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ABSTRACT: We explore the possibility of discovering the mirror baryons and electrons of the Mirror
Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a
subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-
nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We
consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of
mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at
the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending
on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct
detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an
atomic disk. We find that by taking advantage of the complementarity of the different experiments,
it may be possible to establish not just the multi-component nature of mirror dark matter, but also its
distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the
masses and charges of the constituents of the mirror sector. By showing that the mass and charge of
mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential
to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening
effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest
effect on direct detection signals.
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1 Introduction

The Mirror Twin Higgs (MTH) framework [1–3] offers a simple and distinctive solution to the little
hierarchy problem of the Standard Model (SM). In this class of theories the spectrum of light states
includes a complete mirror (“twin”) copy of the SM, with the same particle content and gauge groups.
A discrete Z2 interchange symmetry relates the particles and interactions in the mirror sector to those
in the SM. The Higgs emerges as the pseudo-Nambu Goldstone boson of an approximate global
symmetry which is spontaneously broken. Quadratically divergent corrections to the Higgs mass are
cancelled by a combination of the global symmetry and the discrete Z2 symmetry that relates the SM
and twin sectors. MTH models stabilize the Higgs mass against radiative corrections up to scales of
order 5-10 TeV, above which an ultraviolet completion [4–13] is required.

In the MTH construction, there are no new light states charged under the SM gauge groups.
Therefore, this class of models is free from the strong constraints on top partner searches at the
Large Hadron Collider (LHC) [14–20]. The only coupling between the SM and mirror sectors that is
required by the construction is a Higgs portal interaction between the SM Higgs and its twin partner.
Then, after electroweak symmetry breaking in the two sectors, the SM Higgs boson mixes with its
twin counterpart. As a result of this mixing, the Higgs acquires couplings to twin fermions and
gauge bosons. This allows twin particles to be produced at collider experiments through the Higgs
portal. The twin particles are invisible and give rise to missing energy signals at colliders. However,
the event rate is low, and missing energy searches at the LHC have only limited sensitivity to twin
particle production.

The tightest collider constraints on MTH models are from precision Higgs measurements at the
LHC. As a result of the mixing between the SM Higgs and its twin counterpart, the couplings of the
Higgs to SM particles are suppressed. In addition, the Higgs acquires couplings to mirror fermions
and gauge bosons, and can decay into them. Both these effects contribute to a reduction in the number
of Higgs events at the LHC as compared to the SM prediction [21]. The fact that the number of
Higgs events observed at the LHC is consistent with the expectation from the SM can be used to place
constraints on MTH models. In order to satisfy this constraint, we require a mild hierarchy between
the scale of electroweak symmetry breaking in the twin sector, denoted by v̂, and the corresponding
scale in the SM sector v. The constraint is satisfied provided v̂/v & 3 [22]. We can realize this
hierarchy by introducing a soft explicit breaking of the discrete Z2 symmetry that relates the two
sectors, albeit at the expense of mild tuning. (This Z2 breaking can also occur spontaneously, with a
possible reduction of tuning, see e.g. [23–27].) A phenomenologically important consequence of the
difference in the scales of electroweak symmetry breaking is that the elementary fermions and gauge
bosons in the twin sector are heavier by a factor of v̂/v than their SM counterparts.

The MTH framework is severely constrained by cosmology. The Higgs portal interaction keeps
the SM and twin sectors in thermal equilibrium until temperatures of order a GeV [2]. Below this
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temperature, even though the two sectors are decoupled, mirror states continue to contribute almost
half of the total energy density in the universe. This results in a large contribution to the energy
density in dark radiation during the CMB epoch, ∆Neff = 5.7 [28, 29]. An effect of this size is
excluded by the current bounds, which require ∆Neff

<∼ 0.25 (2σ) from Planck 2018+lensing+BAO,
or ∆Neff

<∼ 0.49 (2σ) [30] if including the H0 measurement from Ref. [31]. This problem can be
solved if there is an additional source of breaking of the discrete Z2 symmetry. This would allow the
number of degrees of freedom in the twin sector at the time when the two sectors decouple to be much
less than in the SM, leading to a suppression of ∆Neff [2, 5, 32–38]. The same result can be achieved
by making the mirror sector vector-like [39]. The most radical proposal in this regard is the Fraternal
Twin Higgs (FTH) construction [40], in which the first two generations of twin fermions, which do
not play a significant role in the solution of the little hierarchy problem, are simply removed from the
theory. The FTH framework leads to distinctive collider signatures at the LHC involving displaced
vertices [41–44].

An alternative approach to address the problem, which does not require additional breaking of
the Z2 symmetry that relates the two sectors, is to introduce into the theory an asymmetric reheating
process that preferentially heats up the SM sector [45–47]. The asymmetric reheating should occur at
temperatures below 1 GeV, after the two sectors have decoupled, but before Big Bang nucleosynthesis
(BBN). This reduces the fraction of energy density contained in the twin sector, allowing the bounds
on ∆Neff to be satisfied [28, 29]. Although the mirror sector contribution to ∆Neff is suppressed in
this scenario, it is expected to be large enough to be observed in future CMB experiments. Both the
MTH and FTH frameworks contain several promising dark matter (DM) candidates [32, 48–58].

If there is a baryon asymmetry in the twin sector, the mirror baryons and electrons will constitute
a subcomponent of the DM in the universe. If the discrete Z2 twin symmetry is only softly broken, so
that the masses of mirror particles are fixed by the ratio of electroweak VEVs in the two sectors, v̂/v,
the mirror baryons are primarily composed of mirror hydrogen and helium. The relative abundances of
these two species is determined by the dynamics of BBN in the twin sector. Together with the mirror
photons and neutrinos, the mirror baryons and electrons can give rise to highly distinctive signals in
large scale structure and in the cosmic microwave background [59]. Baryon acoustic oscillations in
the mirror sector prior to recombination lead to a suppression of structure on large scales. Current
limits on the size of this effect bound the mirror contribution to DM in the MTH framework to be less
than O(10%).

Apart from the Higgs portal coupling, the gauge symmetries of the MTH construction allow only
one other renormalizable interaction that connects the SM and twin sectors, a kinetic mixing between
hypercharge and its twin counterpart,

ε

2cos θW
BµνB

′µν . (1.1)

If this operator is present, the twin fermions acquire a charge under electromagnetism proportional to
ε. Avoiding thermalization of the hidden and visible sector after asymmetric reheating constrains any
such mixing to be very small, less than or of order 10−9 [60]. However, even such small values of
the mixing are radiatively stable in the minimal MTH construction, since this mixing is not generated
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through 3-loop order [1]. If there is a baryon asymmetry in the twin sector, the mirror fermions
will therefore constitute sub-nano-charged DM and can scatter off ordinary matter through processes
involving the exchange of the photon. Interestingly, it has recently been shown that higher-order
loop diagrams involving gravitons could generate a kinetic mixing between the visible and hidden
sectors [61]. This contribution, which primarily arises from energies of order the Planck scale, can
give rise to mixings of the order ε ∼ 10−13. Tantalizingly, this tiny mixing is compatible with the
asymmetric reheating mechanism while providing an achievable sensitivity goal for direct detection
experiments.

In this paper we explore the possibility of discovering the twin baryons and electrons of the MTH
scenario in current and next-generation direct detection experiments. We consider a framework in
which mirror matter is sub-nano-charged, as a consequence of kinetic mixing between the hypercharge
gauge boson of the SM and its massless mirror counterpart. For concreteness, we assume that the
discrete Z2 twin symmetry is only softly broken, so that the masses of mirror particles are fixed by
the ratio of electroweak VEVs in the two sectors, v̂/v. The constraint on this scenario from ∆Neff is
assumed to be satisfied as a consequence of late-time asymmetric reheating. Since mirror matter, like
visible matter, is dissipative, some fraction of the twin DM in the galaxy may have collapsed into a
disk. The direct detection signal then depends in part on whether a twin disk is present and, if so, the
fraction of mirror matter it contains, its alignment relative to the visible disk, and whether it extends
out to the location of the Earth. The size of the signal also depends on whether the mirror matter in
the galaxy is in ionic form or has condensed into atoms.

In order to understand the distribution of mirror matter in the galaxy, and whether it is in the form
of ions or atoms, it is necessary to track how this subcomponent of DM evolved in time as the Milky
Way was forming. When halo formation begins at redshifts of O(10), the shock wave induced by
the in-falling twin atoms heats up and reionizes the mirror sector. The mirror sector can dissipate its
energy through the emission of twin photons in processes involving the scattering of twin particles.
The timescale of this cooling process depends on the abundance of mirror particles and is longer than
in the SM. We find that this timescale can nevertheless be shorter than the age of the universe for
sufficiently large abundances of mirror matter. This indicates that some fraction of the the mirror halo
may have collapsed into a disk.

In our analysis we consider experiments based on both nuclear recoil (NR) and electron recoil
(ER) signals. For a given mirror DM abundance we determine the expected event rates in direct de-
tection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an
atomic disk. We are careful to account for the effects of mirror matter capture in the Earth. We find
that in most of the relevant parameter space, its effect on the direct detection signals we consider is
negligible or at most modest. By taking advantage of the complementarity of the different experi-
ments, we find that it may be possible to establish not just the multi-component nature of mirror DM,
but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to deter-
mine the masses of the mirror DM constituents. By establishing that the masses and charges of mirror
hydrogen and helium are integer multiples of each other, these experiments may be able to diagnose
the mirror nature of the theory. There is also an important complementarity between direct detection
experiments and astrophysical probes of mirror matter. The reach of the former is best for mirror
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baryons arranged in a halo. On the other hand, dark disk scenarios can be probed very sensitively via
white dwarf cooling bounds [62], and are also more likely to lead to the formation of mirror stars,
which can be detected in optical and X-ray observations [63, 64], microlensing surveys [65], and
gravitational wave observations of mirror neutron star mergers [66].

Although our focus is on MTH models with softly broken twin symmetry, the direct detection
signatures we study are also features of the more general class of models in which mirror baryons
and electrons constitute some or all of the observed DM. Earlier work on the distribution of mirror
DM in the galaxy may be found, for example, in [67–69]. Direct detection of mirror matter has been
considered, for example, in [70–74]. Reviews of mirror models and mirror DM, with many additional
references, may be found in [75–78]. In detail, however, the direct detection signals depend sensitively
on the masses of the mirror particles and their distribution in the galaxy. From this perspective, our
paper represents a detailed study of the direct detection signals of generalized mirror-like models in
the region of parameter space motivated by the little hierarchy problem.

The outline of this paper is as follows. In the next section we give a quick review of the parameter
space of the MTH model. In Sec. 3 we study the distribution of mirror particles in the Milky Way,
based on an estimate of the rate of twin particle cooling after the shock wave heating process. In
Sec. 4, we estimate the signal rates in direct detection experiments, considering both nuclear and
electron recoils. Our conclusions are in Sec. 5. Mirror matter capture in the Earth and its effects on
direct detection are carefully analyzed in Appendix A.

2 Parameters of the Model

Our focus is on the direct detection signals of MTH models in which the mirror nuclei and electrons
constitute a subcomponent of DM. We restrict our analysis to the case when the Yukawa couplings
respect the discrete Z2 symmetry that relates the two sectors. Then the elementary fermions in the
twin sector are heavier than their visible counterparts by a factor of v̂/v, the ratio of electroweak
symmetry breaking scales in the two sectors. The energy density in twin radiation is assumed to be
diluted by late time asymmetric reheating after the two sectors have decoupled, allowing the current
CMB and BBN constraints on dark radiation to be satisfied.1 Then, in this framework, the direct
detection signals depend on four parameters,

ε, v̂/v, rall = Ωall mirror baryons/ΩDM, Ŷp(
4Ĥe) =

ρ4Ĥe

ρĤ + ρ4Ĥe

. (2.1)

Here ε parametrizes the kinetic mixing between the hypercharge gauge bosons in the two sectors,
while rall denotes the total asymmetric mirror baryon density relative to the total DM density today.
Just as in the case of the SM, the contributions of the twin sector to the matter density are almost
entirely from mirror hydrogen and helium,

rall = rĤ + rĤe. (2.2)

The parameter Ŷp(4Ĥe) represents the mass fraction contributed by twin helium.

1We assume the masses of both visible and hidden sector neutrinos can be neglected.

– 5 –



The masses of particles in the twin sector depend on the ratio v̂/v. While Higgs coupling mea-
surements at the LHC constrain v̂/v & 3, the requirement that the Higgs mass be only modestly tuned
limits v̂/v . 5. The mass of the twin electron is simply v̂/v times the corresponding value in the
SM. Since the quark masses are also v̂/v times larger than in the SM, the different running of the
mirror QCD gauge coupling leads to a larger confinement scale in the mirror sector than in the SM by
about 30-50% in the range v̂/v = 3-5. This makes twin baryons heavier than SM baryons by about
30− 50% [59].

Since mirror particles constitute an acoustic subcomponent of DM, they lead to a suppression
of large scale structure on scales that enter the horizon prior to recombination in the twin sector.
This can be used to place limits on the contribution of mirror matter to the observed density of DM,
rall . 10% [59].

The relative fractions of mirror hydrogen and helium in the early universe are determined by the
dynamics of BBN in the twin sector. This in turn depends on the masses of the mirror baryons and
also on the energy density in mirror radiation at the time of BBN. In [59], the Boltzmann equations
for the number changing process n̂ ν̂ ↔ p̂ ê were solved for the MTH model, and the timescale for
mirror deuterium formation was determined. It was found that Ŷp(4Ĥe) ≈ 75% for v̂/v in the range
we consider and realistic values of ∆Neff . However, in our analysis we also consider the cases in
which the twin baryons are composed entirely of mirror hydrogen or mirror helium, corresponding to
Ŷp(

4Ĥe) = 0 and Ŷp(4Ĥe) = 1. These provide some insight into the direct detection signals of MTH
models in which the Yukawa couplings of the light quarks exhibit hard breaking of the discrete Z2

symmetry, so that the spectrum of mirror nuclei is composed of only a single species, either hydrogen
or helium.

3 Mirror Baryon Distribution in the Milky Way

Structure formation reaches the regime of nonlinear halo formation at redshifts z ∼ O(10) [79]. At
these redshifts, DM and the SM particles, which include nuclei, electrons, and photons, undergo com-
plicated collective dynamics that gives rise to the structure of the Milky Way and the other galaxies
that we observe today. Collisionless DM particles clump under the action of gravity, eventually giving
rise to cold DM (CDM) distributions such as the NFW or Burkert profiles (see e.g. [80]). The SM
baryons, which are initially bound in atoms following recombination, fall into the overdense regions
and collide with each other, leading to the formation of a shock wave that expands outwards to heat the
baryonic medium. The maximum temperature of the baryons is dictated by the the virial theorem and
the available gravitational energy, which is dominated by the CDM halo. The immediate aftermath of
shock heating is a fully ionized baryon distribution that is in hydrostatic equilibrium. This distribu-
tion initially satisfies the adiabatic equation of state, but quickly evolves to reach thermal equilibrium.
Subsequently, processes such as bremsstrahlung and ionization cooling lower the temperature of the
baryons, leading to a loss of pressure support and the eventual onset of catastrophic collapse. If the
halo has sufficient angular momentum and a quiet merger history, this collapse eventually gives rise
to a disk such as the one in our own Milky Way galaxy. Even after the disk has formed, a significant
fraction of the baryonic gas remains outside the disk at large distances from the galactic core [81].
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If mirror baryons make up a small . O(10%) fraction of DM, we expect that, during halo
formation, they will undergo broadly similar dynamics to SM baryons. Mirror atoms will also fall
into overdense regions, undergo shock heating and ionization, and reach adiabatic equilibrium before
eventually settling into thermal equilibrium. They then cool, potentially leading to collapse and the
formation of a mirror disk. This kind of dynamics for a DM component has been studied in the
past, primarily in the context of exact mirror DM models that are perfect hidden sector copies of the
SM, though there have been some early studies of how cosmology and galactic evolution might have
proceeded for mirror matter with a larger mirror Higgs vev than in the SM [67]. More recently, this
scenario has also been explored in the more general context of dissipative DM models that could form
a so-called ‘dark disk’ [82–85], though without the presence of ‘dark nuclear physics’ which, as we
describe below, can significantly complicate galactic evolution in mirror models.

In spite of this general understanding, it is not possible to make precise predictions about the
distribution of mirror DM in the galaxy in the MTH scenario. Even in the case of ordinary baryonic
matter, collapse and disk formation is a highly nonlinear process that depends sensitively on various
radiative and mechanical feedback mechanisms including star formation, stellar winds, and heating
from supernovae, as well as the influence of the central supermassive black hole. Even for visible
matter, modelling these processes requires detailed N -body simulations incorporating magnetohy-
drodynamics and stellar feedback [86–97]. While the formation of our Milky Way disk is beginning
to be better understood, the simulations are not yet fine-grained enough to make direct contact with the
astrophysics of individual stars, let alone fundamental physics parameters. Instead, these simulations
rely on large-scale parameterizations of processes like star formation and heating from supernovae ex-
plosions to reproduce the known Milky Way structure. Given that the particle spectrum and dynamics
of the MTH are different enough from the SM that detailed analogies break down, it is not feasible to
robustly predict the distribution of mirror baryons in the galaxy.

We therefore take a more modest approach. In this section, we compute the mirror baryon distri-
butions resulting from hydrostatic equilibrium in the gravitational background of the CDM halo (ne-
glecting the effects of halo angular momentum). These distributions can be interpreted as the rough
starting point for the nonlinear processes of collapse. By examining the cooling rates arising from
various processes and comparing to the predictions for SM-like baryons computed under the same
assumptions, we can obtain some insight into how the mirror baryon distribution might be expected to
evolve in our Milky Way. The most important question is whether the mirror matter collapses to form
its own disk. We find that in a large part of the parameter range, because of the large uncertainties, the
answer is ambiguous. For this reason, in our study of direct detection in Section 4, we consider both
halo and disk distributions of mirror matter.

3.1 Initial Mirror Baryon Distribution

In this subsection we compute the initial mirror matter distribution in our Milky Way prior to the onset
of cooling, assuming a standard NFW or Burkert CDM distribution for the primary DM component
and hydrostatic equilibrium. This will allow us to estimate the cooling timescale in Section 3.2. We
pay particular attention to how the distribution of mirror baryons compares to that of SM baryons
computed under the same assumptions. This will give us some insight into how the cooling timescale
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of mirror baryons, and consequently their current distribution, might be expected to differ from that
of the SM baryons in our Milky Way.

3.1.1 CDM profile

We assume that the mirror particles contribute only a small component of the total energy density
in DM, which is dominated by standard CDM with distribution ρCDM(r). Then the contribution of
mirror particles to the gravitational potential can be neglected. To examine the sensitivity of our
results on the CDM distribution, we consider two possibilities, an NFW profile and a Burkert profile,

ρNFW(r) =
ρH

r
RH

(
1 + r

RH

)2 , (3.1)

ρBUR(r) =
ρH(

1 + r
RH

)(
1 + r2

R2
H

) . (3.2)

The benchmark parameters we assume are based on the studies in [80], and are summarized in Table 1.
To facilitate comparison, we assume common values for R�, the distance of the Sun from the Milky
Way center, and the local CDM density ρ� = ρ(R�). The profiles are then completely fixed by
specifying the remaining parameter RH .2 For R > R�, the NFW and Burkert profiles are very
similar, but the NFW profile predicts much higher densities closer to the core. These profiles are
shown as black curves in Fig. 1 (top).

