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Abstract
We study multinomial logit bandit with limited
adaptivity, where the algorithms change their ex-
ploration actions as infrequently as possible when
achieving almost optimal minimax regret. We
propose two measures of adaptivity: the assort-
ment switching cost and the more fine-grained
item switching cost. We present an anytime
algorithm (AT-DUCB) with O(N log T ) assort-
ment switches, almost matching the lower bound
Ω( N log T

log log T ). In the fixed-horizon setting, our al-
gorithm FH-DUCB incurs O(N log log T ) assort-
ment switches, matching the asymptotic lower
bound. We also present the ESUCB algorithm
with item switching cost O(N log2 T ).

1. Introduction
The dynamic assortment selection problem with the multi-
nomial logic (MNL) choice model, also called MNL-bandit,
is a fundamental problem in online learning and operations
research. In this problem we have N distinct items, each of
which is associated with a known reward ri and an unknown
preference parameter vi. In the MNL choice model, given a
subset S ⊆ [N ]

def
= {1, 2, 3, . . . , N}, the probability that a

user chooses i ∈ S is given by

pi(S) =


vi

v0 +
∑
j∈S vj

if i ∈ S ∪ {0}

0 otherwise
, (1)

where “0” stands for the case that the user does not choose
any item, and v0 is the associated preference parameter. As
a convention (see, e.g. Agrawal et al., 2019), we assume
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that no-purchase is the most frequent choice, which is very
natural in retailing. W.l.o.g., we assume v0 = 1, and vi ≤ 1
for all i ∈ [N ]. The expected reward of the set S under the
preference vector v = {v0, v1, . . . , vN} is defined to be

R(S,v) =
∑
i∈S

ripi(S) =
∑
i∈S

rivi
1 +

∑
j∈S vj

. (2)

For any online policy that selects a subset St ⊆ [N ]
(|St| ≤ K, where K is a predefined capacity parameter) at
each time step t, observes the user’s choice at to gradually
learn the preference parameters {vi}, and runs for a horizon
of T time steps, we define the regret of the policy to be

RegT
def
=

T∑
t=1

(R(S?,v)−R(St,v)) , (3)

where S? = arg maxS⊆[N ],|S|≤K R(S,v) is the optimal
assortment in hindsight. The goal is to find a policy to
minimize the expected regret E[RegT ] for all MNL-bandit
instances.

To motivate the definition of the MNL-bandit problem, let us
consider a fast fashion retailer such as Zara or Mango. Each
of its product corresponds to an item in [N ], and by selling
the i-th item the retailer takes a profit of ri. At each specific
time in each of its shops, the retailer can only present a
certain number of items (say, at most K) on the shelf due
to the space constraints. As a consequence, customers who
visit the store can only pick items from the presented as-
sortment (or, just buy nothing which corresponds to item
0), following a choice model. There has been a number of
choice models being proposed in the literature (see, e.g.,
(Train, 2009; Luce, 2012) for overviews), and the MNL
model is arguably the most popular one. The retailer cer-
tainly wants to maximize its profit by identifying the best
assortment S? to present. However, it does not know in
advance customers’ preferences to items in [N ] (i.e., the
preference vector v), to get which it has to learn from cus-
tomers’ actual choices. More precisely, the retailer needs to
develop a policy to choose at each time step t an assortment
St ⊆ [N ] (|St| ≤ K) based on the previous presented as-
sortments S1, . . . , St−1 and customers’ choices in the past
(t− 1) time steps. The retailer’s expected reward in a time
horizon T can be expressed by

∑T
t=1R(St,v), which is

typically reformulated as the regret compared with the best
policy in the form of (3).
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The MNL-bandit problem has attracted quite some attention
in the past decade (Rusmevichientong et al., 2010; Sauré
& Zeevi, 2013; Agrawal et al., 2016; 2017; Chen & Wang,
2018). However, all these works do not consider an impor-
tant practical issue for regret minimization: in reality it is
often impossible to frequently change the assortment dis-
play. For example, in retail stores it may not be possible to
change the display in the middle of the day, not mentioning
doing it after each purchase. We thus hope to minimize the
number of assortment switches in the selling time horizon
without increasing the regret by much. Another advantage
of achieving a small number of assortment switches is that
such algorithms are easier to parallelize, which enables us to
learn users’ preferences much faster. This feature is particu-
larly useful in applications such as online advertising where
it is easy to show the same assortment (i.e., a set of ads) in
a large amount of end users’ displays simultaneously.

We are interested in two kinds of switching costs under a
time horizon T . The first is the assortment switching cost,
defined as

Ψ
(asst)
T

def
=

T∑
t=1

I[St 6= St+1].

The second is the item switching cost, defined as

Ψ
(item)
T

def
=

T∑
t=1

|St ⊕ St+1| ,

where binary operator⊕ computes the symmetric difference
of the two sets. In comparison, the item switching cost is
more fine-grained and put less penalty if two neighboring
assortments are “almost the same”. As a straightforward
observation, we always have that

Ψ
(asst)
T ≤ Ψ

(item)
T ≤ min{2K,N} ·Ψ(asst)

T . (4)

Our results. In this paper we obtain the following results
for MNL-bandit with low switching cost. By default all
log’s are of base 2.

We first introduce an algorithm, AT-DUCB, that achieves
almost optimal regret (up to a logarithmic factor) and incurs
an assortment switching cost of O(N log T ); this algorithm
is anytime, i.e., it does not need to know the time horizon
T in advance. We then show that the AT-DUCB algorithm
achieves almost optimal assortment switching cost. In par-
ticular, we prove that every anytime algorithm that achieves
almost optimal regret must incur an assortment switching
cost of at least Ω(N log T/ log log(NT )). These results are
presented in Section 2.

When the time horizon is known beforehand, we obtain an
algorithm, FH-DUCB, that achieves almost optimal regret
(up to a logarithmic factor) and incurs an assortment switch-
ing cost of O(N log log T ). We also prove the optimality of

this switching cost by establishing a matching lower bound.
See Section 3.

For item switches, while the trivial application of (4) leads
to O(N2 log T ) and O(N2 log log T ) item switching cost
bounds for AT-DUCB and FH-DUCB respectively, in Sec-
tion 4, we design a new algorithm, ESUCB, to achieve an
item switching cost of O(N log2 T ). In Appendix F, we
show that a more careful modification to the algorithm fur-
ther improves the item switching cost to O(N log T ).

We make two interesting observations from the results
above: (1) there is a separation between the assortment
switching complexities when knowing the time horizon T
and when not; in other words, the time horizon T is use-
ful for achieving a smaller assortment switching cost; (2)
the item switching cost is only at most a logarithmic factor
higher than the assortment switching cost.

Technical contributions. We combine the epoch-based
offering algorithm for MNL-bandits (Agrawal et al., 2019)
and a natural delayed update policy in the design of AT-
DUCB. Although a similar delayed update rule has been re-
cently analyzed for multi-armed bandits and Q-learning (Bai
et al., 2019), and such a result does not seem surprising, we
present it in the paper as a warm-up to help the readers get
familiar with a few algorithmic techniques commonly used
for the MNL-bandit problem.

Our first main technical contribution comes from the design
of FH-DUCB algorithm, where we invent a novel delayed
update policy that uses the horizon information to improve
the switching cost fromO(N log T ) toO(N log log T ). We
note that for the ordinary multi-armed bandit problem, re-
cent works (Gao et al., 2019) and (Simchi-Levi & Xu, 2019)
managed to show a similar O(N log log T ) switching cost
with known horizon. However, their update rules do not
have to utilize the learned parameters for the arms, and a
straightforward conversion of such update rules to the MNL-
bandit problem does not produce the desired guarantees. In
contrast, our update rule, formally described in (6), care-
fully exploits the structure of the MNL-bandits and uses the
information of the partially learned preference parameters
(more specifically, v̂i,τi in (6)) to adaptively decide when to
switch to a different assortment.

Our second main technical contribution is the ESUCB algo-
rithm for the low item switching cost. The technical chal-
lenge here stems from the fact that the low item switching
cost is a much stronger requirement than the low assortment
switching cost, and simple lazy updates with the doubling
trick and the straightforward analysis will show that the item
switching cost is at most N times the assortment switch-
ing cost (see (4)), leading to a total item switching cost of
O(N2 log T ). To reducing the extra factor N , we propose
the idea of decoupling the learning for the optimal revenue
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and the assortment, so that the offering of the assortment
is decided via optimizing a new objective function based
on the (usually) fixed revenue estimate. Since the revenue
estimates are fixed, the offered assortments enjoy improved
stability, and the item switching cost can be upper bounded
by careful analysis.

We remark that the item switching cost is a particularly in-
teresting goal that arises in online learning problems when
the actions are sets of elements, which is very different
from traditional MAB and linear bandits. Thanks to our
novel technical ingredients, we are able to bring the item
switching cost down to almost the same order as the assort-
ment switching cost. We hope our results will inspire future
study of the switching costs in both settings for other online
learning problems with set actions.

Related work. MNL-bandit was first studied in (Rus-
mevichientong et al., 2010) and (Sauré & Zeevi, 2013),
where the authors took the “explore-then-commit” approach,
and proposed algorithms with regret O(N2 log2 T ) and
O(N log T ) respectively under the assumption that the
gap between the best and second-to-the-best assortments
is known. (Agrawal et al., 2016) removed this assump-
tion using a UCB-type algorithm, which achieves a regret
of O(

√
NT log T ). An almost tight regret lower bound

of Ω(
√
NT ) was later given by (Chen & Wang, 2018).

(Agrawal et al., 2017) proposed an algorithm using Thomp-
son Sampling, which achieves comparable regret bound
to the UCB-type algorithms while demonstrates a better
numerical performance.

Learning with low policy switches (also called learning in
the batched model or limited adaptivity) has recently been
studied in reinforcement learning for several other problems,
including stochastic multi-armed bandits (Perchet et al.,
2015; Jun et al., 2016; Agarwal et al., 2017; Gao et al.,
2019; Esfandiari et al., 2019; Simchi-Levi & Xu, 2019),
Q-learning (Bai et al., 2019), and online-learning (Cesa-
Bianchi et al., 2013). This research direction is motivated
by the fact that in many practical settings, the change of
learning policy is very costly. For example, in clinical trials,
every treatment policy switch would trigger a separate ap-
proval process. In crowdsourcing, it takes time for the crowd
to answer questions, and thus a small number of rounds of
interactions with the crowd is desirable. The performance
of the learning would be much better if the data is processed
in batches and during each batch the learning policy is fixed.

2. Warm-up: An anytime algorithm with
O(N log T ) assortment switches

As a warm-up, we begin with a simple anytime algorithm us-
ing at mostO(N log T ) assortment switches. Our algorithm
combines the epoch-based offering framework introduce in

(Agrawal et al., 2016) and a deferred update policy. We will
first briefly explain the epoch-based offering procedure, and
then present and analyze our algorithm.

The epoch-based offering. In the epoch-based offering
framework, whenever we are to offer an assortment S, in-
stead of offering it for only one time period, we keep of-
fering S until a no-purchase decision (item 0) is observed,
and refer to all the consecutive time periods involved in this
procedure as an epoch. The detailed offering procedure is
described in Algorithm 1, where t is the global counter for
the time period, and {∆i} records the number of purchases
made for each item i in the epoch.

