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Abstract. Isogeny-based key establishment protocols are believed to be
resistant to quantum cryptanalysis. Two such protocols—supersingular
isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny
Diffie-Hellman (CSIDH)—are of particular interest because of their ex-
tremely small public key sizes compared with other post-quantum candi-
dates. Although SIDH and CSIDH allow us to achieve key establishment
against passive adversaries and authenticated key establishment (us-
ing generic constructions), there has been little progress in the creation
of provably-secure isogeny-based password-authenticated key establish-
ment protocols (PAKEs). This is in stark contrast with the classical set-
ting, where the Diffie-Hellman protocol can be tweaked in a number of
straightforward ways to construct PAKEs, such as EKE, SPEKE, PAK
(and variants), J-PAKE, and Dragonfly. Although SIDH and CSIDH su-
perficially resemble Diffie-Hellman, it is often difficult or impossible to
“translate” these Diffie-Hellman-based protocols to the SIDH or CSIDH
setting; worse still, even when the construction can be “translated,” the
resultant protocol may be insecure, even if the Diffie-Hellman based pro-
tocol is secure. In particular, a recent paper of Terada and Yoneyama
and ProvSec 2019 purports to instantiate encrypted key exchange (EKE)
over SIDH and CSIDH; however, there is a subtle problem which leads
to an offline dictionary attack on the protocol, rendering it insecure. In
this work we present man-in-the-middle and offline dictionary attacks on
isogeny-based PAKEs from the literature, and explain why other classical
constructions do not “translate” securely to the isogeny-based setting.

Key Words: Isogeny-based cryptography, password-authenticated key
exchange

1 Introduction

Shor’s algorithm [46] makes the vast majority of today’s digital communica-
tions susceptible to attacks from large-scale quantum computers. In particular,
Shor’s algorithm solves the factoring and discrete logarithm problems in polyno-
mial time. These problems form the security foundation of RSA, Diffie-Hellman,



and classical elliptic curve cryptography. Post-quantum cryptography (PQC)
focuses on identifying and understanding new mathematical techniques upon
which cryptography that is resistant to attacks performed by both classical and
quantum computers can be built. So far, the vast majority of proposed post-
quantum cryptographic protocols can be partitioned into five categories: code-
based, lattice-based, hash-based, multivariate, and isogeny-based cryptography.

In this paper, we focus on isogeny-based cryptography. In this setting, it
is easy to compute an isogeny from one elliptic curve to another elliptic curve
given a kernel or ideal, while it is believed to be difficult (even with access to a
quantum computer), to find an isogeny between two given elliptic curves.

Two prominent key establishment protocols that have been proposed whose
security is based on these problems: supersingular isogeny Diffie-Hellman (SIDH),
proposed by De Feo, Jao, and Plût [20], and commutative supersingular isogeny
Diffie-Hellman (CSIDH), proposed by Castryck, Lange, Martindale, Panny, and
Renes [10]. Compared to other quantum-resistant schemes, these two isogeny
candidates are the youngest, but offer much smaller public key sizes than other
quantum-safe counterparts. As well, SIDH has been adapted to NIST’s specified
key encapsulation mechanism to form the supersingular isogeny key encapsula-
tion (SIKE) scheme [31], which is the only isogeny-based scheme in NIST’s PQC
standardization process.

Of course, key establishment protocols lack authentication, and are thus sus-
ceptible to man-in-the-middle attacks. The typical solution to this problem is
to use public-key infrastructure and construct authenticated key establishment
protocols, which, as the name suggests, provide authentication and prevent man-
in-the-middle attacks. Another solution is to use password -authenticated key ex-
change (PAKE): protocols which provide authentication between users who share
a low-entropy password. In order to be secure, a PAKE scheme must provide the
following guarantees [26]:

1. Offline dictionary attack resistance: Leakage from a scheme cannot be used
by an attacker to perform offline exhaustive search of the password.

2. Forward secrecy: Session keys are secure even if the password is later dis-
closed.

3. Known-session security: A disclosed session does not weaken the security of
other established session keys.

4. Online dictionary attack resistance: An active attacker can only try one pass-
word per protocol execution. More generally, a model may allow a small, con-
stant number of passwords to be tried per protocol execution (for instance,
in SPEKE the best known security guarantee is that an adversary can test
no more than two passwords per protocol execution [40]).

In the literature, there are few examples of post-quantum PAKE constructions.
In particular, there are several lattice PAKE instantiations [33,21,51,6,38] and
two isogeny-based instantiations [48,49]. For isogeny-based PAKEs, Taraskin,
Soukharev, Jao, and LeGrow [48] construct their PAKE in the model of Bellare,
Pointcheval, and Rogaway model [4] but do not provide a full security proof; the
construction of Terada and Yoneyama is based on the encrypted key exchange
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(EKE) construction of [5]. As we will soon show, despite the security proof of
[49], this second scheme is not secure when transferring the EKE construction
to isogeny-based cryptosystems.