Let MCDM(R) represent the total mass of DM enclosed within radius R. We define the total
size of the halo by the virial radius Rvir. This is determined from the standard overdensity criterion,
Rvir ≡ R200, as

MCDM(R200) = ∆ · ρcrit ·
4π

3
R3

200 , (3.3)

where ∆ = 200 and ρcrit ≈ 4.8× 10−6 GeV/cm3 is the critical density.
The virial theorem allows us to relate the average kinetic and potential energy of CDM particles,

1
2 |Utot| = KEtot = 1

2M(Rvir)v
2
0 . We can then determine the average velocity-squared of the particles

that constitute the primary component of DM,

v2
0 =

∫ Rvir
0 GMCDM(r) ρCDM(r) r dr∫ Rvir

0 ρCDM(r) r2 dr
. (3.4)

If mirror matter were collisionless, the mirror atoms would exhibit the same distribution as the pri-
mary DM component, with the same root-mean-square velocity. On timescales short compared to
the cooling timescale, the only effect of collisions is to redistribute the energy of the mirror particles
amongst themselves, leaving their total energy unchanged. In what follows, we use this fact, together
with the condition of hydrostatic balance, to determine the distribution of mirror matter in adiabatic
and thermal equilibrium prior to the onset of cooling.

2We have explored the effect of the uncertainties on the fitted parameters of a given CDM profile on our results and
found them to be negligible compared to the difference between these two profiles.
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Profile R� ρ(�) RH Rvir Tvir/m̄halo

NFW 8 0.5 16 235 1.35× 10−7

Burkert 8 0.5 9 209 1.21× 10−7

Table 1. Parameters of CDM distributions, which dominate the gravitational potential of the Milky Way. All
distances in kpc, ρ in GeV/cm3. m̄halo is the halo-averaged mass of a virialized sub-population of the halo,
such as the MTH mirror baryons.

3.1.2 Mirror Matter in Hydrostatic Equilibrium

The mirror baryons, like the SM baryons, are shock heated and ionized as they fall into the collapsing
CDM halo. During this process, and immediately afterwards, the mirror baryons remain well mixed.
Matter is churned around in the profile at the convection timescale,

tconvection(r) ∼
√

1

GρCDM(r)
∼ 108 yrs at r = R�. (3.5)

See also Figs. 2 and 3. This is comparable to the time scale when the non-linear halo formation sets
in at z = O(10), so convection quickly establishes the mirror baryons in an adiabatic distribution. In
this configuration, the mirror matter forms a dark plasma that is pressure supported while it remains
hot enough to stay ionized. However, as we shall see, the distribution quickly evolves to become
isothermal, on a timescale dictated by the diffusion timescale in the adiabatic profile.

In computing the mirror halo profiles, we will assume that mirror hydrogen and helium are fully
ionized. The fraction of partially or fully recombined mirror baryons is far too small to affect the
calculation of mirror density and temperature profiles. It does however have an important impact
on the various cooling mechanisms considered in Section 3.2.1. We will therefore self-consistently
determine the actual degree of ionization consistent with the computed mirror baryon profiles in Sec-
tion 3.1.4. We define the average mass of the mirror matter particles at any location in the halo as

m̄(~r) ≡
∑

i ni(~r)mi∑
i ni(~r)

, (3.6)

where i runs over mirror hydrogen and helium, and also over the electrons. Approximating mĤe =

4mĤ, the resulting local average mass of mirror particles in the limit of full ionization is given by,

m̄(~r) = mĤ

4

8− 5Ŷ (~r)
, (3.7)

where Ŷ (~r) is the local mirror helium mass fraction.
Initially, the mirror baryons and electrons are well-mixed, so that m̄ has the same value m̄halo

everywhere in the halo. The value of m̄halo, the average mirror particle mass over the whole halo,
can be obtained from Eq. (3.7) by assuming that the total mirror helium mass fraction follows the
cosmological average Ŷp(4Ĥe),

m̄halo = mĤ

4

8− 5Ŷp(4Ĥe)
. (3.8)
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We now determine the distribution of mirror particles in the adiabatic configuration. We start from
the observation that in both the adiabatic and isothermal configurations the mirror baryons satisfy the
condition of hydrostatic equilibrium in the gravitational background of the CDM distribution,

dP

dr
= −GMCDM(r)ρ(r)

r2
. (3.9)

Here P (r) and ρ(r) are the local pressure and density of the mirror particles, which are related by
their equation of state. The density ρ(r) can be determined from the local number densities of the
mirror particles.

The next step is to determine the average energy of a mirror particle prior to cooling. Initially,
mirror DM and the primary component of DM are well-mixed. Since the primary component of DM
dominates the gravitational potential of the halo, a small density of mirror matter would arrange itself
in exactly the same distribution as the primary component if the mirror particles were collisionless. In
this scenario, the average energy of a mirror particle would be −(3/2)Tvir, with Tvir/m̄halo ∼ 10−7,
see Table 1. The dominant effect of collisions between the mirror particles is just to redistribute their
energy amongst themselves, so that their total energy is conserved, up to the small fraction of energy
that is used to ionize the mirror atoms. The cooling timescale is long compared to the timescales
for convection or diffusion. This means that for mirror particles in an adiabatic or isothermal halo,
the average energy per particle (the sum of kinetic and potential energy) is still given by −(3/2)Tvir

minus the average ionization energy. We now use this fact, together with the condition of hydrostatic
equilibrium, Eq (3.9), to determine the distribution of mirror particles in an adiabatic halo prior to
cooling.

Initially the mirror baryons are uniformly mixed, so that Ŷ (r) is equal to the cosmic value
Ŷp(

4Ĥe) and m̄ constant throughout and equal to m̄halo. In the adiabatic regime, the mirror baryons
obey the equation of state P = Aργ with γ = 5/3 for a monoatomic gas, where A is a con-
stant independent of position. The total number density n(r) is related to the local density ρ(r)

as n(r) = ρ(r)/m̄halo. The ideal gas law m̄haloP (r) = ρ(r)T (r) then yields,

ρ(r) =

(
Am̄halo

T (r)

) 1
1−γ

, (3.10)

which relates the density profile to the temperature. Hydrostatic equilibrium then allows us to relate
the temperature at an arbitrary point in the halo to the temperature at the center,

T (r) = T (0)−Gm̄halo

(
γ − 1

γ

)∫ r

0

MCDM(r̃)

r̃2
dr̃ . (3.11)

The temperature at the center of the distribution T (0) is obtained by requiring that the average total
energy of a mirror particle in the halo is−(3/2)Tvir, up to small corrections arising from the ionization
energies of the atoms.

The adiabatic distribution quickly becomes isothermal, on timescales dictated by the diffusion
process in the adiabatic profile. We can estimate the diffusion timescale by focusing on scattering
between ionized X̂ = Ĥ+, Ĥe

+,++
, which can transfer heat more efficiently between ions than X̂ê
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scattering. The scattering cross section between X̂’s can be estimated as σ ∼ α2/T 2. For diffusion
with a free streaming length λFS ∼ (ρmirror σ/m̄halo)−1, the number of scatterings involved in mov-
ing in a random walk across a distance L can be estimated as N ∼ (L/λFS)2. Since the time it takes
to undergo N scatterings is of order t ∼ NλFS/vX̂ , the characteristic timescale for diffusing through
a distance L is given by,

tdiffusion(r, L) ∼ ρmirror σ

m̄halo vX̂
L2 . (3.12)

The diffusion timescale in the adiabatic profile depends only modestly on r and is in the range ∼
106− 108 years for L ∼ 10 kpc. It follows that the adiabatic gas quickly reaches thermal equilibrium
and arranges itself in an isothermal distribution. We will therefore use the isothermal mirror halo
distributions in our discussion of cooling in the next section.

We now determine the distribution of mirror matter in an isothermal halo prior to the onset of
cooling. The isothermal halo is at a constant temperature T = Tiso, but Ŷ (r) and m̄(r) are now
spatially dependent since constituents with different atomic weights settle at different distances from
the center.

For an isothermal distribution, the hydrostatic equilibrium condition Eqn. (3.9) applies separately
for different gas components X . Charge separation due to the different masses of mirror nuclei and
electrons occurs on scales of the Debye length, which is negligible on galactic scales. It is therefore an
excellent approximation to define the two dominant components of the mirror baryon distribution to be
X̂ = {Ĥ+ + ê−, Ĥe++ + 2ê−}, which allows us to only consider gravitational forces when solving
for hydrostatic equilibrium. Applying the ideal gas law for each of these two components gives a
partial pressure PX that is (1 + QX̂) times higher than the pressure for neutral mirror hydrogen or
helium atoms, whereQX̂ = 1 (2) for Ĥ+ (Ĥe++) [98]. The solution to Eqn. (3.9) for each component
is therefore

nX̂(r) = nX̂(0) exp

[
−GmX̂

Tiso

1

1 +QX̂

∫ r

0

MCDM(r̃)

r̃2
dr̃

]
. (3.13)

The number densities nX(0) at the center of the halo and the temperature Tiso are determined from
rall and Ŷ , and the condition that the average energy of mirror particles in the halo is −(3/2)Tvir

minus the energy used to ionize the mirror atoms. The isothermal distribution has a greater density
of matter near the center of the halo than the corresponding CDM distribution. The corresponding
reduction in the gravitational potential energy results in an increase in temperature, so that Tiso is a
factor of about 2 larger than the the virial temperature Tvir.

3.1.3 Results

As we have seen, the gas of mirror particles quickly evolves to reach thermal equilibrium, and arranges
itself in an isothermal distribution. We will therefore use the isothermal mirror halo distributions as
the basis for our discussion of cooling. In general, the form of the isothermal distribution depends
on rall, v̂/v and Ŷp(4Ĥe). However, the dependence of the mirror baryon profile on rall is simple;
the density scales proportionally with rall as long as the mirror sector contribution to the gravitational
potential can be neglected. Similarly, the effect of v̂/v on the distribution is very minor for values

– 11 –



Scenario (NFW)
Tiso

eV

v�
km/s

(χH+ , χHe+ , χHe++)
ρCDM

GeV/cm3

ρmirror

GeV/cm3
1
rall

ρmirror
ρCDM

Ŷ�

SM Baryons
rall = 0.01

173 197 (1, 1.7× 10−7, 1) 0.5 0.12 1.29 0.96

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 0.75

309 230 (1, 4× 10−7, 1) 0.5 0.004 0.77 0.992

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 0

142 253 (1,−,−) 0.5 0.0019 0.39 0

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 1

369 249 (−, 3× 10−7, 1) 0.5 0.0021 0.42 1

Scenario (Burkert)
Tiso

eV

v�
km/s

(χH+ , χHe+ , χHe++)
ρCDM

GeV/cm3

ρmirror

GeV/cm3
1
rall

ρmirror
ρCDM

Ŷ�

SM Baryons
rall = 0.01

145 181 (1, 2× 10−7, 1) 0.5 0.12 1.22 0.95

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 0.75

263 212 (1, 5× 10−7, 1) 0.5 0.0039 0.78 0.99

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 0

119 231 (1,−,−) 0.5 0.0021 0.42 0

v̂
v = 3, rall = 0.01,

Ŷp(
4Ĥe) = 1

311 229 (−, 4× 10−7, 1) 0.5 0.0023 0.46 1

Table 2. Isothermal halo parameters at r = R� = 8 kpc for some benchmark mirror baryon scenarios.
v� is the mean velocity of mirror baryon constituents following a thermal distribution of temperature Tiso.
Temperature and ionization is constant throughout the halo. For each Ŷp(4Ĥe) separately, the local mirror
helium fraction Ŷ�, local mean velocity v�, and the local 1

rall

ρmirror

ρCDM
are almost independent of v̂/v and rall, see

text for discussion. As the halo cools, Ŷ� will be reduced as mirror helium sinks to the bottom of the gravity
well. The SM comparison scenario corresponds to evaluating the mirror baryon profile for v̂/v = 1, rall =

0.2, Ŷp(
4Ĥe) = 0.25. This is presented to compare mirror halo parameters to a SM-like halo evaluated under

the same assumptions, but does not represent the actual SM baryon distribution today.

in the range of interest. However, the dependence on the mirror helium fraction Ŷp(4Ĥe) is non-
trivial, and we therefore focus on illustrating this. To this end, we show the profiles for three different
MTH benchmark points. For each benchmark point the values of v̂/v = 3 and rall = 0.01 are
held fixed, but we consider three different values of the helium fraction, Ŷp(4Ĥe) = 0.75 (close

– 12 –



NFW Burkert

0.01 0.10 1 10 100
10-6

10-4

0.01

1

100

r (kpc)

ρ
(G
eV

/c
m
3
)

0.01 0.10 1 10 100
10-6

10-5

10-4

0.001

0.010

0.100

1

r (kpc)

ρ
(G
eV

/c
m
3
)

0.01 0.10 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

r (kpc)

Y

0.01 0.10 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

r (kpc)

Y

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

r (kpc)

λ
/λ
m
ax

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

r (kpc)

λ
/λ
m
ax

CDM SM Baryons ���� � / � = �� �
⊙
= ���� Yp(4H

e) = 0 Yp(4H
e) = 0.75 Yp(4H

e) = 1

Figure 1. Top: Density profile for the mirror halo benchmarks in Table 2, evaluated in the background of
the NFW or Burkert CDM Profile. Middle: Mirror helium mass fraction Ŷ (r) as a function of r. Bottom:
mass density per spherical shell λ = 4πr2ρ(r), normalized to its maximum value for each profile. This shows
the distance where most of the constituent atoms are situated. The SM comparison scenario corresponds to
evaluating the mirror baryon profile for v̂/v = 1, rall = 0.2, Y = 0.25. This is presented to compare mirror
halo parameters to a SM-like halo evaluated under the same assumptions, but does not represent the actual SM
baryon distribution today.
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to the BBN prediction for the asymmetrically reheated MTH scenario [59]), and the limiting cases
of Ŷp(4Ĥe) = 0 and Ŷp(

4Ĥe) = 1 (pure mirror hydrogen and helium). To serve as a basis for
comparison, we also compute a profile representative of SM baryons, corresponding to the MTH
parameters Ŷp(4Ĥe) = 0.25, rall = 0.2 and v̂/v = 1.

Table 2 summarizes the isothermal mirror baryon halo parameters at the location of our Sun,
while spatial distributions are shown in Fig. 1. We define

Ŷ� = Ŷ (R�) (3.14)

v� = v0(R�) (3.15)

to be the local values of the mirror helium fraction and mirror baryon velocity dispersion respectively.
Temperature and ionization are constant throughout the halo, and both mirror hydrogen and helium
are almost completely ionized. The local mean velocity v� is comparable to, although somewhat
higher than, the canonical CDM halo expectation of ∼ 220 km/s. The local density of mirror baryons
differs from rall · ρCDM by an O(1) factor. For Ŷp(4Ĥe) 6= 0, 1, the local mirror helium fraction Ŷ�
is highly temperature dependent. A reduction in the halo temperature by a factor of two could reduce
Ŷ� to almost zero as the region of helium-dominance, see Fig. 1 (middle), retreats towards the center
of the gravity well. Therefore, any variation in the halo results in a large change in the local value of
Ŷ�.

The four chosen benchmarks are representative of the behavior in the MTH framework. For
each Ŷp(4Ĥe) separately, the local values of Ŷ�, v� and (1/rall)(ρmirror/ρCDM), as well as the halo
temperature Tiso, are relatively insensitive to the values of v̂/v and rall. 3 On the other hand, the
dependence of the profiles on Ŷp(4Ĥe) is nontrivial. In particular, the SM-like value, Ŷp(4Ĥe) =

0.25, is close to optimal for concentrating mirror baryons near the galactic center, with larger or
smaller values leading to puffier profiles. As we shall see, this interesting coincidence has important
implications for the cooling rates.

3.1.4 Mirror Baryon Ionization Fractions

Before the onset of cooling, the mirror halo is sufficently hot that the mirror baryons are very close
to fully ionized.4 However, the small fraction of partially or fully recombined mirror helium and
hydrogen is important for non-bremsstrahlung cooling processes. We therefore now discuss how to
determine the degree of ionization for the computed mirror baryon profiles.

In general, we wish to determine the local ionization fractions assuming some local temperature
and number densities of mirror hydrogen and helium. If the conditions of detailed balance are sat-
isfied, as in the early universe, these ionization fractions can be obtained from Saha’s equation [79].
However, mirror halos are usually optically thin, meaning that photons emitted from bremsstrahlung

3Small differences arise due to the increased ionization energies corresponding to higher values of v̂/v, resulting in
slightly lower temperatures for higher values of the mirror Higgs vev. However, this effect is too minor to affect our
discussion.

4If this were not the case, the dependence of the mirror plasma heat capacity on ionization would have to be taken into
account.

– 14 –



or atomic cooling processes escape the galaxy. In such a scenario, the ionization fractions are deter-
mined, not from Saha’s equation, but from the ratios of ionization and recombination rates.

The local ionization fractions are defined as ratios of number densities for individual atom species,

χĤ+(r) =
nĤ+

nĤ0 + nĤ+

χ
Ĥe

+(r) =
n

Ĥe
+

n
Ĥe

0 + n
Ĥe

+ + n
Ĥe

++

χ
Ĥe

++(r) =
n

Ĥe
++

n
Ĥe

0 + n
Ĥe

+ + n
Ĥe

++

. (3.16)

Solving the equation dnĤ+/dt = 0, assuming no photoionization and neglecting double-ionization
and double-recombination processes yields,

χĤ+ =
〈σion(Ĥ0)v〉

〈σion(Ĥ0)v〉+ 〈σrec(Ĥ+)v〉
, (3.17)

where σion(Ĥ0) and σrec(Ĥ+) are the relevant thermally averaged ionization and recombination cross
sections. Similarly, solving dn

Ĥe
+/dt = dn

Ĥe
++/dt = 0 for helium leads to,

χ
Ĥe
{+,++} =

〈σ
ion(Ĥe

0
)
v〉〈σ{rec(Ĥe

++
), ion(Ĥe

+
)}v〉

〈σ
ion(Ĥe

0
)
v〉〈σ

ion(Ĥe
+

)
v〉+ 〈σ

ion(Ĥe
0
)
v〉〈σ

rec(Ĥe
++

)
v〉+ 〈σ

rec(Ĥe
++

)
v〉〈σ

rec(Ĥe
+

)
v〉 .

(3.18)

The averaged cross sections 〈σv〉 are computed assuming a thermal distribution of the initial state
electrons and neglecting the motion of the relatively slow atoms. Ref. [99] recently summarized the
various ionization, recombination and cooling cross sections and rates for dissipative DM with one
nucleus-like and one electron-like constituent. These expressions can be directly applied to mirror
hydrogen, with the mirror Rydberg energy given by Ryd = (13.54 eV) × (v̂/v). For mirror helium,
it is a reasonable approximation to treat the participating electron as if it were bound in a hydrogen-
like atom with some effective charge Zeff . We therefore employ the same expressions for the cross
sections as for the hydrogen-like atom, but with the substitution Ryd = (24.48 eV) × (v̂/v) for He0

and Ryd = (54.17 eV) × (v̂/v) for He+. For the isothermal profile in the optically thin regime,
ionization is trivially constant throughout the halo, since the thermally averaged cross sections do not
depend on density.

We discuss the optical depth of the mirror halo in Section 3.2.2 to verify that Rydberg energy
photons escape and hence detailed balance does not apply. This justifies our use of ionization and
recombination cross section ratios to determine the ionization fractions χi. These cross sections
also give ionization and recombination timescales for the different mirror atomic species, shown as
magenta and cyan lines in Figs. 2 and 3. The high degree of ionization in the halo is reflected by
the very short ionization timescale compared to the other timescales in the system (including the
recombination timescale) in regions where most of the mirror matter is concentrated.
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3.2 Mirror Baryon Cooling

We now discuss various cooling mechanisms that can cause the mirror halo to loose pressure support
and collapse, potentially leading to disk formation. This would have a dramatic effect on the prospects
for direct and indirect detection of the twin subcomponent of DM [100–103]. Cooling occurs through
the emission of mirror photons produced in the scattering of mirror particles. In Section 3.2.1 we
discuss the most important cooling processes, which include bremsstrahlung and various atomic pro-
cesses such as ionization, recombination and collisional excitation. If the cooling timescale is shorter
than the age of the universe, which we take to be 14 Gyr, there is a possibility that the twin particles
have condensed into a disk. In Section 3.2.2 we discuss the optical depth of the mirror halo, and verify
that the photons produced in these cooling processes escape from the galaxy.

