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ABSTRACT

Distributed multi-agent learning enables agents to cooperatively
train a model without requiring to share their datasets. While this
setting ensures some level of privacy, it has been shown that, even
when data is not directly shared, the training process is vulner-
able to privacy attacks including data reconstruction and model
inversion attacks. Additionally, malicious agents that train on in-
verted labels or random data, may arbitrarily weaken the accuracy
of the global model. This paper addresses these challenges and
presents Privacy-preserving and Accountable Distributed Learning
(PA-DL), a fully decentralized framework that relies on Differential
Privacy to guarantee strong privacy protection of the agents data,
and Ethereum smart contracts to ensure accountability.
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1 INTRODUCTION

Distributed multi-agent learning enables agents to cooperatively
train a learning model without requiring them to share their dataset.
Typical multi-agent learning frameworks, including federated learn-
ing [8], allow individual agents to train their local models on their
own datasets and share model parameters with a centralized agent
that aggregates the received parameters and sends them back to the
agents. This simple, yet effective procedure, repeats for several iter-
ations and allows the participating agents to learn a global model
without accessing data of other agents.

This paper uses a decentralized computational environment that
enables to train a differentially private multi-agent learning model,
guaranteeing both privacy and trust. The resulting framework,
called Privacy-preserving and Accountable Distributed Learning (PA-
DL ) relies on the Ethereum blockchain, that combines an immutable
data storage with a Turing-complete computational environment
[10] and guarantees the correctness of the programs executed over
the blockchain.

The Ethereum protocol ensures that smart contracts are executed
correctly, thus, agents can trust that any data sent to the blockchain
will not be corrupted and that smart contracts logic will be exe-
cuted as intended. While this environment guarantees that the data
stored on the blockchain is immutable, it does not guarantee data
privacy. The privacy requirement is enforced by ensuring that the
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Figure 1: Flow diagram of the PA-DL Framework

learned model is differentially private [3]. PA-DL uses a clipping
approach on the model parameters and the privacy analysis relies
on composition methods [4] and the moment accountant for the
Sampled Gaussian Mechanism [9]. Trustworthiness is achieved by
running the computation on the immutable blockchain combined
with a decentralized procedure that validates the genuineness of
the agent contributions to the model.

Problem Settings and Goals The paper considers a collection
of K agents, each holding a dataset D, (a € [K]) consisting of
ng individuals’ data points (X, Y;), with i € [ng] drawn from an
unknown distribution. Therein, X; € X is a feature vector and Y; € Y
is a label. The goal is to learn a global model My : X — Y, where 0
is a real valued vector describing the model parameters. The model
quality is measured in terms of a loss function L : Y XY — R,
and the problem is that of minimizing the empirical risk function:

min J(Mp.D) = % > Ja(M& Do), 0
0 K ac[K]

where Mg is a local classifier associated to agent a € [K]
and J; is its empirical risk function, defined as ]a(Mz,Da) =

n—la 2 (XY eD, £ (M; (Xi), Yi) . The paper focuses on problems

(1) with non-convex components Jg, as in deep learning tasks.

2 THE PA-DL FRAMEWORK

Private and Accountable Distributed Learning (PA-DL) is a fully

distributed learning framework that ensures privacy and account-

ability while keeping the network bandwidth low. The framework

is schematically shown in Figure 1 and its main components are:

o A Smart Contract Coordinator (SCC): It is a program executed on
the blockchain that orchestrates the interaction among PA-DL
agents to ensure the correct data exchange aimed at training a
global model. The SCC operates in rounds. At each round a set
of agents is invoked according to a predefined ordering and their
responses are aggregated.
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Agents | 10 100 1000

Method ‘ 10° Tasks 106 Tasks
PA-DL | 0.102 1.020 10.20 createTask 2.76 % 107 USD  2.76 USD
FedAvg | 0.600 6.000 60.00 startNextRound | 7.23 % 1074 USD  0.723 USD
. . K X
@ (b)

Table 1: Network bandwidth in GB (left) and Cost in USD
(right) for execution of a method in SCC for N parallelly ex-
ecuting tasks, required to complete 1 round on MNIST data.

e A provably private PA-DL agent training procedure: At each
round, the invoked agents use the parameters obtained by the
SCC to train a model over their dataset. Each training step is
ensured to guarantee (¢, §)-differential privacy.

o Accountability: Prior being able to submit a model update, a PA-
DL agent is required to invoke a verification step that ensures its
trustworthiness.

3 EXPERIMENTAL ANALYSIS

Datasets, Models, and Metrics. This section studies the behavior
of the proposed PA-DL architectures on three classification tasks: (1)
MNIST and (2) Fashion MNIST comprises of 0 to 9 handwritten digits
and articles images, respectively. The task is to correctly classify
the class associated with an image. (3) COVID-19 Chest X-Ray is the
first public COVID-19 CXR image data collection [2] combined with
Healthy Chest X-Ray images [5]. The task is to correctly classify
from an XRAY image whether a person is COVID-19 positive.

The experiments compare the proposed model against a classic,
centralized, Stochastic Gradient Descent (SGD) method, and FedAvg
[6], a standard Federated Learning algorithm.
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Figure 2: Algorithms accuracy per round on MNIST & FM-
NIST (left), COVID-19 X-Ray(Right) for K = 1000 agents.

Accuracy and Scalability. Figure 2 reports a comparison of the
accuracy of all models. Observe that the PA-DL outperforms FedAvg
in all cases. Next, Table 1 (left) compares the network bandwidth
consumption analyzed at varying of the number of agents. The
table illustrates a clear trend: The proposed PA-DL framework is
able to compute models more efficiently than FedAvg as it requires
less network bandwidth. Table 1 (right) shows the cost incurred by
running the SCC on an Ethereum based Layer-2 Plasma [1] side
chain.

Privacy/Accuracy trade-off. Finally, the analysis focuses on the
accuracy of the distributed models under the differential privacy
constraints. It follows similar settings as those described above. To
ensure privacy, this section uses DP-FedAvg [7] (in lieu of FedAvg),
under the privacy model adopted in the paper. The privacy settings
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Figure 3: Accuracy on MNIST for K =10 (top), 50 (middle), and
100 (bottom) agents. The final privacy losses for the model
with K=10, 50, and 100, respectively, are 0.5,1.1 and 1.6.

for all models are: ¢ = 10 and ¢ = 2.0 and the probability of pure
DP violation § = 1e — 3. The total privacy loss is computed based
on the moment accountant method.

Firstly, observe that PA-DL produces private models that are
significantly more accurate to those produced by DP-FedAvg, under
the same privacy constraints. Our analysis indicates that this is due
to the different number of aggregation operations performed by
the various algorithms. This crucial behavior was also observed in
[7] that noted that for general non-convex objectives, averaging
model parameters could produce an arbitrarily bad model. Under
a very tight privacy constraint € ~ 1, PA-DL consistently achieves
more than 80% accuracy.

The experiment also analyzed biased datasets (not reported due
to space constraints) and observed that the results follow the same
trends as those outlined above.

These experiments demonstrate the robustness of the proposed mod-
els under a non-IID setting, a varying number of agents, and strict
privacy constraints. and shows that PA-DL may represent a promising
step towards a practical tool for privacy-preserving and accountable
multi-agent learning.
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