Our Contribution. In this work, we illustrate a man-in-the-middle and offline
dictionary attack against the newly proposed (C)SIDH-EKE scheme from [49].
Since the problem with this construction stems from applying Diffie-Hellman-
based PAKE constructions to SIDH/CSIDH, we demonstrate how other such
constructions are actually insecure when applied to isogenies, focusing on EKE,
SPEKE, Dragonfly, PAK/PPK, and J-PAKE. The goal of this work is to compile
a list of “natural” but insecure isogeny-based PAKE constructions (with corre-
sponding attacks) in the hope that these broken protocols will not be proposed
again in the literature.

2 Preliminaries

Here, we provide a short review of the fundamentals of isogeny-based cryp-
tography. We point the reader to [47] for a much more complete picture of the
mathematics behind isogenies. Then, we provide details of the SIDH and CSIDH
protocols in particular.

2.1 Isogeny-Based Cryptography

Foundations. Isogeny-based cryptography deals with hard problems over isoge-
nies on elliptic curves. An elliptic curve E can be defined over a finite field Fq

as the collection of all points (x, y) and point at infinity that satisfy the short
Weierstrass form: E/Fq : y2 = x3 + ax + b where a, b, x, y ∈ Fq. However,
rather than make use of an elliptic curve’s abelian group over point addition,
isogeny-based cryptography makes use of isogenies between elliptic curves. An
isogeny over Fq as φ : E → E′ as a non-constant rational map from E(Fq) to
E′(Fq) that is also a group homomorphism. The isogeny’s degree is its degree as
an algebraic map. Since the complexity of computing an isogeny scales linearly
with the degree, it is practical only to compute isogenies of a small base degree.
Two elliptic curves are isogenous if there exists an isogeny between them. Fur-
thermore, for every isogeny φ : E → E′ of degree n, there exists another isogeny
φ̂ : E′ → E such that φ ◦ φ̂ = φ̂ ◦ φ = [n]. In this scenario, φ and φ̂ are dual
isogenies of each other. The endomorphism ring End(E) is defined as the set of
all isogenies from E to E, defined over the algebraic closure of F̄q of Fq.

History. Isogenies in cryptography were first proposed in independent works by
Couveignes [19] and Rostovtsev and Stolbunov [45] in 2006 as an isogeny-based
key exchange protected by the difficulty to compute isogenies between ordinary
elliptic curves. Also in 2006, Charles, Goren, and Lauter [13] proposed a hash
function based on the difficulty of computing isogenies between supersingular
elliptic curves. In 2009, Childs, Jao, and Soukharev [14] proposed a quantum
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algorithm to compute isogenies between ordinary elliptic curves in subexponen-
tial time. This attack centered on the commutative nature of an ordinary elliptic
curve’s endormorphism ring. Supersingular curves, on the other hand, feature a
non-commutative endomorphism ring for which the CJS attack does not apply.
In 2011, Jao and De Feo [32] proposed the supersingular isogeny Diffie-Hellman
(SIDH) key exchange based on the difficulty to compute isogenies between su-
persingular elliptic curves. Roughly, this is equivalent to a path-finding problem
in the isogeny graphs of supersingular elliptic curves [13][15]. Since then, cryp-
tographic research into isogeny-based problems has accelerated, producing new
constructions for digital signatures [50,25], security models [24,2], and a vari-
ety of performance optimizations [18,16,23,36,34,37,35,29,28]. The commutative
supersingular isogeny Diffie-Hellman (CSIDH) key exchange was later proposed
by Castryck, Lange, Martindale, Panny, and Renes [10]; this protocol has also
seen a number of performance improvement results [42,41,43,12,29,9]. As we will
describe below, both SIDH and CSIDH are implemented by Alice and Bob tak-
ing seemingly random walks on supersingular isogeny graphs, but the method
and walk size to compute the isogeny is different between the two. Their secret
isogeny walk is analogous to Diffie-Hellman’s private exponent.