The cooling timescale tcool that we evaluate is to be compared to the other two relevant timescales;
the current age of the universe tuniverse and the dynamical or convection timescale set by the CDM
halo, tconvection, which is of order 108 − 109 years. If tcool � tuniverse, the mirror baryon halo has
not yet had time to cool significantly since the formation of the Milky Way, and is likely to still be
close to its original halo distribution. At the other extreme, if tcool � tconvection within some radius
r < rcollapse, the halo will lose pressure support inside that radius and start to undergo catastrophic
collapse, which may result in the formation of a disk. The size of such a disk would be expected to
be of the same order as rcollapse, but as we discuss in Section 3.3, it is very difficult to extrapolate
this result directly to the mirror baryon distribution today. Finally, if tconvection � tcool � tuniverse,
the outcome is even more uncertain. The halo initially cools gradually without loss of pressure sup-
port. As the temperature drops, the cooling timescale decreases and the halo may eventually reach the
aforementioned regime where tcool � tconvection within some radius. Whether this happens depends
in part on how efficiently the halo maintains an isothermal profile during the cooling process, since
cooling occurs predominantly via photon emission from the inner regions. These complications make
quantitative predictions about the mirror baryon distribution today challenging. Nevertheless, our
analysis will still reveal important quantitative and qualitative information that serves to illuminate
the range of possibilities we must consider for direct detection.

3.2.1 Cooling Timescales

We first consider the cooling through the emission of massless mirror photons that are produced
through Compton scattering of mirror electrons off the background mirror CMB photons, êγ̂ → êγ̂,
or through bremsstrahlung emission, êX̂i → êX̂iγ̂, where X̂i = (Ĥ

+
, Ĥe+, Ĥe++). Both processes

lead to energy loss of the mirror electron. If the mirror photon escapes the halo without being reab-
sorbed, and if ê and X̂i remain in thermal equilibrium, then X̂i and ê cool adiabatically together.

We first determine if the equilibrium condition is satisfied. The time for X̂i and ê to reach thermal
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equilibrium, tieq, has been estimated as [82, 104],

tieq ≈
mX̂i

mê

2
√

3πα̂2
em

(
3Tiso

mê

) 3
2

[
nê log

(
1 +

v4
êm

2
ê

α̂2
emn

2/3
ê

)]−1

, (3.19)

≈ 6× 107 yr
(
mX̂i

1 GeV

)(
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mê
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nê
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emn

2/3
ê

)]−1

.

We find that for the parameter range of interest, the characteristic equilibration times for all X̂i are
much less than the age of the universe. As we shall see, the time scale of equilibration is also much
shorter than the characteristic cooling timescales.

We can obtain an expression for the ratio of the rate of energy loss per unit volume through
Compton cooling to the initial energy density in mirror baryons and electrons [105],

− dU/dtCompton
3
2Tiso

(∑
nX̂i + nê

) ≈ 64π2α̂2
em

135

nê∑
nX̂i + nê

T̂ 4(z)

m3
ê

(3.20)

≈ 1

1.6× 1013 yr

(
T̂ (z)

4 K

)4(
me

mê

)3

.

Here T̂ (z) denotes the temperature of the mirror CMB photons at redshift z. The summation is over
the various ions, X̂ = (Ĥ

+
, Ĥe+, Ĥe2+). The ratio of number densities is determined in terms of

Ŷp(
4Ĥe) in the limit that the mirror halo is fully ionized. We find from this that for the relevant range

of redshifts, z . O(10), the time scale of Compton cooling is greater than the age of the universe,
and we do not consider this process further.

Cooling via bremsstrahlung emission is much more efficient. The corresponding time scale is
given by [99]

tbrem(r) ≈ 35/2

29/2
√
π

∑
nX̂i + nê

nê
∑
Z2
i nX̂i

m
3/2
ê T

1/2
iso

α̂3
em

(3.21)

(see also [105, 106]). The relevant number densities are obtained from the profiles computed in the
previous section. We find that in the parameter range of interest, the timescale associated with cooling
through bremsstrahlung emission can be less than the age of the universe in the dense inner regions
of the galaxy.

In addition to energy loss via bremsstrahlung, mirror electrons in the halo can also lose energy
through atomic processes that involveO(Ryd) energies, such as ionization5 (ê−+ X̂i → X̂+

i +2ê−),
recombination (ê−+X̂+

i → X̂i+ γ̂), and collisional excitation (ê−+X̂i → ê−+X̂∗i → ê−+X̂i+ γ̂).
For all these processes, recent estimates of the relevant cross sections and energy loss rates can be
found in [99], and we adapt them for use with singly- or doubly-ionized helium as described in

5The collisional ionization comes from a free electron impact that ionizes a formerly bound electron, taking energy from
the free electron. The temperature of the particles is therefore lower after the ionization.
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Section 3.1.4. We find that in the inner regions of the galaxy, the cooling timescale from atomic
processes can be less than the age of the universe. In principle molecular cooling processes can also
play a role [107], but given the high degree of ionization in the mirror halo, we neglect them in our
simple analysis.

Based on this discussion, we can make some observations about the dependence of the cooling
rate on the parameters of the MTH.

• We find that the dependence of tcool on the electroweak VEV in the twin sector is quite modest
in the v̂/v ∼ 1−5 range of interest. Near the SM value of 1, bremsstrahlung cooling dominates.
For MTH-like values of 3− 5, the larger mirror electron mass and ionization energies give rise
to a small but important neutral atom population, which makes collisional cooling processes
dominant. This compensating behavior explains the insensitivity of cooling time scales on the
(mirror-) Higgs vev, and at our level of precision v̂/v is not important to our discussion.

• The cooling time scale scales inversely with the number density of mirror particles, tcool ∼ r−1
all ,

so that lower mirror baryon densities are associated with slower cooling. This is because the
cooling processes arise from the collisions of mirror particles, and their rates go down if the
number density of mirror particles is reduced.

• Cooling depends nontrivially on the mirror helium fraction Ŷp(4Ĥe), with the SM-like value
of Ŷp(4Ĥe) being near-optimal for cooling, and other values near 0 or 1 cooling much less
efficiently. This can be traced back to our finding that SM-like values of Ŷp(4Ĥe) lead to the
most tightly packed profiles.

Since the SM particles are much more abundant than their mirror counterparts, and because Ŷp(4Ĥe)

is near the optimum value for cooling, we can immediately conclude that mirror baryons cool much
slower than the SM baryons. However, determining how the the cooling rate compares to the convec-
tion timescale requires explicit calculation for each profile. We discuss these results in Section 3.2.3.

3.2.2 Optical Depth

In the discussion of cooling and ionization above, we assumed the mirror halo was optically thin,
so that mirror photons produced in the various cooling processes escape the galaxy without being
recaptured. We now justify this assumption. The two most important processes that lead to absorption
or scattering of mirror photons in the halo are Thomson scattering, ê−γ̂ → ê−γ̂, and photoionization,
X̂iγ̂ → X̂+

i ê
−. The mean free path of a photon with respect to Thomson scattering is given by,

`T =
1

σT nê
=

3m2
ê

8πα̂2
emnê

. (3.22)

The corresponding expression for photoionization takes the form,

`X̂ =
1

σphotoX̂
nX̂

, (3.23)
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Figure 2. Timescales in the mirror halo for equilibration between mirror electrons and atoms (green), ion-
ization (magenta), recombination (cyan), as well as bremsstrahlung cooling (black) and collision, ionization
and recombination cooling (solid red total, various dashings individual), compared to the convection timescale
dictated by the CDM halo (blue) and the age of the universe (thick grey line). The diffusion timescale over two
length scales (L = r and L = 10 kpc) is also shown (orange), but this scale is not required to be small for
thermal equilibrium in the already isothermal halo. The SM-like isothermal comparison halo is compared to
our three MTH benchmark points from Table 2 assuming an NFW CDM profile.

where X̂ = Ĥ0, Ĥe
0,+

. The photoionization cross section is given by [99],

σphotoX̂
(ω) =

25π2α̂7
emm

2
ê

3ω4

e−4(arctan τ)/τ

1− e−2π/τ
, (3.24)

where ω is the mirror photon energy and τ ≡ (ω/ω0−1)1/2, where ω0 is the equivalent of the Rydberg
energy for the atom, as discussed in Section 3.1.4.

The mean free path for photoionization, `X̂ , is much larger than the size of the galaxy. This allows
us to neglect photoionization for the remainder of the discussion. The optical depth from Thomson
scattering, however, can be smaller than the halo size in the dense inner regions. However, this does
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Figure 3. Same as Fig. 2, but assuming the Burkert CDM profile.

not significantly impede the cooling efficiency. The average fractional energy loss of a mirror photon
with energy ω scattering once with a mirror electron at rest (a good approximation since ω is typically
of order T or of order Ryd, both of which are much smaller than mê) is ω/mê. After n scatters, the
average energy of a mirror photon that began with initial energy ω0 is given by,

ωn ≈
mêω0

mê + nω0
(3.25)

The number of times the photon scatters before traveling the distance d required to leave the halo can
be estimated from a random walk, d ∼ √n `T , assuming the photon has an initial energy∼ T <∼ Ryd.

We find that for the range of MTH parameters of interest, v̂/v ≥ 3 and rall ≤ 0.1, the mirror pho-
tons lose very little of their energy before leaving the halo. This is true for both the NFW and Burkert
CDM profiles. Therefore, this has no significant effect on our discussion of cooling. The mirror halo
is therefore optically thin, justifying our derivation of the ionization fractions in Section 3.1.4.

Even for SM-like densities, the attenuation is at most ∼ 10% for photons emerging from the
innermost regions of the halo, which does not significantly affect the cooling timescales. We also

– 20 –



find that the attenuation of photons leaving the galaxy remains insignificant if the isothermal halo
temperature is lower by a factor of a few compared to Tiso, the initial temperature of the adiabatic
halo. Therefore, the halo continues to remain optically thin even as cooling progresses.

3.2.3 Results

Figs. 2 and 3 show the cooling rates from bremsstrahling andO(Ryd) processes (collision, ionization
and recombination) as a function of distance from the galactic center for the NFW and Burkert profiles.
These cooling rates are to be compared to the convection timescale and to the age of the universe.

We begin by noting that the SM-like profile cools much faster than the mirror benchmark sce-
narios. This is primarily due to the fact that Ŷp(4Ĥe) = 0.25, the near-optimal value for cooling,
and also the relatively high density compared to our rall = 0.01 MTH benchmarks. The fastest cool-
ing timescale tcool = tcool(collision) drops below the convection timescale for r < rcollapse ≈ 10kpc.
Baryons within this radius lose pressure support and start collapsing. The size of rcollapse is roughly
consistent with the observed size of the Milky Way visible disk.

The mirror baryon profiles with rall = 0.01 all cool significantly less efficiently than the SM
profile, owing to their lower density and different value of Ŷp(4Ĥe). Initially, the cooling timescale is
much longer than the convection timescale, but still lower than (or close to) the age of the universe.
This means that the mirror halo cools gradually without loss of pressure support. However, if the
average temperature in the entire halo (or just the inner 10 kpc or so) drops by a factor of∼ 2 compared
to its initial value, the cooling time scale in the inner region will drop below the convection timescale
for r < rcollapse ∼ few kpc. We have determined this via direct computation of the isothermal profile
at various temperatures. This suggests that if the mirror halo eventually collapses, rcollapse would
only be about half as large as the corresponding value for the SM profile. This leads us to posit that if
the mirror baryons do form a disk, it is likely to be significantly smaller and younger than the visible
baryonic disk of the Milky Way.

The cooling time scale scales inversely with the number density of mirror particles, tcool ∼ r−1
all ,

so that lower mirror baryon densities are associated with slower cooling. This means that if the mirror
baryon mass fraction rall lies below some critical value, the mirror particles in the Milky Way do not
undergo significant cooling, so that their distribution today remains in the form of an ionized halo.
With our assumptions, we find this critical value to be rall ∼ 10−2. However, varying Tiso by a factor
of 2 in either direction alters the critical value of rall by 2 orders of magnitude, and so there are large
uncertainties.

These observations hold for both NFW and Burkert CDM halos. It seems clear that although
cooling is significantly less effective in the mirror halo than for the SM, there is still the possibility of
forming a dark disk. However, extrapolating these results to the mirror baryon distribution today is
not simple. We discuss this in the next section.

3.3 Resulting Mirror Baryon Distribution Today

The above analysis gives some idea of how a mirror matter component in our Milky Way might have
behaved during the early stages of galaxy formation. This simple approach can yield useful quantita-
tive information in the limit that the cooling rate is slow compared to the lifetime of the universe, or if

– 21 –



complicated astrophysical processes can be neglected, as would be the case in a dissipative DM model
that does not possess an analogue of nuclear physics [107]. In the MTH model with very small mirror
DM fraction rall . 10−2, the cooling rate is so low that the mirror matter distribution would still be
close to its original isothermal profile today. Unfortunately, for larger mirror DM fractions, cooling
is significant and we expect that feedback from astrophysical processes in the mirror sector cannot be
neglected. In this case, our only firm conclusion is that it is not possible to quantitatively predict the
mirror matter distribution at the present time. Even so, we can organize the possible outcomes for the
distribution of the mirror component in a useful manner. This will enable us to study the prospects for
direct detection in Section 4.

Naively, sufficient cooling in the halo should lead to the formation of an accretion disk. We have
shown that cooling in the mirror sector, while significantly less efficient than in the visible sector, can
still lead to a loss of pressure support. The existence of the visible disk implies sufficient angular
momentum for disk formation, and also a relatively quiet merger history so that the creation of a dark
disk would not be disrupted. However, in the visible sector, disk formation cannot be quantitatively
reproduced without detailed magnetohydrodynamic (MHD) N -body simulations [86–90]. The size
of the disk and the density profile of the SM baryons depend sensitively on astrophysical feedback
processes.

The mirror sector in the MTH model, although similar to the SM in many respects, is expected
to have its own version of nuclear physics. Mirror protons and neutrons will form elements up to
mirror helium [59] and possibly heavier elements as well, but obtaining precise predictions about nu-
clear spectra, binding energies and reaction rates is extremely difficult. While it therefore seems quite
likely that “mirror stars” [108–112] would form, possibly giving rise to spectacular observational sig-
natures [63–66], their distribution and characteristics, challenging to predict even if the microphysics
were fully understood, is presently unknown. The details of mirror-baryonic feedback are therefore
expected to be very different from the SM, making it very challenging to perform reliable MHD N -
body simulations of the mirror sector.6 For appreciable DM fractions rall & 10−2, we therefore have
to consider a range of possibilities for how the mirror matter distribution could look like today.

Our aim is to parametrize the possible distributions of mirror matter in our stellar neighborhood.
This will be the most useful approach when considering direct detection signatures in the next section.
To this end, we define the parameter,

r� =
ρmirror(R�)

ρCDM(R�)

∣∣∣∣
today

(3.26)

which parametrizes the fractional contribution of mirror matter to the total density of DM in our local
neighborhood. Below, we define two benchmark local mirror matter distributions, one optimistic and
one pessimistic for direct detection, which bracket the range of possibilities and allow us to make

6This is in marked contrast to mirror DM models with an exact Z2 symmetry [74, 77, 78, 113], for which SM astrophysics
can be more directly applied to the dark sector. Dissipative DM was recently studied in simulations [114], but in a very
different scenario featuring two nearly degenerate DM states, and without the kinds of feedback processes that arise from
mirror star formation.
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quantitative statements about the prospects for discovering mirror matter. For each benchmark, we
look to express the direct detection limits in terms of a bound on r�.

1. Halo-Like: This assumes that mirror matter either

(a) does not collapse into a disk due to inefficient cooling, or

(b) does not collapse into a disk due to strong heating processes that keep the halo hot, or

(c) does collapse into a disk, but that the Sun is outside of the disk radius. The outer portions
of the mirror matter distribution could still have a diffuse halo-like form, which has an
analogue in the SM. Star formation causes the Milky Way disk to be baryon-depleted, but
recently those missing baryons have been discovered at large distances from the center of
the Milky Way [81], (see also [115]).

To represent this possibility, we choose a benchmark mirror DM distribution that is essentially
that of conventional CDM, with local velocity dispersion v� ≈ 220 km/s, the same as that of the
CDM halo at the Earth’s location [116]. This is not exactly the same as the velocity dispersion
obtained from the local temperature in our isothermal mirror halo solutions (see Table 2), but
we choose the standard CDM value of v� = v0 for ease of reach comparison with other DM
scenarios. Unlike CDM, we do not cut off the distribution at the galactic escape velocity vgalesc ≈
544 km/s in the galactic frame [117], since mirror matter is not collisionless. The velocity of
the Earth relative to the halo is taken to be vE ≈ 233 km/s. The local mirror matter density is
not fixed, but it seems reasonable that r� is of the same order as the cosmological value rall. We
consider the limiting cases that the local distribution of mirror baryons is either fully ionized or
fully neutral, though the former is more likely if the mirror matter is in a hot halo.

2. Disk-Like: This assumes that the mirror matter collapses into a disk, and that the Sun is inside
that disk. Assuming that the dark disk is spatially aligned with our own, a pessimistic assump-
tion is that the DM velocity dispersion is the same as that of stars and gas in our local stellar
neighborhood, leading to v� = 20 km/s [116, 118]. Assuming no relative motion of the dark
disk with respect to the Sun, the only motion of the Earth relative to the mirror matter would be
due to the Earth’s rotation around the Sun with velocity vE = 30 km/s. The local DM density
is very difficult to estimate. On the one hand, collapse into a disk could concentrate the DM
and could lead to r� � rall. On the other hand, mirror star formation and shedding of angular
momentum during disk formation could deplete free mirror baryons from the disk. We will
state direct detection constraints in terms of the unknown r� in the next section. However, as
long as the local DM fraction is within two orders of magnitude of the cosmic average value,
the direct detection bounds on the couplings of DM to the SM derived under the assumption
r� = rall will be accurate at the level of an order of magnitude. Just as for the halo, we will
consider two possibilities for local ionization, either fully ionized or fully neutral.

For simplicity we assume that even in the disk-like configuration, the local mirror matter dis-
tribution is approximately thermal. Of course, local mirror astrophysics could violate this as-
sumption while introducing correlations between local ionization and temperature (which is
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certainly the case in the SM). However, the naive assumption of a thermal distribution, while
also allowing for various possible states of ionization, will be sufficient to demonstrate the range
of possible outcomes for direct detection.

Studies of star motion in the Milky Way can be used to constrain the amount of dissipative DM
that forms a disk [84, 119, 120]. Recently, results from the Gaia survey [119, 120] have set
an upper bound on disk DM to be at most a few percent of DM in the Milky Way. This limit
assumes that the dark disk has thickness less than about 100 pc and exhibits a radial profile
similar to the SM disk. It also assumes that most of the DM component of which the disk is
composed resides inside the disk. If the disk is thicker than about 200 pc, the GAIA constraints
lose sensitivity. In our mirror sector, we do not know the radial profile or the height of the disk,
if any.7 Furthermore, even if rall = 1%, it is unlikely that all of the mirror matter would end
up in the disk, just as all the SM baryons do not end up in the visible disk. Therefore the Gaia
constraints do not impose a robust constraint on rall, or even on r�, the fractional contribution
of mirror matter to the local DM density, in the MTH framework.

