
Toward Silicon-Proven Detailed Routing for
Analog and Mixed-Signal Circuits

Hao Chen
ECE Department, UT Austin

haoc@utexas.edu

Keren Zhu
ECE Department, UT Austin

keren.zhu@utexas.edu

Mingjie Liu
ECE Department, UT Austin

jay_liu@utexas.edu

Xiyuan Tang
ECE Department, UT Austin

xitang@utexas.edu

Nan Sun
ECE Department, UT Austin
nansun@mail.utexas.edu

David Z. Pan
ECE Department, UT Austin

dpan@ece.utexas.edu

ABSTRACT
Detailed routing is an intricate and tedious procedure in design au-
tomation and has become a crucial step for advanced node enable-
ment. Compared with its advances in digital design, detailed routing
for analog/mixed-signal (AMS) integrated circuits (ICs) is still heavily
manual. In AMS designs, the sensitive net coupling issues and analog-
specific constraints make detailed routing even more challenging. This
work presents a novel and efficient detailed routing framework for auto-
mated AMS layout synthesis considering industrial design rules as well
as analog-specific geometric and electrical constraints. Experimental
results demonstrate the efficiency and effectiveness of our approach in
optimizing circuit performance while satisfying the specified constraints.
Post-layout simulations further prove that our detailed routing results
can achieve sign-off quality.

1 INTRODUCTION
Routing is the most complicated process in the layout automation flow
and has become one of the bottlenecks for advanced nodes enablement.
Due to the intricate design rules and substantial solution space, conven-
tional approaches typically divide routing into two stages: global routing
and detailed routing. Global routing partitions the entire routing region
into a set of bins and generates rough routing solutions to optimize
overall timing, crosstalk, and alleviate congestion. Detailed routing com-
pletes the final geometric implementation while satisfying all the design
rules. The detailed routing problem has been broadly studied for decades.
Recent efforts show promising progress to diminish the gap between aca-
demic and real-world physical design needs [9, 10, 20]. Despite the revival
of detailed routing research in recent years, limited work has demon-
strated an end-to-end detailed routing scheme for analog/mixed-signal
(AMS) circuits.

In addition to wirelength optimization, which is the primary target of
conventional routing, an AMS router needs to comprehend more design
aspects such as current balancing, voltage drop, and signal coupling.
Among prior art on analog routing automation, the work [1, 5] conducts
template-based routing based on well-optimized human design templates
to handle design-specific concerns (e.g., layout retargeting) for high-
quality layouts. The scalability of these template-based methodologies is
limited by the complexity of input templates, which require tremendous
design efforts. In [2], sensitivity analysis is applied during routing to
identify net matching information and critical nets, and further guarantee

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415660

𝑝1,1

Guide (M1)

(a) (b) (c)

Pin Symmetry axis Wire (M1)

𝑝1,3

𝑝2,1

𝑝2,3

𝑝2,2
𝑝1,2

𝑝1,3

𝑝1,1

𝑝1,2

𝑝2,3

𝑝2,1

𝑝2,2

𝑝2,1

𝑝2,3

𝑝1,1

𝑝1,3

𝑝1,2
𝑝2,2

Figure 1: (a) A symmetric global routing result with asymmetric
pin locations. (b) An undesirable detailed routing result. (c) A pre-
ferred detailed routing.

the layout quality. The simulation-based approaches can be generalized
to various performance metrics (e.g., speed, power dissipation, voltage
swings) in the analog domain [18]. However, these approaches suffer
from long simulation time and exhausted computational resources, thus
not suitable for the implementation of large scale systems such as analog-
to-digital converter (ADC) and phase-locked loop (PLL).

To tackle the AMS routing problemwithout jeopardizing the scalability
in practices, constraint-based techniques are widely applied. Symmetry
is an essential concept in analog layout synthesis [11]. A graph-based
algorithm to handle the mirror symmetry constraint is demonstrated
in [3]. In [12, 17, 21], maze-based routing methods considering mirror-
symmetry constraints with asymmetric obstacles are proposed. Symme-
try constraints can be further extended to different levels of geometric
matching such as common-centroid, topology-matching, and length-
matching constraints. The work [14] presents a length-matching rout-
ing method ensuring both minimum and maximum length restrictions
are satisfied. The work [22] handles length-matching constraints for
general routing topology. In [16], a maze routing algorithm supporting
exact-matching constraints is shown. In [15], an integer linear program-
ming formulation for analog routing is proposed to consider symmetry,
common-centroid, topology-matching, and length-matching constraints
simultaneously.

However, the specified heuristic constraints could fail to model the
situation in detailed routing. As shown in Figure 1, the global routing
results for two matched nets are symmetric, yet the exact pin locations
are not. Thus, a fully symmetric detailed routing solution does not exist.
Nevertheless, it is desirable to route the net with similar patterns for
aesthetic concerns, which are crucial principles in analog layout [4, 8].
The aesthetic in analog routing is a relief for correctness to describe
hard-to-model relations in analog layout and design expertise. Existing
analog routing algorithms are still limited to consider such sophisticated
scenarios. Moreover, the voltage drop problem can result in dramatic
performance degradation in AMS circuits; thus, wider metal width and
multiple-cut vias are required to carry analog current levels. To ensure
the performance of the routed layouts, handling different wire widths

https://doi.org/10.1145/3400302.3415660

and multiple-cut vias for nets while satisfying the specified constraints,
aesthetic concerns, and rigid design rules is necessary.

In this paper, we propose a hierarchical AMS detailed routing frame-
work capable of handling large AMS systems (e.g., ADC) with industrial
design rules, analog-specific constraints, and aesthetic concerns consid-
eration. Highlights of our work are summarized as follows.
• We propose a symmetry-constraint allocation algorithm to assign
suitable net matching requirements according to the pin locations.
• We propose a pin access generation method that determines the
valid access points with preferred access direction.
• We develop a novel pin clustering strategy to attain regular routing
patterns, which can substantially improve the overall routing
aesthetic.
• We design a robust hierarchical rip-up and re-routing scheme that
is capable of industrial design rules and analog-specific constraints
handling and alleviates the routing congestion.
• Experimental results demonstrate that our framework can com-
plete routing in complicated AMS designs efficiently while con-
sidering specific constraints and achieve sign-off quality perfor-
mance.

The remaining sections are organized as follows. Section 2 gives the
preliminaries and formulates the analog detailed routing problem. Sec-
tion 3 details our AMS detailed routing algorithm. Section 4 shows the
experimental results, and Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we introduce the routing grid graph, some real industrial
design rules, and different forms of symmetry constraints. Then, we
formulate the analog detailed routing problem.

