such as “the”, “me”, and “screen”, etc.

Overall, our SubgraphX can explain both correct and incor-
rect predictions for different graph data and GNN models.
Our explanations are more human-intelligible than compar-
ing methods. More results for graph classification models
are reported in Supplementary Section B.

4.3. Explanations for Node Classification Models

We also compare different methods on the node classifica-
tion tasks. We use the BA-Shape dataset and train a GCN
model to perform node classification. The visualization re-
sults are reported in Figure 6 where the important substruc-
tures are shown in bold. We can verify if the explanations
are consistent with the rules (the motifs) to label different
nodes. For both examples, the target nodes are correctly
classified. Obviously, our SubgraphX is precisely target-
ing the motifs as the explanations, which is reasonable and
promising. For other methods, their explanations only cover
partial motifs and include other structures. More results are
reported in Supplementary Section C.

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 6. Explanation results on the BA-Shape dataset. The target
node is shown in a larger size. Different colors denote node labels.

4.4. Quantitative Studies

While visualizations are important to evaluate different ex-
planation methods, human evaluations may not be accurate
due to the lack of ground truths. Hence, we further conduct
quantitative studies to compare these methods. Specifically,
we employ the metrics Fidelity and Sparsity to evaluate
explanation results (Pope et al., 2019; Yuan et al., 2020c).
The Fidelity metric measures whether the explanations are
faithfully important to the model’s predictions. It removes
the important structures from the input graphs and com-
putes the difference between predictions. In addition, the
Sparsity metric measures the fraction of structures that are
identified as important by explanation methods. Note that
high Sparsity scores mean smaller structures are identified
as important, which can affect the Fidelity scores since
smaller structures (high Sparsity) tend to be less important
(low Fidelity). Hence, for fair comparisons, we compare
different methods using Fidelity under similar levels of Spar-
sity. The results are reported in Figure 5 where we plot the
curves of Fidelity scores with respect to the Sparsity scores.
Obviously, for five out of six experiments, our proposed
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Table 2. Efficiency studies of different methods.

Method MCTS∗ MCTS† SubgraphX GNNExplainer PGExplainer

TIME >10 hours 865.4± 1.6s 77.8± 3.8s 16.2± 0.2s 0.02s (Training 362s)
FIDELITY N/A 0.53 0.55 0.19 0.18

method outperforms the comparing methods significantly
and consistently under different sparsity levels. For the BA-
Shape (GCN) experiment, our SubgraphX obtains slightly
lower but still competitive Fidelity scores compared with
the PGExplainer. Overall, such results indicate that the ex-
planations of our method are more faithful and important
to the GNN models. More details of evaluation metrics are
introduced in Supplementary Section A.

4.5. Efficiency Studies

Finally, we study the efficiency of our proposed method.
For 50 graphs with an average of 24.96 nodes from the
BBBP dataset, we show the averaging time cost to obtain
explanations for each graph. We repeat the experiments 3
times and report the results Table 2. Here MCTS∗ denotes
the baseline that follows Eq. (8) to compute Shapley values.
Compared with our SubgraphX, the difference is the usage
of Monte Carlo sampling. In addition, MCTS† indicates
the baseline computing Shapley values with Monte Carlo
sampling but without our proposed approximation schemes.
Specifically, MCTS† samples coalition sets from the player
set P instead of the reduced set P ′. First, the time cost
of MCTS∗ is extremely high since it needs to enumerate
all possible coalition sets. Next, compared with MCTS†,
our SubgraphX is 11 times faster while the obtained ex-
planations have similar Fidelity scores. It demonstrates
our approximation schemes are both effective and efficient.
Even though our method is slower than GNNExplainer and
PGExplainer, the Fidelity scores of our explanations are
300% higher than theirs. Furthermore, the PGExplainer
requires to train its model using the whole dataset. While
offline model training cost is not directly comparable, the
additional and significant time cost may be an issue when
the dataset is large-scale. Considering our explanations are
with higher-quality and more human-intelligible, we believe
such time complexity is reasonable and acceptable.

4.6. Study of Pruning Actions

Finally, we discuss the pruning actions in our MCTS. For
the graph associated with each non-leaf tree search node,
we perform node pruning to obtain its children subgraphs.
Specifically, when a node is removed, all edges connected
with it are also removed. In addition, if multiple discon-
nected subgraphs are obtained after removing a node, only
the largest subgraph is kept. Instead of exploring all possible

Table 3. The studies of different pruning strategies.