Algorithm 1: EXPLORATION(S)

1 Initialize: ∆i ← 0 for all i ∈ [N ];
2 while TRUE do
3 t← t+ 1;
4 Offer assortment S, and observe purchase decision at;
5 If at = 0 then return {∆i};
6 ∆at ← ∆at + 1;

The following key observation for EXPLORATION(S) states
that {∆i} forms an unbiased estimate for the utility parame-
ters of all items in S.

Observation 1. Let {∆i} be returned by
EXPLORATION(S). For each i ∈ S, ∆i is an in-
dependent geometric random variable with mean vi.
Moreover, one can verify that E[∆i] = vi and

Pr[∆i = k] =

(
vi

1 + vi

)k (
1

1 + vi

)
, ∀k ∈ N.

At any time of the algorithm when an epoch has ended,
for each item i ∈ [N ], we let v̄i = ni/Ti where Ti is the
number of the past epochs in which i is included in the
offered assortment, and ni is the total number of purchases
for item i during all past epochs. By Observation 1, we
know that v̄i is also an unbiased estimate of vi. In (Agrawal
et al., 2016), the following upper confidence bound (UCB)
is constructed for each i ∈ [N ],

v̂i = v̄i +

√
48v̄i ln(

√
N`+ 1)

Ti
+

48 ln(
√
N`+ 1)

Ti
. (5)

We will compute the assortment for the next epoch based
on the vector of UCB values v̂ = (v̂1, v̂2, . . . , v̂n).

We describe our algorithm in Algorithm 2, which can be
seen as an adaptation of the one in (Agrawal et al., 2016).
The main difference from (Agrawal et al., 2016) is that the
UCB values (and hence the assortment) is updated only
when Ti reaches an integer power of 2 for any item i ∈ [N ].
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Algorithm 2: Anytime Deferred Update UCB (AT-DUCB)

1 Initialize: v̂i ← 1, Ti ← 0 for all i ∈ [N ], t← 0;
2 for `← 1, 2, 3, . . . , do
3 Compute S` = arg maxS⊆[N ]:|S|≤K R(S, v̂);
4 {∆i} ← EXPLORATION(S);
5 for i ∈ S do
6 ni ← ni + ∆i and Ti ← Ti + 1;
7 if Ti = 2k for some k ∈ Z then
8 v̄i ← ni/Ti; v̂i ← min

{
v̂i, v̄i +√

48v̄i ln(
√
N`+1)

Ti
+ 48 ln(

√
N`+1)
Ti

}
;

This deferred update strategy is implemented in Line 7.
Also note that instead of directly evaluating (5), the update
in Line 8 makes sure that v̂i is non-increasing as the algo-
rithm proceeds. We comment that the optimization task in
Line 3 can be done efficiently, as studied in, for example,
(Rusmevichientong et al., 2010).

Theorem 2. For any time horizon T , the expect regret in-
curred by Algorithm 2 is

E [RegT ] .
√
NT log T ,

and the expected number of assortment switches E[Ψ
(asst)
T ]

is O(N log T ). 1

The proof of the regret upper bound in Theorem 2 is similar
to that of (Agrawal et al., 2016), except for a more careful
analysis about the deferred update rule. For completeness,
we prove this part in Appendix A.

Proof of the assortment switch upper bound in Theorem 2.
Let D(`)

i be the event that Line 8 is executed in Algorithm 2
for item i at the `-th epoch. Recall that the assortment S`
is computed by S` = arg maxS⊆[N ],|S|≤K R(S, v̂), and v̂

is updated after epoch ` only when D(`)
i happens for some

i ∈ [N ]. Let L be the total number of epochs at or before
time T ; we thus have

∑L
`=1 I[D`i ] ≤ log T . We then have

that

E[Ψ
(asst)
T ] = E

T−1∑
t=1

I[St 6= St+1]

≤
L∑
`=1

N∑
i=1

I[D(`)
i ] =

N∑
i=1

L∑
`=1

I[D(`)
i ] . N log T.

1For two sequences {an} and {bn}, we write an = O(bn) or
an . bn if there exists a universal constant C < ∞ such that
lim supn→∞ |an|/|bn| ≤ C. Similarly, we write an = Ω(bn)
or an & bn if there exists a universal constant c > 0 such that
lim infn→∞ |an|/|bn| ≥ c.

The lower bound. We complement our algorithmic result
with the following almost matching lower bound. The the-
orem states that the number of assortment switches has to
be Ω(N log T/ log log(NT )), if the algorithm is anytime
and incurs only

√
NT × poly log(NT ) regret. The proof

of Theorem 3 can be found in Appendix E.1.

Theorem 3. There exist universal constants d0, d1 > 0
such that the following holds. For any constant C ≥
1, if an anytime algorithm A achieves expected regret
at most d0

√
NT (ln(NT ))C for all T and all instances

with N items, then for any N ≥ 2, T0 ≥ N and T0

greater than a sufficiently large constant that only de-
pends on C, there exists an instance with N items and
a time horizon T ∈ [T0, T

2
0 ], such that the expected

number of assortment switches before time T is at least
d1N log T/(C log log(NT )).

3. Achieving O(N log log T ) assortment
switch with known horizons

When the time horizon is known to the algorithm, we can
exploit this advantage via more carefully designed update
policy to achieve only O(N log log T ) assortment switches.
For the convenience of presentation, we first introduce a few
notations.

Algorithm 3: UPDATE(i)

1 τi ← τi + 1; T (τi)
i ← T

(τi−1)
i + |T (i, τi − 1)|;

2 n
(τi)
i ← n

(τi−1)
i + ni,τi−1; v̄i,τi ← n

(τi)
i /T

(τi)
i ;

3 v̂i,τi ← min
{
v̂i,τi−1, v̄i,τi +

√
48v̄i,τi ln(

√
NT 2+1)

T
(τi)

i

+

48 ln(
√
NT 2+1)

T
(τi)

i

}
;

For each item i ∈ [N ], we divide the time periods into
consecutive stages where the boundaries between any two
neighboring stages are marked by the UCB updates for item
i. Note that the division for the stages may be different for
different items. For any τ ∈ {1, 2, 3, . . . }, let T (i, τ) be
the set of epochs to offer item i, in stage τ for the item.
Let T (τ)

i =
∑τ−1
τ ′=1 |T (i, τ ′)| be the total number of epochs

to offer item i, before stage τ for the item, and let n(τ)
i

be the total number of purchases for item i in the epochs
counted by T (τ)

i . We can therefore define v̄i,τ
def
= n

(τ)
i /T

(τ)
i

as an unbiased estimate of vi based on the observations
before stage τ . Similarly to (5), we can define v̂i,τ as a
UCB for vi. The UPDATE(i) procedure (formally described
in Algorithm 3) is invoked whenever the main algorithm
decides to conclude the current stage for item i and update
the UCB for vi together with the quantities defined above,
where τi is the counter for the number of stages for item i,
and ni,τ is the number of purchases observed in stage τ for
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item i.

The key to the design of our main algorithm for the fixed
time horizon setting is a new trigger for updating the UCB
values. Let τ0 = dlog log(T/N)+1e, for each item i ∈ [N ],
we will conclude the current stage τi and invoke UPDATE(i)
whenever the following condition P(i, τi) is satisfied. Note
that P(i, τi) is adaptive to the estimated parameters v̂i,τi
to customize the number of epochs between assortment
switches for each item. More specifically, the smaller v̂i,τi
is, the less regret may be incurred by offering item i, and
therefore the longer we can offer item i without switching
and incurring too large regret, and this is reflected in the
design of P .

P(i, τi)
def
=


|T (i, τi)| ≥ 1 +

√
T ·T (τi)

i

N if τi < τ0

|T (i, τi)| ≥ 1 +

√
T ·T (τi)

i

N ·v̂i,τi
and v̂i,τ0 > 1/

√
NT if τi ≥ τ0

.

(6)

For each epoch `, we use τi(`) to denote the stage (in terms
of item i) where epoch ` belongs to. We present the details
of our main algorithm in Algorithm 4. The algorithm is
terminated whenever the time step t reaches the horizon T .
Theorem 4. For any given time horizon T ≥ N4, we have
the following upper bound for the expected regret:

E [RegT ] .
√
NT ln(

√
NT 2 + 1) · log log T,

and the following upper bound for the expected number of
assortment switches:

E
[
Ψ

(asst)
T

]
. N log log T.

To prove Theorem 4, we first define the desired events. Let

E(1)
i,τ

def
=
{
v̂i,τ ≥ vi and v̂i,τ ≤ vi+√√√√144vi ln(

√
NT 2 + 1)

T
(τ)
i

+
144 ln(

√
NT 2 + 1)

T
(τ)
i

}
,

and
E(1) def

= ∩i,τE(1)
i,τ .

We also let

E(2)
i,τ

def
=
{
ni,τ ≥

1

2
vi|T (i, τ)|,

if vi ≥
1

2

√
1

NT
and |T (i, τ)| ≥ T

4N · vi

}
,

and
E(2) def

= ∩i,τE(2)
i,τ .

Finally, let E = E(1) ∩ E(2). In Appendix B.1, we prove the
following lemma.

Algorithm 4: Deferred Update UCB for Fixed Time Hori-
zon (FH-DUCB)
Input :The time horizon T .

1 Initialize: τi ← 1, v̂i,τi ← 1, ni,τi ← 0, T (i, τi)←
∅, T (1)

i ← 0, n
(1)
i ← 0 for all i ∈ [N ];

2 t← 0, S0 ← [N ];
3 for `← 1, 2, 3, . . . , do
4 S` ← S`−1;
5 if ∃i : P(i, τi) holds then
6 UPDATE(i) for all i such that P(i, τi) holds;
7 Compute S` ← arg maxS⊆[N ]:|S|≤K R(S, v̂`)

where v̂` = (v̂i,τi(`))i∈[N ];

8 {∆i} ← EXPLORATION(S`);
9 for i ∈ S do

10 ni,τi ← ni,τi + ∆i; Add ` to T (i, τi);

Lemma 5. If T ≥ N4 and T is greater than a large enough
universal constant, then Pr[E ] ≥ 1− 14

T .

Bounds for the stage lengths. When E happens, we can
infer the following useful lower bound for the lengths of the
stages after τ0. The lemma is proved in Appendix B.2.

Lemma 6. Assume that T ≥ N4 and T is greater than a
sufficiently large universal constant. Conditioned on E(1),
for each i ∈ [N ], if τ0 is not the last stage for item i, we

have that vi ≥ 1
2

√
1
NT . Additionally, if v̂i,τ0 > 1/

√
NT ,

then for all τ > τ0 such that τ is not the last stage for i, we
have that |T (i, τ)| ≥ (T/(2Nvi))

1−2−τ+τ0+1

.

