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ABSTRACT
Placement is among the most critical steps in analog/mixed-signal
(AMS) circuit layout synthesis. It implicitly determines the wiring
topology and therefore has considerable impacts on post-layout
parasitics and coupling. Existing analog placement techniques are
mainly focusing on geometric constraints in analog building blocks.
However, there yet lacks an effective way to consider the system-
level signal flow for sensitive AMS circuits. Leveraging prior knowl-
edge from schematics, we propose to consider the critical signal
paths in automatic AMS placement and present an efficient frame-
work. Experimental results demonstrate our proposed framework’s
efficiency and effectiveness with a 22.8% reduction in routed wire-
length compared to state-of-the-art AMS placer and 10 dB improve-
ment in the signal-to-noise-and-distortion ratio (SNDR) for an ADC.

1 INTRODUCTION
Implementing analog/mixed-signal (AMS) circuits layouts is a heav-
ily manual, time-consuming, and error-prone task. Unlike its coun-
terpart in the digital domain, AMS circuits are sensitive to layout
parasitics and coupling while lacking a practical approach to model
the performance from layouts [21]. The gap in performance be-
tween schematic design and layouts poses a difficult challenge to
automating the AMS layout synthesis.

In a typical automatic AMS layout synthesis flow, the placement
step places the devices and macros on the layout. Placed modules
are usually fixed in the following routing step; therefore, place-
ment implicitly decides the flow of signals and currents even be-
fore the routing stage. A common approach to estimate the wiring
topology in AMS placement is through wirelength models, such
as half-perimeter wirelength (HPWL). However, the hyper-edge
net models often underestimate the importance of the directions of
signals. Unlike typical digital designs, AMS circuits are sensitive
to small perturbation and distortion on the signal and raise more
considerable challenges on the layouts.

Regularizing the flow of critical signals is crucial for mixed-signal
systems. A circuit, such as an analog-to-digital converter (ADC),
often has a targeting transfer function for signals determined in
the schematic design stage, specifying the resistance and capac-
itance along the forward and feedback loop. However, parasitic
RC and couplings from layout can change the ideal behavior in
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Figure 1: A third-order CTDSM. (a) Schematic. (b) Placement
with regular signal flow. (c) Placement with irregular signal
flow. The feedback and backward signal flows are marked
in red and purple respectively in (b) and (c).

frequency response, hence reducing post-layout performance. A
common practice for manual layout design is implementing layouts
according to the natural flows of critical signals in schematics and
avoiding detours on the signal paths. Such heuristic often results
in an ideal floorplan for the overall circuit performance. Figure 1
shows a third-order continuous-time ΔΣmodulator (CTDSM) ADC.
This CTDSM design has one pair of forwarding differential signal
paths and two pairs of backward feedback signal paths, as marked
in Fig. 1. Figure 1(b) and (c) are two floorplans for the CTDSM.
Between them, (b) is a place-like-schematic placement and (c)
has irregular signal paths. Although the placement in Fig. 1(c) in
fact has lower routed wirelength than the placement, (b) is over-
all preferred for better performance. Similar scenarios have been
observed in recent efforts of automating system-level AMS circuit
layout synthesis [22].
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Several existing efforts have considered the signal and current
planning issues in AMS layout synthesis. The work [23] proposes
a signal-path driven partition and placement for analog circuits. It
traverses the circuit devices from input signals and partitions the
circuits into core- and bias- circuits. After the partition, it firstly
places the core-circuit following pre-defined patterns and stochas-
tically places the rest. This methodology is efficient for certain
types of block-level analog design following the core+bias design
paradigm. However, it is not easy to be applied to other types of
circuits. Another similar problem is the current flow-related con-
straints [28, 31, 36, 37]. In those works, the direct current from the
supply (VDD) to the sink (VSS) is constrained to be monotonic in
one direction. Such formulations are effective in building blocks
where monotonic current flow is a widely-accepted paradigm in
manual layouts. However, such constraints are not easy to be ex-
tended to general signals and system-level circuits.

In this work, we propose a new formulation of signal flow that
considers the regularity of critical signal paths in mixed-signal
systems and present a holistic analytical AMS placement framework.
We leverage the prior knowledge of the signal paths from schematic
to consider system signal flows in non-linear programming-based
(NLP) global placement. The main contributions are summarized
as follows.
• We propose an AMS placement framework considering sys-
tem signal flows for mixed-signal circuits. The source code 1

is released on GitHub.
• We propose techniques in NLP-based global placement to
improve its quality and efficiency, leveraging the prior knowl-
edge of power/ground routing in analog layouts.
• We propose a holistic method to update the parameters and
multipliers, which controls the balance between different
objectives and penalties in a self-adaptive manner.
• Experimental results demonstrate that our proposed place-
ment framework achieves better post-layout performance
and placement metrics over the state-of-the-art AMS place-
ment algorithm for a variety of benchmark circuits.

The rest of this paper is organized as follows. Section 3 introduces
the preliminaries and the problem formulation. Section 4 details
our AMS placement framework. Section 5 shows the experimental
results, and Section 6 concludes the paper.

2 RELATEDWORK
Analog placement has been a fruitful field for decades. Tradition-
ally, the analog placement problem is formulated similar to digi-
tal floorplan problem with additional geometric constraints. The
most widely-used type of constraints are the variations of sym-
metry constraint [1–4, 6–8, 14–20, 23–26, 28–41], which enforce
certain cells to be placed symmetrically. Similar constraints on
enforcing the placed locations of matched cells include common-
centroid [19, 33, 38], regularity [7, 26, 39], proximity [6, 18, 25, 33–
35, 41] and etc. Constraints such as monotonic current flow [28, 31,
36] and thermal effects [19, 20] have also been studied to ensure
circuit performance. To ensuring the placement solutions can fit
to the design floorplan, boundary constraint [14, 24, 25, 34, 35],
pre-placed constrains [24, 25, 34, 35] and etc. are sometimes con-
sidered. Other work improves the manufactorability [6, 24, 29] and
routability [7, 15, 28] in AMS placement problem.