3. Nothing in our Neighborhood:

One could in principle imagine that the entire mirror halo collapses into the center of the galaxy,
and that no appreciable abundance is left in our stellar neighborhood. However, the fact that a
significant fraction of SM baryons reside outside the disk makes this a somewhat implausible
scenario. Nevertheless, it is worth keeping in mind that even a local mirror matter abundance
that is significantly reduced compared to the galactic average could still lead to a direct detection
signal.

Even so, it is amusing to consider that the central black hole of our Milky Way has a mass of
∼ 106M�, which is of order 10−6 of the mass of the full DM halo. Given the approximate
nature of our cooling estimates, one might envisage the possibility that the central black hole
was formed from a mirror matter halo that collapsed relatively slowly and adiabatically within
about a billion years or so, without significant mirror star formation or loss of pressure support.
(A subdominant dissipative DM component that could seed central black hole production via
gravithermal collapse has previously been considered, for example in [121–124].) However, it
is far beyond the scope of this paper to carefully examine this possibility.

With the maximally pessimistic option (3) being somewhat unlikely, the information at our dis-
posal does not allow us to say whether the halo-like option (1) or the disk-like option (2) is more
favored. We therefore examine direct detection in both of these scenarios, noting that they represent
an optimistic and pessimistic scenario respectively from the point of view of direct detection rates. We
expect that the true direct detection prospects are likely to lie somewhere between these two extremes.

7One might try and estimate the disk height as was done in [82], but this is not appropriate given the likely importance
of feedback in our mirror sector.
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4 Direct Detection of sub-nano-charged Mirror Matter

Current cosmological constraints allow up to about 10% of the DM density to consist of mirror matter
in the MTH framework [59]. In the near future, improved measurements of large scale structure
are expected to be able to constrain this fraction to the sub-percent level. In this section we discuss
how an even more subdominant component can still give rise to distinctive signals in direct detection
experiments, which may allow this class of theories to be distinguished from other models.

Given the large uncertainties involved in the cooling of the halo discussed in the previous section,
we focus on the limiting cases of a mirror DM distribution that is either halo-like or disk-like, and
either fully ionized or fully atomic. Our analysis finds that by combining the results of different
direct detection experiments, it may be possible to differentiate between these different possibilities
for the mirror matter distribution and ionization. Furthermore, it may be possible to discern the multi-
component nature of mirror DM, and thereby distinguish this class of models from other theories.

In the MTH, the SM and mirror sectors interact through the Higgs portal. Mirror DM can there-
fore scatter off SM particles through Higgs exchange. Unfortunately, this interaction is far too small
to allow for direct detection of mirror hydrogen or mirror helium nuclei. This can be easily seen
by comparison to the FTH scenario [40], in which the mirror tau is a potential candidate for weakly
interacting massive particle (WIMP) DM [48, 49]. For masses below 10 GeV, the mirror tau-nucleon
direct detection cross section is . 10−45cm2, which is below the neutrino floor and already very chal-
lenging to detect. The coupling of mirror protons to the Higgs is an order of magnitude smaller than
that of the mirror tau. This, together with the lower mirror baryon relic density, makes it clear that
Higgs exchange is not expected to generate an observable direct detection signal in the foreseeable
future. Similarly, possible contributions to the scattering via scalar twin-bottomonium exchange [50]
do not increase the cross section above the neutrino floor.

The only other renormalizable interaction between the two sectors allowed by the gauge sym-
metries is a kinetic mixing term between the hypercharge gauge boson of the SM and its mirror
counterpart,

ε

2cos θW
BµνB

′µν . (4.1)

At low energies this leads to kinetic mixing between the SM photon and its mirror counterpart (for
a review, see e.g. [125]). Since both U(1) gauge groups are unbroken, mirror baryons acquire an
electric charge proportional to ε, and can be detected in electron recoil (ER) and nuclear recoil (NR)
direct detection experiments through photon exchange.

It is crucial for the viability of the MTH framework that the hidden and visible sectors remain
out of equilibrium with each other after asymmetric reheating has taken place. Avoiding recoupling
of the mirror sector at temperatures of order a few MeV via eê scattering leads to an upper bound on
the kinetic mixing parameter [60],

ε . 10−9 . (4.2)

In the MTH model, no kinetic mixing is generated through 3-loop order [1], and therefore even such
small values of ε are radiatively stable. Therefore, this bound can naturally be satisfied provided that
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the contributions to ε from UV physics are also small8.
In general, the size of ε depends on details of the UV completion of the MTH model, but in

the asymmetrically reheated scenario, it has to satisfy Eq (4.2). Encouragingly, gravity-mediated
interactions between the two sectors at the Planck scale are expected to generate ε ∼ 10−13 [61].
DM with a tiny electric charge, of order 10−9 or less, may therefore constitute a key feature of MTH
models. Such sub-nano-charged DM cannot be probed at colliders or fixed-target experiments [125],
but provides a natural sensitivity goal for direct detection experiments, in particular if the expected
size of the gravity-mediated contributions to ε is realized.

It is worth emphasizing that several constraints that have been applied to millicharged DM in
the past are not applicable to the MTH scenario. It has been argued that any subcomponent of DM
with a detectable electric charge will be expelled from the disk by galactic magnetic fields [126,
127], and so cannot give rise to a direct detection signal. However, this argument does not apply
in the case of the MTH because, just like SM ions, the twin ions radiate and interact with each
other with large cross sections and quickly dissipate the energy they obtain from the magnetic field.9

DM carrying a sizable unbroken dark charge might also be expected to be severely constrained by
Bullet Cluster measurements, since the long-range Coulomb interaction induces instabilities in the
DM plasma [129]. However, the small DM mass fractions we consider, rall . 10%, means the MTH
framework is not affected by these constraints.

4.1 Local Mirror Baryon Ionization and Velocity Distribution

We will follow the road map laid out in Section 3.3 to study the prospects for direct detection of
mirror DM in the MTH framework. We focus on the limiting cases when the mirror matter is either
in a halo-like distribution or has collapsed into a disk. The local mirror DM fraction r�, defined as
per Eq. (3.26), is the parameter that direct detection searches constrain or measure. For the local DM
density we take ρCDM(R�) ≈ 0.3 GeV/cm3. Note that this is slightly different from the value of
ρCDM(R�) ≈ 0.5 GeV/cm3 assumed in the simulated CDM profiles used in the previous section.
The value of 0.3 GeV/cm is used for ease of comparison with various existing direct detection limits,
but its precise value does not meaningfully affect our discussion.

The signal also depends on the local mirror helium mass fraction Ŷ�. Note that, in general, this
can be very different from the cosmic value of the helium fraction Ŷp(4Ĥe) (for Ŷp(4Ĥe) 6= 0, 1), as
can be seen in Table 2. It is hence necessary to consider different possibilities for Ŷ� even if the cosmic
value of Ŷp(4Ĥe) is close to the asymmetrically reheated MTH expectation of ∼ 0.75. Therefore, we
consider three benchmark values for our sensitivity estimates; Ŷ� = 0, 1, and 0.75. For each case, we
derive sensitivities for the local r� in the natural range of MTH parameters, v̂/v ∼ 3− 5.

We focus on the limiting cases that the mirror matter in our local neighborhood is either fully
ionized or fully atomic. Intermediate ionizations, although possible, do not significantly change our

8There is also a constraint on ε arising from the distortions in the CMB that result from energy transfer between the two
sectors at temperatures below O(100) eV, through scattering of the residual e and ê. However, this effect is suppressed by
the temperature asymmetry between the SM and mirror sectors, resulting in a weaker bound on ε than the one in Eq (4.2).

9From Eq. (3.2) of [126], the relaxation time of twin baryon scattering is only of order 100 years, which is much shorter
than the time scale τacc for the momentum increase due to the galactic magnetic field. Also see the discussion in Ref. [128]
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conclusions regarding the range of sensitivity. The mass fractions of mirror hydrogen and helium in
our local neighborhood are

rĤ,� = (1− Ŷ�)r� , rĤe,� = Ŷ�r� ,

In the limit of complete ionization the mass fraction contributed by free mirror electrons is given by,

rê,� = r�

(
mê

mĤ

)[
1− Ŷ�

2

]
. (4.3)

The direct detection signal from mirror matter can then be determined once the local mirror baryon
velocity dispersion v� and the velocity of the Earth relative to the mirror baryons vE are specified.
Since, in general, mirror particles scatter many times with each other before they have a chance to
escape the galaxy, this distribution is not cut off at the galactic escape velocity vesc.

An important feature of multi-component DM whose subcomponents are in thermal equilibrium
with each other is that the individual components Ĥ, Ĥe and ê have very different velocity dispersions
that depend on their masses,

v�i = v�

√
m̄�
mi

= v�

√
m̄�
mĤ

√
mĤ

mi
, i = Ĥ, Ĥe, ê , (4.4)

Here m̄� ≡ m̄(R�) ∼ O(mĤ) is the average mass per mirror particle near the location of the Earth,
and is fully determined in terms of Ŷ� and the local ionization. For the Ŷ� = 0.75 benchmark the
mirror hydrogen velocity dispersion is close to the standard v�, but only half that big for mirror helium
and enhanced by a factor of 20-30 for free mirror electrons (if present). As we shall see, these fast
mirror electrons are a promising target for direct detection.

With these ideas in mind we now specify the four scenarios for which we will determine the
direct detection signal.

1. Ionized Halo: χĤ+ = χ
Ĥe

++ = 1, v� = 220 km/s, vE = 233 km/s.
In this scenario, mirror electrons will be very fast, v0ê ∼ 6000 km/s, and can lead to spectacular
signals at ER detectors. Mirror hydrogen and helium can both show up in ER and NR detectors,
and can potentially be distinguished from each other.

2. Ionized Disk: χĤ+ = χ
Ĥe

++ = 1, v� = 20 km/s, vE = 30 km/s.
This case is similar to the halo, but with much lower v� and vE. As a result, all recoil energies
are reduced, and mirror baryons become invisible to NR detectors. Mirror electrons now have a
velocity distribution similar to that of standard CDM in a halo. While mirror electrons can still
be detected in ER experiments, ER detection of the slow mirror nuclei would require detectors
with much lower threshold than what is likely to be available in the near future.

3. Atomic Halo: χi = 0, v� = 220 km/s, vE = 233 km/s.
As compared to the ionized halo, the velocity dispersions of the mirror baryons are only slightly
different (due to the absence of free electrons), and so NR detection of Ĥ, Ĥe proceeds almost
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identically. ER detection of mirror baryons is suppressed by a mirror atomic form factor, and
there is no separate signal from mirror electrons. Note that a mirror matter distribution that
survives in the halo-like state until today is expected to be very hot and therefore fully ionized.
Although we believe that this distribution is rather unlikely, we include it for completeness.

4. Atomic Disk: χi = 0, v� = 20 km/s, vE = 30 km/s.
A very challenging scenario without NR signals (just as in the case of the ionized disk), and
also without an ER signal from free electrons. Mirror baryons only show up in ER detectors
with very low recoil, with a rate that is further suppressed by the mirror atomic form factor.
Direct detection of this scenario may require ultra-low-threshold ER experiments, and may not
be possible in the near future.

We see that the ionized halo offers the most promise for direct detection, while the atomic disk is by far
the most pessimistic. The true sensitivity is expected to lie somewhere between these different limiting
cases. Fortunately, the sensitivity of direct detection is highly complementary to astrophysical probes
of dark mirror baryons. In particular, dark disk scenarios are most likely to lead to the formation
of mirror stars, which may provide an alternative discovery channel [63–66]. White dwarf cooling
bounds are also most sensitive for disk-like mirror baryon distributions, probing ε as low as 10−12 −
10−11 for a DM fraction of 10% [62].

The plasma-like nature of this DM component and its coupling to ordinary matter via the pho-
ton portal, which causes cross section enhancements at low momentum transfer, give rise to several
complications. The most important of these is capture of mirror particles in the Earth. This can po-
tentially affect the direct detection signal in two distinct ways. Firstly, a captured population of mirror
nuclei could collisionally shield direct detection experiments from incoming mirror particles [130].
Secondly, in the case of the accumulation of a net mirror charge in the Earth, the resulting electrostatic
repulsion could result in a suppression of the flux of incoming mirror particles that carry same charge,
along with a reduction in their velocities. The sizes of these effects depends on the number of captured
mirror particles of various species. This in turn depends, not just on the various capture processes,
but also on the evaporation of captured mirror particles from the Earth and the Debye screening of the
accumulated mirror charge by the ambient mirror plasma.

We perform a detailed study of the effects of mirror matter capture on direct detection in Ap-
pendix A, for kinetic mixings in the range of interest, ε <∼ 10−9. We find that the captured mirror
nuclei are primarily composed of Ĥe, since the evaporation of Ĥ is much more efficient. Mirror
electrons are ejected extremely efficiently from the Earth, and so the Earth eventually acquires a net
positive mirror electric charge from the excess Ĥe++. This net charge is efficiently screened by the
ambient mirror plasma within a few 100 km of the Earth’s surface. Our investigation is, to the best
of our knowledge, the first such study to take the effects of this Debye screening into account. Our
analysis shows that collisional shielding never plays a significant role in suppressing direct detec-
tion of mirror matter in our framework. The effects of electrostatic shielding are also negligible for
ε . 10−11. For larger values of the kinetic mixing parameter, ε & 10−10, electrostatic shielding can
only modestly weaken the projected bounds on the kinetic mixing parameter ε by less than 50% (25%)
for mirror helium (hydrogen), while the mirror electron signal is unaffected or slightly enhanced. For
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r� ∼ 0.01, we find that future experiments probe values of ε much smaller than 10−10 and are there-
fore unaffected. Our sensitivity projections for ε

√
r� from mirror nuclear recoils will therefore have

at most a factor of 2 uncertainty, and only if r� is so small that the sensitivity boundary lies near
or above ε ∼ 10−10. The mirror-plasma effects of capture warrant further study, particularly in the
context of more general dissipative DM models. However, since they do not affect our conclusions
for MTH models, we neglect them in our analysis of direct detection below.

It is also possible for the self-interaction between two mirror particles in the solar system to result
in one of the two particles becoming gravitationally bound in the Sun’s gravitational well. However,
for r� . 0.1, the scattering length for two mirror baryons is so much larger than the size of the solar
system that this effect is unlikely to be important. Finally, focusing of mirror DM in the gravitational
wells of the Sun and Earth has the effect of increasing its local velocity at the Earth’s surface. The
low-velocity tails of distributions dominate capture, and so we take the speed gain when falling into
the Earth’s gravitational well into account in Appendix A, but neglect all such effects in our direct
detection calculations. Therefore, our sensitivity estimates below are somewhat conservative with
regard to this effect.

4.2 Direct Detection via Nuclear Recoils

We first consider the direct detection of mirror DM via nuclear recoils. We begin by reviewing the
basic kinematics involved in the scattering of sub-nano-charged DM off nuclei. We then determine
the reach of nuclear recoil experiments in the MTH framework.

4.2.1 Review

We begin by computing the cross section for a DM particle X of mass mX , mirror electric charge
QX and kinetic mixing parameter ε scattering off a single SM proton of mass mp. Since the particles
being scattered are nonrelativistic, the velocity of the incoming DM particle satisfies vX � 1 in the
lab frame. This then implies Er � mX , where Er is the recoil kinetic energy of the target particle
after the collision. The matrix element for the Xp → Xp process, averaged over initial and summed
over final particle spins is given by

|M|2 = 4e4ε2Q2
X

m2
X

E2
r

(4.5)

(This formula is applicable to both electron and nuclear scattering.) The corresponding differential
scattering cross section10 is given by,

dσp
dEr

=
2πα2

emε
2Q2

X

mpv2
XE

2
r

. (4.6)

This is to be contrasted with the case of WIMP DM, where nuclear scattering via a contact operator
leads to a differential cross section that is independent of the recoil energy Er. A typical collision

10Note that the total integrated cross section
∫ Emax

r
0

dσp/dEr is divergent, reflecting the infrared singularity expected in
Rutherford scattering. In direct detection experiments this divergence is regulated by the minimum detectable recoil energy.
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Figure 4. Overview of current direct detection exclusion limits (shaded regions for Xenon10 and LUX) and
the most relevant limit projections (lines) on sub-nano-charged DM, assuming the DM is distributed in a fully
ionized, single-component standard halo. These limits do not directly apply to the MTH model due to the
different velocity distribution and ionization of mirror baryons. ρX/ρDM refers to the fraction of DM that is
made up by the particular constituentX . Current Xenon10 limits from [132]. LUX [133] limits from [134]. We
derived SuperCDMS NR limit projections using information from [135]. ER limit projections: SENSEI [136]
limits from [134]. Superconducting aluminum target with 1 kg·year exposure from [137], Graphene target with
1 kg·year exposure from [138],

with sub-nano-charged DM therefore produces much less recoil than a typical WIMP collision. The
maximum nuclear recoil energy for a given DM velocity in the target rest frame is given by,

Emaxr =
2mpm

2
Xv

2
X

(mp +mX)2
. (4.7)

Eqns. (4.6) and (4.7) can be applied to scattering off nuclei N in the usual way, by replacing mp with
mN and multiplying the LHS of Eq. (4.6) by Z2F 2(Er), with F being the Helm form factor [131].
The mass range of interest for mirror hydrogen and mirror helium DM in the MTH model is from
about 1 − 5 GeV. Mirror electrons are too light to be detected via NR but can show up in ER
experiments.

For completeness and ease of comparison to previously computed limits, we first consider the
case of the standard collisionless single-component DM halo. For DM masses in the GeV range, the
largest possible recoil energies are O(100 eV) on silicon, germanium or xenon targets. Most direct
detection experiments sensitive to nuclear recoil search for WIMPs with masses above∼ 10 GeV and
have energy thresholds in the keV range, severely limiting their sensitivity to sub-nano-charged DM.
The next-generation SuperCDMS SNOLAB detectors [135] are the exception, with nuclear recoil
energy thresholds as low as 40 eV.11 Using the information provided in [135] on minimum thresh-

11Both the HV and iZIP detectors are also sensitive to electron recoil, but present thresholds are too high to be useful
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olds, signal efficiency and nuclear recoil spectra of backgrounds after imposing selection criteria, it
is straightforward to compute exclusion limit projections for sub-nano-charged DM from the Super-
CDMS SNOLAB Si/Ge HV/iZIP detectors.12 The Ge HV detector has the best sensitivity due to
its low 40 eV threshold, and we show that limit projection as the black curve in Fig. 4. We stress,
however, that the limits shown in Fig. 4 cannot be directly applied to the MTH model even in the case
of an ionized halo, because they do not take into account the fact that the velocity distributions of the
mirror particles are different from that of a standard collisionless CDM species.

4.2.2 Nuclear Recoils in the Mirror Twin Higgs

It is straightforward to determine the limits on the MTH in the cases of ionized or atomic halos or
disks, after taking into account their different velocity distributions as explained in Section 4.1. The
projected sensitivity of SuperCDMS HV Ge to mirror hydrogen and helium is shown in Fig. 5, for
the ionized halo and ionized disk scenarios. For local r� ≈ 0.01, mixings as small as ε ∼ 10−11

can be probed in the ionized halo case. Note that these experiments have greater sensitivity to mirror
helium than to mirror hydrogen. For the ionized disk, mirror baryon recoil energies are two orders of
magnitude lower than for the halo, since velocities go down by roughly a factor of ten. As a result,
there is no NR signal. The momentum transfer for a NR collision with Ĥ or Ĥe is q ≈ √2mNEr ∼
O(1 − 10 MeV), which is much larger than the energy scale corresponding to the size of a mirror
atom â0 = (αemmê)

−1 ∼ (v̂/v × 4 keV)−1. Therefore, the NR sensitivities for atomic disk and halo
scenarios are very similar to the corresponding ionized cases.