2.2 SIDH

In the SIDH key exchange [20], Alice and Bob each agree on a prime p of the form
�eAA �eBB ±1, where �A and �B are small primes and eA and eB are positive integers.
Alice and Bob agree on a supersingular curve E0(Fp2) and find torsion bases
{PA, QA} and {PB , QB} that generate E0[�

eA
A ] and E0[�

eB
B ], respectively. Alice

and Bob then choose private keys nA ∈ Z/�eAA Z and nB ∈ Z/�eBB Z, respectively.
In the SIDH landscape, Alice and Bob perform their secret isogeny walk by
generating a secret kernel over their torsion basis, E = P + [n]Q and computing
a unique isogeny over that kernel φ : E → E/〈R〉 . In this isogeny computation,
Alice chains together eA isogenies of degree �A and Bob chains together eB
isogenies of degree �B . A public key is composed of the isogeny curve E/〈R〉 and
projection of the other party’s torsion points under this new isogenous curve.
Thus, in the first round Alice computes φA : E0 → EA = E0/〈PA + [nA]QA〉
and Bob computes φB : E0 → EB = E0/〈PB + [nB ]QB〉. Alice’s public key
is {EA, φA(PB), φA(QB)} and Bob’s public key is {EB , φB(PA), φB(QA)}. For
the second round, Alice and Bob again perform the secret isogeny walk, but this
time over the other party’s public keys. Alice computes EAB = EB/〈φB(PA) +
[nA]φB(QA)〉 and Bob computes EBA = EA/〈φA(PB) + [nB ]φA(QB)〉. After
these two rounds, Alice and Bob have each applied their secret isogeny walk to
the starting curve E0 and the j-invariants of their final curves serves as a shared
secret, j(EAB) = j(EBA).

Security. The security of SIDH is based on whichever secret isogeny walk is
easier to compute. The fastest known attacks are based on instances of the claw
problem [20]. If �eAA ≈ �eBB , then the classical and quantum security of SIDH is
approximately O( 4

√
p) and O( 6

√
p), respectively. The adaptive attacks proposed
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by Galbraith et al. [24,22] (which make use of the fact that there is no direct
public key validation for SIDH), renders static-static and static-ephemeral SIDH
insecure. There are also concerns that the images of the torsion points could lead
to an attack—such as those proposed by Petit et al. [44] and Bottinelli et al.
[7]—though no concrete attack of this sort has been exhibited for proposed SIDH
parameter sets. A few of the hard problems underlying SIDH are shown below
[20].
SIDH Problem 1 (Computational Supersingular Isogeny (CSSI) Problem).
Let φA : E0 → EA be an isogeny whose kernel is 〈PA + [nA]QA〉, where nA is
randomly selected in Z/�eAA Z. Given EA and the values φA(PB) and φA(QB),
find a generator RA of 〈PA + [nA]QA〉.
SIDH Problem 2 (Supersingular Computational Diffie-Hellman (SSCDH) Prob-
lem). Let φA : E0 → EA be an isogeny whose kernel is 〈PA + [nA]QA〉 and let
φB : E0 → EB be an isogeny whose kernel is 〈PB + [nB ]QB〉, where nA, nB are
randomly selected in Z/�eAA Z and Z/�eBB Z, respectively. Given EA, EB , φA(PB),
φA(QB), φB(PA), φB(QA), find the j-invariant of E0/〈PA+[nA]QA, PB+[nB ]QB〉.

2.3 CSIDH

In the CSIDH key exchange [10], Alice and Bob each agree on a prime p of
the form 4 × �1 · · · �n − 1, where �i are small distinct odd primes. Alice and
Bob agree on a supersingular curve E0(Fp) with endomorphism ring O = F[π].
Alice and Bob each choose private keys as a random n-tuple (e1, · · · , en) in the
range [−m,m] which corresponds to their ideal class [a] = [leA1

1 · · · leAn
n ] and

[b] = [leB1
1 · · · leBn

n ], respectively. Both [a], [b] ∈ cl(O), where li = (�i, π − 1).
In this case, Alice and Bob apply their secret isogeny walk by performing a
seemingly random number of small degree isogenies through the class group
action. Alice computes her public key EA = [a]E0 and Bob computes his public
key EB = [b]E0. Alice and Bob’s public keys are simply EA and EB , respectively.
Alice and Bob then apply their secret group action to the other party’s public
key to arrive at the final curve, which is EAB = [a]EB for Alice and EBA = [b]EA

for Bob. The shared secret is the curve coefficient of the final curve, EAB = EBA.

Security. The security of CSIDH is based on instances of the claw finding prob-
lem (similar to SIDH) as well as the abelian hidden-shift problem. Unfortunately,
the abelian hidden-shift problem is solvable in subexponential time once a large
enough quantum computer is available. Unlike SIDH, this scheme does support
simple public key validation as one can check if a public key is supersingular
over Fp. Furthermore, images of torsion points are not sent in the public key.
A simple note about ideal classes is that given [a], it is simple to compute the
inverse [a]−1. A few of the hard problems underlying CSIDH are shown below
[10].
CSIDH Problem 1 (Computational Commutative Supersingular Isogeny (CC-
SSI) Problem). Let EA, E0 be two supersingular curves defined over Fp with
the same Fp-rational endomorphism ring O, find an ideal [a] of O such that
EA = [a]E0.
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CSIDH Problem 2 (Supersingular Computational Commutative Diffie-Hellman
(SSCCDH) Problem). Let EA = [a]E0 and EB = [b]E0, given E0, EA, EB find
the curve coefficient of the final curve EAB = [a][b]E0.