Upper bounding the number of assortment switches.
Suppose that there are L epochs before the algorithm ter-
minates. We only need to upper bound E

∑N
i=1 τi(L)

which upper bounds the number of assortment switches
E[Ψ

(asst)
T ]. For each i ∈ [N ], if τi(L) ≥ τ0 and

v̂i,τ0 ≤ 1/
√
NT , we easily deduce that τi(L) ≤ τ0 + 1

because of the condition P(i, τ0). Otherwise, assuming
that v̂i,τ0 > 1/

√
NT , by Lemma 6, conditioned on E(1),

we have that vi ≥ 1
2

√
1
NT and |T (i, τ)| ≥ T

4Nvi
for

all τ ∈ [τ0 + log log T
2Nvi

+ 1, τi(L) − 1]. Because
of E(2), we have ni,τ ≥ vi

2 · |T (i, τ)| ≥ T
8N for all

τ ∈ [τ0 + log log T
2Nvi

+ 1, τi(L)− 1]. Therefore, we know
that there are no more than 8N pairs of (i, τ) satisfying
τ ∈ [τ0 + log log T

2Nvi
+ 1, τi(L)−1]. In total, conditioned

on E , we have that

E
N∑
i=1

τi(L)
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. Nτ0 +
N∑
i=1

I
[
v̂i,τ0 > 1/

√
NT

]
log log

T

2Nvi

+ E
N∑
i=1

max{τi(L)− τ0 − log log
T

2Nvi
, 0}

. N log log T +
N∑
i=1

log log
T 3/2

N1/2
. N log log T, (7)

where the second inequality is because of Lemma 6. Finally,
since the contribution to the expected number of assortment
switches when E fails is at most Pr[E ] · T ≤ O(1) (because
of Lemma 5), we prove the upper bound for the number of
assortment switches in Theorem 4.

Upper bounding the expected regret. Let E(`) be the
length of epoch `, i.e., the number of time steps taken in
epoch `. Note that E(`) is a geometric random variable
with mean value (1 +

∑
i∈S` vi). Also recall that there are

L epochs in total. Letting S∗ be the optimal assortment,
conditioned on event E(1), we have that

E [RegT ] = E
L∑
`=1

E(`)(R(S?,v)−R(S`,v))

= E
L∑
`=1

(
1 +

∑
i∈S`

vi

)
(R(S?,v)−R(S`,v))

≤ E
L∑
`=1

∑
i∈S`

(v̂i,τi(`) − vi)

= E
N∑
i=1

∑
`:i∈S`

(v̂i,τi(`) − vi)

= E
N∑
i=1

τi(L)∑
τ=1

∑
`∈T (i,τ)

(v̂i,τ − vi), (8)

where the inequality is due to Lemma 17. In the next lemma,
we upper bound the contribution from each item i and stage
τ to the upper bound in (8). The lemma is proved in Ap-
pendix B.3.

Lemma 7. Conditioned on event E(1), for any item i and
any stage τ ≤ τi(L), we have that∑

`∈T (i,τ)

(v̂i,τ − vi) .
√
T ln(

√
NT 2 + 1)/N.

Combining Lemma 5, Lemma 7, inequalities (7) and (8),
we have that

E [RegT ] ≤ T · Pr[E(1)] + E
[
RegT

∣∣∣ E(1)
]

.1 + E
N∑
i=1

τi(L)×

√
T ln(

√
NT 2 + 1)

N

.
√
NT ln(

√
NT 2 + 1) · log log T,

proving the expected regret upper bound in Theorem 4.

The lower bound. We prove the following matching
lower bound in Appendix E.2.

Theorem 8. For any constant C ≥ 0 and time horizon T ,
if an algorithmA achieves expected regret E[RegT ] at most

1
7525 ·

√
NT (ln(NT ))C for allN -item instances, then there

exists an N -item instance such that the expected number of
assortment switches is

E[Ψ
(asst)
T ] = Ω(N log log T ).

4. Optimizing the number of item switches
In this section, we study how to minimize the item switch
cost while still achieving Õ(

√
NT ) regret.

Algorithm 5: The Exponential Stride UCB algorithm
(ESUCB) for MNL-Bandit

1 Initialize: θ̂ ← 1, ε1 ← 1/3, c1 ← 44840;
2 for τ ← 1, 2, 3, . . . do
3 tmax ← c1N ln3(NT/δ)/ε2τ ;
4 if CHECK(θ̂ − 3ετ , θ̂ − ετ , tmax) then θ̂ ← θ̂ − ετ ;
5 ετ+1 ← 2

3ετ ;

We now propose a new algorithm, Exponential Stride UCB
(ESUCB), to achieve an item switching cost that is linear
withN and poly-logarithmic with T . The specific guarantee
of the ESUCB algorithm is presented in Theorem 10, the
main theorem of this section. The key idea of the algorithm
is to decouple the learning of the optimal expected revenue
and the optimal assortment, which is made possible by the
following lemma.

Lemma 9. Define G(θ)
def
= R(Sθ,v), where Sθ

def
=

arg maxS⊆[N ]:|S|≤K
(∑

i∈S vi(ri − θ)
)
. There exists a

unique θ? such that

G(θ?) = θ? = max
|S|≤K

R(S,v).

Moreover,

(1) for any θ < θ?, we have that G(θ) > θ, and

(2) for any θ > θ?, we have that G(θ) < θ.

The proof of Lemma 9 is deferred to Appendix D.1. Moti-
vated by the lemma, we present our ESUCB algorithm in
Algorithm 5. The algorithm learns the optimal revenue θ?

in the main loop, using a sequence of exponentially decreas-
ing learning step size ετ . For each estimate θ̂, the CHECK
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procedure (Algorithm 6) learns the assortment Sθ̂ via the
UCB method with deferred updates. (More precisely speak-
ing, the algorithm learns Sθ̂−ετ and Sθ̂−3ετ

, and at Line 4,
chooses one of them based on the UCB estimation ρ̂ for
the expected revenue of Sθ̂−ετ .) In the CHECK procedure,
the variable t keeps the count of time steps and is updated
in EXPLORATION. We also make the following notes: 1)
The ESUCB algorithm needs the horizon T as input, and
uses a confidence parameter δ, which is usually set as 1/T .
The whole algorithm terminates whenever the horizon T
is reached. 2) At the optimization steps (Lines 6 and 9 of
Algorithm 6), we have to adopt a deterministic tie breaking
rule, e.g., we let the arg max operator to return the S such
that

∑
i∈S 2i is minimized among multiple maximizers.

Theorem 10. Setting δ = 1/T , we have the following upper
bound for the expected regret of ESUCB:

E [RegT ] .
√
NT · log1.5(NT ),

and the item switching cost for ESUCB is

E
[
Ψ

(item)
T

]
. N log2 T.

To prove Theorem 10, we upper bound the item switching
cost and the expected regret separately.

Upper bounding the item switch cost. Since the es-
timate of θ? is fixed in CHECK, the outcome of
arg maxS:|S|≤K

∑
i∈S v̂i(ri − θ) (corresponding to Lines

6 and 9 of Algorithm 6) becomes more stable compared
to that of arg maxS:|S|≤K R(S, v̂) in previous algorithms.
Exploiting this advantage, we upper bound the number of
item switches incurred by each call of CHECK as follows.
The lemma is proved in Appendix D.2.
Lemma 11. The item switch cost incurred by any invocation
CHECK(θl, θr, tmax) is O(N log T ).

Since the τ loop in Algorithm 5 iterates for only O(log T )
times, Lemma 11 easily implies an O(N log2 T ) item
switching cost upper bound for ESUCB. We also note that
this bound can be improved to O(N log T ) via a slight mod-
ification to the algorithm which is elaborated in Appendix F.

Upper bounding the expected regret. We first provide
the following guarantees for CHECK.
Lemma 12 (Main Lemma for CHECK). For any invocation
CHECK(θl, θr, tmax), with probability at least (1 − δ/T ),
the following statements hold.

(a) If CHECK returns true, then G(θr) < θr.

(b) If CHECK returns false, then

θ? ≥ θr−
2

tmax

(
c2

√
Ntmax ln3 NT

δ
+ c3N ln3 NT

δ

)
.

Algorithm 6: CHECK(θl, θr, tmax)

1 Initialize: v̂i ← 1, Ti ← 0, ni ← 0 for all i ∈ [N ],
c2 ← 688, c3 ← 21732;

2 ρ← 0, ρ̂← 1, b← false, t← 0;
3 for `← 1, 2, 3, . . . do
4 if ρ̂ < θr then
5 b← true;
6 S` ← arg maxS⊆[N ],|S|≤K

(∑
i∈S v̂i(ri − θl)

)
;

7 {∆i} ← EXPLORATION(S`);

8 else
9 S` ← arg maxS⊆[N ],|S|≤K

(∑
i∈S v̂i(ri − θr)

)
;

10 {∆i} ← EXPLORATION(S`);
11 ρ← ρ+

∑
i∈S` ∆i · ri; ρ̂← 1

t

(
ρ+

c2

√
Ntmax ln3(NT/δ) + c3N ln3(NT/δ)

)
;

12 if t ≥ tmax then return b;
13 for i ∈ S` do
14 ni ← ni + ∆i, Ti ← Ti + 1;
15 if Ti = 2k for some k ∈ Z then
16 v̄i ← ni/Ti; v̂i ← min

{
v̂i, v̄i +√

196v̄i log(NT/δ+1)
Ti

+ 292 log(NT/δ+1)
Ti

}
;

(c) Let r(t)
CHECK be the reward at time step t in this invoca-

tion. If θl ≤ θ?, then we have that

tmaxθl − E

[
tmax∑
t=1

r
(t)
CHECK

]

.
√
Ntmax ln3(NT/δ) +N ln3(NT/δ).

Proof of Lemma 12 is built upon Lemma 9 and deferred to
Appendix D.3.

LetQτ be the event that the statements (a)−(c) hold for the
invocation of CHECK at iteration τ of Algorithm 5, and let
Q be the event thatQτ holds every all τ . By Lemma 12 and
a union bound, we immediately have that Pr[Q] ≥ 1 − δ.
The next lemma, built upon Lemma 9 and Lemma 12, shows
that θ̂ in Algorithm 5 is always an upper confidence bound
for the true parameter θ?, and converges to θ? with a decent
rate.

Lemma 13. Let θ̂(τ) be the value of θ̂ at the beginning of
iteration τ of Algorithm 5. Conditioned on event Q, for any
iteration τ = 1, 2, 3, . . . , we have that θ̂(τ) − 3ετ ≤ θ? ≤
θ̂(τ).

Proof. Recall that for every τ = 1, 2, 3, . . . , we need to
prove

θ̂(τ) − 3ετ ≤ θ? ≤ θ̂(τ). (9)
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We prove this by induction. For iteration τ = 1, (9) trivially
holds since 0 ≤ ri ≤ 1 and therefore 0 ≤ θ? ≤ 1.

Now suppose (9) holds for iteration τ , we will estab-
lish (9) for iteration (τ + 1). Consider the invocation of
CHECK(θl, θr, tmax) at iteration τ , where θl = θ̂(τ) − 3ετ
and θr = θ̂(τ) − ετ . We discuss the following two cases.

Case 1. When the CHECK procedure returns true, by
Lemma 12 we have that G(θr) < θr. By Lemma 9, we
have that θr > θ?. Therefore, by Line 4 and the induction
hypothesis we have that θ̂(τ+1) = θ̂(τ)− ετ = θr > θ?, and
θ̂(τ+1) − 3ετ+1 = θr − 2ετ = θ̂(τ) − 3ετ ≤ θ?, proving
(9).