4.3 Direct Detection via Electron Recoils

We now turn our attention to the direct detection of mirror DM via electron recoils. We first review the
basic kinematics and existing detector technologies before computing the reach of these experiments
in the MTH framework.

4.3.1 Review

DM direct detection via electron recoil has been studied in a variety of detector materials, including
noble gases [132, 139, 140], semiconductors [134, 136, 139, 141, 142], scintillators [143], graphene [138],
and superconductors [137, 144]. ER experiments have much lower energy thresholds than NR detec-
tors and therefore have the potential to set very stringent limits on sub-nano-charged DM. Sensitivity
projections for light vector mediators are typically expressed in terms of an effective interaction cross
section σ̄e, which is related to the photon mixing parameter via the relation (see e.g. [134]),

σ̄e ≡
µ2
Xe

16πm2
Xm

2
e

|M|2q2=α2m2
e

=
16πm2

XQ
2
Xε

2

m2
e(me +mX)2α2

em

, (4.8)

for mirror DM detection. A possible exception are the fast mirror electrons in the ionized disk case, but even in that
scenario the detectors have considerable background near the lower limit of their recoil sensitivity. We discuss dedicated
semiconductor-based ER detectors in the next subsection.

12We derive these limits by assuming the given background distributions are accurate and optimizing, for each DM mass,
the choice of a single Er interval which maximizes signal significance over the background. This gives a cross section limit
that is a factor of a few better than the conservative “optimum interval method” used by [135], which does not make use of
background subtraction. Our method is appropriate for a projection of the best possible reach.
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Figure 5. Constraints on photon kinetic mixing ε from direct detection of mirror H, He and electrons at
Xenon10 (ER, existing constraint) or SuperCDMS and SENSEI (NR and ER, projected constraints) for the
ionized halo (a) and the ionized disk (b) distributions. The mirror particle masses and velocity distributions
depend on v̂/v and the mirror helium fraction Ŷ , see Section 4.1 for details. The limits for partial ionization
are very similar to the shown cases of full ionization. Note that the disk limits do not take the increased local
DM density into account.

where we have made use of Eq. (4.5). Here me is the elctron mass while µXe represents the reduced
mass of the DM-electron system. Existing ER limits from Xenon10, as well as projected sensitivities
of future experiments that have been proposed, are shown in Fig. 4. Note that these limits assume a
standard single-component DM halo. To understand these limits, and how they are changed by the
different mirror matter distributions in the MTH framework, some discussion of ER kinematics and
detector technology is required.

The kinematics of DM-electron scattering is very different from DM-nuclear scattering, since for
a standard halo, the electron is both the fastest and the lightest particle in the problem. Consequently,
the typical momentum transfer in a collision is much smaller than in the case of DM-nucleus scatter-
ing, and so the fact that the electron forms a bound state in an atom or a bulk material must be taken
into account. In particular, the electron does not have a definite momentum and very large momentum
transfers q are possible. Following the discussion in [134], the energy imparted to a bound electron
can be obtained from energy conservation as

∆Ee = ~q · ~vX −
q2

2µXN
, (4.9)

where µXN is the reduced mass of the DM and the nucleus. The likelihood of a given q depends, in
general, on a (possibly very complicated and material-dependent) form factor, but is typically of the
order

qtyp ∼ µXevrel ∼ meve ∼ O(few − 10 keV) (4.10)
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where we have assumed mX � me. The relative velocity between the DM particle and the electron,
vrel, is dominated by the velocity of the bound state electron ve ∼ Zeffαem ∼ 10−2Zeff in atoms
(relevant for semiconductors, graphene and noble gases) or ve ∼ vF ∼ 10−2 in Fermi-degenerate
materials. (The effective charge Zeff is 1 for outer shell electrons and larger for inner shells.) This is
much larger than the DM velocity vX ∼ 10−3.

For GeV-scale sub-nano-charged DM the second term in Eq. (4.9) can be neglected, and the
typical energy of a scattered electron depends linearly on the DM velocity. Assuming a standard halo
profile with vX ∼ 10−3, the typical energy imparted to the SM electron from a collision with mirror
H or He is in the few eV range. For sub-nano-charged DM in a standard halo with mass closer to
that of the electron, the second term in Eq. (4.9) can no longer be neglected, and Eq. (4.10) is no
longer valid. Instead the typical electron recoil energy now scales quadratically with DM velocity,
∆Emax

e = 1
2µXNv

2
X . Then the typical energy imparted to a SM electron from a collision with a DM

particle with the mass of a mirror electron in a standard halo is only of order 0.1 eV.
With this parametric understanding of ER kinematics we now consider the various experiments

in turn and discuss their differences.

• Ionization in noble gases [132, 139, 140] (shaded red region in Fig. 4): In detectors based on
noble gases such as xenon, NR from DM collisions is detected via prompt scintillation as the
excited atom returns to its ground state (“S1” signal) as well as ionization, where the liberated
electrons are accelerated by a strong external electric field, escape the liquid phase of the de-
tector and release scintillation light as they traverse the gaseous phase (“S2” signal). These
detectors can also be sensitive to electron recoil if the S1 signal requirement is dropped. The
best current limits on sub-nano-charged DM for masses below 10 GeV were derived in [140]
(refined in [132]) using an S2-only Xenon10 dataset with a single-electron ionization thresh-
old [145]. This allows ER events to be detected as long as the collision imparts at least 12.4
eV of energy to the electron and liberates it from the outer shell. Higher energy recoils can be
distinguished by higher levels of ionization. The relatively high levels of detector specific back-
ground limit sensitivity. Current limits were obtained without a background model, assuming
all the observed events to arise from DM scattering.13

• Ionization in Semiconductors [134, 139, 141, 142] (red curve in Fig. 4): In silicon (germanium),
the minimum electron energy required to eject an electron is 1.11 eV (0.67 eV). As in noble
gas detectors, the resulting ionization(s) are picked up by accelerating the liberated electrons
in an external electric field. Detecting a single ionization is very challenging, but the SENSEI
collaboration [136, 148] was recently funded to build a 100-gram silicon detector capable of
detecting ER, with an ionization threshold that could be as low as Qth = 2, corresponding to

13While this paper was in preparation, LUX [146] and Xenon1T [147] published analyses based on searches for electron
recoils in mirror models. The LUX analysis relied on assumptions about collisional shielding that do not apply in our
case (see Appendix A). Nevertheless, it may have better sensitivity than Xenon10 to the halo case. The Xenon1T analysis
improves the reach in ε by one order of magnitude for GeV DM masses compared to Xenon10, but the projected reach of
SuperCDMS via nuclear recoil that we compute is still more sensitive. For mirror electrons in the MeV range, Xenon10 is
more sensitive than Xenon1T.
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∆Ee > 4.7 eV. The resulting sensitivity [134] is shown as the red curve in Fig. 4 for the
standard single-component halo. Note that the sensitivity extends down to DM masses in the
mirror electron range, relying on the tail of the mirror DM velocity distribution to achieve an
electron recoil above threshold.

• Scintillators [143]: An alternative path to low-threshold ER detection makes use of scintillators.
Here the experimental observable is the scintillation light emitted as the excited atoms relax to
their ground state. While this has slightly worse sensitivity than ionization in semiconductors
due to the ∼ 6 eV thresholds of the readily available scintillation materials such as NaI, it
may allow for lower backgrounds since no electric field is required to manipulate the liberated
electron.

• Graphene [138] (green curve in Fig. 4): Graphene is a very attractive target for ER DM di-
rect detection. It has an energy threshold ∆Ee & eV comparable to semiconductors, and the
momentum of the ejected electron can be directly determined without relying on secondary ex-
citations, allowing for directional DM detection as well as a very precise measurement of the
ER spectrum. Furthermore, this proposal could be realized in the near future by running the
PTOLEMY experiment [149] with bare rather than tritium-holding graphene surfaces. Achiev-
able sensitivity, calculated by [138] assuming backgrounds can be rejected, is shown as the
green curve in Fig. 4.

• Superconductors [137, 144] (blue curve in Fig. 4): A DM collision with electrons in a supercon-
ductor could disrupt a Cooper pair and create two propagating quasiparticle excitations above
the Fermi sea. The band gap for this transition is tiny, of order 10−3 eV, allowing in principle
for DM detection with extremely low thresholds. Once these excitations are produced in a large
volume superconducting substrate, they must be concentrated and collected in a small volume
absorber, and read out with sensors like Transition Edge Sensors (TES) or Microwave Kinetic
Inductance Devices (MKID). One promising approach discussed in [137], (see also [150]), is
the use of a single aluminum crystal in the superconducting state, allowing for efficient prop-
agation and collection of the produced excitations. Estimated reach for sub-nano-charged DM
with 1 kg·year of exposure is shown as the blue curve in Fig. 4 for a readout sensor dynamic
range of 10 meV - 10 eV. The solar neutrino background has been included in this sensitiv-
ity estimate, which scales linearly with ER energy in almost all of the relevant energy range.
The time scale for implementing superconductors as ER DM detectors is probably longer than
for the other technologies discussed here. The required O(1 meV) sensitivities have not yet
been achieved, though they are theoretically possible in TES and MKID sensors, and various
engineering approaches for improving sensitivity have been proposed.

Recent ideas like polar target materials [151, 152] could play an important role similar to su-
perconductors due to their very low thresholds.

Fig. 4 makes it clear that superconductors, graphene and semiconductors have comparable sensitivities
to sub-nano-charged DM in a standard single-component halo. We now discuss the role each of these
detection technologies could play in the detection of mirror baryons and electrons.
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4.3.2 Electron Recoils in the Mirror Twin Higgs

We now compute the sensitivities of ER experiments to mirror baryons and electrons for the different
benchmark distributions defined in Section 4.1. For our quantitative analysis we focus on Xenon10,
on which the best current constraints are based, and SENSEI (ionization in silicon), which serves as
an example of the sensitivity achievable in the near future. We also give a qualitative discussion of
the role that other technologies, such as graphene and superconductors, can play.

For the Xenon10 ER constraint, we compute the limits in the same manner as in Ref. [132], but
taking into account the different velocity distributions of the individual mirror electron and baryon
components.14 As is clear from the magenta curves in Fig. 5, Xenon10 already constrains the nano-
charged regime in the ionized halo scenario. The signals from mirror hydrogen and helium in this case
are not very different from those of a standard halo, leading to a bound of ε . 10−8 for r� ∼ 0.01,
as expected from Fig. 4. For mirror electrons, the situation is quite different. They would not be
detectable at Xenon10 if they exhibited a standard halo velocity distribution, due to the high single
ionization threshold of 12.4 eV compared to the typical recoil energy. However, in the ionized halo,
their increased speed allows them to easily liberate electrons from the outer shells of xenon. It is
worth noting that the kinematics of this collision are quite different from the discussion following
Eq. (4.10). Since the mirror electron is now the fastest particle in the problem, we might naively
expect qtyp ∼ mevê. However, the atomic form factor of xenon, as well as the 1/q4 suppression in
the scattering cross section, still favor momentum transfers at or below αme. Instead, the increased
mirror electron speed allows sizable ∆Ee to be generated from collisions with very low momentum
transfer, at or much below αme. The same 1/q4 cross section dependence then leads to a huge rate
enhancement for fast mirror electrons, allowing Xenon10 to set limits on ε of order 10−10 for the
ionized halo with r� ∼ 0.01.

Xenon10 does not set limits on the ionized disk scenario; mirror electrons now have a speed
comparable to that expected from a standard halo, and as shown in Fig. 4, this is not sufficient to ionize
xenon. Mirror baryons are slower by an order of magnitude, leading to a corresponding decrease in
recoil energy, which is also insufficient to ionize xenon.

We repeat this calculation for the ionization of silicon in the SENSEI experiment [136], using
the public QEDark code made available by the authors of [134] to compute the signal rate, which
includes the fully pre-computed crystal form factor. The corresponding background-free ER limit
projections (4 expected events) are shown as red lines in Fig. 5. The discussion of kinematics and rate
enhancement for fast mirror electrons is very similar to the case of xenon. An important difference
is that, due to the lower ionization threshold in silicon, the signal from fast mirror electrons in the
ionized halo is even more enhanced than in xenon, making it possible to see them even in the ionized
disk scenario.

Mirror baryons can be discovered in SENSEI for ε & 10−11 in the ionized halo with r� ∼ 0.01,
while mirror electrons give rise to a detectable signal even for tiny ε ∼ 10−14, a truly remarkable
sensitivity that can probe mixings even smaller than the expected gravity-mediated contributions [61].

14We are very grateful to Tien-Tien Yu for supplying us with the necessary code, which includes the atomic form factors
for xenon.
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In the ionized disk scenario, mirror electrons are detectable for ε & 10−12. This will allow a very ef-
fective probe of the sub-nano-charged regime. Mirror baryons in the ionized disk are very challenging
to detect due to their low recoil, both in NR and ER experiments. This represents a great opportunity
for a future superconductor or polar material based ER detector, which would be able to probe this
scenario very effectively due to its tiny meV thresholds.

Future graphene-based detectors [138] are likely to have a sensitivity comparable to SENSEI for
the same exposure due to their similar ionization energies. However, graphene has the unique ability
to detect the direction of the DM impact, which could provide another useful handle for diagnosing
the mirror baryon distribution. For example, in the ionized disk scenario as described in Section 4.1,
we do not expect significant annual modulation in the strength of the signal, but to the small extent
that directional bias exists in the impact of mirror electrons, events would be sensitive to the direction
the Earth is currently heading around its orbit. This would constitute a striking signal of a mirror
baryonic disk.

What if the mirror particles form atoms either in a disk or a halo? Since the typical momentum
transfer in the collision of a mirror atom with a nucleus is much larger than the binding energy of
a mirror atom, the NR signal is expected to be very similar to that in the ionized case. However,
the situation with regard to ER signals is very different. As discussed above, the typical momentum
transfer in collisions between mirror baryons and a visible bound electron is qtyp ∼ few - 10 keV,
see Eq. (4.10). The characteristic size of mirror atoms is given by the mirror Bohr radius, â0 =

(αemmê)
−1 ∼ (v̂/v×4 keV)−1. Since the momentum transfer corresponds to length scales similar to

or larger than a mirror atom, the total scattering rate will be suppressed by mirror atomic form factors.
(The velocity distributions would also change slightly due to the absence of free mirror electrons
but, just as for NR, this is a less important effect.) For qtyp � â−1

0 , this cross section suppression
is ∼ â4

0 q
4
typ [153]. Compared to the ionized case, the corresponding reduction in sensitivity to ε is

roughly

â2
0 q

2
typ ∼

(v
v̂

)2
(
ve
αem

)2

. (4.11)

The first term is∼ O(0.1) for our parameters of interest, while ve/αem is∼ O(1) for outer ionization
electrons and in superconductors. Therefore, the ε sensitivities for the atomic disk/halo are at most an
order of magnitude or so weaker than the corresponding sensitivity for the ionized disk/halo. Com-
pared to the ionized case, the ER spectrum will also be modified. Since the scattering proceeds via
the dipole moment of the mirror atom, there is no separate mirror electron signal.

The atomic halo would therefore be clearly discoverable via NR and ER detection of mirror
baryons, though with reduced ER sensitivity. Both the different signal rate and recoil spectrum shape
can be used to distinguish this scenario from the ionized halo or disk. The atomic disk is an extremely
challenging case. The absence of free and fast mirror electrons means that only a future superconduc-
tor or polar material based detector with very low threshold has a chance to detect mirror atoms. Even
then the rate would be suppressed by DM atomic form factors. That being said, the absence of events
in all other detectors would make a discovery at such a low-threshold detector a striking signal of an
atomic disk.
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ionized halo ionized disk atomic halo atomic disk

ER Ĥ, Ĥe ε ∼ 10−8 no signal AFF: ε ∼ 10−7 no signal
ER ê ε ∼ 10−10 no signal no signal no signal

Table 3. Summary of existing constraints on dark photon mixing ε from direct detection of mirror baryons
and electrons via electron recoil at Xenon10. Here we assume r� ∼ 1% for all cases. Limits scale with r−1/2

� .
Note that for a given cosmic mirror baryon abundance rall, the local density r� is likely higher in the disk cases
compared to the halo. In the left three columns, the reason for the sensitivity reduction compared to the ionized
halo is given. AFF = Atomic Form Factor, RR = Reduced Recoil, see text for details.

ionized halo ionized disk atomic halo atomic disk

NR Ĥ, Ĥe ε ∼ 10−11 RR: no signal ε ∼ 10−11 RR: no signal
ER Ĥ, Ĥe ε ∼ 10−11 RR: SC only? AFF: ε ∼ 10−10 RR and AFF: SC only?
ER ê ε ∼ 10−14 ε ∼ 10−12 no signal no signal

Table 4. Summary of projected sensitivities to dark photon mixing ε from direct detection of mirror baryons
and electrons via nuclear recoil at SuperCDMS HV Ge, and via electron recoil at SENSEI (or a hypothetical
superconductor detector). Here we assume r� ∼ 1% for all cases. Limits scale with r−1/2

� . Note that for a
given cosmic mirror baryon abundance rall, the local density r� is likely higher in the disk cases compared
to the halo. In the left three columns, the reason for the sensitivity reduction compared to the ionized halo is
given. AFF = Atomic Form Factor, RR = Reduced Recoil (meaning detection may require a superconductor or
polar material based detector) , see text for details.

4.4 Characterization of the Dark Sector

In Tables 3 and 4 we summarize the present limits and projected future sensitivities of NR and
ER direct detection experiments to mirror dark matter. In the case of an ionized halo, the existing
Xenon10 constraints on ER already probe some of the nano-charged regime, but the other scenarios
are presently unconstrained. With future experiments, the ionized halo, ionized disk and atomic halo
distributions can all be effectively probed, with clearly distinct patterns of detection. This may allow
these different distributions to be distinguished. The atomic disk scenario is however very challeng-
ing, and will rely on the future development of superconductor-based ER detectors with extremely
low thresholds.15 Once that capability exists, it can also be discovered, and distinguished from the
other mirror matter distributions. Directional detection in graphene-based ER detectors, as well as
the characteristic annual modulation of any detected signal at different detectors, would provide ad-
ditional information that could help resolve any remaining degeneracy between different distributions
of the sub-nano-charged DM component.

We close this section with the argument that a detailed study of the distribution of recoil energies
in signal events can be used to further characterize the dark sector. In particular, once the nature of

15Direct searches of mirror stars [63–66], which are more likely to form if the mirror baryons have collapsed into a cold
disk, may provide a more immediate probe of this scenario.

– 37 –



0.1 0.2 0.3 0.4 0.5

100

500
1000

5000
1×104

5×104
1×105

Enr (KeV)

dN dE
r
(K
eV

-
1
)

���������

������

�� �� ��������

Background

Mirror H (mX = 1.3 GeV)

Mirror He (mX = 5.1 GeV)

Mirror H + He

WIMP (mX = 1.3 GeV)

WIMP (mX = 5.1 GeV)

Figure 6. Recoil spectrum in the SuperCDMS SNOLAB Ge HV detector assuming ionized halo DM distri-
bution. For mirror H and He, assume local values r� = 0.01, Ŷ� = 0.75, v̂/v = 4, and ε = 3 × 10−10. We
compare to a WIMP with mX = 1.3 (5.1) GeV and σnX = 0.6 (1.1)× 10−42cm−2.

the mirror baryon distribution has been determined by correlating data from different detectors as
shown in Table 4, the detailed recoil energy spectra can potentially be used to establish that DM is
multi-component, and also to distinguish the signal from that of a primary WIMP DM component.
As a demonstration we consider mirror baryons distributed in an ionized halo giving rise to a signal
in a NR detector, such as SuperCDMS SNOLAB Ge HV. Fig. 6 shows the nuclear recoil spectra for
Ĥ and Ĥe for ε = 3 × 10−10, as well as WIMP signals of comparable statistical significance and
identical masses. This corresponds to of order a thousand signal events from mirror baryons. The
recoil spectra from Ĥ and Ĥe are clearly very different. Even though the mirror hydrogen signal
is much smaller than the mirror helium signal, their combined recoil spectrum can be distinguished
from either individual component. This can be used to establish that the mirror DM consists of more
than one type of nucleus, and allows for direct measurement of the local mirror helium fraction Ŷ�.
Furthermore, by establishing that the masses and charges of mirror hydrogen and helium are integer
multiples of each other, these experiments may be able to distinguish the mirror nature of the theory.