2.1 Routing Grid Graph
Routing tracks with preferred direction are standard in digital detailed
routing. The state-of-the-art digital detailed routers [9, 10] perform rout-
ing on such structure and minimize the wrong-way and off-track wires.
Analog circuit designers typically adopt the shape-based gridless routing
methodology for connections, especially in bulk CMOS designs. However,
the enormous solution space of gridless routing results in massive run-
time overhead to an automated router. As a result, gridless approaches
are not amenable to more complicated analog systems. In our framework,
we introduce routing tracks without preferred direction on each metal
layer to improve efficiency, scalability, and routability while maintaining
the routing flexibility. The heavy-duty design-rule-checking (DRC) is also
significantly relieved since the tracks are spaced as per the technology
and constraints.

The routing tracks form a 3-D grid graph 𝐺 = (𝑉 , 𝐸) to model the
entire routing region, where 𝑉 is a set of vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set
of edges. The set 𝑉 consists of grid points, which are the intersections
points of the tracks. An edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 signifies the interconnection
from vertex 𝑢 to 𝑣 . The edge between two neighboring vertices is either
a horizontal (resp. vertical) wire segment for intra-layer connections, or
a via for inter-layer connection. For local connections within a routing
grid, gridless routing is utilized to handle design rules and sophisticated
patterns.

2.2 Industrial Design Rules
To satisfy manufacturing requirements, design rules need to be well
handled. We introduce some of the fundamental and typical design rules
considered in detailed routing.

2.2.1 Parallel Run Spacing. According to the parallel run length of two
wires, a minimum required spacing between them is specified regarding

width1

width2 spacing

parallel run length

(a)

EOL

eolWithin

eolSpace

eolWidth

(b)

min area = 0.02

area = 0.016

area = 0.022

area = 0.018

patch metal

(c)

minStep = 0.07
maxEdge = 2

0.05

0.05

0.05
0.05

violation

(d)

parWithin

parWithin

parSpace

eolWithin

Figure 2: (a) Example of parallel run spacing. (b) Example of EOL
spacing. (c) Example of the min area rule. (d) Example of a min-
step max-edges violation.

the maximum width of the two wires. Figure 2(a) illustrates the parallel
run spacing constraint.

2.2.2 End-of-line Spacing. The end-of-line (EOL) spacing specifies the
minimum required spacing eolSpace anywhere less than the eolWithin dis-
tance beyond an EOL (i.e., a metal end with width smaller than eolWidth).
The EOL spacing constraint is applied if any other edge parallel to EOL
occurs in the parallel edge windows constructed by extending the corners
of EOL sideward by parSpace, forward by eolWithin, and backward by
parWithin. Figure 2(b) shows an example of the EOL spacing rule.

2.2.3 Min-area. As exemplified in Figure 2(c), the min-area rule specifies
that the area of a metal polygon should be greater or equal to a specified
threshold.

2.2.4 Min-step. To ensure the correctness of optical pattern correction
(OPC) during mask creation in the manufacturing stage, the min-step
rule is specified. The min-step rule states that no more than𝑚𝑎𝑥𝐸𝑑𝑔𝑒

consecutive edges with length less than𝑚𝑖𝑛𝑆𝑡𝑒𝑝 of a metal polygon is
allowed. Figure 2(d) demonstrates an example of a min-step violation.

2.3 Analog-Specific Constraints
To improve the overall performance of an analog layout, additional con-
straints need to be specified.

2.3.1 Symmetry Constraints. In the previous analog routing approach,
symmetry constraints are specified to route nets symmetrically regarding
some joint axes. However, the straightforward mirroring technique [3,
15, 21] cannot describe different situations of matched nets. For example,
the mirroring technique is not capable of routing two matched nets
with pin locations on both sides of the symmetry axis since an overlap
is inevitable when crossing the symmetry axis. In our framework, we
extend the symmetry constraints into four variants: mirror-, cross-, self-,
and partial-symmetry. Mirror-symmetry is applied when the pins of two
matched nets located on each side of the symmetry axis. Cross-symmetry
is employed when the pins of two matched nets appear on both sides of
the symmetry axis. Self-symmetry specifies the matching requirement
within a net. Partial-symmetry happens when the matched nets lack
some symmetric pin pairs. To be specific, partial-symmetry constraints

(a) (b)

(c) (d)

Symmetry axis

Pin

Wire (M1)

Wire (M2)

Via (V12)

𝑝1,1

𝑝1,2

𝑝2,1

𝑝2,2 𝑝2,2

𝑝2,1

𝑝1,2

𝑝1,1

𝑝1,1

𝑝1,3

𝑝1,2

𝑝1,4

𝑝1,1

𝑝1,2

𝑝2,1

𝑝2,2

𝑝2,3

Figure 3: Examples of the four symmetry constraint variants.
(a) Mirror-symmetry. (b) Cross-symmetry. (c) Self-symmetry. (d)
Partial-symmetry.

are always bonded with other constraints, e.g., partial self-symmetry,
partial cross-symmetry. Figure 3 illustrates the four variants of symmetry
constraints, where 𝑝𝑖, 𝑗 denotes the 𝑗 th pin of the 𝑖th net.

2.3.2 Electrical Constraints. IR-induced voltage drop can cause signifi-
cant performance degradation in analog circuits. To maintain the per-
formance, some critical nets are specified to have wider metal widths
and multiple-cut vias for inter-layer connections. In our framework, we
perform pre-layout simulation to extract the maximum tolerable para-
sitic resistance, which defines the minimum wire width and the via cut
number, and specify them as constraints.

2.4 Problem Formulation
We formally define the analog detailed routing problem as follows.

Problem 1 (Analog Detailed Routing). Given a set of nets 𝑁 = {𝑛𝑖 |1 ≤
𝑖 ≤ |𝑁 |}, a set of global routing guides 𝐻 = {ℎ𝑖 |1 ≤ 𝑖 ≤ |𝐻 |}, and a set
of placed devices𝑀 = {𝑚𝑖 |1 ≤ 𝑖 ≤ |𝑀 |}, generate a routing solution for
each net 𝑛𝑖 ∈ 𝑁 considering ℎ𝑖 ∈ 𝐻 such that 𝑛𝑖 is connected without
design rule violations and the specified constraints are satisfied.