Case 2. When the CHECK procedure returns false, by
Lemma 12, we have that

θ? ≥ θr−
1

tmax

(
(c2 + 8)

√
Ntmax ln3 NT

δ
+ c3N ln3 NT

δ

)
.

Recall that at Line 3 we set tmax = c1N ln3(NT/δ)/ε2τ .
For large enough c1, this implies that

θ? ≥ θr − ετ = θ̂(τ) − 2ετ = θ̂(τ+1) − 3ετ+1.

By Line 4 and the induction hypothesis we have that
θ̂(τ+1) = θ̂(τ) ≥ θ?, finishing the proof of (9).

Finally we upper bound the expected regret of Algorithm 5.

Lemma 14. With probability at least 1 − δ, the expected
regret incurred by Algorithm 5 is O(

√
NT log1.5(NT/δ)).

Therefore, if we set δ = 1/T , we have that

E[RegT ] .
√
NT log1.5(NT ).

Proof. Throughout the proof we condition on the event Q,
which happens probability at least (1− δ). We first prove
that at iteration τ of Algorithm 5, the expected regret for
this iteration is bounded by Õ(N/ετ ). Consider the invoca-
tion CHECK(θl, θr, tmax) at Line 4. Recall that we define
tmax = c1N ln3(NT/δ)/ε2τ . Combining with statement (c)
of Lemma 12 and Lemma 13, the expected regret of this
invocation is bounded by (where the O(N) term is due to
the last epoch that might run over time tmax),

E

[
θ? · tmax −

tmax∑
t=1

r
(t)
CHECK

]
+O(N)

. tmax(θ? − θl) + E

[
θl · tmax −

tmax∑
t=1

r
(t)
CHECK

]
+O(N)

. tmax(θ? − θl) +N ln3(NT/δ)/ετ . (10)

By Lemma 13, we have that θ? − θl . ετ . Therefore, (10)
is upper bounded by O(N ln3(NT/δ)/ετ ).

Since CHECK(θl, θr, tmax) runs for at least tmax time steps,
the second to the last iteration (τmax − 1) satisfies that
c1N ln3(NT/δ)/ε2τmax−1 ≤ T , which means that

ετmax
&
√
N log3(NT/δ)/T .

Since ετ is an exponential sequence, the overall expected
regret is bounded by the order of

τmax∑
τ=1

N log3(NT/δ)/ετ .
√
NT log3(NT/δ).

Refined and non-trivial item switching cost upper
bound for the AT-DUCB algorithm. Since an assort-
ment switch may incur at most 2K item switches, The-
orem 2 trivially implies that Algorithm 2 (AT-DUCB) in-
curs at most O(KN log T ) item switches, which is upper
bounded by O(N2 log T ) since K = O(N).

In Appendix C, we present a refined analysis showing
that the item switching cost of AT-DUCB is at most
O(N1.5 log T ). While it is not clear to us whether the de-
pendence on N delivered by this analysis is optimal, we
also discuss the relationship between the analysis and an
extensively studied (but not yet fully resolved) geometry
problem, namely the maximum number of planar K-sets.
We hope that further study of this relationship might lead to
improvement of both upper and lower bounds of the item
switching cost of AT-DUCB. Please refer to Appendix C for
more details.

5. Conclusion
In this paper, we present algorithms for MNL-bandits that
achieve both almost optimal regret and assortment switching
cost, in both anytime and fixed-horizon settings. We also
design the ESUCB algorithm that achieves the almost opti-
mal regret and item switching cost O(N log2 T ). For future
directions, it is interesting to study whether it is possible to
achieve an item switching cost of O(N log T ) in the any-
time setting andO(N log log T ) in the fixed-horizon setting.
Also, as mentioned in Section 4 (and Appendix C), given
the simplicity of our AT-DUCB algorithm, it is worthwhile
to further refine the bounds for its item switching cost.
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Appendix

A. Proof of the regret upper bound in Theorem 2
In this section we complete the proof of Theorem 2 for completeness. The proof is almost identical to that in (Agrawal et al.,
2017) except for the handling of the deferred UCB value updates.

The following lemma proves that v̂i is indeed an upper confidence bound of true parameter vi with high probability, and
converges to the true value with decent rate.

Lemma 15 (Lemma 4.1 of (Agrawal et al., 2017)). For any ` = 1, 2, 3, . . . , in Algorithm 2, at Line 7 immediately after the
`-th epoch, the following two statements hold,

1. With probability at least 1− 6
N` , niTi +

√
48(ni/Ti) ln(

√
N`+1)

Ti
+ 48 ln(

√
N`+1)
Ti

≥ vi for any i ∈ [N ],

2. With probability at least 1− 7
N` , for any i ∈ [N ],

ni
Ti

+

√
48(ni/Ti) ln(

√
N`+ 1)

Ti
+

48 ln(
√
N`+ 1)

Ti
− vi ≤

√
144vi ln(

√
N`+ 1)

Ti
+

144 ln(
√
N`+ 1)

Ti
.

By the update rule, Lemma 16 can be extended to {v̂i} as follows.

Lemma 16. For any ` = 1, 2, 3, · · · , the following two statements hold at the end of the `-th iteration of the outer for-loop
of Algorithm 2.

1. With probability at least 1− 6
N` , v̂i ≥ vi for any i ∈ [N ],

2. With probability at least 1− 7
N` , for any i ∈ [N ],

v̂i − vi .

√
vi log(

√
N`+ 1)

Ti
+

log(
√
N`+ 1)

Ti
.

Proof. For any epoch `, let T ′i and v̂′i be the value of Ti and v̂i at the last update. Then we have, v̂i = v̂′i and T ′i ≤ 2Ti.
Inherited from Lemma 15, we have v̂i = v̂′i ≥ vi. And

v̂i − vi = v̂′i − vi .

√
vi log(

√
N`+ 1)

T ′i
+

log(
√
N`+ 1)

T ′i
.

√
vi log(

√
N`+ 1)

Ti
+

log(
√
N`+ 1)

Ti
.

Once we establish Lemma 16, the proof of the regret upper bound in Theorem 2 is identical to that in (Agrawal et al., 2017).
We include the proof here for completeness.

The next lemma shows that the expect regret for one epoch is bounded by the summation of estimation errors in the
assortment.

Lemma 17 (Lemma A.4 of (Agrawal et al., 2017)). For any epoch `, if ri ∈ [0, 1] and 0 ≤ vi ≤ v̂i hold for every i ∈ [N ]
at the beginning of the `-th iteration of the outer for-loop in Algorithm 2, we have that(

1 +
∑
i∈S`

vi

)
(R(S`, v̂)−R(S`,v)) ≤

∑
i∈S`

(v̂i − vi).

As a corollary, we have the following lemma, which is an analog to Lemma 4.3 of (Agrawal et al., 2017).
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Lemma 18. Given that ri ∈ [0, 1] for every i ∈ [N ], for any epoch ` = 1, 2, 3, . . . , with probability at least 13
` we have that(

1 +
∑
i∈S`

vi

)
(R(S`, v̂)−R(S`,v)) .

√
vi log(

√
N`+ 1)

Ti
+

log(
√
N`+ 1)

Ti
.

Proof. Combine Lemma 16 and Lemma 17.

We will also use the following lemma which is proved in (Agrawal et al., 2017).
Lemma 19 (Lemma A.3 of (Agrawal et al., 2017)). If vi ≤ v̂i holds for every i ∈ [N ], then we have that R(S?, v̂) ≥
R(S?,v).

Now we complete the proof of Theorem 2.

Proof of the regret upper bound in Theorem 2. Let E(`) be the length of epoch `. That is, the number of time steps taken in
epoch `. Note that E(`) is a geometric random variable with mean (1 +

∑
i∈S` vi). As a result,

E[RegT ] = E

[
L∑
`=1

E(`)(R(S?,v)−R(S`,v))

]

≤ E

[
L∑
`=1

E(`)

(
R(S?, v̂)−R(S`,v) +

6

`

)]

≤ E

[
L∑
`=1

E(`)

(
R(S`, v̂)−R(S`,v) +

6

`

)]

= E

[
L∑
`=1

(
1 +

∑
i∈S`

vi

)(
R(S?, v̂)−R(S`, v̂) +

6

`

)]
,

where the first inequality is due to Lemma 19 and Lemma 16. Let ∆R(`) def
=
(
1 +

∑
i∈S` vi

)
(R(S?, v̂)−R(S`, v̂) + 6/`)

for shorthand. We use T (`)
i to denote the value of variable Ti at the beginning of epoch `. By Lemma 18, we have

E[∆R(`)] .
1

`

(
1 +

∑
i∈S`

vi

)
+ E

∑
i∈S`

√√√√vi log(
√
NT + 1)

T
(`)
i

+
log(
√
NT + 1)

T
(`)
i

 .
As a consequence,

E[RegT ] .
L∑
`=1

1

`

(
1 +

∑
i∈S`

vi

)
+ E

∑
i∈S`

√√√√vi log(
√
NT + 1)

T
(`)
i

+
log(
√
NT + 1)

T
(`)
i


. N log T +

L∑
`=1

E

∑
i∈S`

√√√√vi log(
√
NT + 1)

T
(`)
i

+
log(
√
NT + 1)

T
(`)
i


. N log T + E

N log2(
√
NT + 1) +

∑
i∈[N ]

√
viT

(L)
i log(

√
NT + 1)


. N log2(

√
NT + 1) +

∑
i∈[N ]

√
E[viT

(L)
i ] log(

√
NT + 1). (11)

Note that E[E`] = 1 +
∑
i∈S` vi. We have

∑
i∈[N ]

viT
(L)
i =

L∑
`=1

∑
i∈S`

vi ≤
L∑
`=1

E[E`] ≤ T.
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As a result, by Jensen’s inequality we get that

(11) . N log2(
√
NT + 1) +

√
NT log(

√
NT + 1),

which concludes the proof.

B. Ommitted proofs for the FH-DUCB algorithm in Section 3
B.1. Proof of Lemma 5

By Lemma 15, we have that Pr[¬E(1)
i,τi

] ≤ 13
NT 2 . Via a union bound, we have that

Pr[¬E(1)] ≤
∑
i,τi

Pr[¬E(1)
i,τi

] ≤ 13

T
.

Next we introduce the following concentration inequality for geometric random variables.

Lemma 20 (Theorem 1 and Proposition 1 of (Jin et al., 2019)). For any m i.i.d. geometric random variables x1, . . . , xm
with parameter p, i.e., Pr[xi = k] = p(1− p)k, we have

Pr

[
m∑
i=1

xi <
m(1− p)

2p

]
≤ exp

(
−m · 1− p

8

)
.

Note that ni,τi is the sum of |T (i, τi)| independent geometric random variables with parameter p = 1
1+vi

(by Observation 1).

Substituting vi ≥ 1
2

√
1
NT and m = |T (i, τi)| ≥ T

4Nvi
, we have (1−p)

2p = vi
2 and

Pr

[
ni,τi <

1

2
vi · |T (i, τi)|

]
≤ exp

(
−|T (i, τi)| ·

1− p
8

)
≤ exp

(
− T

4Nvi
·

1− 1
1+vi

8

)

≤ exp

(
− T

64N

)
≤ 1

NT 2
,

where the last inequality holds for T such that T ≥ N4 and T greater than a sufficiently large universal constant. By a union
bound, we have that

Pr[¬E(2)] ≤ 1

T
.