Common objectives for AMS placement include area [2–4, 6–
8, 14–18, 24–26, 28, 30–33, 35, 38, 39, 41], wirelength [6–8, 14, 15, 17–
20, 24–26, 28, 32, 33, 35, 36, 38, 41] and etc. As the functionalities of

1https://github.com/krzhu/IdeaPlaceEx

nets differ in AMS circuits, several efforts are made to distinguish
the nets. For example, the work [41] gives higher weights on the
critical nets, and the work [31] tries to minimize the width and
length for parallel current paths.

Stochastic approach is a classical paradigm on solving AMS place-
ment problems such as the work of [1–4, 6–8, 14–20, 24–26, 28–
32, 34–36, 38]. They usually represent layouts with designed data
structure and perform randomized algorithms, such as simulated
annealing, for optimization. Such paradigm is often effective but
lacks direct ways to optimize the objectives. Other used solving
algorithms include mixed-integer-programming (MILP) [39, 41]
and non-linear programming (NLP) [29, 40]. MILP and NLP provide
direct approach on optimizing the objectives such as area and wire-
length. However, MILP is limited to linear objective and constraints
and its scalability is concerned. On the other hand, NLP is suitable
to optimize a much wider range of objective functions and is in
theory has advantages in scalability. However, NLP needs to relax
the constraints and therefore requires extra post-processing step to
legalize the results.

3 PRELIMINARIES
In this section, we introduce the definition of system signal flow
and formulate the signal flow-aware AMS placement problem.

3.1 System Signal Flow
System signal flow specifies the paths that the critical signals are
flowing through. This formulation differs from the critical nets in
the sense that 1) the signal flow paths are crossing over different
nets, and 2) pin-to-pin connection is considered rather than model-
ing nets as hyper-edges in the conventional approach. In this work,
we introduce system signal flow as one of the objectives in global
placement that results in less detours in signal paths after routing.

The system signal flow is represented as a set of paths P𝑆𝑆𝐹 .
Each path P𝑆𝑆𝐹

𝑖
consists of a list of pins that the critical signals flow

through. Within the experiments of this paper, each system-level
circuit is specified with the forward and backward signal paths
following the guidance from experienced circuit designers.

3.2 Problem Formulation
The signal flow-aware AMS placement problem can be formulated
as follows. Given a set of modules M, a set of pins P, a set of
nets N, a set of power/ground nets N𝑃𝐺 ⊆ N , a set of symmetric
module pairs M𝑆𝑃 , a set of self-symmetric modules M𝑆𝑆 , and a
set of system signal flow paths P𝑆𝑆𝐹 , determine the coordinates
of all modules considering the system signal flow such that no
modules are overlapped, all the symmetric module pairs and self-
symmetric modules are placed symmetrically or self-symmetrically
along a certain symmetry axis. Table 1 lists the symbols used for
the problem formulation.

4 ALGORITHMS
In this section, we present the proposed framework. Figure 2 shows
the overall flow of our placement framework. We follow the par-
adigm from [40] of non-linear programming-based (NLP) global
placement with linear-programming-based (LP) legalization. In the
global placement stage, we spread the modules considering the
placement objectives and the constraint penalties using gradient
descent-based optimization. After determining the positional rela-
tionship between modules, we use LP-based techniques to legalize
the layout for minimizing the area and wirelength.



Table 1: Notations used for problem formulations.
Symbol Description

M The set of modules specified in the circuit netlist
𝑚𝑖 The 𝑖th module inM, 1 ≤ 𝑖 ≤ |M|

W𝑖/H𝑖 The width/height of𝑚𝑖

(𝑥𝑖 , 𝑦𝑖 ) The coordinate of the bottom-left corner of𝑚𝑖

N The set of nets specified in the circuit netlist
𝑛𝑖 The 𝑖th net in N

N𝑃𝐺 The set of nets of power or ground
P The set of pins specified in the circuit netlist
𝑝𝑖 The 𝑖th pin in P, 1 ≤ 𝑖 ≤ |P|

(X𝑖 , Y𝑖 ) Location offset of 𝑝𝑖 with respect to the bottom-left
corner of the module containing the pin

M𝑆𝑃/M𝑆𝑆 The set of symmetric pair/ self-symmetry constraints
P𝑆𝑆𝐹 The set of system signal flow paths
P𝑆𝑆𝐹
𝑖

The 𝑖th path in 1 ≤ 𝑖 ≤ |P𝐶𝑅𝐹 |/|P𝑆𝑆𝐹 |
𝑝𝑆𝑆𝐹
𝑖,𝑘

The 𝑘th pin in P𝑆𝑆𝐹
𝑖

, 1 ≤ 𝑘 ≤ |P𝑆𝑆𝐹
𝑖
|

𝑤𝑁𝐸𝑇
𝑖
/𝑤𝑆𝑆𝐹

𝑖
The weight for 𝑛𝑖/P𝑆𝑆𝐹

𝑖
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Figure 2: The overall flow of our placement framework.

In the rest of this section, the details of the global placement
(Sec. 4.1) and the legalization (Sec. 4.2) will be presented.

4.1 Global Placement

Table 2: Abbreviations for the objectives and penalties.
Abbreviations Description

SWL Signal nets wirelength
PWL Power and ground nets wirelength
SSF System signal flow
CRF Current flow
OVL Overlapping
ASYM Asymmetry

Algorithm 1 Global Placement
1: Initialize random placement
2: Initialize 𝝀 and 𝜸
3: while

∑ |M |
𝑖=1

∑ |M |
𝑗=𝑖+1𝑂

𝑂𝑉𝐿
𝑖,𝑗

≥ 0.01 or 𝑂𝐴𝑆𝑌𝑀 ≥ 0.05 do
4: ADAM Optimization
5: Update 𝝀 and 𝜸

Global placement spread the modules in the layout, considering
a variety of objectives and constraints simultaneously. Table 2 lists
the objectives and penalties we consider in global placement.

Algorithm 1 shows the steps in the global placements. The design
is firstly scaled down such that the total cell area is always a constant
𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 . This step ensures the numerical scale is within a suitable
range, fitting the same set of hyper-parameters. 𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 is set to
100 in the experiments. Then the locations of modules are randomly

initialized. The x- and y- coordinates of modules are independently
sampled from N(0, 0.01 · 𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 ).