3 HIERARCHICAL ROUTING FRAMEWORK
With an input hierarchical circuit netlist, as shown in Figure 4, we propose
a bottom-up analog detailed routing approach to achieve high-quality
solution and efficiency. The overall flow of our routing algorithm for each
hierarchy is shown in Figure 5. In the flow, a symmetry constraint alloca-
tion technique based on the well-known graph matching algorithm [7]
is applied if the symmetry constraints are not provided by the designer.
Otherwise, our algorithm honors the specification by designer and takes
it as input directly. After the pre-processing stage, the core of our rout-
ing framework includes three main phases: 1) pin access computation
with preferred access direction, which models complicated pin shapes
and reduces the complexity of the problem, 2) constraint-aware itera-
tive routing, which connects all nets while considering design rules and
constraints described in Section 2, and 3) post-processing, which refines
the remaining design rule violations, to be detailed in the following. The
notations used in this paper is summarized in Table 1.

3.1 Symmetry Constraint Allocation
The symmetry constraints input defined by circuit designers reflects
their expertise, experience, and insights. For example, some sensitive

(a) (b)

COMP

𝑖𝑛_𝑝 𝑖𝑛_m

𝑣𝑏𝑖𝑎𝑠

𝑐𝑙𝑘 𝑐𝑙𝑘

𝑜𝑢𝑡_𝑝 𝑜𝑢𝑡_𝑚

ADC

INVINV

ADC

COMP

INV

C1

C1 INV

….

OTA1 OTA2

OTA1 COMP

…. ….

….

OTA2

Figure 4: (a) Circuit netlist with hierarchical structure. (b) Rout-
ing hierarchy tree of (a).

Constraint-Aware Iterative Routing

Circuit
Netlist

Routing
Result

Pin Access Assignment

Design
Rules

Pin Clustering

Violated Net
Removal

Constraint-Aware
Routing

Constraint
Relaxation

Symmetry Constraint Allocation

Post-Processing

Figure 5: Computation flow of our AMS routing framework.

Table 1: Notations used in this paper.

Symbol Description
𝑁 The set of nets specified in the circuit netlist.
𝑛𝑖 The 𝑖th net in 𝑁 , 1 ≤ 𝑖 ≤ |𝑁 |.
𝑃 The set of all pins.
𝑃𝑖 The set of pins in 𝑛𝑖 .
𝑝𝑖,𝑘 The 𝑘th pin in 𝑃𝑖 , 1 ≤ 𝑘 ≤ |𝑃𝑖 |.
𝑥𝑖,𝑘 The center 𝑥-coordinate of 𝑝𝑖,𝑘 .
𝜆𝑖 The self-symmetry axis of 𝑛𝑖 .
𝜆𝑖, 𝑗 The symmetry axis between 𝑛𝑖 and 𝑛 𝑗 .

𝑎𝑖,𝑘 (𝑥) A function with output 1, if 𝑝𝑖,𝑘 has a corresponding
symmetric pin in 𝑃𝑖 with respect to 𝑥 ; 0, otherwise.

𝑏
𝑗

𝑖,𝑘
(𝑥) A function with output 1, if 𝑝𝑖,𝑘 has a corresponding

symmetric pin in 𝑃 𝑗 with respect to 𝑥 ; 0, otherwise.

differential nets should have almost identical routing topology to avoid
circuit performance degradation caused by the mismatch. Thus, our
analog routing engine will honor the constraints provided by circuit
designers. Though circuit designers have better common sense and more

(a) (b)

𝑝1,3𝑝1,2𝑝1,1 𝑝1,4

𝑝1,5𝑝2,1

𝑝2,2 𝑝3,2

𝑝2,3 𝑝3,3

𝑝3,1

𝑝4,1

𝑝4,2 𝑝4,3 𝑝4,4

𝑛1

𝑛2 𝑛3

𝑛4
2

3

1
𝑣1
′

𝑣1

𝑣2
′

𝑣2 𝑣3

𝑣3
′

𝑣4

𝑣4
′

Maximum-weight matching

2

5

2

5

4

5

4

3

Figure 6: (a) A placement result with four nets. (b) The con-
structed matching graph for (a) and the weight of each edge is
labelled aside.

Algorithm 1 AllocateSymConstraints(𝐿, 𝑁)
Input: A placement layout 𝐿 and a set of nets 𝑁 .
Output: A set 𝑆sym of symmetry constraints.
1: Intialize an empty undirected graph 𝐺 = (𝑉 , 𝐸);
2: AddVertices(𝑉);
3: for each 𝑛𝑖 ∈ 𝑁 do
4: for each 𝑛 𝑗 ∈ 𝑁 do
5: if 𝑛𝑖 == 𝑛 𝑗 then
6: 𝜓𝑖 := ComputeEstSelfSymDeg(𝑛𝑖);
7: if 𝜓𝑖 > 0 then
8: 𝐸 := 𝐸 ∪ {(𝑣𝑖 , 𝑣 ′𝑖 ,𝜓𝑖)};
9: else
10: 𝜓𝑖, 𝑗 := ComputeEstSymDeg(𝑛𝑖 , 𝑛 𝑗);
11: if 𝜓𝑖, 𝑗 > 0 then
12: 𝐸 := 𝐸 ∪ {(𝑣𝑖 , 𝑣 𝑗 , 2𝜓𝑖, 𝑗)};
13: 𝑆sym := MaxWeightedMathcing(𝐺);
14: return 𝑆sym;

insights in sensitivity analysis, they could suffer from handling complex
geometrical implementation, such as specifying all the constraints among
a massive amount of complicated interconnections. To alleviate the work-
load of designers, our analog routing engine is also able to identify and
assign suitable symmetry constraints to matched nets concerning the
geometrical locations of their pins.

After acquiring the placement layout and the routing netlist, we per-
form the symmetry constraint allocation procedure and determine ap-
propriate constraints for matched nets. The procedure is sketched in
Algorithm 1. We first construct an undirected graph 𝐺 = (𝑉 , 𝐸), where
𝑉 is a set of vertices, and 𝐸 is a set of weighted edges. The function
AddVertices then initializes 𝑉 by adding two separate vertices 𝑣𝑖 and 𝑣 ′𝑖
for each net 𝑛𝑖 given in the circuit netlist. To build the weighted edge set
𝐸, we compute the weight of each edge according to the estimated degree
of symmetry or self-symmetry of the nets. For simplicity, we only detail
the computation of horizontal symmetry below, while vertical symmetry
can be achieved in the same manner.