Therefore, we have that

Pr[E ] ≥ 1− Pr[¬E(1)] + Pr[¬E(2)] ≥ 1− 14

T
,

proving the lemma.

B.2. Proof of Lemma 6

We first state the following lemma, showing that for any item and before stage τ0, the stage lengths quickly grows to T/N .

Lemma 21. For each i ∈ [N ] and τ ≤ τ0, if τ is not the last stage for i, it holds that |T (i, τ)| ≥ (T/N)1−2−τ+1

.

Lemma 21 can be proved by combining the condition P(i, τ) for τ < τ0 and τ = τ0 (also noting that v̂i,τ ≤ 1 for all τ ) and
the following fact (whose proof is via straightforward induction and omitted).

Fact 22. ForM ≥ 0 and a sequence a0, a1, a2, . . . such that ai ≥ 1+
√
Mai−1 for all i ≥ 1, we have that aτ ≥M1−2−τ+1

for all τ ≥ 1.
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Now we are ready to prove Lemma 6.

Proof of Lemma 6. We have that |T (i, τ0)| ≥ T
2N because of Lemma 21. We now prove that vi ≥ 1

2

√
1
NT . This is because,

suppose the contrary, for T such that T ≥ N4 and greater than a sufficiently large universal constant, conditioned on E(1),
we have that

v̂i,τ0 ≤ vi +

√√√√144 ln(
√
NT 2 + 1)

T
(τ0)
i /vi

+
144 ln(

√
NT 2 + 1)

T
(τ0)
i

≤ 1

2
√
NT

+O
(√ ln(

√
NT 2 + 1)√
T 3/N

+
ln(
√
NT 2 + 1)

T

)
,

which is at most 1/
√
NT , contradicting to the condition P(i, τ0) and that τ0 is not the last stage.

Moreover, for T such that T ≥ N4 and greater than a sufficiently large universal constant, when τ > τ0, using T (τ)
i ≥

|T (i, τ0)| ≥ T
2N , we have that

v̂i,τ ≤ vi +

√√√√144vi ln(
√
NT 2 + 1)

T
(τ)
i

+
144 ln(

√
NT 2 + 1)

T
(τ)
i

≤ 2vi.

By the condition P(i, τ), when τ > τ0 and τ is not the last stage, we have that

|T (i, τi)| ≥ 1 +

√
T · T (τi)

i

N · v̂i,τi
≥ 1 +

√
T · |T (i, τi − 1)|

2N · vi
.

Applying Fact 22, we prove the desired inequality of this lemma.

B.3. Proof of Lemma 7

Proof of Lemma 7. For the first stage, i.e., τ = 1, since the number of epochs in this stage is at most
√
T/N , we have that∑

`∈T (i,1)(v̂i,1 − vi) ≤
√
T/N for any item i. From now on, we only prove the lemma for τ ∈ [2, τi(L)].

If τ ∈ [2, τ0], we have that |T (i, τ)| ≤
√

T ·T (τ)
i

N + 1. By E(1), we upper bound
∑
`∈T (i,τ)(v̂i,τ − vi) by the order of√

T · T (τ)
i

N
·

(√√√√vi ln(
√
NT 2 + 1)

T
(τ)
i

+
ln(
√
NT 2 + 1)

T
(τ)
i

)
.
√
T ln(

√
NT 2 + 1)/N,

where the inequality holds due to that vi ≤ 1 and T (τ)
i ≥

√
T/N for any τ ∈ [2, τ0] (by Lemma 21).

When τ > τ0, we prove the lemma by considering the following two cases. The first case is that v̂i,τ0 ≤ 1/
√
NT . In this

case, we have that ∑
`∈T (i,τ)(v̂i,τ − vi) ≤ T · v̂i,τ ≤

√
T/N.

In the second case where v̂i,τ0 > 1/
√
NT , by Lemma 6 it holds that vi ≥ 1/(2

√
NT ). By E(1), we have v̂i,τ ≥ vi.

Therefore, v̂i,τ ≥ 1/(2
√
NT ). Also note that T (τ)

i ≥ |T (i, τ0)| ≥ T
2N by Lemma 21, and |T (i, τ)| ≤ 1 +

√
T ·T (τ)

i

N ·v̂i,τ .

Altogether, we have that
∑
`∈T (i,τ)(v̂i,τ − vi) is upper bounded by a universal constant times

√
T · T (τ)

i

N · v̂i,τ
·

√√√√vi ln(
√
NT 2 + 1)

T
(τ)
i

+
ln(
√
NT 2 + 1)

T
(τ)
i

 .

√
T ln(

√
NT 2 + 1)

N
+

√
T ln(

√
NT 2 + 1)√

NT
(τ)
i v̂i,τ

,

which is O(
√
T ln(

√
NT 2 + 1)/N) for T ≥ N4.
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C. Bounding the number of item switches for Algorithm 2
Since an assortment switch may incur at most 2K item switches, Theorem 2 trivially implies that Algorithm 2 (AT-DUCB)
incurs at most O(KN log T ) item switches, which is upper bounded by O(N2 log T ) since K = O(N). In the following
theorem, we prove an improved upper bound on item switches for Algorithm 2.

Theorem 23. For any input instance with N items, before any time T , the number of item switches of Algorithm 2
(AT-DUCB) satisfies that Ψ

(item)
T . N1.5 log T .

The proof of Theorem 23 includes a novel analysis with the careful application of the Cauchy-Schwartz inequality, which
will be presented immediately after this paragraph. However, we would like to first add a few remarks on the optimality of
the presented analysis. Indeed, we do not know whether the upper bound proved in Theorem 23 can be improved, and leave
the possibility of further improvement as an open question. Our preliminary research suggests that the number of the item
switches of Algorithm 2 is closely related to the maximal number of planar K-sets (i.e., the number of subsets P ′ ⊆ P
where P is a given set of N points in a 2-dimensional plane, P ′ = P ∩H for a half-space H). Very roughly, this relation
is suggested by Lemma 24, where the optimal assortment arg maxS⊆[N ],|S|≤K R(S,v) can be viewed as a planar K-set
whether each item correspond to a 2-dimensional point (−vi, viri) and the half plane H = {(x, y) : y ≥ r? · x + b} for
some parameter b. The continuous change of the the estimated optimal revenue r? during the UCB algorithm may produce
many half planes, and lead to the item change in the K-sets (assortments). Upper bounding the number of the K-sets would
result in an upper bound for the number of the item switches. To our best knowledge, the best known upper bound for the
number of planar K-sets is O(NK1/3) (Dey, 1998), and the best known lower bound is NeΩ(

√
logK) (Tóth, 2001). For

future work, it is very interesting to study whether these upper and lower bounds imply the bounds on the number of item
switches of our Algorithm 2.

Now we dive into the proof of Theorem 23.

We first analyze the optimization process of arg maxS⊆[N ],|S|≤K R(S,v) for any preference vector v. Define F (v)
def
=

maxS⊆[N ],|S|≤K R(S,v). The following lemma characterizes the optimal assortment S given the preference vector v.
Similar statements can also be found in, e.g., Section 2.1 of (Rusmevichientong et al., 2010).

Lemma 24. For any preference value vector v ≥ 0, let r? = F (v). Define gi = vi(ri − r?). Let σ be the minimal
permutation of [N ] such that gσi ≥ gσj for all 1 ≤ i < j ≤ N. (In other words, σ is the sorted index according to value g,
with a deterministic tie-breaking rule). Then the optimal assortment S is given by S = {σi : 1 ≤ i ≤ K, gσi > 0}.

Proof. Let S? = arg maxS⊆[N ],|S|≤K R(S,v). Then we have∑
i∈S? rivi

1 +
∑
i∈S? vi

= r?,

which implies that ∑
i∈S?

vi(ri − r?) =
∑
i∈S?

gi = r?. (12)

Now we prove that S? = arg maxS⊆[N ],|S|≤K
(∑

i∈S gi
)
. Suppose otherwise that there exists S′ ⊆ [N ] with |S′| ≤ K

such that
∑
i∈S′ gi >

∑
i∈S? gi = r?. It follows that

∑
i∈S′ vi(ri − r?) > r?. Therefore,

R(S′,v) =

∑
i∈S′ viri

1 +
∑
i∈S′ vi

> r?,

which contradicts to the definition of S?.

Now, note that σ is a permutation of [N ] such that gσi is non-increasing according to i. We have that
arg maxS⊆[N ],|S|≤K

(∑
i∈S gi

)
= {σi : 1 ≤ i ≤ K, gσi > 0}, which finishes the proof.

The next lemma shows that F (v) is monotonically decreasing in v.

Lemma 25. Consider two vectors v and v̂. If v̂i ≥ vi ≥ 0 for all i ∈ [N ], we have F (v̂) ≥ F (v).
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Proof. Let S? = arg maxS⊆[N ],|S|≤K R(S,v) and r? = R(S?,v). Then we have
∑
i∈S? vi(ri − r?) = r?. According to

Lemma 24, ri− r? > 0 for all i ∈ S?. Combining with the assumption that v̂i ≥ vi, ∀i ∈ [N ], we get
∑
i∈S? v̂i(ri− r?) ≥∑

i∈S? vi(ri − r?) = r?. As a result,

R(S?, v̂) =

∑
i∈S? rivi

1 +
∑
i∈S? vi

≥ r?.

Therefore, F (v̂) = maxS⊆[N ],|S|≤K R(S, v̂) ≥ R(S?, v̂) ≥ r? = F (v).

Let m be the total number of times that Line 8 of Algorithm 2 is executed, and let τ (1) < τ (2) < τ (3) < · · · < τ (m) be
the time steps that Line 8 of Algorithm 2 is executed. In other words, only in the time steps in {τ (p)}mp=0, the UCB value
vector v̂ is updated (where for convenience, we set τ (0) = 0). Let v̂(p) be the UCB value after the update at time τ (p),

and for convenience we let v̂(0) = (1, 1, · · · , 1). Define r(p) = F (v̂(p)). Let ρ(p)
i be the rank of item i according to value

g
(p)
i

def
= v̂

(p)
i (ri − r(p)) with the tie-breaking rule defined in Lemma 24. We then have the following lemma.

Lemma 26. Let δ(p)
i,j

def
= I[ρ(p)

i > ρ
(p)
j ]. For any two items i, j ∈ [N ], the number of times that the relative order of i, j

changes is bounded by c log T for some universal constant c. That is,

m−1∑
p=0

I
[
δ

(p)
i,j 6= δ

(p+1)
i,j

]
. log T.

As a corollary, we have that ∑
i,j∈[N ]

m−1∑
p=0

I
[
δ

(p)
i,j 6= δ

(p+1)
i,j

]
. N2 log T.

Proof. Let D(p)
i be the event that Line 8 is executed in Algorithm 2 for item i at time τ (p). In the following we prove that

m−1∑
p=0

I
[
δ

(p)
i,j 6= δ

(p+1)
i,j

]
≤ 2

m−1∑
p=0

D(p)
i + 2

m−1∑
p=0

D(p)
j .