After initializing the placement, we then initialize the penalty
multipliers𝝀 = (𝜆𝑃𝑊𝐿, 𝜆𝑆𝑆𝐹 , 𝜆𝐶𝑅𝐹 , 𝜆𝑂𝑉𝐿, 𝜆𝐴𝑆𝑌𝑀 )𝑇 and the control
parameters 𝜸 = ( 𝛾𝑂𝑉𝐿, 𝛾𝐶𝑅𝐹 )𝑇 used in log-sum-exponential (LSE)
function [27]. Then, the placement enters the core optimization
stage. Global placement engine iteratively optimizes the current
problem and updates 𝝀,𝜸 . The 𝝀 updating scheme balances the
objectives and gradually emphasizes more on hard constraints af-
ter each iteration. After both the overlapping and asymmetry are
within threshold, the global placement terminates, and the design
scale is recovered.

The overflows for the non-overlapping and symmetric constraints
are defined as follows. The overlapping overflow is defined as pair-
wise overlapping area similar to [12], as shown in Equation 1.

𝑂𝑂𝑉𝐿 =
∑

𝑚𝑖 ∈M

∑
𝑚 𝑗 ∈M\{𝑚𝑖 }

𝑂
𝑂𝑉𝐿,𝑥
𝑖, 𝑗

·𝑂𝑂𝑉𝐿,𝑦

𝑖,𝑗
/𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 ,

𝑂
𝑂𝑉𝐿,𝑥
𝑖,𝑗

= max(min(𝑥𝑖 +W𝑖 − 𝑥 𝑗 , 𝑥 𝑗 +W𝑗 − 𝑥𝑖 ), 0),

𝑂
𝑂𝑉𝐿,𝑦

𝑖,𝑗
= max(min(𝑦𝑖 + H𝑖 − 𝑦 𝑗 , 𝑦 𝑗 + H𝑗 − 𝑦𝑖 ), 0) .

(1)

Essentially, 𝑂𝑂𝑉𝐿 measures the ratio of the overlapped area to
the 𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 . The overlapped area is required to be below 1% of
𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 when global placement terminates. The asymmetry over-
flow is defined as the average distance each symmetric-pair or
self-symmetric constraints deviated from the symmetry. Assum-
ing the symmetry axis is vertical, the definition of the asymmetry
overflow is shown in Equation 2.

𝑂𝐴𝑆𝑌𝑀 = (
∑

M𝑆𝑃
𝑘
∈M𝑆𝑃

𝑂𝑆𝑃
𝑘
+

∑
𝑚𝑖 ∈M𝑆𝑆

𝑂𝑆𝑆
𝑖 )/(|M

𝑆𝑃 | + |M𝑆𝑆 |),

𝑂𝑆𝑃
𝑘

= |𝑥𝑖 +W𝑖 + 𝑥 𝑗 − 2 · 𝑥𝑠𝑦𝑚 | + |𝑦𝑖 − 𝑦 𝑗 | 𝑚𝑖 ,𝑚 𝑗 ∈ M𝑆𝑃
𝑘

,

𝑂𝑆𝑆
𝑖 = |𝑥𝑖 +

1
2
·W𝑖 − 𝑥𝑠𝑦𝑚 |,

(2)
where 𝑥𝑠𝑦𝑚 denotes the x-coordinate of the symmetry axis. We
require 𝑂𝐴𝑆𝑌𝑀 below 0.05 when global placement terminates.

In the rest of Section 4.1, the details of global placement are
presented.

4.1.1 The NLP Problem Formulation. In the global placement, we
intend to solve the minimization problem

𝑚𝑖𝑛
𝒙,𝒚

𝑓𝑊𝐿 (𝒙,𝒚) + 𝑓 𝑆𝑆𝐹 (𝒙,𝒚),

𝑠 .𝑡 . 𝑂𝑂𝑉𝐿,𝑂𝐴𝑆𝑌𝑀 = 0,
(3)

where (𝒙,𝒚) denotes the current placement, 𝑓𝑊𝐿 is the weighted
sum of wirelength for all nets, and 𝑓 𝑆𝑆𝐹 is the weighted sum of
system signal flow cost.

Constraints (OVL and ASYM) in Equation 3 are relaxed and
penalized. We further add additional penalty cost of current flow
(CRF) to encourage the convergence leveraging the prior knowledge
on current supply structure. We separate the signal wirelength cost
and P/G wirelength cost for better wirelength estimations. After
further adding multipliers to each type of the cost, our NLP problem



is formulated as a minimization problem in Equation 4.

𝑚𝑖𝑛
𝒙,𝒚

𝑓 (𝒙,𝒚) = 𝜆𝑆𝑆𝐹 · 𝑓 𝑆𝑆𝐹 (𝒙,𝒚)

+𝑓 𝑆𝑊𝐿 (𝒙,𝒚) + 𝜆𝑃𝑊𝐿 · 𝑓 𝑃𝑊𝐿 (𝒙,𝒚)

+𝜆𝐶𝑅𝐹 · Φ𝐶𝑅𝐹 (𝒙,𝒚)

+𝜆𝑂𝑉𝐿 · Φ𝑂𝑉𝐿 (𝒙,𝒚) + 𝜆𝐴𝑆𝑌𝑀 · Φ𝐴𝑆𝑌𝑀 (𝒙,𝒚),

(4)

where 𝜆∗, 𝑓 ∗ and Φ∗ denote multipliers, objective costs, and penalty
costs respectively. In the rest of Section 4.1.1, we will presents their
details.

SSF: A major motivation for this work is to honor the critical
signal flow in the placement and producing floorplans similar to
the human approach as shown in the examples in Figure 1. While
motivated to reduce detours in a path, we intend to formulate the
system signal flow in an unconstrained manner instead of fixing to
certain floorplan pattern. Therefore we propose the objective 𝑓 𝑆𝑆𝐹
to quantify the degree of being straight for a signal path. Figure 3
shows the simplest signal path consisting of three modules. We
formulate the SSF cost based on the angle 𝜃 between the two vectors
of pins, as shown in Figure 3(a). The cost is defined as 1 − cos(𝜃 ),
and this cost mapping the angle smoothly to [0, 1]. The cost with
respect to (𝒙,𝒚) for the path𝑚𝑖 →𝑚 𝑗 →𝑚𝑘 can be calculated as

1 − cos(𝜃 ) = 1 −
⃗⃗
v 𝑖, 𝑗 ·

⃗⃗
v 𝑗,𝑘

 ⃗⃗v 𝑖, 𝑗



 · 

 ⃗⃗v 𝑗,𝑘



 ,
⃗⃗
v 𝑖, 𝑗 =

(
𝑥 𝑗 − 𝑥𝑖
𝑦 𝑗 − 𝑦𝑖

)
.