For 𝑛𝑖 equal to 𝑛 𝑗 , we compute the estimated degree of self-symmetry
𝜓𝑖 and the correlated symmetry axis 𝜆𝑖 by the following equation,

𝜓𝑖 = 𝑓𝑖 (𝜆𝑖),

𝜆𝑖 = argmax
1≤𝑘, 𝑘′≤ |𝑃𝑖 |

𝑓𝑖 (
𝑥𝑖,𝑘 + 𝑥𝑖,𝑘′

2
),

𝑓𝑖 (𝑥) =

∑
𝑘

𝑎𝑖,𝑘 (𝑥)

|𝑃𝑖 |
.

(1)

An edge (𝑣𝑖 , 𝑣 ′𝑖 ,𝜓𝑖) is added to 𝐸 if and only if𝜓𝑖 > 0. Otherwise, we com-
pute the estimated degree of symmetry𝜓𝑖, 𝑗 and the correlated symmetry
axis 𝜆𝑖, 𝑗 as follows.

𝜓𝑖, 𝑗 = 𝑓𝑖, 𝑗 (𝜆𝑖, 𝑗),

𝜆𝑖, 𝑗 = argmax
1≤𝑘≤ |𝑃𝑖 |, 1≤𝑘′≤ |𝑃 𝑗 |

𝑓𝑖, 𝑗 (
𝑥𝑖,𝑘 + 𝑥 𝑗,𝑘′

2
),

𝑓𝑖, 𝑗 (𝑥) =

max
(∑

𝑘

𝑏
𝑗

𝑖,𝑘
(𝑥),

∑
𝑘′

𝑏𝑖
𝑗,𝑘′ (𝑥)

)
max(|𝑃𝑖 |, |𝑃 𝑗 |)

.

(2)

Similarly, we add an edge (𝑣𝑖 , 𝑣 𝑗 , 2𝜓𝑖, 𝑗) to 𝐸 if and only if𝜓𝑖, 𝑗 > 0.

Example 1. For net𝑛1 in Figure 6(a), we have𝜓1 = 4
5 and 𝜆1 =

𝑥1,1+𝑥1,4
2 =

𝑥1,2+𝑥1,3
2 since 𝑝1,1 and 𝑝1,2 are symmetric to 𝑝1,4 and 𝑝1,3 with respect to

𝜆1. For nets 𝑛2 and 𝑛3, we have 𝜓2,3 = 4
3 and 𝜆2,3 =

𝑥2,2+𝑥3,2
2 =

𝑥2,3+𝑥3,3
2

since 𝑝2,2 and 𝑝2,3 are symmetric to 𝑝3,2 and 𝑝3,3 with respect to 𝜆2,3.

The complete edge set is built when all the combinations of net pairs
are examined, as shown in Lines 3-12 in Algorithm 1. After the graph
construction process, we perform Edmond’s blossom algorithm [7] on
the graph to find the maximum-weight matching. Then, we translate the
matching result to specify the symmetry constraints for nets.

The complexity of the symmetry constraint allocation algorithm is
derived as follows. The calculation of the weight of edges is domi-
nated by the iterative for-loops. Hence, the complexity is in 𝑂 (|𝑃 |2).
For the maximum-weight matching, which is the dominating factor of
the entire process, we have 𝑂 (|𝑉 |2 |𝐸 |) for the Edmond’s blossom al-
gorithm theoretically to get an optimal matching, where |𝑉 | = 2|𝑁 |
and |𝐸 | ≤ (|𝑁 |2 + |𝑁 |)/2. In practice, the graph 𝐺 is sparse since many
subsets in 𝑁 are mutually exclusive, and a large number of nets are self-
disassociate. The circuit hierarchy further splits the entire netlist into
partitions. Therefore, the algorithm executes efficiently.

Definition 1. A set of nets is mutually exclusive if and only if the esti-
mated degree of symmetry between every two nets is 0.

Definition 2. A net is self-disassociate if and only if the estimated degree
of self-symmetry is 0.

Example 2. Figure 6(a) describes a scenario of matching.We can observe
that {𝑛1, 𝑛4}, {𝑛3, 𝑛4} and {𝑛2, 𝑛4} are mutually exclusive, and 𝑛3 is a self-
disassociate net. Figure 6(b) shows the final matching result for symmetry
constraint allocation.

3.2 Pin Access Assignment
The pin access problem is one of the most challenging subroutines in
detailed routing. To reduce the complexity of the analog detailed routing
problem and further improve the routability, we propose a pin access
assignment method considering preferred access direction to model in-
tricate pin shapes.

For each pin, we assign the covering same-layer grid points in the
routing grid graph as its access points. Then, we determine a preferred
direction set for each access point considering the active region of the
corresponding device. The preferred direction set provides information
for our detailed router to generate desirable access patterns without
violating design rules.

To collect the preferred directions of an access point, a set of pattern
candidates is first generated as follows. Given a routing grid graph 𝐺 =

(𝑉 , 𝐸) and an access point on a grid point 𝑢 ∈ 𝑉 . If exists an edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸 for some grid points 𝑣 such that 𝑣 does not lie on the same
pin with 𝑢, a pattern candidate is created according to 𝑒 . To be specific,
if 𝑢 and 𝑣 lie in the same layer, we construct a wire along the edge 𝑒;
otherwise, a via is generated as the candidate. The pattern is then put

(a) (b)

Wire (M1)

spacing violation min-step violation

Active region (OD) Routing grid

Access point

𝐷𝑝𝑟𝑒𝑓 = {↓,→}

𝐷𝑝𝑟𝑒𝑓 = {↑, 𝑉𝐼𝐴𝑈𝑃}

𝐷𝑝𝑟𝑒𝑓 = {←}

Via (V12)

𝑎𝑐𝑠1

𝑎𝑐𝑠2

𝑎𝑐𝑠3

Figure 7: Examples of pin access points with preferred directions.

into the candidate list if not causing any design rule violation. Next, we
calculate the overlapping area between each candidate and the active
region and select the candidate with the smallest overlapping area. After
that, we add the direction of the pattern to the preferred direction set.

Example 3. Figure 7 shows an example of the access point generation
technique. In Figure 7(a), we can see that the candidate via of access point
𝑎𝑐𝑠1 violates the design rules in layer M1. Thus, the preferred direction
set 𝐷pref of 𝑎𝑐𝑠1 is {←}, as shown in the snapshot in Figure 7(b).

For those pins not covering a same-layer grid point, we adopted the
concept in [10] to find an access point in other layers, without setting the
preferred access direction. However, in practical analog designs, most of
the pins have at least one same-layer access point since the scale of an
analog device is typically more substantial. The cross-layer access points
occur when some small digital cells are used in a mixed-signal design.

3.3 Constraint-Aware Iterative Routing
Before we detail our iterative routing algorithm, we define the following
terminologies.