For a fixed pair of items i, j, let {p̄q}Qq=1 be the time steps that D(p̄q)
i or D(p̄q)

j occur. We only need to prove that

p̄q+1−1∑
p=p̄q

I
[
δ

(p)
i,j 6= δ

(p+1)
i,j

]
≤ 1

for all q ∈ [Q].

Note that at time interval [p̄q, p̄q+1 − 1], v̄i and v̄j does not change. Therefore, δ(p)
i,j = I[v̄i(ri − r(p)) < v̄j(rj − r(p))]. It is

implied by Lemma 25 that r(p) is monotonically decreasing. As a result,
∑p̄q+1−1
p=p̄q

I
[
δ

(p)
i,j 6= δ

(p+1)
i,j

]
≤ 1.

Now we are ready to prove Theorem 23.

Proof of Theorem 23. Let K(p) = min
{
K,
∣∣∣{i : g

(p)
i > 0}

∣∣∣} . Note that since r(p) is non-increasing, K(p) is non-

decreasing. Then we have, S(τp) = {i : ρ
(p)
i ≤ K(p)}. Let S̄(τp+1) = {i : ρ

(p+1)
i ≤ K(p)}. Then we have,

S̄(τp+1) ⊆ S(τp+1) and
∣∣S(τp+1) \ S̄(τp+1)

∣∣ = K(p+1) −K(p). It follows that

|Sτp ⊕ Sτp+1 | ≤
∣∣Sτp ⊕ S̄τp+1

∣∣+K(p+1) −K(p). (13)

Let x(p) =
∣∣Sτp ⊕ S̄τp+1

∣∣ . In the following we prove that

(x(p)/2)2 ≤
∑

i,j∈[N ]

I[δ(p)
i,j 6= δ

(p+1)
i,j ]. (14)
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Note that |S(τp)| = |S̄(τp+1)| = K(p). Define Z = S(τp) \ S̄(τp+1) and Z ′ = S̄(τp+1) \ S(τp). Then we have that
x(p) = 2|Z| = 2|Z ′|. Note that for all i ∈ Z, we have that ρ(p)

i ≤ K(p) and ρ(p+1)
i > K(p). And for all j ∈ Z ′, we have

that ρ(p)
i > K(p) and ρ(p+1)

i ≤ K(p). It follows that δ(p)
i,j = 0, δ

(p+1)
i,j = 1 for all i ∈ Z, j ∈ Z ′. Hence, we have that∑

i,j∈[N ]

I[δ(p)
i,j 6= δ

(p+1)
i,j ] ≥ |Z| × |Z ′| = (x(p)/2)2,

which establishes (14).

Combining (14) and Lemma 26, we have that
∑m−1
p=1 (x(p)/2)2 ≤ N2 log T. By the deferred update rule in Algorithm 2, we

have that m ≤ N(1 + log T ). Applying Cauchy-Schwarz inequality, we get that

m−1∑
p=1

x(p) . N1.5 log T.

Therefore, by (13) we have that

m−1∑
p=1

|S(τp) ⊕ S(τp+1)| ≤
m−1∑
p=1

(x(p) +K(p+1) −K(p)) . N1.5 log T. (15)

Note that there is no assortment switch at time steps where v̂ is not updated. Therefore (15) directly leads to Theorem 23.

D. Omitted proofs for the ESUCB algorithm in Section 4
D.1. Proof of Lemma 9

Proof of Lemma 9. We first prove the existence of θ?. Note that the uniqueness follows directly from statements 1) and 2)
in the lemma statement.

Proof of the existence of θ?. Let S? = arg maxS⊆[N ]:|S|≤K R(S,v) and θ? = R(S?,v). We only need to prove that
G(θ?) = θ?.

On the one hand, since G(θ) = R(Sθ,v), we have G(θ?) ≤ θ? be the optimality of S?. On the other hand, we will prove
that G(θ?) ≥ θ?. For the sake of contradiction, suppose G(θ?) < θ?. Then we have,∑

i∈Sθ? viri

1 +
∑
i∈Sθ? vi

= G(θ?) < θ?.

By algebraic manipulation we get
∑
i∈Sθ? vi(ri − θ

?) < θ?. By the optimality of Sθ? we have∑
i∈S?

vi(ri − θ?) ≤
∑
i∈Sθ?

vi(ri − θ?) < θ?.

As a result, we have R(S?,v) =
∑
i∈S? viri

1+
∑
i∈S? vi

< θ?, which leads to contradiction.

Proof of statement 1). For the sake of contradiction, suppose G(θ) ≤ θ. Then we have∑
i∈Sθ rivi

1 +
∑
i∈Sθ vi

≤ θ,

which means that
∑
i∈Sθ vi(ri − θ) ≤ θ. Note that vi ≥ 0 for all i ∈ [N ]. By the optimality of Sθ, we get∑

i∈Sθ?
vi(ri − θ?) ≤

∑
i∈Sθ?

vi(ri − θ) ≤
∑
i∈Sθ

vi(ri − θ) ≤ θ < θ?.

By algebraic manipulation, we get R(Sθ? ,v) < θ?, which leads to contradiction.
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Proof of statement 2). By the optimality of S?, we have G(θ) ≤ G(θ?) = θ? < θ.

D.2. Proof of Lemma 11

Proof of Lemma 11. Observe that in the CHECK procedure, when b equals false, S` is evaluated by Line 9 and with respect
to θr. When b is set to true, S` will always be evaluated by Line 6 with respect to θl. This switch happens for at most
once. Therefore, we only need to show that for fixed any θ ∈ {θl, θr}, and S′` = arg maxS⊆[N ],|S|≤K

(∑
i∈S v̂i(ri − θ)

)
,

it holds that (assuming that there are L epochs)

L−1∑
`=1

|S′` ⊕ S′`+1| . N log T. (16)

Suppose that there are n` items whose UCB values are updated after the `-th epoch. We claim that |S` ⊕ S`+1| ≤ n`. This
is simply because S` corresponds to the items i ∈ [N ] such that v̂i(ri − θ) is positive and among the K largest ones (and
thanks to the tie breaking rule). Therefore, any update to a single v̂i will incur at most one item switch to S`, and n` updates
will incur at most n` item switches. Now, (16) is established because

∑L−1
`=1 |S′` ⊕ S′`+1| ≤

∑L−1
`=1 n` . N log T , where

the second inequality is due to the deferred update rule for the UCB values.

D.3. Proof of Lemma 12

We now prove Lemma 12. For preparation, we first show that the UCB value v̂i is valid throughout the execution of
Algorithm 6.

Lemma 27. For any invocation of CHECK(θl, θr, tmax), and for any epoch ` = 1, 2, 3, . . . , during the algorithm, the
following two statements hold throughout the execution,

1. With probability at least 1− δ
4NT 2 , v̂(`)

i ≥ vi for any i ∈ [N ],

2. With probability at least 1− δ
4NT 2 , for any i ∈ [N ],

v̂
(`)
i − vi ≤

√
196vi log(NT/δ)

T
(`)
i

+
292 log(NT/δ)

T
(`)
i

.

Proof. The proof is essentially the same as Lemma 16.

Let H be the event that the events described by Lemma 27 holds throughout the execution of Algorithm 6 for any ` and
i ∈ [N ]. We have that Pr[H] ≥ 1− δ

4T .

Now we prove the following lemma.

Lemma 28. For any fixed θ where G(θ) ≥ θ, define Ŝθ = arg maxS:S⊆[N ],|S|≤K
(∑

i∈S v̂i(ri − θ)
)
. Suppose v̂i ≥ vi for

all i ∈ [N ]. We have that 1 +
∑
i∈Ŝθ

vi

(θ −R(Ŝθ,v)
)
≤
∑
i∈Ŝθ

(v̂i − vi).

Proof. Recall that Sθ = arg maxS:S⊆[N ],|S|≤K
(∑

i∈S vi(ri − θ)
)
. We then have that1 +

∑
i∈Ŝθ

vi

(θ −R(Ŝθ,v)
)

=

1 +
∑
i∈Ŝθ

vi

(θ − ∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

+

∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

−R(Ŝθ,v)

)
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=

1 +
∑
i∈Ŝθ

vi

(θ − ∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

)
+
∑
i∈Ŝθ

ri

1 +
∑
i∈Ŝθ

vi

 v̂i
1 +

∑
i∈Ŝθ v̂i

− vi

 . (17)

Note that by assumption we have v̂i ≥ vi for all i ∈ [N ]. Therefore it holds that 1 +
∑
i∈Ŝθ v̂i ≥ 1 +

∑
i∈Ŝθ vi. As a result,

∑
i∈Ŝθ

ri

1 +
∑
i∈Ŝθ

vi

 v̂i
1 +

∑
i∈Ŝθ v̂i

− vi

 ≤∑
i∈Ŝθ

ri (v̂i − vi) ≤
∑
i∈Ŝθ

(v̂i − vi) . (18)

On the other hand, 1 +
∑
i∈Ŝθ

vi

(θ − ∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

)
=

1 +
∑
i∈Ŝθ vi

1 +
∑
i∈Ŝθ v̂i

θ −∑
i∈Ŝθ

v̂i(ri − θ)

 . (19)

Note that by monotonicity (see Lemma 25) and our assumption (namely, G(θ) > θ),∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

= R(Ŝθ, v̂) ≥ R(Sθ,v) = G(θ) ≥ θ.

By algebraic manipulation, we get that ∑
i∈Ŝθ

v̂i(ri − θ) ≥ θ. (20)

Combining (19) and (20), we get that 1 +
∑
i∈Ŝθ

vi

(θ − ∑
i∈Ŝθ riv̂i

1 +
∑
i∈Ŝθ v̂i

)
≤ 0. (21)

Plug in (18) and (21) into (17), we have that1 +
∑
i∈Ŝθ

vi

(θ −R(Ŝθ,v)
)
≤
∑
i∈Ŝθ

(v̂i − vi).

We will also need the following Azuma-Hoeffding inequality for martingales.
Theorem 29. Suppose {Xk : k = 0, 1, 2, 3, . . . , } is a martingale and |Xk −Xk−1| ≤M almost surely for all k. Then for
all positive integers n and all positive reals ε, it holds that

Pr[Xn −X0 ≥ ε] ≤ exp

(
− ε2

2nM2

)
.

Now we are ready to prove Lemma 12.

Proof of Lemma 12. We prove that each of the statements (a)–(c) holds with probability at least 1− δ/(4T ), given that the
UCB estimation of value v is valid (i.e., eventH). Then Lemma 12 holds by a union bound.

Proof of statement (a). Note that we only need to prove that if G(θr) ≥ θr, then with probability at least 1− δ/(4T ),
CHECK(θl, θr, tmax) returns false.

For simplicity, we use the superscript (`) to denote the value of a variable in Algorithm 6 at the beginning of epoch `. For
example, t(`) denotes the time steps taken at the beginning of epoch `. Now we prove that for large enough constants c2 and
c3, and any fixed L it holds that

Pr
[ t(L)∑
τ=1

(
R(S

(τ)
θr
,v)− θr

)
+(c2 − 8)

√
Nt(L) log3(NT/δ)
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+ c3N log3(NT/δ) ≥ 0 ∧ t(L) ≤ tmax

]
≤ 1− δ/(8T ). (22)

Let J` be the filtration of random variables upto epoch `. Let S(`)
θ = arg maxS:S⊆[N ],|S|≤K

(∑
i∈S ri(v̂

(`)
i − θ)

)
. Then

S
(`)
θr

is J`−1 measurable. For simplicity we define S` = S
(`)
θr

. As a result,

t(L)∑
τ=1

(
θ(`)
r −R(S`,v)

)
=

L∑
`=1

(
t(`+1) − t(`)

)(
θ(`)
r −R(S`,v)

)
.