(5)

When extending the cost in Equation 5 to general system signal
paths, we consider not only the neighboring modules along the
path but also the overall regularity of the whole path. For each pair
of the modules𝑚𝑖 ,𝑚 𝑗 along the path, we choose a module𝑚𝑘 in the
middle of𝑚𝑖 ,𝑚 𝑗 from the path and add the cost for𝑚𝑖 →𝑚𝑘 →𝑚 𝑗

to the total cost as shown in Equation 6.

𝑓 𝑆𝑆𝐹 (𝒙,𝒚) =
∑

P𝑆𝑆𝐹
𝑖
∈P𝑆𝑆𝐹

𝑤𝑆𝑆𝐹
𝑖 𝑓 𝑆𝑆𝐹𝑖 (𝒙,𝒚),

𝑓 𝑆𝑆𝐹𝑖 (𝒙,𝒚) =
|P𝑆𝑆𝐹

𝑖
|−2∑

𝑗=1

|P𝑆𝑆𝐹
𝑖
|∑

𝑘=𝑗+2
𝑓 𝑆𝑆𝐹
𝑖,𝑗,𝑘, ⌊ ( 𝑗+𝑘)/2⌋ ,

𝑓 𝑆𝑆𝐹
𝑖,𝑗,𝑘,𝑙

= 1 −
⃗⃗
v 𝑖
𝑗,𝑙
· ⃗⃗v 𝑖

𝑙,𝑘


 ⃗⃗v 𝑖
𝑗,𝑙




 · 


 ⃗⃗v 𝑖
𝑙,𝑘




 ,
⃗⃗
v 𝑖
𝑗,𝑘

=

(
𝑥
𝑖,∗
𝑘
− 𝑥𝑖,∗

𝑗

𝑦
𝑖,∗
𝑘
− 𝑦𝑖,∗

𝑗

)
,

(6)

where (𝑥𝑖,∗
𝑗
, 𝑦

𝑖,∗
𝑗
) denotes the coordinates of the module containing

the 𝑗 th pin of the path P𝑆𝑆𝐹
𝑖

and ⌊⌋ is the floor function. ⌊( 𝑗 + 𝑘)/2⌋
is to indicate a module in the middle of 𝑖th and 𝑘th pins on the path.
We omit the offset of pin location offsets in Equation 6 for simplicity.

SWL: We choose to model the wirelength of signal nets using
the widely-used half-perimeter wirelength (HPWL),

𝐻𝑃𝑊𝐿(𝒙,𝒚) =
∑

𝑛𝑖 ∈N\N𝑃𝐺

( max
𝑚 𝑗 ,𝑚𝑘 ∈𝑛𝑖

|𝑥 𝑗 − 𝑥𝑘 | + max
𝑚 𝑗 ,𝑚𝑘 ∈𝑛𝑖

|𝑦 𝑗 + −𝑦𝑘 |),

(7)

(a)

−2 0 2
0

1

2

𝜃

1
−
𝑐
𝑜
𝑠
(𝜃
)

(b)

Figure 3: System signal flowobjective. (a) a three-module sig-
nal path. (b) The plot of function 1 − cos(𝜃 ).

We approximate Equation 7 with the log-sum-exponential (LSE)
function [27], as shown in Equation 8.

𝑓 𝑆𝑊𝐿 (𝒙,𝒚) =
∑

𝑛𝑖 ∈N\N𝑃𝐺

𝑤𝑁𝐸𝑇
𝑖 · (𝑓 𝑆𝑊𝐿

𝑖𝑥
(𝒙,𝒚) + 𝑓 𝑆𝑊𝐿

𝑖𝑦
(𝒙,𝒚)),

𝑓 𝑆𝑊𝐿
𝑖𝑥

(𝒙,𝒚) = log
∑

𝑚 𝑗 ∈𝑛𝑖
(𝑒𝑥𝑖 ) + log

∑
𝑚 𝑗 ∈𝑛𝑖

(𝑒−𝑥𝑖 ),

𝑓 𝑆𝑊𝐿
𝑖𝑦

(𝒙,𝒚) = log
∑

𝑚 𝑗 ∈𝑛𝑖
(𝑒𝑦𝑖 ) + log

∑
𝑚 𝑗 ∈𝑛𝑖

(𝑒−𝑦𝑖 ) .

(8)
We omit the offset of pin location offsets in Equation 7 and Equa-
tion 8 for simplicity.

PWL: In analog layout design, the power and ground (PG) nets
are often routed in a different approach from the signals. As shown
in the example of Figure 4, the pins of PG nets are more likely to
be individually connected to the current supply/sink. Besides, the
current supply/sink is reasonably wide to cover the boundary of
the placement. Therefore we propose to use a different wirelength
model for the PG nets such that 1) pins are considered separately
instead of being modeled as in a net-wise hyper-edge, and 2) only
the vertical distance to the current supply/sink is considered. Equa-
tion 9 shows the defination.

𝑓 𝑃𝑊𝐿 (𝒙,𝒚) =
∑

𝑛𝑖 ∈N𝑃𝐺

𝑤𝑁𝐸𝑇
𝑖 ·

∑
𝑚 𝑗 ∈𝑛𝑖

(𝑦 𝑗 − Y𝑃/𝐺 )2, (9)

where Y𝑃/𝐺 is the estimated y-coordinate of the current supply/sink.
Y𝑃 and Y𝐺 are set to be placed slightly above or beneath the esti-
mated boundary of the placement correspondingly and is updated
in each iteration if the placement exceed the previous estimated
boundary.

VDD

VSS

Figure 4: An example of current supply structure in manual
comparator layout.

CRF: We propose a current flow penalty for the sake of conver-
gence and layout quality. As discussed above, the prior knowledge
of the current supply structure and P/G routing can be leveraged in



the placement engine. Modules along the current paths are likely to
be placed following the current direction. Inspired by the work [37],
we propose to penalize non-monotonic current flow in the global
placement. By giving preference on monotonic current flow to
the NLP problem, we observe improvements on NLP convergence
and benefits in P/G routing after placement in our experiments.
We define the violation or overflow of monotonic current flow as
Equation 10.