Definition 3. A symmetric net is a net specified with a mirror- or
cross-symmetry constraint, with or without a further specified partial-
symmetry constraint.

Definition 4. A self-symmetric net is a net specifiedwith a self-symmetry
constraint or a partial self-symmetry constraint.

Definition 5. A symmetric pair consists of two symmetric nets sharing
the same symmetry axis.

To connect all the nets considering design rules and constraints, we
perform constraint-aware iterative routing. The negotiation-based rip-up
and re-route methodology [13] is adopted to alleviate congestion. To
obtain a better net routing order, we propose a hybrid priority function

𝑃𝑅𝑖 = 𝛼 · HPWL𝑖 + 𝛽 · |𝑃𝑖 | + 𝛾 · 𝑑𝑖 + 𝛿 · 𝑧𝑖 (3)

for a maximum-priority queue to maintain all the unrouted nets, where
𝑃𝑅𝑖 represents the cost of a net 𝑛𝑖 in the queue, HPWL𝑖 is the half-
perimeter wirelength of 𝑛𝑖 according to its pins, 𝑑𝑖 is the estimated
degree of symmetry (resp. self-symmetry) obtained by Equation (2) (resp.
Equation (1)) if 𝑛𝑖 is a symmetry (resp. self-symmetry) net, 𝑧𝑖 denotes
the contiguous routing failures, and 𝛼 , 𝛽 , 𝛾 , 𝛿 are weighted constants. In
our framework, 𝛼 , 𝛽 , 𝛾 , and 𝛿 are set to 0.1, 2, 100, and 50, respectively.

Nets with more pins are more difficult to route. Considering the num-
ber of pins in the cost function gives those nets higher priorities. In our
implementation,𝛾 is set to a higher value since it is also much challenging
to route nets with symmetry constraints. With the hybrid cost function,

Algorithm 2 ConstraintAwareRoute(𝑛𝑖)
Input: A net 𝑛𝑖 with a set of pin clusters 𝐶𝑖 .
Output: The routing result 𝑅𝑖 of 𝑛𝑖 .
1: Union the obstacles on both sides of the symmetry axis;
2: 𝑅𝑖 := ∅, 𝑃rest := 𝑃𝑖 ;
3: for each 𝑐𝑘 ∈ 𝐶𝑖 do
4: if 𝑐𝑘 not routed then
5: 𝑟𝑘 := Route(𝑐𝑘);
6: if 𝑟𝑘 is legal then
7: 𝑅𝑖 := 𝑅𝑖 ∪ {𝑟𝑘 ,Mirror(𝑟𝑘)};
8: 𝑃rest := 𝑃rest \ 𝑐𝑘 ;
9: 𝑃rest := 𝑃rest \ SymCluster(𝑐𝑘);
10: 𝑟rest := Route(𝑃rest);
11: 𝑅𝑖 := 𝑅𝑖 ∪ {𝑟rest };
12: return 𝑅𝑖 ;

we can increase the routing success rate and decrease the number of
total iteration. The turnaround time of the entire process is thus reduced
significantly.

After initializing the routing order, the core algorithm of the routing
scheme includes four main stages: 1) pin clustering, 2) constraint-aware
routing, 3) violated net removal, and 4) constraint relaxation.

3.3.1 Pin Clustering. To handle all the symmetry constraints mentioned
in Section 2.3.1, a novel pin clustering technique is proposed. We brief
the clustering process for three different types of nets: symmetric nets,
self-symmetric nets, and normal nets, as follows.

For symmetric nets, we split the pins of a symmetric pair (𝑛𝑖 , 𝑛 𝑗) into
two disjoint subsets according to their symmetry axis, respectively. For
instance, 𝑃𝑙

𝑖
, 𝑃𝑟

𝑖
⊆ 𝑃𝑖 are the two disjoint subsets for 𝑛𝑖 , where 𝑃𝑙𝑖 com-

prises the pins on the left-hand side of the symmetry axis, and 𝑃𝑟
𝑖
consists

of the pins on the right-hand side. We detect the maximum fully symmet-
ric parts between (𝑃𝑙

𝑖
, 𝑃𝑟

𝑗
), (𝑃𝑟

𝑖
, 𝑃𝑙

𝑗
), and set them as symmetry clusters.

Note that each symmetry cluster in a symmetric net has a corresponding
symmetry cluster that belongs to the other net.

For a self-symmetric net 𝑛𝑖 , the subsets 𝑃𝑙𝑖 and 𝑃
𝑟
𝑖
are constructed by

the aforementioned method. If there is a pin with its center locating on
the symmetry axis, it is added to both 𝑃𝑙

𝑖
and 𝑃𝑟

𝑖
. We then identify the

maximum fully symmetric part among the pins concerning its symmetry
axis and build the self-symmetry clusters.

For normal nets, since no symmetry constraint is attached, the pin
clustering step is skipped.

Example 4. In Figure 8(a), a partial cross-symmetric net pair (𝑛1, 𝑛2) is
shown. Observe that the disjoint pin subsets of𝑛1 are 𝑃𝑙1 = {𝑝1,1, 𝑝1,2} and
𝑃𝑟1 = {𝑝1,3, 𝑝1,4, 𝑝1,5}; while 𝑛2 has 𝑃𝑙2 = {𝑝2,3, 𝑝2,4} and 𝑃

𝑟
2 = {𝑝2,1, 𝑝2,2}.

Since 𝑝1,1, 𝑝1,2 are symmetric to 𝑝2,1, 𝑝2,2, the pin clusters 𝑐1 and 𝑐2 are
constructed for𝑛1 and𝑛2, respectively. The clusters 𝑐3 and 𝑐4 are obtained
by the same method.

3.3.2 Constraint-Aware Routing. Before the routing procedure, the re-
quired minimum wire width and minimum cut number for inter-layer
connection for each net is defined through circuit schematic simulation.
However, the electrical constraints set by the schematic simulation are
bottom lines, and different circuit placements may lead to significant
routing diversities. Long signal wires in complex AMS system without
enough width will degrade the circuit performance due to voltage drop.
As a result, we estimate the potential routing wirelength by the HPWL
model. Then, the electrical constraints are adjusted appropriately by
increasing the required wire width and via cuts of some nets.