Note that
(
t(`+1) − t(`)

)
follows geometric distribution given J`−1 with mean

(
1 +

∑
i∈S` vi

)
. Therefore with probability

at least 1 − δ/(16T 3) we have t(`+1) − t(`) ≤ 24 log(T/δ)
(
1 +

∑
i∈S` vi

)
. Consequently, with probability at least

1− δ/(16T 2),

L∑
`=1

(
t(`+1) − t(`)

)(
θ(`)
r −R(S`,v)

)
≤

L∑
`=1

24 log(T/δ)

(
1 +

∑
i∈S`

vi

)(
θ(`)
r −R(S`,v)

)
+
,

where the (x)+ notation denotes max {x, 0} . Under eventH, it follows from Lemma 28 that

L∑
`=1

24 log(T/δ)

(
1 +

∑
i∈S`

vi

)(
θ(`)
r −R(S`,v)

)
+

≤ 24 log(T/δ)
L∑
`=1

∑
i∈S`

(v̂
(`)
i − vi)

≤ 24 log(T/δ)
L∑
`=1

∑
i∈S`

(√
196vi log(NT/δ)

T
(`)
i

+
292 log(NT/δ)

T
(`)
i

)

≤ 24 log(T/δ)

∑
i∈[N ]

√
392T

(L)
i vi log(NT/δ) + 876N log2(NT/δ)

 .

Recall that in Algorithm 6 we define

v̄
(L)
i =

L∑
`=1

∆
(`)
i /T

(L)
i .

Since ∆
(`)
i follows geometric distribution, by concentration inequality (namely, Theorem 5 of (Agrawal et al., 2017))

Pr

[
v̄

(L)
i <

1

2
vi

]
≤ exp

(
−T (L)

i vi/48
)
.

Therefore we get with probability at least 1− δ/(16T 2), for any i ∈ [N ],

T
(L)
i vi ≤ max

{
2n̄

(L)
i , 144 log(NT/δ)

}
.

Since every time step at most one item can be chosen, we get
∑
i∈[N ] n̄

(L)
i ≤ t(L). Consequently,

∑
i∈[N ]

√
T

(L)
i vi log(NT/δ)

≤
∑
i∈[N ]

√
2n̄

(L)
i log(NT/δ) +

√
144N log(NT/δ)

≤
√

2Nt(L) log(NT/δ) +
√

144N log(NT/δ).
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Putting everything together, we prove Eq. (22) with c2 = 688 and c3 = 21036. Note that

r
(τ)
CHECK −R(S

(τ)
θr
,v)

is a martingale sequence for τ = 0, 1, 2, 3, . . . . By Theorem 29 (using M = 2), with probability 1− δ/(8T 2), we have that

t(L)∑
τ=1

(
r

(τ)
CHECK − θr

)
≥

t(L)∑
τ=1

(
R(S

(τ)
θr

)− θr
)
− 8
√
tmax log(T/δ).

Combining with (22), we get with probability at least 1− δ/(4T ), it holds that

t(L)∑
τ=1

(
r

(τ)
CHECK − θr

)
+ c2

√
Ntmax log3(NT/δ) + c3N log3(NT/δ) ≥ 0,

in any of the epoch L such that t(L) ≤ tmax. Consequently, with probability at most 1− δ/(4T ), the event that ρ̂(`) < θ
never occur, which means that CHECK(θl, θr, tmax) returns false.

Proof of Statement (b). Note that when the Algorithm returns false, the if-condition in Line 4 is always false. By the
optimality, we have θ? = G(θ?) ≥ R(S

(τ)
θr
,v) for any 1 ≤ τ ≤ tmax. Note that (r

(τ)
CHECK − R(S

(τ)
θr
,v)) is a martingale

sequence. Again, invoking Theorem 29, we have that with probability at least 1− δ/(8T ), it holds that

θ? ≥ 1

t(L)

t(L)∑
τ=1

R(S
(τ)
θr
,v)

≥ 1

t(L)

t(L)∑
τ=1

r
(τ)
CHECK − 8

√
log(T/δ)/t(L) (Martingale concentration)

≥ θr −
1

t(L)

(
c2

√
Nt(L) log3(NT/δ) + c3N log3(NT/δ) + 8

√
t(L) log(T/δ)

)
. (By the if statement in Line 4)

Note that the time steps taken by the last epoch is bounded by 24(N + 1) log(T/δ) with probability 1− δ/(8T ). As a result,
(c2 + 8)/t(L) ≤ 2/tmax and c3/t(L) ≤ 2/tmax. Consequently,

θr −
1

t(L)

(
c2

√
Nt(L) log3(NT/δ) + c3N log3(NT/δ) + 8

√
t(L) log(T/δ)

)
≥ θr −

2

tmax

(
c2

√
Ntmax log3(NT/δ) + c3N log3(NT/δ)

)
,

which proves statement (b).

Proof of statement (c). Let t̄ be the time step when the if condition is first violated (and let t̄ = tmax if the condition
holds throughout an execution). We first show that

E

[
t̄∑

τ=1

(
θl −R(S

(τ)
θr
,v)
)]

.
√
Ntmax log3(NT/δ) +N log3(NT/δ) (23)

holds with high probability. Note that the if condition is false for all t ≤ t̄. Therefore, t̄θr ≤
∑t̄
τ=1 r

(τ)
CHECK +

c2

√
Ntmax log3(NT/δ) + c3N log3(NT/δ). Applying Theorem 29, we have that with probability at least 1− δ/(8T ), it

holds that
∑t̄
τ=1 r

(τ)
CHECK −

∑t̄
τ=1R(S

(τ)
θr
,v) .

√
tmax log(T/δ). Note that θl ≤ θr, we get (23) with probability at least

1− δ/(8T ).

Then we show that given t̄,

(tmax − t̄)θl − E

 tmax∑
t=t̄+1

r
(t)
CHECK

 .
√
Ntmax log3(NT/δ) +N log3(NT/δ), (24)
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holds with high probability. Note that by assumption we have θl ≤ θ?. It follows from Lemma 9 that G(θl) ≥ θl. By the
same argument in the proof of statement (a), we have with probability 1− δ/(8T ), it holds that

E

 tmax∑
τ=t̄+1

(
R(S

(τ)
θl
,v)− θl

)+ c2

√
Ntmax log3(NT/δ) + c3N log3(NT/δ) ≥ 0,

which implies (24).

Combining (23) and (24) with a union bound, we prove statement (c).

E. Lower bound proofs
E.1. Proof of Theorem 3

To prove Theorem 3, we first introduce the following more general theorem relating the expected regret with the number of
assortment switches.

Theorem 30. For any N ≥ 2, T0 ≥ 4, fix a function g(T ) such that g(T ) ∈
[

3
log2 T

, 1
2

]
and is non-increasing for T ≥ T0.

For any anytime algorithm, there exists an N -item assortment instance I with time horizon T ∈ [T0, T
2
0 ] such that either

the expected regret of the algorithm for instant I is

E [RegT ] ≥ 1

7525
·
√
NT

1
2 +

g(T )
3

or the expected assortment switching cost before time T is

E
[
Ψ

(asst)
T

]
= E

[
T−1∑
t=1

I [St 6= St+1]

]
≥ N

8 log2(1 + g(T ))
.

Before proving Theorem 30, we first prove Theorem 3 using Theorem 30.

Proof of Theorem 3. We set g(T ) = 3C ln ln(NT )
lnT . It is easy to verify that the derivative of ln ln(NT )

lnT is

lnT − ln(NT ) · ln ln(NT )

T ln2 T ln(NT )
< 0

for all N ≥ 2 and T ≥ 2. Therefore g(T ) is non-increasing for all N ≥ 2 and T ≥ 2. Also note that for T ≥ N and T
greater than a sufficiently large constant that only depends on C, we have that g(T ) ∈

[
3

log2 T
, 1

2

]
.

Now invoke Theorem 30, and we have that there exists an N -item assortment instance I with time horizon T ∈ [T0, T
2
0 ]

such that either E [RegT ] ≥ 1
7525 ·

√
NT (ln(NT ))C or

E
[
Ψ

(asst)
T

]
≥ Ω

(
N

g(T )

)
= Ω

(
N log T

C log log(NT )

)
,

proving Theorem 3.

Proof of Theorem 30. Suppose that the expected number of assortment switches by the given policy for any input instance
is at most N

8 log2(1+g(T )) for any time horizon T , we will prove the theorem by showing that there exists an instance with

time horizon T ∈ [T0, T
2
0 ] such that the expected regret is at least 1

7525 · T
1
2 +

g(T )
3 .

Consider the assortment instance I = (v, r), where vi = 1
2 and ri = 1 for any i ∈ [N ]. We will let the capacity constraint

be K = 1 for all assortment instances considered in this proof. By the assumption of the algorithm, the expected number of
assortment switches given input instance I is at most N

8 log2(1+g(T 2
0 ))

. Thus, there exists T1 such that T 1+g(T 2
0 )

1 ∈ [T0, T
2
0 ] and

the expected number of assortment switches in time interval [T1, T
1+g(T 2

0 )
1 ] is at most N8 . Otherwise, there are 1

log2(1+g(T 2
0 ))
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such disjoint intervals in range [T0, T
2
0 ] and the expected number of assortment switches is at least N

8 log2(1+g(T 2
0 ))

, violating
the assumption. Let

F (i)
1 = {item i is not offered in time interval [T1, T

1+g(T 2
0 )

1 ] given instance I}.

Note that
∑
i PrI [¬F (i)

1 ] ≤ N
8 + 1 ≤ 5N

8 for any N ≥ 2, because the expected number of items get offered in time interval

[T1, T
1+g(T 2

0 )
1 ] is at most the expected number of assortment switches plus 1. Therefore, there must exist a set of items

I ⊆ [N ] such that |I| ≥ N
4 and for any item i ∈ I , PrI [¬F (i)

1 ] ≤ 5
6 . Let

F (i)
2 = {the number of times that item i is offered in [1, T1] given instance I is at most

48T1

N
}.

Note that T1 is at least the expected number of times an item i ∈ I is chosen between [1, T1], which implies T1 ≥
48T1

N ·
∑
i∈I PrI [¬F (i)

2 ]. Thus there exists k ∈ I such that PrI [¬F (k)
2 ] ≤ 1

12 since |I| ≥ N
4 . Let F (k) = F (k)

1 ∩ F (k)
2 , we

have

Pr
I

[F (k)] ≥ 1− Pr
I

[¬F (k)
1 ]− Pr

I
[¬F (k)

2 ] ≥ 1

12
. (25)

Now we consider the assortment instance I(k) = (v(k), r) where v(k)
k = 1

2 + 1
16

√
N

24T1
and v(k)

j = 1
2 for j 6= k. We will

be interested in the regret of the algorithm at time horizon T 1+g(T 2
0 )

1 . First, we show that with high probability, no algorithm
can distinguish instance I and I(k) at time T1 with high probability. Formally, we have the following lemma, the proof of
which is provided at the end of this section.