Method Time Fidelity

LOW2HIGH 107.24s 0.66149
HIGH2LOW 21.52s 0.61046

node pruning actions, we explore two strategies: Low2high
and High2low. First, Low2high arranges the nodes based
on their node degrees from low to high and only considers
the pruning actions corresponding to the first k low degree
nodes. Meanwhile, High2low arranges the nodes in order
from high degree to low degree and only considers the first k
high degree nodes for pruning. Intuitively, High2low is more
efficient but may ignore the optimal solutions. In this work,
we employ the High2low strategy for BA-Shape(GCNs),
and Low2high strategy for other models, and set the k to
12 for all the datasets. We conduct experiments to analyze
these two pruning strategies for our SubgraphX algorithm
and show the average time cost and Fidelity score in Table 3.
Specifically, we randomly select 50 graphs from the BBBP
datasets with an average node number of 24.96, which is
the same in Section 4.5. In addition, we set Monte-Carlo
sampling steps T to 100, and select the subgraphs with the
highest Shapley values and contain less than 15 nodes to
calculate the Fidelity. Obviously, High2low is 5 times faster
than Low2high but the Fidelity scores are inferior.

5. Conclusions
While considerable efforts have been devoted to study the
explainability of GNNs, none of existing methods can ex-
plain GNN predictions with subgraphs. We argue that sub-
graphs are building blocks of complex graphs and are more
human-intelligible. To this end, we propose the SubgraphX
to explain GNNs by identifying important subgraphs explic-
itly. We employ the Monte Carlo tree search algorithm to
efficiently explore different subgraph. For each subgraph,
we propose to employ Shapley values to measure its im-
portance by considering the interactions among different
graph structures. To expedite computations, we propose
efficient approximation schemes to compute Shapley values
by considering interactions only within the information ag-
gregation range. Experimental results show our SubgraphX
obtain higher-quality and more human-intelligible explana-
tions while keeping time complexity acceptable.
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Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C.,
and Hennig, L. Layerwise relevance visualization in
convolutional text graph classifiers. arXiv preprint
arXiv:1909.10911, 2019.

Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. Net-
work motifs in the transcriptional regulation network of
escherichia coli. Nature genetics, 31(1):64–68, 2002.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Watten-
berg, M. Smoothgrad: removing noise by adding noise.
arXiv preprint arXiv:1706.03825, 2017.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. International Conference on Learning Representa-
tions, 2015.
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On Explainability of Graph Neural Networks via Subgraph Explorations:
Appendix

A. Datasets and Experimental Settings
A.1. Datasets and GNN Models

We employ different GNN variants to fit these datasets and explain the trained GNNs. Note that these models are trained to
obtain reasonable performance. Specifically, we report the architectures and performance of these GNNs as below:

• MUTAG (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension is 7 and the output dimensions
of different GCN layers are set to 128, 128, 128, respectively. We employ max-pooling as the readout function and ReLU
as the activation function. The model is trained for 2000 epochs with a learning rate of 0.005 and the testing accuracy is
0.92. We study the explanations for the whole dataset.

• MUTAG (GINs): This GNN model consists of 3 GIN layers. For each GIN layer, the MLP for feature transformations is
a two-layer MLP. The input feature dimension is 7 and the output dimensions of different GIN layers are set to 128, 128,
128 respectively. We employ max-pooling as the readout function and ReLU as the activation function. The model is
trained for 2000 epochs with a learning rate of 0.005 and the testing accuracy is 1.00. We study the explanations for the
whole dataset.

• BBBP (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension is 9 and the output dimensions
of different GCN layers are set to 128, 128, 128, respectively. We employ max-pooling as the readout function and ReLU
as the activation function. The model is trained for 800 epochs with a learning rate of 0.005 and the testing accuracy is
0.863. We randomly split this dataset into the training set (80%), validation set (10%), and testing set (10%). We study the
explanations for the testing set.

• Graph-SST2 (GATs): This GNN model consists of 3 GAT layers. The input feature dimension is 768 and all GAT layers
have 10 heads with 10-dimensional features. We employ max-pooling as the readout function and ReLU as the activation
function. In addition, we set the dropout rate to 0.6 to avoid overfitting. The model is trained for 800 epochs with a
learning rate of 0.005 and the testing accuracy is 0.881. We follow the training, validation, and testing splitting of the
original SST2 dataset. We study the explanations for the testing set.

• BA-2Motifs (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension is 10 and the output
dimensions of different GCN layers are set to 20, 20, 20, respectively. For each GCN layer, we employ L2 normalization
to normalize node features. We employ average pooling as the readout function and ReLU as the activation function. The
model is trained for 800 epochs with a learning rate of 0.005 and the testing accuracy is 0.99. We randomly split this
dataset into the training set (80%), validation set (10%), and testing set (10%). We study the explanations for the testing
set.