In [3, 21], a mirroring technique by taking the union of obstacles on
both sides of the symmetry axis is described. However, the mirroring

Symmetry axis PinCluster

(a) (b) (c)

Wire (M1) Wire (M2) Via (V12)

𝑝1,3

𝑝2,2

𝑝2,1𝑝1,1

𝑝1,2

𝑝2,3

𝑝1,5

𝑝2,4 𝑝1,4

𝑝1,3

𝑝2,2

𝑝2,1𝑝1,1

𝑝1,2

𝑝2,3

𝑝1,5

𝑝2,4 𝑝1,4

𝑐1 𝑐2

𝑐3 𝑐4

sym

sym

𝑝1,3

𝑝2,2

𝑝2,1𝑝1,1

𝑝1,2

𝑝2,3

𝑝1,5

𝑝2,4 𝑝1,4

Figure 8: An example of our routing procedure with the pin clustering technique.

technique is limited to the mirror-symmetry constraint. We extend and
combine the concept of mirroring with our proposed pin cluster structure
to route the cross-symmetry and partial-symmetry nets. Algorithm 2
shows our constraint-aware routing approach.

For each unrouted cluster, an obstacle-aware pathfinding using the A*
search algorithm is applied. To honor the global routing result, penalties
are added to a search-node if it is outside the routing guide. Once a route
is found, it is mirrored to the other side to give a symmetric solution.
After routing the pins inside the clusters, mirror-symmetric and self-
symmetric nets can be completely routed. However, cross-symmetric
and partial-symmetric nets are still not fully connected. An additional
pathfinding step is then performed to connect the remaining pins and
the clusters.

For the symmetric pairs and partial self-symmetric nets that do not
exist a perfectly symmetric routing solution, our routing algorithm can
still generate highly regular routing patterns through the pin cluster
structure. This routing methodology further raises the degree of symme-
try of the final routing results, and thus achieve better layout aesthetic.
Figure 8 gives an example of the routing flow. In Figure 8(b), symmetric
routing patterns are generated for pin clusters. The final routing result
is then obtained in Figure 8(c).

3.3.3 Violated Net Removal. In the rip-up phase, we apply design-rule-
checking to verify the routing result and remove the nets that cause
design rule violations. To avoid obtaining the same routing result and
alleviate congestion, a history cost is updated to the history map before
the violated wires are removed. By maintaining the history map for
negotiation-based rip-up and re-route, a detour will occur in the next
iteration due to the higher routing cost.

3.3.4 Constraint Relaxation. To ensure all the nets can be routed without
design rule violations, we check if there are some hard-to-route nets and
relax the specified constraints. If the number of times that a net fails to
obtain a violation-free routing solution exceeds a defined threshold, the
symmetry constraint that specified on the net is then waived, in order to
improve the routability.

3.4 Post-Processing
In this step, we check the remaining design rule violations in the rout-
ing solution and perform a layer by layer refinement. For each set of
connected metals, we transform them into a single polygon and iterate
through its edges clockwise to validate the min-step rule. According to
the min-step rule described in Section 2.2, no more than maxEdge con-
secutive edges with length less than minStep is allowed. We handle this
issue more aggressively; any two adjacent edges with a length smaller
thanminStep is treated as a violation. We identify either the two adjacent

concave jog

(a) (b)

patch metal

convex jog

counterclockwise clockwise

Figure 9: (a) Example of a concave jog. (b) Example of a convex
jog.

edges form a concave jog or a convex jog, by computing the orientation of
the three ordered points of the two edges. Since we iterate the edges of a
polygon clockwise, a clockwise orientation of the three ordered points
indicates a convex jog; otherwise, a concave jog. To resolve the viola-
tion, we add patch metal to eliminate excessive edges. Figure 9 shows an
example of the metal patching method for the min-step rule violation
fixing.

4 EXPERIMENTAL RESULTS
The proposed analog detailed routing framework is implemented in C++
with the Boost C++ libraries [19] and the LEMON graph library [6].
All experiments are conducted on a Linux workstation with an Intel
i9 3.3GHz CPU with 128GB memory. To assess the scalability of our
proposed framework, we conduct experiments on five analog designs
with different scales, including three building block level designs and two
complete mixed-signal systems. For the block level circuits, we have one
comparator and two operational transconductance amplifiers (OTAs),
denoted as COMP, OTA1, and OTA2. For the mixed-signal systems, we
have two continuous-time ΔΣ modulators (CTDSMs), denoted ADC1,
and ADC2. Note that a CTDSM system consists of OTAs, comparators,
feedback DACs, and digital cells. All benchmark circuits and placement
results are designed by experienced analog circuit designers under TSMC
40nm process. The global routing guides for each benchmark are gener-
ated by our analog global router. Table 2 lists the benchmarks statistics.

Table 2: Benchmark circuits information.

Benchmark #Devices #Nets #Pins Die Size
COMP 16 12 52 15.0×17.8 𝜇m2

OTA1 25 18 78 97.8×32.5 𝜇m2

OTA2 34 26 107 39.7×40.2 𝜇m2

ADC1 206 127 419 139.9×121.5 𝜇m2

ADC2 153 109 345 128.2×262.0 𝜇m2

Table 3: Comparison of total wirelength (WL(nm)), via number (VIA), total degree of symmetry (𝑑SYM), total design rule violations (DRV),
and runtime(s).

Benchmark [23] 𝐷𝑅wl 𝐷𝑅sym
WL VIA 𝑑SYM DRV Runtime WL VIA 𝑑SYM DRV Runtime WL VIA 𝑑SYM DRV Runtime

COMP 145665 90 0.37 83 1.34 143400 19 0.88 0 0.15 138400 19 0.95 0 0.11
OTA1 520640 167 0.31 170 36.30 369400 38 0.63 0 1.86 386800 38 0.88 0 1.71
OTA2 546875 191 0.19 130 15.18 443400 74 0.27 0 0.37 523400 79 0.70 0 0.30
ADC1 2898835 498 0.37 550 39.65 2625000 171 0.49 0 5.95 2686600 175 0.62 0 2.70
ADC2 N/A N/A N/A N/A N/A 3188800 180 0.47 0 23.02 3327600 184 0.69 0 18.82
Norm. 1.13 3.60 0.40 - 24.75 0.95 0.98 0.70 - 1.42 1.00 1.00 1.00 - 1.00

4.1 Routing Metrics Evaluation
To evaluate the routing solution, we compare our router with the analog
detailed router of [23] in terms of wirelength, via number, degree of
symmetry, design rule violations, and runtime. The degree of symmetry
𝑑SYM of a routing result reflects the layout aesthetic. It is defined as the
total wirelength of symmetry wires over total wirelength, as shown in
the following equation,

𝑑SYM =

|𝑁 |∑
𝑖=1

|𝑆𝑒𝑔 (𝑛𝑖) |∑
𝑗=1

𝑔𝑖 (𝑠𝑖, 𝑗) · len(𝑠𝑖, 𝑗)

|𝑁 |∑
𝑖=1

|Seg (ni) |∑
𝑗=1

len(𝑠𝑖, 𝑗)

, (4)

where Seg(𝑛𝑖) is the set of routed segments of net𝑛𝑖 , 𝑠𝑖, 𝑗 is the 𝑗 th routing
segment of𝑛𝑖 , len(𝑠𝑖, 𝑗) is the length of segment 𝑠𝑖, 𝑗 , and𝑔𝑖 (𝑠𝑖, 𝑗) is a binary
output function with output 1 if exists a symmetry segment of 𝑠𝑖, 𝑗 with
respect to the symmetry axis of 𝑛𝑖 .