3 Attacks on (C)SIDH-EKE

Here, we review the SIDH-EKE and CSIDH-EKE PAKE schemes proposed by
[49] and illustrate explicit breaks in the schemes. Notably, in order for SIDH-EKE
and CSIDH-EKE schemes to be secure, their public keys must be indistinguish-
able from random bitstrings (but they are distinguishable).

3.1 (C)SIDH-EKE

Encrypted key exchange (EKE) was proposed in [5] by Bellovin and Merritt in
1993 as a PAKE over DH key exchange. This is a two-round scheme similar to
standard DH. Rather than send a normal public key, the public key is encrypted
with the shared low-entropy password over an ideal cipher. The authors of [49]
directly translate this model from the discrete logarithm hard problem to the
supersingular isogeny hard problem. The protocols for SIDH-EKE and CSIDH-
EKE are shown below. Here, we assume that (Enc,Enc−1) are symmetric key
encryption schemes modelled as an ideal cipher with a key size κ.

SIDH-EKE [49]: Parties A and B having password pw = pwAB execute a key
exchange session as follows (public parameters defined in 2.2):

1. Party A chooses nA ∈ Z/�eAA Z, constructs the isogeny φA : E0 → EA =
E0/〈PA + [nA]QA〉, computes φA(PB) and φA(QB) and sends party B the
message Â = Encpw(EA, φA(PB), φA(QB)).

2. Party B chooses nB ∈ Z/�eBB Z, constructs φB : E0 → EB = E0/〈PB +
[nB ]QB〉, computes φB(PA) and φB(QA) and sends party A the message
B̂ = Encpw(EB , φB(PA), φB(QA)).

3. Party A decrypts (EB , φB(PA), φB(QA)) = Enc−1
pw(B̂). Party A then com-

putes the shared secret j(EB/〈φB(PA) + [nA]φB(QA)〉).
4. Party B decrypts (EA, φA(PB), φA(QB)) = Enc−1

pw(Â). Party B then com-
putes the shared secret j(EA/〈φA(PB) + [nB ]φA(QB)〉).

CSIDH-EKE [49]: Parties A and B having password pw = pwAB execute a key
exchange session as follows (public parameters defined in 2.2):

1. Party A chooses [a] = [l
eA1
1 · · · leAn

n ], computes EA = [a]E0 and sends party
B the message Â = Encpw(EA).

2. Party B chooses [b] = [l
eB1
1 · · · leBn

n ], computes EB = [b]E0 and sends party
A the message B̂ = Encpw(EB)

3. Party A decrypts EB = Enc−1
pw(B̂) and computes the shared secret [a]EB .

4. Party B decrypts EA = Enc−1
pw(Â) and computes the shared secret [b]EA.
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SIDH-EKE Public Parameters

prime p = �eAA �eBB − 1
supersingular curve E0/Fp2 with order p+ 1
torsion basis PA, QA over E0[�

eA
A ]

torsion basis PB , QB over E0[�
eB
B ]

Key Generation

1. nA ∈R Z/�eAA Z

2. RA = PA + [nA]QA

3. φA : E0 → EA = E0/〈RA〉
4. Â =
Encpw(EA, φA(PB), φA(QB))

Key Generation

1. nB ∈R Z/�eBB Z

2. RB = PB + [nB ]QB

3. φB : E0 → EB = E0/〈RB〉
4. B̂ =
Encpw(EB , φB(PA), φB(QA))

Secret Generation
1. (E′

B , φB(PA)
′, φB(QA)

′) =

Enc−1
pw(B̂)

2. RAB = φB(PA)
′+[nA]φB(QA)

′

3. φAB : E′
B → EAB =

EB/〈RAB〉

Secret Generation
1. (E′

A, φA(PB)
′, φA(QB)

′) =

Enc−1
pw(Â)

2. RBA = φA(PB)
′+[nB ]φA(QB)

′

3. φBA : E′
A → EBA =

EA/〈RBA〉

BobAlice

Â B̂

Eve

Offline Dictionary Attack

1. Eve observes Â
2. Eve guesses pw′ and finds
(E′

A, φA(PB)
′, φA(QB)

′) = Enc−1
pw′(Â)

3. Eve checks the following
a) E′

A is supersingular
b) φA(PB)

′, φA(QB)
′ lie on E′

A

c) φA(PB)
′, φA(QB)

′ have order �eBB
d) φA(PB)

′, φA(QB)
′ weil pairing is maximal

Fig. 1. The SIDH-EKE scheme is vulnerable to offline dictionary attacks as the public
keys are distinguishable from random bitstrings.