For comparison, we show the distribution of recoil energies that would be expected from WIMPs
of the same masses (1.3 or 5.1 GeV in this case). It is clear that the WIMP and mirror baryon signals
can also be distinguished, since the distribution of WIMP events goes out to much larger Er than the
sub-nano-charged DM component. We have further verified that given a few hundred signal events,
the nuclear recoil spectra of mirror hydrogen and mirror helium can be reliably distinguished from
that of a WIMP without any prior assumptions about the WIMP mass.

Combining and correlating data from different detectors can reveal additional information that
could help distinguish mirror DM from WIMPs. For example, in an ionized halo the fast mirror
electron signal in ER detectors would stand out because of its high recoil energies. By contrast,
a dominant WIMP-like DM component may not even produce a signal at ER experiments. Shape
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analysis of the spectrum of signal events could also reveal, for example, whether the sub-nano-charged
DM is atomic or ionized.

This study demonstrates the extraordinary power of direct detection experiments in discovering
and probing a rich dark sector. In the future, a determination of the distribution, ionization, and
multi-component nature of sub-nano-charged matter at direct detection experiments could provide a
multi-pronged verification of the mirror nature of the MTH model.

5 Conclusions

The MTH framework connects the solution of the Higgs hierarchy problem to striking cosmological
signatures from the early universe. A crucial aspect of this scenario is the likely existence of an
asymmetric mirror matter component that constitutes a subdominant but dynamically rich fraction of
DM. In this work we have studied the behavior of these relic mirror particles during galaxy formation,
and their resulting unique multi-component signatures in DM direct detection searches.

In contrast to conventional mirror matter models, the requirement of solving the Higgs hierar-
chy problem and satisfying cosmological constraints places limits on the mass and temperature of the
mirror particles. Although detailed N -body simulations incorporating magnetohydrodynamic effects
would be necessary to obtain a precise time evolution of the mirror plasma distribution, we can still
use the known properties of twin particles to estimate their cooling rates and obtain a qualitative un-
derstanding the current distribution of this DM component. We find that the mirror matter distribution
today is right near the threshold of being either halo- or disk-like, and we consider the possibility
that local mirror baryons are either fully ionized or fully atomic due to unknown mirror astrophysics.
These distinct possibilities for twin profiles today generate very distinct signals in different types of
DM detectors, assuming the twin photon mixes with the SM photon at the levels expected from grav-
itational effects [61]. Measurements at various experiments can then establish a unique fingerprint of
the twin sector, allowing us to probe its multi-component nature, ionization, local distribution, and
also MTH model parameters such as v̂/v. Our analysis shows that the relic MTH mirror particles in
the universe can give rise to distinctive signatures that are sensitive to the detailed properties of the
twin sector.

We find that direct detection is especially sensitive in scenarios in which the mirror matter re-
mains hot and distributed in the form of a halo down to the present day. This makes direct detection
complementary to signals from white dwarf cooling [62] and mirror stars [63–66]. These astro-
physical searches for mirror baryons are particularly sensitive in dark disk scenarios, since this leads
to more accumulation of dark matter in SM stars and favors the formation of mirror stars. In this
case, direct detection searches are still important but significantly more difficult. Clearly, the com-
bination of direct detection experiments and astrophysical searches greatly enhances our chances of
discovering or excluding the asymmetrically reheated MTH and other mirror matter scenarios. If
any or several of these signals were observed and correlated with the expected Higgs decay signal
Br(h→ invisible) ∼ (v/v̂)2 at the LHC or a future collider, the night sky would illuminate a picture
of naturalness that establishes the existence of the twin universe.
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Note added

While this work was being completed, the Xenon1T experiment reported an excess of a few-keV
electronic recoil events [154], which admits a variety of DM interpretations. It is interesting to note
that mirror electrons within the MTH model might be able to account for such an excess [155], due to
their higher velocity in the mirror plasma relative to mirror nuclei. However, we defer a careful study
of this possibility for future work.
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A Capture of Mirror Matter in the Earth

In this appendix we consider the accumulation of mirror matter in the Earth and its effects on direct
detection in the scenario discussed in this paper. Our analysis shows that for ε . 10−9, the accumu-
lation of mirror matter does not have a significant impact on the direct detection prospects of either
mirror nuclei or mirror electrons. The assumptions we make in this analysis are chosen such as to
overestimate the rate of capture of mirror matter, and consequently its effects on direct detection. Our
results are therefore somewhat conservative.

In what follows we study the accumulation of mirror matter for ε . 10−9, v̂/v ∈ (3, 5) and
local mirror helium fractions Ŷ� ∈ (0, 1), considering both the disk and halo distributions as outlined
in Section 4.1. The equilibrium accumulated mirror particle number densities are determined by the
rates of capture and evaporation, which in turn depend on the accumulated mirror electric charge of
the Earth and the resulting screening by the ambient mirror plasma. In our analysis we assume that all
mirror matter is fully ionized. This assumption is conservative, since capture is suppressed for mirror
atoms.

Mirror nuclei are captured by scattering off SM nuclei in the Earth. Mirror hydrogen evaporates
fairly efficiently but mirror helium accumulates, resulting in the Earth acquiring a net positive mirror
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electric charge. The resulting repulsive force arrests further capture of mirror baryons and gives rise
to an equilibrium population of captured mirror helium nuclei. Mirror electrons are mainly captured
by inelastic scattering with bound atomic SM electrons in the Earth. After being captured, mirror
electrons are very efficiently evaporated by scattering off conduction band electrons in the earth’s
metallic core. This results in an equilibrium number of captured mirror electrons that is fairly small
and quite insensitive to the number density of captured mirror helium unless the net positive charge
of the Earth from the captured mirror nuclei is very large. The total number of accumulated mirror
particles is always small enough that the capture process is dominated by interactions with SM matter
in the Earth, rather than interactions with mirror particles that have already been captured.

The positive mirror electric charge arising from the captured mirror nuclei is screened by the
ambient mirror plasma. The characteristic length scale for this screening is at most of order ∼
10−1REarth ∼ 500 km, and mirror particles that are further away from the Earth’s surface than
this do not experience a large electric field. Nevertheless, for ε & 10−10 it is very important to take
this mirror electric screening effect into account, since it greatly modifies the mirror electric potential
in the neighborhood of the Earth and thereby affects the equilibrium population of captured mirror
nuclei.

A captured population of mirror nuclei could impact direct detection in two distinct ways:

1. Collisional shielding: collisions of incoming mirror particles with the population of accumu-
lated mirror baryons could act as a shield, preventing the incoming mirror particles from reach-
ing direct detection experiments. This collisional shielding effect was taken into account by the
recent LUX analysis for Z2-symmetric mirror DM [146], based on the analysis in [130]. How-
ever, in the framework we are considering, we find that this effect is negligible for ε . 10−9.

2. Electrostatic shielding: one might expect that the accumulated positive mirror charge due to
captured Ĥe would electrostatically repulse incoming mirror nuclei, suppressing their direct
detection signal to negligible levels. However, we show that electrostatic effects only matter
for ε & 10−10 and also act to suppress the population of captured mirror particles, therefore
resulting in only a modest O(1) reduction in the signal rate at direct detection experiments.
Since the proposed experiments we consider probe far smaller kinetic mixings than 10−10 for
r� ∼ 0.01, this effect only introduces a <∼ 50% uncertainty in the projected reach for ε

√
r� if

r� � 0.01.

The projections for mirror baryon direct detection that we present in this paper are therefore at most
modestly affected by capture inside the Earth. While these effects are interesting and deserve future
study, particularly in the context of more general dissipative DM models, we are justified in neglecting
them in our analysis of direct detection in the MTH framework in Section 4.

We now proceed to discuss the capture of mirror matter, mirror plasma screening, and mirror
matter evaporation in detail. Throughout, we denote the free, or ambient, mirror particle densities
in the local mirror plasma far away from the Earth by nFi (completely determined in terms of r�
and Ŷ� for i = ê, Ĥ, Ĥe). Number densities of mirror particles captured in the Earth are denoted
nCi . We focus our discussion on the limit where the mirror baryons are entirely composed of twin
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helium, Ŷ� = 1, since their evaporation is less effective than for twin hydrogen, and consequently
their effect on direct detection is larger. Other values of Ŷ� do not qualitatively affect our conclusions.
The Maxwell-Boltzmann distributions of mirror helium and mirror electrons are determined by their
velocity dispersions, as discussed in Section 4.1. For the disk (halo) case, v�Ĥe ∼ 11 km/s (120
km/s) and v�ê ∼ 500 − 700 km/s (5000 - 7000 km/s) for v̂/v ∼ 3 − 5. We neglect the speed of the
Earth relative to the mirror plasma in this discussion, since it is not expected to qualitatively alter our
conclusions. In all cases, our baseline assumption is that mirror baryons make up 5% of the local DM
density, i.e. r� = 0.05, but we discuss how our results can be extended to more general r� values as
well.

A.1 ε . 10−11

We first estimate the effects of capture on direct detection for relatively low values of the kinetic
mixing, ε . 10−11, for which the accumulated mirror charge in the Earth is small compared to the
ambient density of the mirror plasma.

A.1.1 Capture of Mirror Helium

We begin by considering the capture of mirror helium. Depending on the velocity of the incoming
mirror particles, capture may primarily arise either through multiple soft scatterings with the material
in the Earth, or through a single hard scattering process.

For an incoming nano-charged particleX , the rate of kinetic energy loss per unit distance traveled
inside the Earth due to multiple soft scatterings is given by,

dEk
dr

= −nT
∫

dσ

dER
ERdER = −nT

∫
mXπα

2ε2Q2
XZ

2

mTEkER
dER = −nT

mXπα
2ε2Q2

XZ
2

mTEk
log

EmaxR

EminR

.

(A.1)

Here we assume that the energy loss mainly arises from Rutherford scattering with nuclei. The pa-
rameters nT , mT , and Z correspond to the number density, mass, and charge of the atoms in the
Earth representing the scattering target. The generalization to a more realistic material composition is
straightforward. The parameter ER represents the recoil energy and EmaxR its maximum value, given
by

EmaxR =
4mTmXEk

(mT +mX)2
. (A.2)

The parameter EminR denotes the infrared scale at which the finite size of the atom cuts off the inter-
action, given roughly by EminR ∼ (meα)2/mT . Assuming a constant density and composition of the
Earth and neglecting the energy dependence of the logarithm, the energy loss with distance travelled
is given by

Ek(r) = Ek(0)

√
rRutE − r
rRutE

, (A.3)
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e
(s

·c
m

3
)�

1

<latexit sha1_base64="GJznuoKN2ZuS8p8xPVTqciK3uo4=">AAACNXicbZBPSyMxGMYzuuuf7qpVj17CFqELtcyooN6KC0sPHtzFaqHTDpk0tcEkMyTvCCXMl/Li99iTe9jDinjdr7CZseCf+obAw+95X5L3iVPBDfj+b29u/sPHhcWl5cqnzyura9X1jXOTZJqyDk1EorsxMUxwxTrAQbBuqhmRsWAX8dW3wr+4ZtrwRJ3BJGV9SS4VH3FKwKGoeqIia0MtwzEB285Zng++/4wsJWmjwPiZh43i1Etq8pAOEyg1lflg7+vA7gR5VK35Tb8sPCuCqaihaZ1G1V/hMKGZZAqoIMb0Aj+FviUaOBUsr4SZYSmhV+SS9ZxURDLTt+XWOd52ZIhHiXZXAS7pywlLpDETGbtOSWBs3noFfM/rZTA67Fuu0gyYok8PjTKBIcFFhHjINaMgJk4Qqrn7K6ZjogkFF3TFhRC8XXlWnO82g/3m0Y/9Wut4GscS2kJfUB0F6AC1UBudog6i6Abdob/o3rv1/ngP3uNT65w3ndlEr8r79x88VKxA</latexit>

log10 ✏
<latexit sha1_base64="AlHIecfynoOEBTzzGo5WWd2HQWo=">AAAB+nicbVBNSwMxEM3Wr1q/Wj16CRbBU9mVgnorevFYwX5Au5RsOtuGZpMlySpl7U/x4kERr/4Sb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPypXDtpaJotCikkvVDYgGzgS0DDMcurECEgUcOsHkJvM7D6A0k+LeTGPwIzISLGSUGCsNypU+l6NB6rmzPsSa8UyrujV3DrxKvJxUUY7moPzVH0qaRCAM5UTrnufGxk+JMoxymJX6iYaY0AkZQc9SQSLQfjo/fYZPrTLEoVS2hMFz9fdESiKtp1FgOyNixnrZy8T/vF5iwks/ZSJODAi6WBQmHBuJsxzwkCmghk8tIVQxeyumY6IINTatkg3BW355lbTPa169dnVXrzau8ziK6BidoDPkoQvUQLeoiVqIokf0jF7Rm/PkvDjvzseiteDkM0foD5zPH0zPlA0=</latexit>

soft scattering
<latexit sha1_base64="tzbqUm9mmISHfvP/3rArCWHDdZI=">AAACA3icbVDLSgMxFM34rPU16k43wSK4kDIjBXVXdOOygn1AZyiZNNOG5jEkGaEMBTf+ihsXirj1J9z5N2baWWjruVw4nHMvyT1Rwqg2nvftLC2vrK6tlzbKm1vbO7vu3n5Ly1Rh0sSSSdWJkCaMCtI01DDSSRRBPGKkHY1ucr/9QJSmUtybcUJCjgaCxhQjY6Wee5gFikMtYxOc5aWtYYiiYjDpuRWv6k0BF4lfkAoo0Oi5X0Ff4pQTYTBDWnd9LzFhhpShmJFJOUg1SRAeoQHpWioQJzrMpjdM4IlV+jCWyrYwcKr+3sgQ13rMIzvJkRnqeS8X//O6qYkvw4yKJDVE4NlDccqgkTAPBPapItiwsSUIK2r/CvEQKYRtDLpsQ/DnT14krfOqX6te3dUq9esijhI4AsfgFPjgAtTBLWiAJsDgETyDV/DmPDkvzrvzMRtdcoqdA/AHzucPstCXlg==</latexit>

hard scattering
<latexit sha1_base64="qiFbuMNySCyZDhqWMeGhOtejdKc=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwISWRgrorunFZwT6gCWUymbZDJ5MwMxFKKLjxV9y4UMStP+HOv3HSZqGt53LhcM69zNwTJJwp7Tjf1tLyyuraemmjvLm1vbNr7+23VJxKQpsk5rHsBFhRzgRtaqY57SSS4ijgtB2MbnK//UClYrG41+OE+hEeCNZnBGsj9ezDzJMRGmIZemd5KWNoKpkYTHp2xak6U6BF4hakAgUaPfvLC2OSRlRowrFSXddJtJ9hqRnhdFL2UkUTTEZ4QLuGChxR5WfTGyboxCgh6sfStNBoqv7eyHCk1DgKzGSE9VDNe7n4n9dNdf/Sz5hIUk0FmT3UTznSMcoDQSGTlGg+NgQTycxfETF5YGJiUGUTgjt/8iJpnVfdWvXqrlapXxdxlOAIjuEUXLiAOtxCA5pA4BGe4RXerCfrxXq3PmajS1axcwB/YH3+AIS+l3k=</latexit>

Halo
<latexit sha1_base64="xTxCQEoGUeo9fWigBoJQ79jnauA=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN6CXnKMYB6YLGF2MpsMmccyMyuEJX/hxYMiXv0bb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4bua3n6g2TMkHO0loKPBQspgRbJ30mPW0QHXM1bRfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/OIpOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauPrMGMySS2VZLEoTjmyCs3eRwOmKbF84ggmmrlbERlhjYl1IZVcCMHyy6ukdVENLqs395eV2m0eRxFO4BTOIYArqEEdGtAEAhKe4RXePOO9eO/ex6K14OUzx/AH3ucPY9OQwQ==</latexit>

-12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.010-14

10-12

10-10

10-8

10-6

r� = 0.05
<latexit sha1_base64="zJkvzk/utEpgqwd7tCpHVrm8zc0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRSURdC0Y3LCvYBbQiTyaQdOsmEmUmhhP6JGxeKuPVP3Pk3TtsstPXA5R7OuZe5c4KUM6Ud59sqra1vbG6Vtys7u3v7B/bhUVuJTBLaIoIL2Q2wopwltKWZ5rSbSorjgNNOMLqf+Z0xlYqJ5ElPUurFeJCwiBGsjeTbtvTzvgiFnqJb5NScS9+umjYHWiVuQapQoOnbX/1QkCymiSYcK9VznVR7OZaaEU6nlX6maIrJCA9oz9AEx1R5+fzyKTozSogiIU0lGs3V3xs5jpWaxIGZjLEeqmVvJv7n9TIdXXs5S9JM04QsHooyjrRAsxhQyCQlmk8MwUQycysiQywx0SasignBXf7yKmlf1Nx67eaxXm3cFXGU4QRO4RxcuIIGPEATWkBgDM/wCm9Wbr1Y79bHYrRkFTvH8AfW5w/BWJJy</latexit>

Figure 7. Mirror helium capture rates from multiple soft scattering (solid) and single hard scattering (dashed)
processes as a function of the kinetic mixing parameter ε for r� = 0.05. This plot assumes that the net mirror
charge of the Earth is small, so that its effect on the escape velocities of mirror particles is negligible.

where rRutE corresponds to the penetration depth needed to lose all of the initial energy,
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Here vX is the mirror particle velocity when it enters the Earth, and we use the representative values
of the charge QX = 2 and mass mX ∼ 5 GeV of mirror helium as an example. The most effective
target inside the Earth is oxygen, since it is fairly abundant and light. We have checked that a more
careful integration of Eq. (A.1) yields a comparable result.

We regard a mirror nucleus as captured if it enters the Earth and loses enough energy such that
it either gets stuck inside the Earth, or emerges from the Earth with velocity less than than the escape
velocity, vesc,i. As we shall see, the Earth eventually acquires a net positive mirror electric charge
from the capture of Ĥe, and the escape velocities of mirror particles depend on the net charge. In
the absence of any net captured charge the escape velocity is the same for all species and is given by
vesc ≈ 11 km/s. If enough positive mirror charge is accumulated to overcome the Earth’s gravitational
attraction, then v2

esc,Ĥe
< 0. In this case, getting stuck inside the Earth is necessary for capture.