As satisfying the symmetry constraints achieves better layout regular-
ity in the cost of increasing total wirelength, it is desirable to explore the
trade-off between the degree of symmetry and wirelength. As a result, we
implement our framework with two different parameter sets, denoted as
𝐷𝑅wl and 𝐷𝑅sym, respectively. 𝐷𝑅wl executes more rip-up and re-route
iterations to optimize wirelength, while 𝐷𝑅sym has a more rigorous cri-
teria for constraint relaxation to maximize the degree of symmetry. All
binaries are executed on the same Linux workstation for a fair compari-
son, and the symmetry constraints are generated by Algorithm 1. After
generating the routed layouts, Calibre nmDRC and nmLVS are applied
for design-rule-checking and layout-versus-schematic verification.

Table 3 shows the comparisons between the routing results. The de-
tailed router of [23] fails to complete the routing in ADC2 due to some
local congestion. Comparing the solutions of [23] and𝐷𝑅sym, the detailed
router of [23] results in 13% longer total wirelength and 3.6× more vias
than 𝐷𝑅sym. Furthermore, 𝐷𝑅sym generates DRC-clean results with 2.5×
higher degree of symmetry with the runtime speedup of above 24×. On
the other hand, comparing the results of [23] and 𝐷𝑅wl , we can see that
[23] has 19% longer total wirelength and 3.67×more vias than ours.𝐷𝑅wl
also achieves DRC-clean results with 1.75× higher degree of symmetry
with above 17× runtime speedup.

Compared with 𝐷𝑅sym, 𝐷𝑅wl achieves an average of 5% reduction on
wirelength and 2% reduction on via number in the cost of 30% reduction
in the degree of symmetry. As wirelength and the degree of symmetry
of a routed layout may relate to different performance metrics in analog
designs, 𝐷𝑅wl and 𝐷𝑅sym can be suitable for various categories of analog
circuits. Figure 10 shows the ADC2 layout generated by 𝐷𝑅sym.

4.2 Post-Layout Simulations
Post-layout simulations are performed to verify the quality of the routed
layouts. To construct a more accurate simulation model, Calibre PEX is

Figure 10: Layout of ADC2 routed by our router.

Table 4: Simulation results of schematic, [23], and our AMS de-
tailed routing framework.

Benchmark Schematic [23] 𝐷𝑅wl 𝐷𝑅sym

COMP

Delay (ps) 69.5 177.3 126.0 125.0
Offset (𝜇V) - 2804.1 462.3 827.0

Noise (𝜇Vrms) 384.1 410.2 376.2 350.0
Power (𝜇W) 13.7 20.6 20.8 20.7

OTA1

DC Gain (dB) 45.9 N/A 45.8 45.8
Bandwidth (MHz) 110.5 N/A 99.0 99.0
Phase Margin (◦) 64.7 N/A 64.6 64.6

Offset (𝜇V) - N/A 186.5 167.2
Noise (𝜇Vrms) 222.0 N/A 231.9 231.8
Power (𝜇W) 776.9 N/A 760.3 761.0

OTA2

DC Gain (dB) 54.0 52.9 54.1 54.1
Bandwidth (MHz) 605.2 444.8 478.8 477.0
Phase Margin (◦) 64.1 75.2 75.2 76.1

Offset (𝜇V) - 893.3 154.2 145.7
Noise (𝜇Vrms) 12070.1 9711.5 9818.2 9822.1
Power (𝜇W) 428.7 424.3 433.3 439.7

ADC1
SNDR (dB) 65.3 63.1 64.4 64.6
SFDR (dB) 79.5 77.2 78.6 78.9

Power (mW) 837.1 806.6 868.5 857.9

ADC2
SNDR (dB) 69.6 N/A 66.9 66.1
SFDR (dB) 80.0 N/A 80.9 79.8
Power (𝜇W) 695.2 N/A 759.4 759.0

used to extract parasitic resistance, parasitic capacitance, and coupling
capacitance (R+C+CC). R+C+CC extraction is essential for evaluating
the quality of layouts generated by an automated router to check if the
electrical constraints are well-handled. After layout extraction, we use
Cadence Spectre to evaluate the extracted netlist.

Table 4 shows the simulation results. Note that the post-layout sim-
ulation can still be performed even if the results of [23] obtain design
rule violations. For COMP, 𝐷𝑅wl (resp. 𝐷𝑅sym) achieves 29% reduction
in output delay (Delay), 85% (resp. 71%) reduction in input-referred offset
(Offset), and better input-referred noise (Noise) with similar power con-
sumption (Power), compared with the results of [23]. In this particular

Table 5: Process corners simulation results of ADC2 layout gen-
erated by 𝐷𝑅sym.

Corner SNDR (dB) SFDR (dB) Power (𝜇W)
TT-N 66.1 79.8 759.0
TT-C 67.4 80.8 747.8
TT-H 64.3 78.3 774.4
FF-C 71.9 83.5 812.2
FF-H 65.4 82.7 854.4
SS-C 62.4 77.8 679.8
SS-H 62.1 76.8 711.8

N: Normal (27◦C), C: Cold (-20◦C), H: Hot (100◦C)

benchmark, though the layout generated by 𝐷𝑅sym obtains the highest
degree of symmetry, it suffers from the clock coupling issue as described
in [23], which results in a slightly larger input-referred offset. For the
OTA1 layout generated by [23], the common-mode feedback loop is dys-
functional due to the excess routing parasitic resistance. Overall, our
router obtains routing solutions with superb performance. For OTA2, our
work outperforms [23] in unity-gain bandwidth, phase margin, input-
referred offset, and noise. Also, the power consumption of our work is
closer to the schematic. Since the input-referred offset of an OTA is more
related to the overall degree of symmetry of a layout, 𝐷𝑅sym achieves
the best offset performance in OTA1 and OTA2.