𝑂𝐶𝑅𝐹 =
∑

P𝐶𝑅𝐹
𝑖
∈P𝐶𝑅𝐹

𝑂𝐶𝑅𝐹
𝑖 ,

𝑂𝐶𝑅𝐹
𝑖 =

𝑘≤ |P𝐶𝑅𝐹
𝑖
|−1∑

𝑘=1
max(𝑦∗

𝑖,𝑘+1 − 𝑦
∗
𝑖,𝑘
, 0),

(10)

where 𝑦∗
𝑖, 𝑗

denotes the y-coordinate of the module containing the
𝑗 th pin in the path P𝐶𝑅𝐹

𝑖
. Equation 10 is further smoothed with LSE

function as Equation 11.

Φ𝐶𝑅𝐹 (𝒙,𝒚) =
∑

P𝐶𝑅𝐹
𝑖
∈P𝐶𝑅𝐹

𝑤𝐶𝑅𝐹 · 𝜙𝐶𝑅𝐹𝑖 ,

𝜙𝐶𝑅𝐹𝑖 =

𝑘≤ |P𝐶𝑅𝐹
𝑖
|−1∑

𝑘=1
𝐿𝑆𝐸 (𝑦∗

𝑖,𝑘+1 − 𝑦
∗
𝑖,𝑘
), 0, 𝛾𝐶𝑅𝐹 ),

𝐿𝑆𝐸 (𝑥,𝑦,𝛾) = 𝛾 · log(𝑒𝑥/𝛾 + 𝑒𝑥/𝛾 ),

(11)

where 𝛾𝐶𝑅𝐹 is a parameter to control the smoothness and accuracy
of the LSE approximation, 𝑦∗

𝑖, 𝑗
denotes the y-coordinate of the mod-

ule containing the 𝑗 th pin in the path P𝐶𝑅𝐹
𝑖

and𝑤𝐶𝑅𝐹 is the weight
for each segment in the paths. We set𝑤𝐶𝑅𝐹 to 0.5 for all segments
in the experiments. We omit the pin offsets from Equation 11 for
simplicity.

OVL: The overlapping penalty is the smoothed version of Equa-
tion 1. We approximate the max and min with LSE and obtain
Equation 12.

Φ𝑂𝑉𝐿 (𝒙,𝒚) =
∑

𝑚𝑖 ,𝑚 𝑗 ∈M
𝜙𝑂𝑉𝐿
𝑖,𝑗 ,

𝜙𝑂𝑉𝐿
𝑖,𝑗 (𝒙,𝒚) = 𝐿𝑆𝐸 (𝐿𝑆𝐸 (𝑥𝑖 +W𝑖 − 𝑥 𝑗 , 𝑥 𝑗 +W𝑗 − 𝑥𝑖 ,−𝛾𝑂𝑉𝐿), 0, 𝛾𝑂𝑉𝐿),

𝐿𝑆𝐸 (𝑥,𝑦,𝛾) = 𝛾 · log(𝑒𝑥/𝛾 + 𝑒𝑥/𝛾 ),
(12)

where 𝛾𝑂𝑉𝐿 is a parameter to control the trade-off between smooth-
ness and accuracy in LSE approximations.

ASYM: The asymmetry penalty is the smoothed version of Equa-
tion 2 by squaring the absolute functions, as shown in Equation 13.

Φ𝐴𝑆𝑌𝑀 (𝒙,𝒚) = (
∑

{𝑚𝑖 ,𝑚 𝑗 }∈M𝑆𝑃

𝜙𝑆𝑃𝑖,𝑗 +
∑

𝑚𝑖 ∈M𝑆𝑆

𝜙𝑆𝑆𝑖 )/(|M
𝑆𝑃 | + |M𝑆𝑆 |),

𝜙𝑆𝑃𝑖,𝑗 (𝒙,𝒚) = (𝑥𝑖 +W𝑖 + 𝑥 𝑗 − 2 · 𝑥𝑠𝑦𝑚)2 + (𝑦𝑖 − 𝑦 𝑗 )2

𝜙𝑆𝑆𝑖 (𝒙,𝒚) = (𝑥𝑖 +
1
2
·W𝑖 − 𝑥𝑠𝑦𝑚)2,

(13)
where 𝑥𝑠𝑦𝑚 denotes the x-coordinate of the symmetry axis.

4.1.2 ADAM Optimization. We feed the NLP problem in each it-
eration to an optimization kernel based on ADAM optimizer [11].
Algorithm 2 shows the details of the optimization kernel, where 𝛼
is the step size for Adam optimizer, 𝛽1, 𝛽2 are the exponential decay
rates for the moment estimates, 𝛿 is the step size for vanilla gradi-
ent descent, 𝑡𝐺𝐷 denotes after which iteration we switch to vanilla

gradient descent from Adam optimizer and 𝜖 is a small number for
avoiding divide-by-zero. Line 7-11 is the standard ADAM optimizer
algorithm. The optimization process is accelerated through esti-
mating the first and second moments of the gradients. When the
optimization is slow to converge, we switch to vanilla gradient de-
scent with a small step size to search for a nearby local minima (line
14). We set 𝛼 = 0.005, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8, 𝑡𝐺𝐷 = 1000,
and 𝛿 = 0.001 in our experiments.