To quantify this, we define vcap as the maximum velocity an infalling mirror helium nucleus can
have at the time it enters the Earth if it is to be captured by soft scatterings. Substituting Ek(0) =
1
2mXv

2
cap, Ek(REarth) = max[0, 1

2mXv
2
esc,Ĥe

] into Eq. (A.3) yields

rRutE (vcap) =


(

1−
v4
esc,Ĥe

v4cap

)−1

REarth for v2
esc,Ĥe

> 0

REarth for v2
esc,Ĥe

< 0
(A.5)

For ε ≈ 10−10, in the absence of any accumulated mirror charge on the Earth, v2
cap ≈ (14 km/s)2,

while for ε ≈ 10−11, vcap is very close to vesc, meaning that only nuclei much slower than 11 km/s
far away from the Earth get captured.
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As an Ĥe++ nucleus falls towards the Earth, it gains kinetic energy 1
2mĤev

2
esc,Ĥe

, where vesc,Ĥe ≈
11 km/s in the absence of any accumulated mirror charge. Therefore, if far away from the Earth the
Ĥe++ initially has velocity v <

√
v2

cap − v2
esc, it will become bound to the Earth. The capture rate of

mirror helium from soft scatterings can therefore be estimated as ∼ nF
Ĥe
πR2

Earth〈vĤe〉 , leading to a
capture rate per unit volume in the Earth of

nF
Ĥe
R
<vcap

cap,Ĥe
∼ nF

Ĥe
R−1
Earth〈vĤe〉 . (A.6)

Here 〈vĤe〉 represents the average speed, far away from the Earth, of incoming mirror particles that
can be captured

〈vĤe〉 =

∫ √
v2cap−v2esc,Ĥe

vmin

dv vfĤe(v) . (A.7)

Here fĤe(v) is the local velocity distribution of mirror helium in the Earth frame. The lower limit of
integration vmin = 0 as long as v2

esc,Ĥe
> 0. For v2

esc,Ĥe
< 0, only particles above a certain initial

speed can even reach the Earth surface, and so vmin =
√
−v2

esc,Ĥe
.

While capture of slow mirror helium nuclei proceeds via multiple soft scatterings, capture of
Ĥe++ that enter the Earth with speed v > vcap can still proceed through hard scatterings. In this case
we estimate the capture rate by determining the probability of having a single scattering process that
takes away a significant fraction of the energy of the mirror helium nucleus.

In our estimate of the capture rate from hard scattering, we assume that the energy transfer be-
tween the incoming Ĥe and the SM nucleus in the Earth is always maximal. This is a conservative
assumption, since it overestimates the true capture rate and the resulting suppression in the direct
detection signal. For a fixed mass mT of the target nucleus, kinematics places an upper limit on the
velocities of mirror helium nuclei that can be captured through a single scattering. In particular, only
mirror helium particles with velocity v < vmax = vesc,Ĥe(mĤe +mT )/|mĤe −mT | when they enter
the Earth have a chance of getting captured. Here vesc,Ĥe is the escape velocity at the surface of the
Earth. It takes value 11 km/s in the absence of any accumulated mirror charge but is reduced if the
Earth has a net charge.

We find that Ĥe++ capture via single hard scatterings is also dominated by oxygen. We compare
the scattering length ` ∼ (σXTnT )−1 to the Earth’s radius, since we expect to have only one chance
to scatter and capture the particle. The mirror capture rate per unit volume arising from single hard
scatterings can then be estimated as

nF
Ĥe
R
>vcap

cap,Ĥe
∼ nF

Ĥe
〈σĤe O vĤe〉nO , (A.8)

where

〈σĤe O vĤe〉 =

∫ √
v2max−v2esc,Ĥe√
v2cap−v2esc,Ĥe

dv σĤe OvfĤe(v) , σĤe O ≈
4πα2ε2

m2
Ĥe

(v2 + v2
esc,Ĥe

)2
. (A.9)

The capture rates of mirror helium arising from soft and hard scattering as a function of ε are shown
in Fig. 7 for both halo and disk distributions. We see that capture by soft scattering dominates for
ε & 10−12.
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In most of our estimates, we neglect self-capture of incoming mirror helium nuclei by the cap-
tured Ĥe population already inside the Earth. It is important to understand when this is a valid ap-
proximation. Self-capture is dominated by multiple soft scatterings. We can obtain an estimate for
the penetration depth of an incoming mirror helium nucleus due to interactions with captured Ĥe by
substituting nT → NĤe/(

4
3πR

3
Earth),mT,X → mĤe, QT,X → 2, Z → 2, ε→ 1 into Eq. (A.4),

LĤe−Ĥe ∼ REarth
(

2 · 1031

NĤe

)(
vX

20km/s

)4

. (A.10)

In order for our estimates neglecting self capture to be trustworthy, capture must be dominated by
scattering off SM particles in the Earth,

LĤe−Ĥe � rRutE . (A.11)

This corresponds to the condition,

NĤe � 1031
( ε

10−10

)2
, (A.12)

which specifies the regime of validity of our estimates. It is also interesting to consider the regime
of runaway self-capture, where LĤe−Ĥe ∼ REarth and most incoming mirror helium nuclei get cap-
tured. Taking vX ∼ v�,Ĥe we see that we enter this regime if NĤe & 1030(1034) for the disk (halo)
distributions.

A.1.2 Capture and Evaporation of Mirror Electrons

In this subsection we discuss the capture and evaporation of mirror electrons in the halo and disk
scenarios. Our analysis shows that the capture of mirror electrons has a negligible effect on direct
detection for small values of the kinetic mixing, ε . 10−11.

In the halo distribution, mirror electrons have an average velocity v�,ê ∼ 7 × 103 km/s, corre-
sponding to a kinetic energy of ∼ 400 eV. This is comparable to the binding energy of inner shell
electrons in atoms. Therefore capture primarily arises from the scattering of mirror electrons with
inner shell electrons. This process is inelastic since the atom is either left in an excited state or the
electron is simply ejected from the atom leaving behind an ion, and may be accompanied by the emis-
sion of additional (mirror) photons. Although this process can result in the mirror electron losing
enough energy to be captured, the phase space for capture is very limited since the velocity of the
incoming mirror electron is orders of magnitude larger than the escape velocity from the Earth.

Since iron is the most abundant element in the Earth, for concreteness we will focus on scattering
from iron atoms in the Earth’s core. A process that can result in the loss of the required amount of
energy involves ê kicking out electrons from the 2p state of an iron atom (∆E ≈ 700 eV). We can
therefore estimate the scattering length by assuming each iron atom has 6 useful electrons for the
capture process. A detailed calculation of the capture that takes into account the details of the atomic
structure is beyond the scope of this work. We will instead place an upper bound on the number
of captured mirror electrons, where the limit is obtained by assuming that ê is always captured in
scatterings with 2p electrons regardless of the actual momentum transfer. We will later show that
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even if the bound is saturated the number of mirror electrons in the Earth is still too small to affect the
direct detection signals. From the density of iron inside the core ≈ 13 g cm−3, we can place a lower
bound on the capture length as,

`capê,Halo & (σêe6nFe)
−1 ∼ 108km

( ε

10−9

)−2
. (A.13)

We now turn our attention to the disk distribution. Here mirror electrons have velocities of order
v0,ê ∼ 6 × 102 km/s, corresponding to kinetic energies of order 3 eV. This energy is close to the
thickness of the valence band of iron below the Fermi surface. Therefore, an efficient scattering
process involves ê kicking out an electron from this band. Nevertheless the phase space for capture is
limited, since the velocity of the incoming mirror electrons is still much more than the escape velocity
from the Earth. Again, a calculation of the capture that takes into account the precise dispersion
relation of the electrons inside the metal is beyond the scope of this work. We instead estimate the
scattering length by rescaling the mean free path of the electrons in iron at room temperature [156],
for which the associated energy transfer between electrons is not far from the eV scale. We again
limit ourselves to placing an upper bound on the number density of captured mirror electrons, where
the bound is reached if ê is always captured in scatterings with conduction electrons regardless of
the actual momentum transfer. We will later show that even if the bound is saturated, the number of
captured mirror electrons is too small to affect the signal. The lower bound on the capture length of
disk mirror electrons is given by16

`capê,Disk & 107 km
( ε

10−9

)−2
. (A.14)

From the lower bound on the capture length, we can obtain an upper bound on the the capture
rate of mirror electrons per unit volume in the Earth in the halo and disk cases,

nFê Rcap,ê
<∼ nFê R−1

corev�,ê

(
Rcore
`capê

)
= nFê

(
v�,ê
`capê

)
. (A.15)

After capture, the ê has a velocity v <∼ vesc,ê, where vesc,ê is the escape velocity at the Earth’s core.
We expect that the mirror electrons will tend to thermalize with the matter in the Earth’s core. If the
net accumulated mirror charge of the Earth is small, so that the thermal velocity of the mirror electrons
is larger than their escape velocity, any captured ê are efficiently evaporated from the Earth. It is only
if the escape velocity of the mirror electrons is greater than or comparable to their thermal velocity
that there is any significant accumulation of ê.

An efficient evaporation process for the ê involves scattering off conduction band electrons in
metals. We will once again focus on iron. When scattering off mirror electrons, electrons in the
conduction band can impart energy that is comparable to the width of the valence band (∼ 0.6 eV)

16Since the iron in the earth’s core is at a higher temperature and pressure, the mean free path is expected to be some-
what shorter in the core, leading to a smaller capture length. However, as we show below, a shorter mean free path also
corresponds to more efficient evaporation of mirror electrons. Therefore, as long as the mean free paths for capture and evap-
oration are much larger than the Earth’s radius, the shorter `capê,Disk will not significantly affect the equilibrium ê abundance
in the disk case and will only decrease the abundance in the halo case.
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that corresponds to the iron temperature inside the Earth’s core (TEarth ∼ 4000−6000 K). This means
that a captured mirror electron will be promptly expelled by collision with a conduction electron unless
the net positive mirror charge of the Earth is so large that the escape velocity of ê at the Earth’s core
is greater than the thermal velocity vth,ê, which is of order 260 km/s. We can estimate the mean free
path for ê evaporation by rescaling the mean free path in Eq. (A.14) after accounting for the change of
the ê-e scattering cross section with the energies of the incoming and outgoing particles. The Fermi
velocity of electrons in iron, vF ≈ 2×103 km/s in iron, is much greater than vth,ê. Then the scattering
cross section for a fast moving electron with velocity vF to evaporate a captured mirror electron of
velocity vth,ê by injecting a recoil energy ER >∼ 1

2mêv
2
esc,ê can be estimated as

σevp ≈
4πα2ε2

m2
êv

2
F v

2
esc,ê

∝ (m2
êv

2
F v

2
esc,ê)

−1 . (A.16)

From this cross section, for vesc,ê <∼ vth,ê, we obtain an upper bound for the mean free path for evap-
oration,

`evaê,Disk & Halo
<∼ 10−1`capê,Disk . (A.17)

In the absence of significant charge accumulation, the evaporation rate of mirror electrons per unit
volume is given by

nCê Revp,ê ∼ nCê
(
vF
`evaê

)
. (A.18)

When the system is in equilibrium nFê Rcap,ê = nCê Revp,ê . From the upper bound on the capture rate
we can obtain an upper bound on the total number of captured mirror electrons,

Nê
<∼ nFê

(
v�,ê
vF

)(
`evaê

`capê

)
R3
core ∼ 1023 (Disk , Halo) . (A.19)

This bound is valid for vesc,ê <∼ vth,ê. However, since in this regime the velocity of incoming mirror
electrons is still much greater than the escape velocity, v�,ê � vesc,ê, the phase space for capture
is very limited and so the actual number of captured electrons is expected to be several orders of
magnitude less than this upper bound.

If the Earth acquires a large net positive charge the evaporation rate is exponentially suppressed
because of the much larger velocity needed to escape the Earth. Under the assumption that the mirror
electrons thermalize with the matter in the Earth’s core, Eqn. (A.18) generalizes to

nCê Revp,ê ∼ nCê
(
vF
`evaê

)
exp

(
−
mêv

2
esc,ê

2TEarth

)
. (A.20)

In equilibrium we get the upper bound,

Nê
<∼ nFê

(
v�,ê
vF

)(
`evaê

`capê

)
exp

(
mêv

2
esc,ê

2TEarth

)
R3
core ,

∼ exp

(
mêv

2
esc,ê

2TEarth

)
× 1023 (Disk, Halo) , (A.21)
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for the disk and halo cases. This bound is only saturated when the captured charge is large enough that
the escape velocity is greater than or of order the velocity of incoming mirror electrons, vesc,ê & v�,ê.
However, for ε . 10−11, we shall see that the number of captured mirror nuclei is too small to affect
the evaporation of mirror electrons.

Just as for mirror helium capture, we now determine the condition for mirror electron self-capture
to play a significant role. Assuming that the captured mirror electrons in the Earth are roughly uni-
formly distributed, the mean free path for scattering of incoming mirror electrons with the captured
population can be estimated as,

Lê−ê ∼
(

4πα2

m2
êv

4
�,ê

nCê

)−1

∼
(

1023

Nê

)
×
{

1013 km (disk)

1017 km (halo)
(A.22)

Requiring self capture to be negligible compared to scattering off SM electrons in the Earth corre-
sponds to the conditions Lê−ê � `capê,Halo, `

cap
ê,Disk. Using Eqns. (A.13) and (A.14), this translates to an

upper bound on the number of captured mirror electrons,

Nê �
( ε

10−9

)2
{

1029 (disk)

1032 (halo)
. (A.23)

We will later see that self capture is never important for kinetic mixings 10−12 . ε . 10−9 where
capture is non-negligible. (Capture is negligible for much smaller kinetic mixings.) We are even
further away from the runaway self-capture regime, corresponding to Lê−ê ∼ REarth, which is only
reached for Nê & 1032(1036) assuming a disk (halo) distribution.

A.1.3 Screening and the Escape Velocity

The Earth will eventually accumulate more mirror helium nuclei than mirror electrons and acquire a
net positive charge. This net charge is screened by the ambient mirror plasma within a short distance
of the Earth’s surface. We discuss this phenomenon here, since it can have a significant impact on the
capture and evaporation processes. To simplify the discussion, we neglect the effects of gravity on the
mirror electric potential. We have verified that including these effects does not alter our conclusions.

The mirror electric potential φ(r) close to the Earth follows the Poisson equation,

∇2φ(r) = −
∑
i

qin
C
i (r)−

∑
i

qin
S
i (r) , (A.24)

where r is the distance from the Earth center, nCi is number density of the captured mirror particle
species (dominated by i = Ĥe), and nSi is the free number density of the mirror particle species i with
mirror charge qi. This ambient but uncaptured density near the Earth reacts to the accumulated charge
to screen it, and asymptotes to the unperturbed free mirror number densities nFi far away from the
Earth. Solving Eq. (A.24) in generality is quite complicated, since the free charge and captured charge
distribution (which adjusts itself through diffusion in the Earth, Section A.1.4) are themselves func-
tions of the potential. Here we will derive a simplified solution that is conservative in the sense that
it underestimates mirror helium evaporation and therefore overestimates the equilibrium accumulated
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θv,∞
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Figure 8. On the left is an illustration of the one dimensional effective potentials for positively and negatively
charged mirror particles induced by a net captured positive charge inside the Earth (shown for Ĥe

++
as a dashed

line and for ê− as a solid line). The one dimensional effective potential for negatively charged particles exhibits
a local maximum where the repulsive force from angular momentum exactly balances the mirror electrostatic
attraction. In this case for an incoming particle to reach any point deeper than Rmax, the location of the
maximum of the barrier, the radial kinetic energy at infinity must be greater than the height of the barrier at
Rmax. For the case of positively charged particles no such barrier exists. Then, to reach any point r, it suffices
for the radial kinetic energy of the incoming particle at infinity to be greater than the effective potential at r. On
the right we illustrate our choice of coordinates for the velocity distribution.

Ĥe-abundance and its effects on direct detection. We start by expressing nSi as a function of φ, since
the free mirror-charge distributions near the Earth adjust quickly to the existence of any mirror-electric
potential. This allows us to solve for φ within our pessimistic but simplified assumptions.

It is convenient to parametrize the potential φ in terms of its contribution to the escape velocity
of a particle species i at a radius r from the center of the Earth,

v2
esc,i(r) = −2(eqiφ(r) + φgr(r))

mi
. (A.25)

As noted above we will ignore gravity in this discussion, i.e. φgr = 0. Recall that v2
esc,i < 0 signifies

a repulsive rather than attractive force on the particle. To determine nSi (r), we consider particle
trajectories that approach the Earth from far away. By calculating the fraction of this incoming flux
that reaches a distance r from the center of the Earth, we can obtain an expression for nSi (r).

We first consider all the trajectories that stretch from some large but finite r∞ to r, where r∞
will be taken to infinity at the end. We denote the speeds of the particles at r∞ and r by v∞ and
v respectively. We employ the coordinate system shown in Fig. 8, in which the expressions for the
radial and tangential velocities at r∞ and r take the form,

vr,∞ = v∞ cos θv,∞ , vr = v cos θv

vtan,∞ =
√
v2
∞ − v2

r,∞ , vtan =
√
v2 − v2

r (A.26)

For each species i ∈ (Ĥe, Ĥ, ê), these quantities are related by energy and angular momentum con-
servation,

v2 − v2
esc,i = v2

∞ , r2
(
v2 − v2

r

)
= r2
∞
(
v2
∞ − v2

r,∞
)

(A.27)
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where we have assumed that the escape velocity at r∞ is negligible.
The total radial flux of particles that enter a sphere of radius r centered at the Earth with speeds

between v and v+dv and radial velocities between vr and vr+dvr is equal to the radial flux of particles
which enter a sphere of radius r∞ with speeds between v∞ and v∞ + dv∞ and radial velocities
between vr,∞ and vr,∞ + dvr,∞, provided that the velocities satisfy the relations in Eq. (A.27). (This
assumes that there is no potential barrier in between r∞ and r that affects the flow of particles between
these two points.) We take fi(~r,~v) to be the number of mirror particles of species i that have positions
lying within a volume element d3~r about ~r and velocities lying within a velocity space element d3~v

about ~v. The spherical symmetry of the problem implies that fi(~r,~v) depends only on the radial
coordinate r, the projection of the velocity in the radial direction vr and the speed v, fi(~r,~v) =

fi(r, v, vr). This allows us to write

vr
dvr
v
v2dv

∫
fi(r, v, vr)r

2dΩdφv = vr,∞
dvr,∞
v∞

v2
∞dv∞

∫
fi(r∞, v∞, vr,∞)r2

∞dΩ∞dφv,∞ .