For complicated AMS systems, ADC1 and ADC2, our work shows out-
standing performance in both signal-to-noise and distortion ratio (SNDR)
and spurious-free dynamic range (SFDR). Since the feedback loops in
CTDSM provide tolerance to the system offsets, the performance degra-
dation caused by the unbalanced layout is not reflected in SNDR/SFDR.
As a result, 𝐷𝑅wl and 𝐷𝑅sym reach comparable performance in ADC1
and ADC2.

To guarantee the layout quality and cover more comprehensive sign-
off checks, we also perform simulations over process corners (i.e., TT, FF,
SS) and Monte-Carlo (MC) sampling. Table 5 shows the process corners
simulation results of the ADC2 layout generated by 𝐷𝑅sym, observe
that the performance variation of the ADC2 layout on different process
corners is within a stable range. Figure 11 shows the distribution of
performance metrics of ADC2 by MC sampling over 20 points. The
simulation results show that our layouts withstand sign-off checks. In
fact, the ADC2 chip implemented using TSMC 40nm technology has
been sent to TSMC for tape-out where the routing is 100% automatically
generated by this work.

5 CONCLUSION
This work has presented an end-to-end hierarchical analog/mixed-signal
detailed routing framework. A graph-based symmetry constraint allo-
cation algorithm has been proposed to identify symmetry constraints
accurately. A pin access assignment method has been shown to reduce
the routing complexity. A symmetry-driven rip-up and re-route scheme
with pin clustering has been proposed to consider real-world design
rules and analog-specific constraints. Experimental results have demon-
strated the efficiency and effectiveness of the proposed analog routing
framework in producing sign-off quality routing solutions.

ACKNOWLEDGEMENT
This work is supported in part by the NSF under Grant No. 1704758, and
the DARPA IDEA program.

REFERENCES
[1] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. NikoliC, and E. Alon. 2018. BAG2:

A process-portable framework for generator-based AMS circuit design. In Proc. CICC.
1–8.

64 65 66 67 68 69
0

0.1
0.2
0.3 𝜇 = 65.8

𝜎 = 1.1

SNDR (dB)

Pr
ob
.D

en
si
ty

70 75 80 85

0.05

0.1 𝜇 = 76.0
𝜎 = 3.5

SFDR (dB)

Pr
ob
.D

en
si
ty

754 756 758 760 762 764 766
0

0.05

0.1

0.15
𝜇 = 759.3
𝜎 = 2.6

Power (𝜇W)

Pr
ob
.D

en
si
ty

Figure 11: Monte-Carlo sampling results over 20 points of the
ADC2 layout generated by 𝐷𝑅sym.

[2] U. Choudhury and A. Sangiovanni-Vincentelli. 1990. Constraint generation for routing
analog circuits. In Proc. DAC. 561–566.

[3] U. Choudhury and A. Sangiovanni-Vincentelli. 1993. Constraint-based channel routing
for analog and mixed analog/digital circuits. IEEE TCAD 12, 4 (1993), 497–510.

[4] J. M. Cohn. 2000. Analog Device-Level Layout Automation (1 ed.). Kluwer Academic
Publishers, USA.

[5] J. Crossley, A. Puggelli, H. . Le, B. Yang, R. Nancollas, K. Jung, L. Kong, N. Narevsky,
Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-Vincentelli, and E. Alon. 2013. BAG: A
designer-oriented integrated framework for the development of AMS circuit generators.
In Proc. ICCAD. 74–81.

[6] B. Dezso, A. Jüttner, and P. Kovács. 2011. LEMON - An open source C++ graph template
library. Electronic Notes in Theoretical Computer Science 264 (2011), 23–45.

[7] J. Edmonds. 1965. Paths, Trees, and Flowers. Canadian Journal of Mathematics 17 (1965),
449–467.

[8] A. Hastings and R. A. Hastings. 2001. The Art of Analog Layout (1 ed.). Prentice Hall,
USA.

[9] A. B. Kahng, L. Wang, and B. Xu. 2018. TritonRoute: An Initial Detailed Router for
Advanced VLSI Technologies. In Proc. ICCAD. 1–8.

[10] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Y. Young. 2019. Dr. CU 2.0: A Scalable
Detailed Routing Framework with Correct-by-Construction Design Rule Satisfaction. In
Proc. ICCAD. 1–7.

[11] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun, and D. Z. Pan. 2020. S3DET:
Detecting System Symmetry Constraints for Analog Circuits with Graph Similarity. In
Proc. ASPDAC. 193–198.

[12] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. 1996. Automation of
IC layout with analog constraints. IEEE TCAD 15, 8 (1996), 923–942.

[13] L. McMurchie and C. Ebeling. 1995. PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs. In Proc. FPGA. 111–117.

[14] M. Mustafa Ozdal and M. D. F. Wong. 2006. A Length-Matching Routing Algorithm for
High-Performance Printed Circuit Boards. IEEE TCAD 25, 12 (2006), 2784–2794.

[15] H. Ou, H. C. Chien, and Y. Chang. 2014. Nonuniform Multilevel Analog Routing With
Matching Constraints. IEEE TCAD 33, 12 (2014), 1942–1954.

[16] M. M. Ozdal and R. F. Hentschke. 2012. Maze routing algorithms with exact matching
constraints for analog and mixed signal designs. In Proc. ICCAD. 130–136.

[17] P. Pan, H. Chen, Y. Cheng, J. Liu, and W. Hu. 2012. Configurable analog routing method-
ology via technology and design constraint unification. In Proc. ICCAD. 620–626.

[18] B. Razavi. 2001. Design of Analog CMOS Integrated Circuits (1 ed.). McGraw-Hill, Inc.,
USA.

[19] B. Schaeling. 2014. The Boost C++ Libraries (2 ed.). XML Press, USA.
[20] F. Sun, H. Chen, C. Chen, C. Hsu, and Y. Chang. 2018. A Multithreaded Initial Detailed

Routing Algorithm Considering Global Routing Guides. In Proc. ICCAD. 1–7.
[21] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun. 2010. Practical placement and routing

techniques for analog circuit designs. In Proc. ICCAD. 675–679.
[22] T. Yan and M. D. F. Wong. 2008. BSG-Route: A length-matching router for general

topology. In Proc. ICCAD. 499–505.
[23] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, and D. Z. Pan. 2019. GeniusRoute:

A New Analog Routing Paradigm Using Generative Neural Network Guidance. In
Proc. ICCAD. 1–8.