• BA-Shape (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension is 10 and the output
dimensions of different GCN layers are set to 20, 20, 20, respectively. For each GCN layer, we employ L2 normalization
to normalize node features. In addition, we use ReLU as the activation function. The model is trained for 800 epochs
with a learning rate of 0.005 and the testing accuracy is 0.957. We randomly split this dataset into the training set (80%),
validation set (10%), and testing set (10%). We study the explanations for the testing set.

A.2. Experimental Settings

A.3. Evaluation Metrics

We further introduce the evaluation metrics in detail. First, given a graph Gi, its prediction class yi, and its explanation, we
obtain a hard explanation mask Mi where each element is 0 or 1 to indicate whether the corresponding node is identified as
important. For our SubgraphX and MCTS-based baselines, the masks can be directly determined by the obtained subgraphs.
For GNNExplainer and PGExplainer, their explanations are edge masks and can be converted to explanation masks by
selecting the nodes connected with these important edges. Then by occluding the important nodes in Gi based on Mi, we
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can obtain a new graph Ĝi. Finally, the Fidelity score can be computed as

Fidelity =
1

N

N∑
i=1

(f(Gi)yi
− f(Ĝi)yi

), (10)

where N is the total number of testing samples, f(Gi)yi
means the predicted probability of class yi for the original graph

Gi. Intuitively, Fidelity measures the averaged probability change for the predictions by removing important input features.
Since simply removing nodes significantly affect the graph structures, we occlude these nodes with zero features to compute
the Fidelity. In addition, we also employ Sparsity to measure the fraction of nodes are selected in the explanations. Then it
can be computed as

Sparsity =
1

N

N∑
i=1

(1− |Mi|
|Gi|

), (11)

where |Mi| denotes the number of important nodes identified in Mi and |Gi| means the number of nodes in Gi. Ideally,
good explanations should select fewer nodes (high Sparsity) but lead to significant prediction drops (high Fidelity).

B. Explanations for Graph Classification Models
In this section, we report more visualizations of explanations for graph classification models. The results are reported in
Figure 7 and 8. In Figure 7, we show the explanations of real-world datasets BBBP and MUTAG. Obviously, our proposed
method can provide more human-intelligible subgraphs as explanations while PGExplainer and GNNExplainer focus on
discrete edges. In addition, we also report the results of sentiment dataset Graph-SST2 in Figure 8. The results show that
our SubgraphX can provide reasonable explanations to explain the predictions. For example, in the second row, the input
sentence is “none of this violates the letter of behan‘s book, but missing is its spirit, its ribald, full-throated humor”, whose
label is negative and the prediction is correct. From the human’s view, “missing” should be the keyword for the semantic
meaning. Our SubgraphX shows that the “missing is its spirit” phrase is important, which successfully captures the keyword.
The other methods capture the words and phrases such as “violates”, “none of this”, which are less related to the negative
meaning.

C. Explanations for Node Classification Models
In this section, we report more visualizations of explanations for node classification models. The results are reported in
Figure 9 where we show the explanations of node classification dataset BA-Shape. Obviously, our SubgprahX focuses on
the whole motifs for correct predictions and captures partial motifs for incorrect predictions. This is reasonable since if the
model can capture the whole motif, then it is expected to correctly predict the target node; otherwise, the information of
partial motifs is not enough to make correct predictions.
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SubgraphX MCTS_GNN PGExplainer GNNExplainer

Dataset BBBP
Model: GCNs

Label: penetration
Correct prediction

Dataset BBBP
Model: GCNs

Label: penetration
Correct prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Correct prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Incorrect prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Correct prediction

Dataset MUTAG
Model: GINs

Label: mutagenic
Correct prediction

Figure 7. Explanation results of the BBBP and MUTAG datasets. Here Carbon, Oxygen, Nitrogen, and Chlorine are shown in yellow, red,
and blue, green respectively.
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SubgraphX MCTS_GNN PGExplainer GNNExplainer

Label: positive, correct prediction, input:“reinforces the talents of screen writer charlie kaufman, creator of adaptation and being john malkovich.”

Label: negative, correct prediction, input:“none of this violates the letter of behan`s book, but missing is its spirit, its ribald, full-throated humor.”

Label: positive, incorrect prediction, input:“smart science fiction for grown-ups, with only a few false steps along the way.”

Label: positive, incorrect prediction, input:“a whole lot foul, freaky and funny.”

Figure 8. Explanation results of Grpah-SST2 dataset.
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SubgraphX MCTS_GNN PGExplainer GNNExplainer

Dataset: BA-Shape
Model: GCNs

Target: large blue node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large green node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large red node
Incorrect prediction

Dataset: BA-Shape
Model: GCNs

Target: large green node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large red node
Incorrect prediction

Figure 9. Explanation results of BA-Shape dataset. The target node is shown in a larger size.