Algorithm 2 Optimization Kernel
1: 𝑚0 ← 0
2: 𝑣0 ← 0
3: 𝑡 ← 0
4: while (𝒙,𝒚) not converged do
5: 𝑡 ← 𝑡 + 1
6: if 𝑡 ≤ 𝑡𝐺𝐷 then
7: 𝑔𝑡 ← ∇𝑓 (𝒙,𝒚)
8: 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡
9: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2) · 𝑔2𝑡
10: 𝑚𝑡 ←𝑚𝑡/(1 − 𝛽𝑡1)
11: 𝑣̂𝑡 ← 𝑣𝑡/(1 − 𝛽𝑡2)
12: (𝒙,𝒚) ← (𝒙,𝒚) − 𝛼 ·𝑚𝑡/(

√
𝑣̂𝑡 + 𝜖)

13: else
14: (𝒙,𝒚) ← (𝒙,𝒚) − 𝛿 · ∇𝑓 (𝒙,𝒚)

4.1.3 𝝀 settings. Themultipliers𝝀 initialization and update schemes
are important to the overall effectiveness of the global placement.
Figure 5 illustrates the process of global placement for an oper-
ational amplifier. With guide from current flow and wirelength,
the modules are efficiently spread out from the center (Fig. 5(b)).
The overlapping and asymmetry penalty are emphasized in the
later iterations to resolve the hard constraints (Fig. 5(b) and (c)). A
significant challenge in global placement is that the problem scale
and constraints vary in different circuits. The settings of multipliers
𝝀 essentially control and balance between different objectives and
constraints. To smooth the constraint resolving and balance the
objectives, we initialize and update 𝝀 as follows.

𝝀 initialization:We initialize the 𝝀 by matching the L-2 norm
of the gradients of each cost, as shown in Equation 14.

𝜆 (0) = min(





 ∇𝒙,𝒚 𝑓 𝑆𝑊𝐿 (0)








 ∇𝒙,𝒚 𝑓 /Φ(0)



 , 𝜆𝑀𝐴𝑋 ), (14)

where 𝑓 𝑆𝑊 𝐹 (0) are initial SWF cost, 𝑓 /Φ(0) denotes initial val-
ues for other costs and 𝜆𝑀𝐴𝑋 is the maximum value allowed in
initialization. We set 𝜆𝑀𝐴𝑋 = 30 in the experiments. Intuitively,
matching the gradient norm motivates the optimization kernel to
give similar efforts on each type of cost.

𝝀 update: In the updating scheme, we intend to balance the op-
timization efforts to the objectives (SWL, PWL, SSF) and gradually
emphasize the penalties (OVL, ASYM, CRF).

For the objectives (PWL/SSF), wematch the cost gradient norm in
early iterations and gradually converge the multipliers to constants,
as shown in Equation 15.

𝜆 (𝑡 ) = 𝜁 𝑡 ·





 ∇𝒙,𝒚 𝑓 𝑆𝑊𝐿 (𝑡 )








 ∇𝒙,𝒚 𝑓 (𝑡 )



 + 𝑤

𝑆𝑊𝐿
∗
𝑤∗

, (15)



where 𝑓 (𝑡 ) is the current PWL/SSF cost, 𝑓 𝑆𝑊𝐿 (𝑡 ) is the current
SWL cost, 𝜁 is the decay rate, 𝑓 (𝑡 ) is the current PWL/ SSF cost,𝑤∗
is the total PWL/SSF weights and𝑤𝑆𝑊𝐿

∗ is the total SWL weights.
𝜁 is set to be 0.98 in the experiments.

For the penalties, we use subgradient method [13] to update the
multipliers as shown in Equation 16.

𝜆 (𝑡 ) = 𝜆 (𝑡−1) + 𝜂 · Φ(𝑡 ) , (16)

where Φ(𝑡 ) is the current OVL/ASYM/CRF cost and 𝜂 is the step
size. 𝜂 is set to be 0.01 in the experiments.

Intuitively, we choose to balance the optimization efforts on
each objective and let the penalties to be gradually increased over
iterations.

(a) (b) (c) (d)

Figure 5: The intermediate results in global placement. (a)
After initializing random placement. (b) After iteration 1. (c)
After iteration 2. (c) After global placement terminates.

4.1.4 𝜸 settings. The control parameters 𝛾 are used to control the
trade-off between smoothness and accuracy in LSE function. The
LSE approximation of the max min function is smoother with larger
𝛾 and more accurate for smaller 𝛾 [27]. Figure 6 shows an example
of LSE approximation of max(𝑥, 0) with different values of 𝛾 .

In early iterations, we use larger 𝛾 in OVL and CRF costs for
providing a smoother function for the optimization. After the mod-
ules being spread out, we use smaller 𝛾 to obtain a more accurate
𝑂𝑂𝑉𝐿/𝐶𝑅𝐹 overflow approximation to resolve the local violations.
We update the 𝛾𝑂𝑉𝐿 and 𝛾𝐶𝑅𝐹 with a reciprocal function with
respect to the penalty Φ𝑂𝑉𝐿 and Φ𝐶𝑅𝐹 respectively as shown in
Equation 17.

𝛾 (𝑡 ) = − 𝑎

Φ(𝑡 ) − 𝜅 · Φ∗
+ 𝑏,

𝑎 = (𝜅2 − 𝜅) · Φ∗ · (Γ𝐻 − Γ𝐿),
𝑏 = (1 − 𝜅) · Γ𝐻 + 𝜅 · Γ𝐿,

(17)

whereΦ(𝑡 ) is the current penalty cost for OVL or CRF,Φ∗ is themax-
imum OVL/CRF penalty cost, Γ𝐻 /Γ𝐿 are the maximum/minimum
allowed values for 𝛾 and 𝜅 is a parameter to control the decay rate.
Φ∗ is estimated by setting it to the largest Φ𝑂𝑉𝐿/Φ𝐶𝑅𝐹 observed so
far in the iterations. 𝜅 is set to 100, Γ𝐻 is set to 2, and Γ𝐿 is set to 0.4
in the experiments. Equation 17 is essentially a reciprocal function
mapping [0,Φ∗] → [Γ𝐿, Γ𝐻 ]. Empirically 𝛾 decays very fast as the
overlapping and current flow penalties are handled efficiently after
a few iterations.
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Figure 6: LSE approximation of max(𝑥, 0) with different 𝛾

4.2 Legalization
After the global placement stage, the modules have been placed
considering wirelength and signal flow, with small or no violation
of overlapping and asymmetry. We further compact the area of the
layout and optimize for wirelength based on the method similar
to [40].