Lemma 31. We have that ∣∣∣∣Pr
I

[F (k)]− Pr
I(k)

[F (k)]

∣∣∣∣ ≤ 1

24
,

where PrI [·] uses the probability distribution when running the policy using input instance I.

Combining Lemma 31 with inequality (25), we have

Pr
I(k)

[F (k)] ≥ 1

24
.

Now, we lower bound the expected regret of the algorithm for instance I(k) at time horizon T 1+g(T 2
0 )

1 as

E
I(k)

[
Reg

T
1+g(T2

0 )

1

]
≥ E
I(k)

[
Reg

T
1+g(T2

0 )

1

∣∣∣∣ F (k)

]
· Pr
I(k)

[F (k)]

≥ (T
1+g(T 2

0 )
1 − T1) ·

1
16

√
N

24T1

3
2 + 1

16

√
N

24T1

· 1

24

≥ 1

7525
·
√
NT

1
2 +g(T 2

0 )
1 ≥ 1

7525
·
√
NT

(1+g(T 2
0 ))( 1

2 +
g(T2

0 )

3 )
1 ,

for any g(T 2
0 ) ∈

[
3

log2 T
2
0
, 1

2

]
. The third inequality holds because 3

2 + 1
16

√
N

24T1
≤ 2 and T 1+g(T 2

0 )
1 ≥ T0, and hence for

g(T 2
0 ) ≥ 3

log2 T
2
0

, we have T 1+g(T 2
0 )

1 ≥ T1 · T
g(T2

0 )

1+g(T2
0 )

0 ≥ 2T1. Let T = T
1+g(T 2

0 )
1 ∈ [T0, T

2
0 ]. Since by assumption g(·) is a

non-increasing function when T ≥ T0, we have that g(T ) ≥ g(T 2
0 ), therefore

E [RegT ] ≥ 1

7525
· T 1

2 +
g(T )

3 .

Finally we need to prove Lemma 31. First we introduce the following theorem on bounding the difference of the probability
for a certain event.
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Theorem 32 ((Pinsker, 1964)). For any probability distribution P,Q on measurable space (X,Σ), for any event F ∈ Σ,
we have

|P (F)−Q(F)| ≤
√

1

2
KL(P ||Q),

where KL(P ||Q) is the KL-divergence between distribution P and Q.
Lemma 33. The KL divergence between two Bernoulli distributions with p1 = 1

3 + ∆ and p2 = 1
3 is

KL(p1, p2) ≤ 9∆2

2

Proof. The KL-divergence between two Bernoulli distributions with parameters p1, p2 is

KL(p1, p2) = p1 ln
p1

p2
+ (1− p1) ln

1− p1

1− p2

Substituting p1 = 1
3 + ∆ and p2 = 1

3 , we have

KL(p1, p2) =

(
1

3
+ ∆

)
ln (1 + 3∆) +

(
2

3
−∆

)
ln

(
1− 3∆

2

)
≤ 9∆2

2

where the last inequality holds by ln(1 + x) ≤ x.

Proof of Lemma 31. Note that in our construction, the choice distribution at each time t is a Bernoulli distribution. More
specifically, under instance I, when item k is offered to the customer, the probability she chooses to purchase item k is
p2 =

1
2

1+ 1
2

= 1
3 , while under instance I(k), when item k is offered to the customer, the probability she chooses to purchase

item k is

p1 =

1
2 + 1

16

√
N

24T1

3
2 + 1

16

√
N

24T1

=
1

3
+

1
16

√
N

24T1

3
2 + 1

16

√
N

24T1

≤ 1

3
+

1

24

√
N

24T1
. (26)

In event F (k), the number of times item k is offered is at most 48T1

N . The total information available to the algorithm is
the set of choice distributions observed for item k since the choice distributions for other items are the same. Therefore,
combining Theorem 32, Lemma 33 and inequality (26), we have∣∣∣∣Pr

I
[F (k)]− Pr

I(k)
[F (k)]

∣∣∣∣ ≤
√

1

2
· 48T1

N
·KL(p1, p2) ≤ 1

24
.

E.2. Proof of Theorem 8

The proof of Theorem 8 is similar to that of Theorem 3 except for that we divide the time periods with a different scheme. It
suffices to prove the following theorem in order to establish Theorem 8.
Theorem 34. For any N ≥ 2, T ≥ 4, and M ≤ log2 log2 T , we have that for any algorithm such that the expected number

assortment switches before time horizon T is E
[
Ψ

(asst)
T

]
≤ NM

8 , there exists an N -item assortment instance I such that
the expected regret of the algorithm for instance I at time horizon T is

E [RegT ] ≥ 1

7525
·
√
NT

1

2(1−2−M ) .

Before proving Theorem 34, we first prove Theorem 8 using Theorem 34.

Proof of Theorem 8. We set M = blog2( log2 T
2C log2 ln(NT ) )c. It is easy to verify that M is at most log2 log2 T for T larger

than a universal constant that depends on C. Now invoke Theorem 34, and we have that for any algorithm, there exists an
N -item assortment instance I such that either E [RegT ] ≥ 1

7525 ·
√
NT (ln(NT ))C or

E
[
Ψ

(asst)
T

]
= Ω

(
NM

8

)
= Ω (N log log T ) ,

proving Theorem 8.
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Proof of Theorem 34. Suppose that the expected number of assortment switches by the given policy for any input instance
is at most NM8 before time horizon T , we will prove the theorem by showing that there exists an instance such that the

expected regret incurred by the algorithm is at least 1
7525 ·

√
NT

1

2(1−2−M ) .

Consider the assortment instance I = (v, r), where vi = 1
2 and ri = 1 for any i ∈ [N ]. We will let the capacity constraint

be K = 1 for all assortment instances considered in this proof. By the assumption of the algorithm, the expected number of
assortment switches given input instance I is at most M8 . For any j ≤M , we define

T(j) = T
1−2−j

1−2−M .

By definition, we have that T(M) = T . Therefore, there exists j such that 0 ≤ j ≤ M − 1 and the expected number of
assortment switches in time interval [T(j), T(j+1)] is at most N8 since there are M such disjoint intervals in range [1, T ]. Let

G(i)
1 = {item i is not offered in time interval [T(j), T(j+1)] given instance I}.

Note that
∑
i PrI [¬G(i)

1 ] ≤ N
8 + 1 ≤ 5N

8 for any N ≥ 2, because the expected number of items get offered during time
interval [T(j), T(j+1)] is at most the expected number of assortment switches plus 1. Therefore, by an averaging argument,
we have that there exists a set of items I ⊆ [N ] such that |I| ≥ N

4 and for any item i ∈ I , PrI [¬G(i)
1 ] ≤ 5

6 . Define the
following event

G(i)
2 = {the number of times that item i is offered in [1, T(j)] given instance I is at most

48T(j)

N
}.

Note that T1 is at least the expected number of times an item i ∈ I is chosen between [1, T1], which implies T(j) ≥
48T(j)

N ·
∑
i∈I PrI [¬G(i)

2 ]. Thus there exists k ∈ I such that PrI [¬G(k)
2 ] ≤ 1

12 since |I| ≥ N
4 . Let G(k) = G(k)

1 ∩ G(k)
2 , we

have that

Pr
I

[G(k)] ≥ 1− Pr
I

[¬G(k)
1 ]− Pr

I
[¬G(k)

2 ] ≥ 1

12
. (27)

Now we consider the assortment instance I(k) = (v(k), r) where v(k)
k = 1

2 + 1
16

√
N

24T(j)
and v(k)

j = 1
2 for j 6= k. Using

the same proof of Lemma 31, we have that ∣∣∣∣Pr
I

[G(k)]− Pr
I(k)

[G(k)]

∣∣∣∣ ≤ 1

24
,

and combining it with inequality (27), we have that

Pr
I(k)

[G(k)] ≥ 1

24
.

Now, we lower bound the expected regret of the algorithm for instance I(k) as

E
I(k)

[RegT ] ≥ E
I(k)

[
RegT

∣∣∣ G(k)
]
· Pr
I(k)

[G(k)]

≥ (T(j+1) − T(j)) ·
1
16

√
N

24T(j)

3
2 + 1

16

√
N

24T(j)

· 1

24

≥ 1

7525
· T(j+1) ·

√
N

T(j)
≥ 1

7525
·
√
NT

1

2(1−2−M ) ,

The third inequality holds because 3
2 + 1

16

√
N

24T(j)
≤ 2 and for j ≤M − 1, M ≤ log2 log2 T , we have that

T(j+1) = T
1−2−j−1

1−2−M ≥ T
1−2−j

1−2−M · T
2−j−1

1−2−M ≥ T
1−2−j

1−2−M · T
2−M

1−2−M ≥ 2T
1−2−j

1−2−M = 2T(j).
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F. N log T item switch bound for ESUCB
In this section we show that a modification of ESUCB algorithm achieves O(N log T ) item switches.

The modification is to use variables Ti and ni without initializing in each CHECK(θl, θr, tmax) sub-routine. That is, move
the Ti ← 0, ni ← 0 statement to the initialize phase of Algorithm 5. Note that ni/Ti is still an unbiased estimation of vi,
and only concentrates better. As a result, the regret analysis applies directly.

Regarding the number of item switches, since the value of Ti and ni are not initialized in CHECK procedure, number of
updates in value v̂i is bounded by log T during the execution of ESUCB algorithm, instead of log2 T when initialization is
executed in CHECK. Therefore we can give a better upper bound on the item switch of ESUCB algorithm. The following
theorem shows the item switch bound of modified ESUCB algorithm.

Theorem 35. The number of item switches incurred by ESUCB algorithm is bounded by O(N log T ).

Proof. Recall that S` is calculated by S` = arg maxS∈[N ],|S|≤K
(∑

i∈S v̂i(ri − θ)
)

for some θ (Line 6 and Line 9 of
Algorithm 6). Observe that the value of b in Algorithm 6 can only be switched once in an invocation. Therefore the number
of switches in value θ is upper bounded by O(log T ). The item number of item switch introduced by the change of θ is then
bounded by O(N log T ). Now, consider an consecutive time steps where θ is unchanged. We only need to show that for
fixed any θ, and S′` = arg maxS⊆[N ],|S|≤K

(∑
i∈S v̂i(ri − θ)

)
, it holds that (assuming that there are L epochs)

L−1∑
`=1

|S′` ⊕ S′`+1| . N log T. (28)

Suppose that there are n` items whose UCB values are updated after the `-th epoch. We claim that |S` ⊕ S`+1| ≤ n`. This
is simply because S` corresponds to the items i ∈ [N ] such that v̂i(ri − θ) is positive and among the K largest ones (and
thanks to the tie breaking rule). Therefore, any update to a single v̂i will incur at most one item switch to S`, and n` updates
will incur at most n` item switches. Now, (28) is established because

∑L−1
`=1 |S′` ⊕ S′`+1| ≤

∑L−1
`=1 n` . N log T , where

the second inequality is due to the deferred update rule for the UCB values.