In both of these schemes, the authors of [49] mention that (C)SIDH-EKE pre-
vents offline dictionary attacks because the attacker cannot determine if a pass-
word guess is valid or not because it is modelled as an ideal cipher (IC). As we
show in the follow subsections, a subtle problem renders this claim incorrect,
and in fact offline dictionary attacks apply to both schemes. The public keys
in these schemes are distinguishable from random bitstrings; we illustrate how
the SIDH-EKE and CSIDH-EKE schemes are vulnerable to offline dictionary
attacks in Figures 1 and 2, respectively.

3.2 Offline dictionary attacks on SIDH-EKE

In the SIDH setting, a public key is of the form {EA, φA(PB), φA(QB)}, where
EA is a supersingular elliptic curve and {φA(PB), φA(QB)} is a torsion basis
generating E0[�

eA
A ]. Contrary to the claims of [49], it is simple to check if a
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decryption of an encrypted public key is valid or not, forming the basis for an
offline dictionary attack. A passive attacker Eve can observe Alice sending the
public key Â and perform an offline dictionary attack by trying a password pw′

to decrypt A′ = (E′
A, φA(PB)

′, φA(QB)
′) = Enc−1

pw′(Â). For each password, Eve
checks if the following criteria are met:

1. E′
A, φA(PB)

′, φA(QB)
′ ∈ Fp2

2. The elliptic curve E′
A is supersingular

3. Points φA(PB)
′ and φA(QB)

′ lie on E′
A

4. Points φA(PB)
′ and φA(QB)

′ have order �eBB
5. The Weil pairing of e(φA(PB)

′, φA(QB)
′) is the maximum possible order

For a random password, the probability that even two of these criteria are met
is extremely low. By iterating password after password, Eve can check a large
number of password candidates in her dictionary.

In practical implementations of SIDH and SIKE, the public parameters are
generally compressed. For instance, rather than directly sending the elliptic
curve, [18] proposes sending the x-coordinates φA(PB), φA(QB), and φA(QB −
PB). Furthermore, public key compression further reduces the size of public keys
[3,17]. In each of these cases, enough information is sent to recover the elliptic
curve EA and torsion basis points φA(PB) and φA(QB), so the offline dictionary
attack is still applicable here.

3.3 Offline dictionary attacks on CSIDH-EKE

In the CSIDH setting, a public key is just the supersingular elliptic curve EA.
Although no images of torsion points are provided in this construction, it is still
simple to validate a decryption of an encrypted password. A passive attacker
Eve can observe Alice sending the public key Â and perform an offline dictionary
attack by trying a password pw′ to decrypt A′ = E′

A = Enc−1
pw′(Â). For each

password, Eve checks if the following criteria are met (similar to public key
validation proposed in [10]):

1. The curve coefficients of E′
A are in Fp, and;

2. The elliptic curve E′
A is supersingular.

For a random password, the probability that these two criteria are met is ex-
tremely low. For instance, the chance that a randomly chosen elliptic curve is
supersingular behaves like Õ(1/

√
p). By iterating through the dictionary and

checking which passwords yield supersingular curves, Eve can (with high prob-
ability) eliminate many password candidates in an offline dictionary attack on a
single session.

3.4 Man-in-the-middle attack on modified CSIDH-EKE

In the (C)SIDH-EKE work, the authors of [49] model the symmetric cipher as a
random permutation with a k-bit key and l-bit inputs and outputs. One thought
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CSIDH-EKE Public Parameters

prime p = 4× �1 · · · �n − 1
supersingular curve E0/Fp with order p+ 1

Key Generation

1. [a] = [leA1
1 · · · leAn

n ]
2. EA = [a]E0

3. Â = Encpw(EA)

Key Generation

1. [b] = [leB1
1 · · · leBn

n ]
2. EB = [b]E0

3. B̂ = Encpw(EB)

Secret Generation

1. E′
A = Enc−1

pw(Â)
2. EBA = [b]E′

A

Secret Generation

1. E′
B = Enc−1

pw(B̂)
2. EAB = [a]E′

B

BobAlice

Â B̂

Eve

Offline Dictionary Attack

1. Eve observes Â
2. Eve finds pw′ such that
E′

A = Enc−1
pw′(Â) is supersingular

Fig. 2. The CSIDH-EKE scheme is vulnerable to offline dictionary attacks as the public
keys are distinguishable from random bitstrings.

for this is that the random permutation could operate in the domain of isogenous
curves. For instance, rather than sending an AES-encrypted public key in SIDH,
one can perform some encryption scheme where we move through a random
isogeny determined by the password. In this scenario, offline dictionary attacks
still apply as the password is of low-entropy.