Algorithm 3 Legalization

1: Construct the horizontal constraint graph 𝐺ℎ := (M, 𝐸ℎ)
2: Area-driven symmetry-aware LP compaction on horizontal

direction
3: Construct the vertical constraint graph 𝐺𝑣 := (M, 𝐸𝑣)
4: Area-driven symmetry-aware LP compaction on vertical direc-

tion
5: Wirelength-driven symmetry-aware LP detailed placement

Different from the approach with missing positional relationships
detection techniques in [40], we separate the layout compaction
on horizontal and vertical directions. As shown in Algorithm 3,
we obtain the necessary positional relationships between modules
based on the plane sweep line algorithm from [9] and represent
them as edges in constraint graphs. Then we compact the layout
with each edge being a linear constraint in LP problem to enforce
non-overlapping between modules. Figure 7 shows an example of
the constraint generation and area-driven compaction. As shown
in Figure 7(b), we sweep the layout in horizontal, add a constraint
edge between modules overlapping in y-coordinates (line 1 in Al-
gorithm 3) and enforce the constructed constraint edges in the
layout (line 2 in Algorithm 3). In constructing the horizontal con-
straint graph, wewaive the edge between B and D because resolving
the overlapping between them by moving D upwards causes less
displacement compared to move B left or right. The positional re-
lationship between B and D will be automatically handled by the
following vertical direction compaction, as shown in Figure 7(c).
The method above can preserve the optimality claimed in [40],
while not need the missing positional detection techniques in [40]
nor any additional overhead. With the construction of constraint
graphs, the area-driven compaction and wirelength-driven detailed
placement are preceded using the linear-programming (LP) formu-
lations from [40]. This LP approach also honors symmetric con-
straints by imposing symmetry through the LP problem constraints.
Note that the order to compact in horizontal or vertical direction is
exchangeable. Due to the page limit, we omit the details.

5 EXPERIMENTAL RESULTS
The proposed AMS placement framework is implemented in C++,
and the linear programming problems are solved with Gurobi [10].
All experiments are conducted on a Linux workstation with an
8-cores Intel 3.0 GHz CPU with 64 GB memory.

In the experiments, we conduct experiments with two complete
mixed-signal systems, continuous-time ΔΣ modulators (CTDSM)
denoted as ADC1 and ADC2 and three analog block-level circuits,
one comparator and two operational amplifiers (OPs), denoted as
COMP, OP1 and OP2. The five benchmark circuits vary in scale and
functions and are designed by experienced circuit designers under
TSMC 40nm process. Table 3 shows the benchmarks statistics.

For the two ADCs with hierarchical structures, we follow the
hierarchy from the spice netlist, place each block separately and
integrate the top-level circuits together with the blocks generated.
This approach is similar to the manual design methodology of
divide-and-conquer.
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Figure 7: An example of the constraint graph construction
and area-driven layout compaction. (a) A global placement
result. (b) Horizontal constraint graph and the resulting lay-
out after compaction. (c) Vertical constraint graph and the
resulting layout after compaction.

Table 3: Benchmark circuits information of number of
PMOS, number of NMOS, number of capacitors, number of
resistors, number of standard cells, number of totalmodules,
and number of symmetry constraints.

Benchmark #PMOS #NMOS #Cap #Res #Stdcells Total #Sym
ADC1 29 32 16 24 11 112 57
ADC2 20 21 9 17 9 76 71
COMP 8 8 0 0 0 16 9
OP1 10 16 6 32 0 64 30
OP1 14 9 2 0 0 25 14

To evaluate the effectiveness of our proposed system signal flow-
aware AMS placement framework, we compare to the state-of-the-
art AMS placer [40]. We obtain the source code from the authors
of [42] and modify the software as follows. Based on the guidance
from the original designers of the benchmark circuits, we forbid the
capacitors to be overlappedwith transistors, because the benchmark
circuits in the experiments are sensitive to the coupling.

To comprehensively illustrate the impact on routing, we use
a detailed router aware of symmetry constraints to route every
placement in the experiments. The used detailed router [5] will
ensure the exact symmetry on matched nets specified by the cir-
cuit designers. The power and ground nets are routed with the
approach similar to Figure 4 to ensure IR-drop does not impact the
performance. The detailed router will strictly check the design rules.
However, for the cases presenting exceeding routing congestion, it
is possible that no feasible routing can be found with strict design
rule checking and symmetry constraint handling. In such cases, to
provide a meaningful comparison, we relax the design rule check-
ing in the detailed routing and mark them in the tables. Within the

experiments of this paper, all relaxed-design-rule routing results in
design rule violations (DRV).

The routing wire width and the choice of VIAs are following the
guidelines from the experienced designer in a net-by-net manner.
We verify the routing quality with the designer that the overall
routing is reasonable and shall not largely affect the fairness of
comparisons. We verify the resulting layout with Calibre nmLVS
and check the design rule with Calibre nmDRC.

Figure 1 shows the routed layout for ADC2 with our placement
framework, where (b) is with system signal flow, and (c) is without
system signal flow.

5.1 Experimental results on placement metrics
We evaluate and compare the placement results on area, HPWL,
routed wirelength, number of vias used in routing and runtime.
The average of multiple runs collect all the runtime.

Table 4 shows the comparisons on the results of three analog
block-level circuits. We achieve 34%, 23%, and 10% reductions in
area, routed wirelength and number of VIAs over [40] with compa-
rable runtime. Note that these results are obtained with OP2 not
routable with strict design rule.

On the other hand, Table 5 shows the comparisons on two ADCs.
As shown in Figure 1, honoring the system signal flow will likely
result in a larger area and longer wirelength, however, the proposed
placement framework still outperform [40] in routed wirelength
and number of VIAs by 20% and 23% respectively. The proposed
framework without system signal flow can further enlarge the gap
in routed wirelength to 36% with a similar area. Note that both of
the two ADCs are failed in routing with strict design rules for [40].

Our placement framework achieve 4.2%, 35.8% and 16.4% reduc-
tion in area, routed wirelength and number of VIAs respectively
without system signal flow. With system signal flow, our placement
increase area by 7.3% while reduce routed wirelength and num-
ber of VIAs by 22.8% and 19.5%, combining the results from five
benchmark circuits.

We can notice that the lower HPWL in OP2 with [40] does not
results in lower routed wirelength. It is because the wirelength for
P/G nets are significantly longer than HPWL estimation.

5.2 Experimental results on performance
To verify the results on circuit performance, we conduct post-layout
simulations. Calibre PEX is used to extract the parasitic resistance,
parasitic capacitor, and coupling capacitance (R+C+CC). Then the
performance is evaluated with Cadence Spectre.