Let us consider the CSIDH-EKE scheme where we use a non-standard en-
cryption scheme. Let Enc = Enc(E, pw) be a seemingly random class group
action that depends on the password. In this function, we first call some bijec-
tive function F (pw) that translates pw to the sequence [pw] = [l

epw1
1 · · · lepwn

n ].
The second step is simply computing the class group action Epw = [pw]E. This
scheme is vulnerable to an offline dictionary attack by employing a man-in-the-
middle.

Let us say that Alice and Bob have agreed to use public parameters: E0 and
hash function H as well as ID’s: Alice_ID and Bob_ID. Alice and Bob both
know the secret, low-entropy password pw.

Eve can attack this construction with the following procedure:

1. Alice generates her private key [a] and computes A = [a]E0.
2. Alice encrypts her public key to Â and sends it to Bob.

(a) Computes group ideal values [pw] = F (pw)
(b) Encrypts public key A, Â = [pw]A

3. Eve (man-in-the-middle) upon intercepting Â, generates her encrypted pub-
lic key as V̂ = [v]E0, where [v] is Eve’s private key, and sends V̂ to Alice.
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Modified CSIDH-EKE Public Parameters

prime p = 4× �1 · · · �n − 1
supersingular curve E0/Fp with order p+ 1

Key Generation

1. [a] = [leA1
1 · · · leAn

n ]
2. EA = [a]E0

3. [pw] = F (pw)
4. Â = [pw]A

Key Generation

1. [v] = [leV 1
1 · · · leV n

n ]

2. V̂ = [v]E0Secret Generation

1. ssA = [a][pw]−1V̂
2. k = Hash(ssA, ...)
3. m is a challenge
4. c = HMACk(m)

Offline Dictionary Attack

1.Find [pw] such that
a) ss′A = [pw]−2[v]Â
b) k′ = Hash(ss′A, ...)
c) c′ = HMACk′(m)
d) check c = c′

EveAlice

Â

V̂

c,m

Fig. 3. The modified CSIDH-EKE scheme encrypts the public key by using some func-
tion F to produce a valid private key to apply an additional group action to the public
key. In this man-in-the-middle attack, note that Bob is not shown as he never actually
receives any public key.

4. Alice, upon receiving V̂ , thinking that this is Bob’s public key, encrypted on
[pw], applies the class group action to decrypt it and calculates the shared
secret:
(a) Alice calculates exponents [pw]−1 by applying a negative sign to [pw]

and calculates the class group action ([pw]−1)V̂ .
(b) Alice computes the shared secret ssA = [a]([pw]−1)V̂ = [a][v][pw]−1E0

5. Alice then computes her final session key by the following formula: session-
Key = Hash(Alice_ID, Bob_ID, Â, V̂ , ssA).

In the real world, the next step of an authenticated key exchange is mutual
symmetric authentication of parties (these steps are not described in [49]).
One of the normal scenarios is where Alice and Bob exchange HMAC’s and
check them. Following the CSIDH-EKE protocol, Alice calculates an HMAC
from some data and sends it to Eve (still acting as Bob) to check. In a nor-
mal run of the protocol, if Bob detects that the HMAC is invalid, Bob would
stop the protocol. However, upon receiving the HMAC, Eve can disconnect from
Alice and compute the password offline. Eve knows that Alice has computed
the shared secret ssA = [a][v][pw]−1E0 and also has her encrypted public key
Â = [pw]A = [pw][a]E0. To find [pw], Eve attempts an offline dictionary attack
to find some [pw] such that the shared secret used in Alice’s HMAC is the same
as ([pw]−1)2[v]Â = ([pw]−1)2[v][pw][a]E0 = [a][v][pw]−1E0 = ssA. If the HMAC
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Table 1. Survey of Diffie-Hellman-based PAKEs schemes and their translation to
isogeny-based problems

DH PAKE Safe for CommentIsogenies?
EKE [5] × Public keys are distinguishable from random bitstrings

SPEKE [30] ? Hashing to a public key is difficultDragonfly [27]
PAK [8] × Public keys are not commutative to achieve vanishing effectJ-PAKE [26]

is verified with a password candidate, then this password candidate is correct
with high probability. This attack scenario is shown in Figure 3.

3.5 On EKE Security

For the above attacks, we proposed offline dictionary attacks on isogeny vari-
ants of EKE. In the simple case, (C)SIDH-EKE schemes are vulnerable to offline
dictionary attacks as isogeny-based public keys satisfy several criteria and are
distinguishable from random bitstrings. In the original EKE scheme based on dis-
crete logarithm, public keys are simply represented as extremely large numbers,
so decryptions of randomly encrypted public keys would still look like a valid
public key. When considering constructions such as EC-EKE, the elliptic curve
EKE variant over elliptic curve discrete logarithm problem, this same scheme
would be vulnerable to offline dictionary attacks. In this case, a public key would
be a point on a curve with sufficient order. Offline dictionary attacks would not
get rid of as many password candidates as (C)SIDH-EKE, but would still exist.

Next, applying a password directly as a private key for a Diffie-Hellman-like
key exchange is not secure. In the Diffie-Hellman scenario, revealing the result
of A = gpw is vulnerable to offline dictionary attacks. Since pw has low-entropy,
an attacker can try many candidate passwords to find the correct pw to obtain
public key A. In our modified CSIDH-EKE scheme (also applies to SIDH-EKE),
we encrypted our public keys by performing a group operation directly on our
public key. Through simple manipulation as a man-in-the-middle, Eve obtained
two values such that she had a check if a password group operation was correct
or not.

4 Other DH Variants

Here, we summarize the difficult problems encountered when translating a pop-
ular DH-based PAKE to isogenies. It is not completely clear that these schemes
are dead in the water. Rather, it is clear that any translations from discrete
logarithms to isogeny problems will require an updated security model. In Ta-
ble 1, we survey several popular schemes. We go over each of these translation
difficulties in the following sections. We only skip DH-EKE scheme as we have
already illustrated offline attacks in Section 3.
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4.1 DH-SPEKE and Dragonfly

DH-SPEKE was proposed by Jablon in 1996 [30], while Dragonfly was proposed
by Dan Harkins in 2008 [27]. In these schemes, Alice and Bob start with a
DH key exchange. However, rather than using prescribed public parameters,
they generate the public keys based on some function that converts the shared
secret to a suitable base, i.e. g = f(pw). Since discrete logarithm public keys
are indistinguishable from random bitstrings, DH-SPEKE was constructed by
simply hashing the public key to a valid generator. Dragonfly goes a step further
to define "Hunting and Pecking" methods to find appropriate public parameters
over elliptic curve and MODP groups.

When applying this construction to isogeny-based problems, computing a
seemingly random base is a hard problem. For instance, simply hashing a pass-
word to a random elliptic curve class is insufficient. SIDH requires a super-
singular curve with correct order and a proper torsion base. CSIDH requires
a supersingular elliptic curve in the Fp-rational isogeny graph. Worse yet, if a
“weak” generator is found then the isogeny problem may not be hard. Finding
public parameters from random bitstrings is not sufficient.

One recent work by Love and Boneh [39] attempts to safely generate a random
curve where no one knows its endomorphism ring, but with negative results. In
the CSIDH setting, Castryck, Panny, and Vercauteren [11] investigate a similar
problem, also with negative results. Their analysis shows that even if we find
a random curve by taking a walk from a starting curve, it is not difficult to
discover this path. Hashing to public isogeny keys has been a hard problem and
seems to stay that way for the foreseeable future, making any direct translation
of this DH construct impossible.
Open Problem 1 Given a low-entropy password pw and a fixed field Fq (for
SIDH or CSIDH), how to efficiently generate a safe elliptic curve over Fq as a
function of pw?

4.2 DH-PAK and DH-JPAKE

DH-JPAKE was proposed by Hao and Ryan in 2010 [26] and proved secure in
the BPR model [4] by Abdalla et al. in 2015 [1], while DH-PAK was proposed by
Boyko, MacKenzie, and Patel in 2000 [8]. J-PAKE is standardized under RFC
8236. In the following description, we assume all arithmetic is modulo a large
prime p. In J-PAKE, Alice and Bob each compute two independent ephemeral
public keys (g1 = gx1 , g2 = gx2 for Alice and g3 = gx3 , g4 = gx4 for Bob) in
the first round, and then compute a special “mixed” public key in the second
round (A = (g1g3g4)

x2×pw for Alice and B = (g1g2g3)
x4×pw. Then, in the third

and final round, Alice and Bob each “cancel” out the portion of the public key
that was generated with the password and ephemeral private key. Here, Alice
computes Ka = (B/(gx2×pw

4 ))x2 and Bob computes Kb = (A/(gx4×pw
2 ))x4 , so

Alice and Bob have achieved an authenticated shared secret of Ka = Kb =
g(x1+x3)×x2×x4×pw.
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The magic of J-PAKE and the ECJPAKE scheme over elliptic curves is de-
pendent on the commutative nature of the group structure. Alice and Bob each
mix their public keys and achieve a vanishing effect on the final result by can-
celling out known values. For isogeny-based computations, there is no way to
combine public keys similar to (g1g3g4) and then cancel it out later because
there is no natural ring structure on (C)SIDH public keys.