Table 6 illustrates the effectiveness of system signal flow, where
SNDR, SFDR, THD, ENOB denote for signal-to-noise-and-distortion
ratio, spurious-free dynamic range, total harmonic distortion and
effective number of bits, respectively. Since the comparisons differ
only in whether consider system signal flow in top-level of integrat-
ing the system, the block-level circuits in the two ADCs are exactly
the same. Hence the difference in performance comes purely on
the floorplan in the top-level integration. With system signal flow,
the post-layout SNDR is improved by 2.2 dB and 6.7 dB, respec-
tively. Figure 8 shows the simulation results for ADC2. We can
observe that the layout with optimized signal flow has lower har-
monic distortion. The improvements in post-layout performance
for two ADCs demonstrates the importance of the parasitic RC
along the critical signal path and the effectiveness of the "place-
like-schematic" approach in planning the signal flow in placing
mixed-signal systems.



Table 4: Comparison of area(𝜇𝑚2), half-perimeter wirelength (HPWL(𝜇𝑚)), routed wirelength (RWL(𝜇𝑚)), number of VIAs
(VIA), number of design rule violations (DRV), 1-thread runtime (1-T RT(s)) and 8-thread runtime(8-T RT(s)) for block-level
analog circuits.

CKTS [40] This Work
Area HPWL RWL VIA DRV 1-T RT Area HPWL RWL VIA DRV 1-T RT 8-T RT

COMP 223 104 267 21 0 0.16 187 101 196 13 0 0.18 0.08
OP1 2366 767 1234 97 0 3.3 1584 691 905 84 0 14.59 3.09
OP2 2529 416 914 44 14† 0.14 2047 466 732 50 0 9.63 2.73
Ratio 1.34 1.02 1.23 1.10 - 0.61 1.00 1.00 1.00 1.00 - 4.79 1.00
† Routing fails with strict design rules

Table 5: Comparison of area(𝜇𝑚2), half-perimeter wirelength (HPWL(𝜇𝑚)), routed wirelength (RWL(𝜇𝑚)), number of VIAs
(VIA), number of design rule violations (DRV), 1-thread runtime (1-T RT(s)) and 8-thread runtime(8-T RT(s)) for two mixed
signal system circuits.

CKTS [40] Without SSF With SSF
Area HPWL RWL VIA DRV 1-T RT Area HPWL RWL VIA DRV 1-T RT 8-T RT Area HPWL RWL VIA DRV 1-T RT 8-T RT

ADC1 11840 2402 3817 297 45† 1.64 10720 2401 2909 247 0 10.65 2.74 11170 2691 3154 255 0 10.51 2.70
ADC2 22800 4103 4290 252 157† 1.23 23620 3032 3441 217 0 0.85 0.64 27670 3415 3580 193 0 1.05 0.68
Ratio 0.89 1.07 1.20 1.23 - 0.85 0.88 0.89 0.96 1.04 - 3.40 1.00 1.00 1.00 1.00 1.00 - 3.42 1.00
† Routing fails with strict design rules

Figure 8: Simulation results on ADC2 with and without sys-
tem signal flow.

Table 6: Comparisons of post-layout simulations results
with and without the system signal flow in mixed-signal
system circuits. ADC1/ADC2 has sampling frequency of
320/1000 MHz and bandwidth of 2.5/6.25 MHz.

Circuits Schematic Without SSF With SSF

ADC1

SNDR (dB) 66.2 61.4 63.6
SFDR (dB) 78.9 75.0 77.1
THD (dB) 75.0 70.6 73.8
ENOB (bits) 10.70 9.90 10.27
Power (𝑚W) 0.837 0.864 0.870

ADC2

SNDR (dB) 67.1 59.6 66.3
SFDR (dB) 82.0 67.0 80.2
THD (dB) 77.6 66.5 76.4
ENOB (bits) 10.85 9.61 10.71
Power (𝑚W) 0.677 0.740 0.757

Table 7 shows the complete post-layout simulation results com-
pared to [40]. In addition to the 10 dB SNDR advantage in ADC2
over the baseline, our placement framework consistently achieves
satisfying performance in all the five benchmark circuits.

In fact, the ADC2 chip implemented with the proposed frame-
work using TSMC 40nm technology has been sent to the foundry
for tape-out.

6 CONCLUSION
This work presents a new performance-driven placement frame-
work for AMS circuits. The proposed framework considers the

Table 7: Post-layout simulations results of our AMS place-
ment framework. ADC1/ADC2 has sampling frequency of
320/1000 MHz and bandwidth of 2.5/6.25 MHz.

Circuits Schematic [40] This work

ADC1

SNDR (dB) 66.2 60.2 63.6
SFDR (dB) 78.9 72.0 77.1
THD (dB) 75.0 68.8 73.8
ENOB (bits) 10.70 9.70 10.27
Power (𝑚W) 0.837 0.877 0.870

ADC2

SNDR (dB) 67.1 56.3 66.3
SFDR (dB) 82.0 66.7 80.2
THD (dB) 77.6 66.2 76.4
ENOB (bits) 10.85 9.06 10.71
Power (𝑚W) 0.677 0.790 0.757

COMP

Delay (𝑝𝑠) 103 187 157
Offset (𝜇V) - 90 380

Noise (𝜇Vrms) 439.8 360.1 368.8
Power (𝜇W) 13.45 21.82 21.51

OP1

DC Gain (dB) 53.95 45.53 54.13
Bandwidth (MHz) 612.6 396.0 389.7
Phase Margin (◦) 50.65 63.05 65.83

Offset (𝜇V) - 1553 448
CMRR (dB) - 83.32 118.7
Power (𝜇W) 374.3 377.3 377.9

OP2

DC Gain (dB) 38.20 37.65 37.73
Bandwidth (MHz) 110.5 97.19 94.48
Phase Margin (◦) 64.66 70.67 67.76

Offset (𝜇V) - 3845 151
CMRR (dB) - 71.13 219.9
Power (𝜇W) 776.6 778.2 757.6

system signal flow in mixed-signal systems and planning the sig-
nal path in a "place-like-schematic" approach. The proposed self-
adaptive global placement engine balance the different objectives
and constraints in AMS placement problem. Experimental results
have demonstrated the effectiveness of system signal flow in mixed-
signal system performance and the sign-off quality of placement
results from the proposed framework.
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