5 Auxiliary Point Obfuscation for SIDH

So far we have only discussed the failure of straightforward translations of
already-existing PAKE protocols to the isogeny-based setting. In [48], the au-
thors propose an isogeny-based PAKE in which the password is used to obfuscate
the auxiliary points in SIDH—this approach is a natural extension of the idea
PAK/PPK (where a random group element derived from the password is used
to obfuscate the public ephemeral key), although it is not precisely analogous to
those schemes.

To be consistent with their notation, for a prime � and an integer e, we define

SL2(�, e) =
{
Ψ ∈ (Z/�eZ)2×2 : det A ≡ 1 (mod �e)

}
Υ2(�, e) = {Ψ ∈ SL2(�, e) : A is upper triangular modulo �}

as the special linear (SL) and special reduced upper triangular groups (Υ ) modulo
�e. As we have described in Section 2.2, SIDH uses a prime p = �eAA �eBB f ± 1 and
supersingular elliptic curve E defined over Fp2 . As is noted by [48], Υ2(�A, eA)

acts on E[�eAA ]2 in a method similar to matrix-vector multiplication: if Ψ =
[
α β
γ δ

]
then Ψ [XY ] =

[
αX+βY
γX+δY

]
. The same property applies to Υ2(�B , eB) acting on

E[�eBB ]2.
The construction of [48] requires a pair of hash functions HA, HB which map

to Υ2(�A, eA) and Υ2(�B , eB), respectively. Party A’s auxiliary points are obfus-
cated by computing

[
XA

YA

]
= ΨA

[
φA(PB)
φA(QB)

]
where ΨA ∈ Υ2(�B , eB) is derived from

pw (and session-specific information) using HB . Party A then sends (EA, XA, YA)
to B rather than (EA, φA(PB), φA(QB)). Similarly, Party B will obfuscate his
auxiliary points by computing

[
XB

YB

]
= ΨB

[
φB(PA)
φB(QA)

]
where ΨB ∈ Υ2(�A, eA) is

derived from pw using HA. Party B then sends (EB , XB , YB) to A as his public
key.

We further analyze this obfuscation from Party A’s perspective. This pecu-
liar construction has the very convenient property that for any Ψ̂ ∈ Υ2(�B , eB),
if
[
P̂B

Q̂B

]
= Ψ̂−1

[
XA

YA

]
then e(P̂B , Q̂B) = e(φA(PB), φA(QB)); (the Weil pairing

is preserved). In particular, if Ψ̂ is derived from p̂w using HB and the session-
specific information, the “candidate” auxiliary points P̂B , Q̂B cannot be distin-
guished from the correct auxiliary points using the best known SIDH public-key
validation technique: checking the pairing value. This prevents offline dictionary
attacks.
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This quality is not shared by more natural auxiliary point obfuscation meth-
ods; in particular, following the ideas of PPK and obfuscating by construct-
ing M1,M2 ∈ E[�eBB ] uniformly at random (derived using a hash function ap-
plied to the password and session-specific information) and constructing XA =
φA(PB) + M1 and YA = φA(QB) + M2, and sending (EA, XA, YA) as before.
Unfortunately, public-key validation using the pairing renders this insecure, as
the pairing value is not preserved when adding these random obfuscating points.

Although the protocol of [48] is not known to be vulnerable to attacks using
public-key validation, the authors were unable to present a full security proof;
in particular, because the protocol messages information-theoretically reveal the
password (in contrast with protocols like PAK/PPK, in which individual mes-
sages contain no password information), standard proof techniques do not apply
in a straightforward fashion. Nevertheless, the protocol is interesting from a
practical perspective (since it is the only proposed isogeny-based PAKE so far
which is not known to be insecure), and because of its close relationship with
the question of SIDH public-key validation, which has long been open.

6 Conclusion

In this work, we examined applying Diffie-Hellman-based PAKE schemes to
isogeny-based problems. We examined the difficulty in translating security mod-
els in Terada and Yoneyama’s ProvSec 2019 work and some popular PAKE
schemes. As we have shown, carelessly applying Diffie-Hellman PAKE construc-
tions can lead to various man-in-the-middle and offline dictionary attacks. Al-
though the SIDH and CSIDH schemes appear extremely similar to DH, the
underlying isogeny problem is constructed in a different way that allows for
quantum security. Overall, PAKE construction over isogenies on supersingular
elliptic curves is difficult as supersingular elliptic curves are sparse in the set
of all elliptic curves, which leads to offline dictionary attacks when low-entropy
password are used.
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