(A.28)
If we neglect capture inside the Earth, an identical relation holds for particles flowing outward from
r ro r∞. Integrating over all vr from vr = −v to vr = v, and φv from 0 to 2π we can find the speed
distribution of incoming particles fi(~r, v) about the point ~r,

fi(~r, v) =

∫
fi(~r,~v)vr

dvr
v
v2dφv . (A.29)

The speed distribution is related to the number density as
∫
dvfi(~r, v) = ni(~r). Because of the radial

symmetry of the problem, fi(~r, v) = fi(r, v). Performing the integration we obtain for the speed
distribution at radius r,

fi(r, v) =
1

4π

∫
fi(r, v, vr)v

2dΩdφv
dvr
v

=

=
1

4π

∫
fi(r∞, v∞, vr,∞)

r2
∞
r2

vr,∞
vr

v2
∞γ (~r∞, r, ~v∞) dΩ∞dφv,∞

dv∞
dv

dvr,∞
v∞

. (A.30)

where we have used Eq. (A.28) in the last line. Here γ (~r∞, r, ~v∞) is defined to be equal to one if a
trajectory starting at ~r∞ with velocity ~v∞ reaches radius r and zero if that is not the case. This factor
is included to account for the possibility that there is a potential barrier somewhere between r and
r∞ that prevents the flow of particles between them if their energy is too low. Spherical symmetry
ensures that

γ (~r∞, r, ~v∞) = γ (v∞, vr,∞, r∞, r) . (A.31)

This allows us to rewrite Eq. (A.30) as,

fi(r, v) =
r2
∞
r2

dv∞
dv

fi(r∞, v∞)

∫
vr,∞
vr

γ (v∞, vr,∞, r∞, r)
dvr,∞
v∞

, (A.32)

where we have assumed that that r∞ is large enough that the velocity distribution there is approxi-
mately isotropic.
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To determine γ (v∞, vr,∞, r∞, r) we consider the equivalent one dimensional problem with the
effective potential

Veff,i(r) = −1

2
miv

2
esc,i(r) +

1

2

L2

mir2
, (A.33)

whereL is the angular momentum. For mirror nuclei the force is always repulsive and so the condition
that a particle with radial velocity vr,∞ reaches a point a distance r from the center of the Earth is
given by,

1

2
miv

2
r,∞ ≥ Veff,i(r) . (A.34)

This can be rewritten as

v2
r,∞ ≥ v2

r,min ≡ v2
∞ −

r2

r2
∞

(
v2
r,∞ + v2

esc,i(r)
)
→ v2

∞ −
r2

r2
∞

(
v2
∞ + v2

esc,i(r)
)
, (A.35)

where i ∈ Ĥe, Ĥ and in the last line we have taken the r∞ → ∞ limit. We integrate Eq. (A.32) with
respect to vr,∞ with the lower limit of integration set to vr,min and find that for the nuclei,

fi(r, v) =
v2

v2
∞
fi(r∞, v∞) =

v2

v2 − v2
esc,i

fi

(
r∞,

√
v2 − v2

esc,i

)
. (A.36)

For the mirror electrons the situation is more complicated since the force is attractive, so that the
effective potential can acquire a local maximum as shown in Fig. 8. If the the trajectory is to reach
a distance r from the center of the Earth the radial component of the kinetic energy must be greater
than or equal to the effective potential at all points for which the radial coordinate R ≥ r,

1

2
miv

2
r,∞ ≥ max

R>r
Veff,i(R) (A.37)

We can rewrite this condition as,

v2
∞ − v2

r,∞ ≤ min
R>r

R2

r2
∞

(
v2
r,∞ + v2

esc,ê(R)
)
→ min

R>r

R2

r2
∞

(
v2
∞ + v2

esc,ê(R)
)
, (A.38)

where the last step is valid in the r∞ → ∞ limit. For any given v∞ we can find the radius Rmax =

Rmax(v∞) that maximizes the right hand side in Eq. (A.38) (without the restriction R > r),

∂rv
2
esc,ê(Rmax)Rmax + 2

(
v2
∞ + v2

esc,ê(Rmax)
)

= 0 . (A.39)

We now can see that γ (v∞, vr,∞, r∞, r) = 1 for the electrons when

v2
r,∞ ≥ v2

r,min ≡

 v2
∞ − R2

max
r2∞

(
v2
∞ + v2

esc,ê(Rmax)
)

for r < Rmax(v∞)

v2
∞ − r2

r2∞

(
v2
∞ + v2

esc,ê(r)
)

for r ≥ Rmax(v∞)
(A.40)

Here Rmax(v∞) corresponds to the position of the maximum of the angular momentum barrier for an
initial speed v∞ at infinity. Integrating Eq. (A.32) with respect to vr,∞, with vr,min as the lower limit
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of integration, we find for the mirror electron distribution,

fê(r, v)

fê(r∞, v∞)
=


v
v2∞

(
v − Re

√
v2 − R2

max
r2

(
v2 − v2

esc,ê(r) + v2
esc,ê(Rmax(v∞))

))
r < Rmax(v∞)

v2

v2∞
r ≥ Rmax(v∞)

(A.41)

In order to simplify the discussion we first consider a toy model in which the distribution fi(r∞, v∞)

takes the form of a delta function with speed 3
2v�,i for each species. As we shall see, this simpler

case captures the main features of the more complicated Maxwell-Boltzmann distribution. With this
we find that the number density of electrons is given by

nSê (r)

nFê
= 1 +

3v2
esc,ê

2v2
�,ê
−

Re

√
1 +

3v2esc,ê
2v2�,ê

√
1 +

3v2esc,ê
2v2�,ê

− R2
max
r2

(
1 +

3v2esc,ê(Rmax)

2v2�,ê

)
r < Rmax

0 r ≥ Rmax
(A.42)

while for the nuclei i ∈ Ĥe, Ĥ we obtain,

nSi (r)

nFi
= 1 +

3v2
esc,i

2v2
�,i

. (A.43)

Inserting this into the Poisson equation for the potential φ(r), we can rewrite it in terms of just the
captured number density and the free number density far away from the Earth,

−λ2
D∇2ϕesc(r) = −β − αHe(1− 2ϕesc)− αH(1− ϕesc)

− αe

(
1 + ϕesc −

{
Re
√

1 + ϕesc

√
1 + ϕesc − R2

max
r2

(1 + ϕesc(Rmax)) r < Rmax

0 r > Rmax

)
(A.44)

We have defined a dimensionless potential

ϕesc(r) =
eφ

Tmirror
= −

3v2
esc,i(r)

2qiv2
�,i

∀ i , (A.45)

and introduced the dimensionless parameters,

αi =
qin

F
i∑

q2
jn

F
j

for i = Ĥe, Ĥ, ê, (A.46)

β(r) =

∑
qin

C
i (r)∑

q2
jn

F
j

. (A.47)

Note that β parametrizes the size of the captured mirror charge density relative to that of the ambient
plasma far away from the Earth. Charge neutrality of the external plasma requires

∑
αi = 0. The

Debye length λD is a constant of the problem, defined as

λD =

(
4πα

∑
q2
i n

F
i

Tmirror

)−1/2

∼
( r�

0.05

)−1/2
×
{

100m (disk)
1000m (halo)

(A.48)
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The potential must vanish as r → ∞, and in fact vanishes exponentially within a Debye length of
Rmax. For r > Rmax the equation simplifies to the standard Debye-Huckel equation which has the
solution,

ϕesc(r) = ϕesc(Rmax)exp

{
−r −Rmax

λD

}
Rmax
r

for r > Rmax. (A.49)

Since λD is at most of order a few kms and much smaller than the size of the Earth, we can work in
the approximation where λD = 0 and the right hand side of Eq. (A.44) vanishes.

We can now insert the full solution at r > Rmax of Eq. (A.49) into Eq. (A.39) to find the
boundary condition at r = Rmax for the r < Rmax solution. This is justified because the full
solution is continuous and has a continuous derivative at r = Rmax. In Eq. (A.39) the derivative term
dominates in the limit that λD → 0, because the derivative of ϕesc(r) in Eq. (A.49) is proportional to
ϕesc(Rmax)/λD. Therefore, in this limit the boundary condition at Rmax is simply ϕesc(Rmax) = 0.

To find ϕesc(r) for r < Rmax, we first study the regime of small charge accumulation, where
β � 1. This is a good approximation for ε ≤ 10−11. We will make the simplifying assumption that
the potential is constant inside the Earth, and the captured mirror helium abundance has a profile that
will ensure this is maintained. In reality, φ(r) must decrease with increasing r, since it would push the
accumulated charges away from each other and towards the Earth surface. By assuming the potential
to be constant, we are therefore underestimating mirror helium evaporation and overestimating the
effects of accumulation. As r → 0, the Re term in Eq. (A.44) vanishes and we can algebraically solve
with the right hand side set to zero to obtain the value of the potential near the center of the Earth,

ϕesc(r → 0) ≡ ϕEarth
esc =

β0

2αĤ + 3αĤe

� 1 for β0 � 1 , (A.50)

where β0 is the value of β at the center of the Earth. Note that β(r) adjusts to ensure that the right
hand side vanishes in Eq. (A.44) while keeping

ϕesc(r) = ϕEarth
esc for r < REarth . (A.51)

So now we have an expression for the constant potential for r < REarth. We also know that the
potential is zero for r > Rmax > REarth, in the λD → 0 approximation. All that remains is to find
the potential in the transition region REarth < r < Rmax. In this regime, setting the right hand side
of Eq. (A.44) to zero with β = 0 yields

ϕesc(r) = αê
αê
(
2r2 −R2

max

)
−
√
α2
êR

4
max + 4r2(r2 −R2

max)(2αĤ + 3αĤe)

2r2(αĤ + 2αĤe)(3αĤ + 4αH̃e)
. (A.52)

From this we can find the value of Rmax by imposing continuity of ϕesc at r = REarth. This leads to
the potential shown as the solid gray curve in Fig. 9.

This solution has been obtained neglecting the gravitational potential of the Earth. Including
the Earth’s gravity leads to a modest correction to the mirror electrostatic potential which acts to
compensate for the fact that the effect of gravity is larger on the positively charged mirror nuclei than
on the negatively charged mirror electrons. As noted earlier, gravity has only a subdominant effect on
our results.
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Figure 9. Mirror electric potential ϕesc(r) in the disk case for ε = 10−11 (the small charge accumulation
regime), showing the effects of mirror helium capture inside the Earth and screening by the ambient mirror
plasma. Shown are the solutions for ϕ(r) for a delta function distribution and for a Maxwell-Boltzmann dis-
tribution of speeds at infinity, in the limit that the Debye length λD = 0. Also shown is ϕesc(r) in the case of
a Maxwell-Boltzmann distribution for two nonvanishing values of λD, showing how the potential is smoothed
out. (The actual transition region is extremely narrow as λD < 10−3REarth.)

Now we consider the realistic Maxwell-Boltzman distribution of speeds at infinity, rather than
the delta function. This case is more complicated, and can only be solved numerically. Our approach
is to solve recursively to find Rmax as a function of v∞. This is done by discretizing the speed
distribution as v∞,k and noting that Rmax goes down as the speed is increased. We start therefore
with all Rmax(v∞,k) at zero, except that of the lowest speed in the discrete range, which is taken as
the reference value. We can then find Rmax for the next speed in the range by solving the Poisson
equation numerically, imposing the condition Eq. (A.39) and raising it from zero. This is then done
recursively for the entire range of speeds. This procedure works because for r > Rmax(v∞,k), the
solution is the same as if Rimax is taken to zero and at r = Rmax(v∞,k) the derivative of ϕesc(r) is
continuous. This numerical solution is shown as the solid black line in Fig. 9.

To go beyond the λD → 0 limit in the regime of small charge accumulation, we can solve
Eq. (A.44) as a perturbation series in λD. We substitute the solutions we have obtained into the
right hand side of Eq. (A.44) to determine the O(λD) correction to the solution for the potential
and so on. The resulting solutions are shown as the dashed lines in Fig. 9, demonstrating that the
discontinuities in the first derivative of the potential are smoothed out on scales of order the Debye
length at r = REarth and r = Rmax.

Our careful analysis of screening effects shows that to determine capture and evaporation rates in
the small charge regime, we can make use of the simple estimate,

ϕesc =

{
ϕEarth
esc for r ≤ REarth

0 for r > REarth
(A.53)

with ϕEarth
esc as calculated above. We neglect the effect of the small nonvanishing potential just above

the Earth’s surface, which does not have a significant effect on capture or evaporation since (Rmax −
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REarth) � REarth. The mirror particle escape velocities near the surface are then modified as
follows,

vesc,Ĥe =

√
v2
esc −

2

3
2v2
�,Ĥe

ϕEarth
esc , vesc,ê =

√
v2
esc +

2

3
v2
�,êϕ

Earth
esc . (A.54)

Here vesc ≈ 11 km/s is the gravitational escape velocity at the Earth’s surface. This suppresses
accumulation and enhances evaporation of mirror helium. For the purposes of evaporation below, any
(vesc,Ĥe)

2 < 0 is interpreted to mean that vesc,Ĥe = 0 at the surface, since any Ĥe that reaches the
surface immediately flies away from the Earth.

A.1.4 Evaporation of Mirror Nuclei

We now consider the evaporation rate of mirror helium. We conservatively assume that any Ĥe++

captured inside the Earth thermalizes with the Earth’s interior, which is at temperature TEarth ∼
4000K. Since mirror baryons typically have higher kinetic energies than this when they are captured,
this can only underestimate evaporation and hence overestimate mirror helium accumulation. The
resulting thermal velocity of mirror helium 〈vĤe,th〉 =

√
3TEarth/mĤe ∼ 5 km/s. The virial radius

corresponding to v ∼ 〈vĤe,th〉 is comparable to the radius of the Earth, REarth. Therefore, to simplify
the discussion, we assume that the captured particles are distributed homogeneously inside the Earth.

The mean free path of Ĥe in the Earth for the ε <∼ 10−9 regime we consider can be estimated as

`Ĥe ∼
1

nOσĤe O

≈ 10−2REarth

(
10−10

ε

)2

. (A.55)

Here σĤe O represents the cross section for scattering off an oxygen target, since this constitutes the
most effective target that has a sizable abundance inside the Earth. The expression for σĤe O has the
same form as in Eq. (A.9).

When ε <∼ 10−11, the penetration depth of mirror helium inside the Earth is comparable toREarth.
Evaporation can therefor occur from everywhere in the Earth, with a timescale set by the mirror helium
collisional time scale ∼ `Ĥe〈vĤe,th〉−1 weighted by the probability that a mirror helium particle has
enough kinetic energy to escape the earth’s gravitational field. The evaporation rate is given by,

nC
Ĥe
Revp,Ĥe ∼

nC
Ĥe

R3
Earth

∫ REarth

0
dr r2

[
〈vĤe,th〉

∣∣∣
T=TEarth(r)

]
`−1

Ĥe
Pejection(r) . (A.56)

Here we have defined an r-dependent ejection probability, which is simply the fraction of mirror
helium nuclei in local thermal equilibrium with the Earth at temperature T = TEarth(r) that have
speeds greater than the escape velocity for helium vesc(r) at that location,

Pejection(r) =

∫ ∞
vesc(r)

fMB(v;TEarth(r))dv , (A.57)

where fMB is the Maxwell-Boltzmann distribution. We can determine vesc(r) from the following
differential equation,

1

2
mĤe

dv2

dr̃
= −dUgrav

dr̃
(A.58)
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with boundary condition vf = v(r̃ = REarth) = 11 km/s. Here Ugrav(r̃) is the gravitational potential
energy at radius r̃ from the center of the Earth, so the term on the right side of the equation represents
the kinetic energy lost in climbing out of the Earth’s potential well. In the ε . 10−11 case we are
considering, the accumulated mirror electric charge is too small to generate enough electric force at
the Earth’s surface to eject mirror helium. This is in contrast to the ε >∼ 10−10 case we will study
in Section A.2. Since we know the temperature profile inside the Earth TEarth(r), this allows us to
determine Pejection(r) as a function of r and hence the evaporation rate.

A.1.5 Results

Having determined the capture and evaporation rates, we can solve the following equations to obtain
the mirror particle abundance,

dnC
Ĥe

dt
=
(
R
<vcap

cap,Ĥe
+R

>vcap

cap,Ĥe

)
nF

Ĥe
−Revp,Ĥen

C
Ĥe
, (vesc = vesc,Ĥe) (A.59)

nCQ = 2nC
Ĥe
− nCê .

We can obtain number densities in the equilibrium configuration, corresponding to dnC
Ĥe
/dt = dnCQ/dt =

0 in Eq. (A.60). As discussed in A.1.2, when nCQ is small, the number density of captured mirror elec-
trons is small and can be neglected. Making this assumption and setting nCê = 0, we have nCQ = 2nC

Ĥe
.

Since it is the value of nCQ that determines the capture and evaporation rates of Ĥe, this allows us to
self-consistently solve for the nC

Ĥe
and nCQ that satisfy the equilibrium condition.

For a Maxwell-Boltzmann distribution of velocities with ε = 10−11, v̂/v = 3, Ŷ� = 1 and local
mirror baryon DM fraction r� = 0.05, we obtain,

NĤe .

{
5× 1023 (disk)

1× 1022 (halo)
(A.60)

and accordingly, ϕesc = 0.15(0.004) for the disk (halo) cases. Since electrostatic shielding is only
important when ϕesc & O(1), its effects on the direct detection signal are negiligible. The escape
velocity of mirror electrons due to the accumulated mirror helium charge is large compared to the
escape velocity from gravitational effects alone, of order O(100km/s) for both halo and disk distri-
butions, but it is still much smaller than the thermal width of the Fermi surface in iron. Consequently
evaporation of mirror electrons is highly efficient, and the number density of captured mirror electrons
is small (see the discussion around Eq. (A.19)). Therefore our assumption that the captured popula-
tion of mirror electrons can be neglected is self-consistent. Comparing the number of captured mirror
helium nuclei against Eq. (A.12), we see that we are far away from the regime where self-capture
becomes important.

It follows from this that for ε . 10−11, there is no significant effect on the mirror helium flux or
velocity distribution in direct detection experiments, either from electrostatic or collisional shielding
effects. Mirror electrons are accelerated towards the Earth by the electrostatic potential, resulting in
just a slight increase in their velocity (compared to their already high ambient velocity in the plasma).
This makes our sensitivity estimates for mirror electron direct detection mildly conservative.
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Other choices of v̂/v or Ŷ� do not significantly change these results. This includes the limiting
case when Ŷ� = 0, when the mirror baryons are entirely composed of twin hydrogen. In all cases, we
find that the lowering r� results in NĤe ∝ r� (mirror baryon fraction of local DM density) because
the mirror electrostatic screening is negligible. Very small r� might result in a non-negligible Debye
length, but this will only modify our results by O(1). Therefore, capture of mirror matter has no
significant effect on the direct detection signal for ε . 10−11.

A.2 10−10 . ε . 10−9

We now discuss the case in which the kinetic mixing parameter ε & 10−10. In this regime the
net accumulated mirror charge density can become comparable to the ambient density, resulting in
significant electrostatic effects. In addition, the potential can become large enough to suppress mirror
electron evaporation, and therefore their captured fraction must be taken into account. Therefore the
physics of mirror baryon accumulation in this regime is quite different from that of ε . 10−11.

A.2.1 Equilibrium in the Large Charge Regime

For the limiting case of a delta function distribution of speeds at infinity, we obtained the Poisson
equation Eq. (A.44) for the dimensionless potential ϕesc(r). We now consider this equation in the
regime in which the net captured charge is large, so that β can no longer be assumed to be small.
Working in the limit that λD → 0 we immediately run into the roadblock that either the the potential
ϕ(r) must be discontinuous across the surface of the Earth, or ϕ(r) is not constant inside the Earth.
This is because the solution outside the Earth, given by Eq. (A.52), leads to a maximal possible value
of ϕ ' 0.06 at the surface for the delta function distribution of speeds at infinity. For this limiting
value of the potential inside the Earth, we can determine the captured mirror helium density that sets
the right hand side of the Poisson equation to zero. Then, by integrating over the volume of the Earth
we obtain the net captured charge,

2NĤe −Nê

∣∣
large q

≈ 2× 1025 ×
( r�

0.05

)
. (A.61)

It follows that in the λD → 0 limit, for any value of the captured charge larger than this, either
the potential must be discontinuous at REarth, or it must have a varying profile inside the Earth. In
general, we expect that the solution in the large charge regime will exhibit both these features. This
greatly complicates the calculation of the mirror electric potential.

The discussion in the paragraph above focused on the simple case in which the speed distribution
far away from the Earth takes the limiting form of a delta function. However, in the λD → 0 limit,
the solution for the potential in the case of the fully realistic Maxwell-Boltzmann distribution that we
obtain numerically exhibits the same characteristic features, which we list below.

• For r > REarth the solution of the Poisson equation sets a unique upper bound on the potential
just outside the Earth’s surface, which we denote as ϕ+

esc(REarth) ' 0.06(0.15), where the
value shown is for the delta-function (Maxwell-Boltzmann) distribution.

– 57 –



• Just inside the Earth, there could be a sharp potential jump within a Debye length of the sur-
face as the effects of β “turn on”. In the λD → 0 limit, we account for this possible jump by
allowing for a discontinuity in the potential at the Earth surface. We denote as ϕ−esc(REarth) and
ϕ+
esc(REarth) the potentials just inside and outside the Earth, withϕ−esc(REarth) > ϕ+

esc(REarth).

• Inside the Earth, there is some continuous potential ϕesc(r) for 0 ≤ r ≤ REarth that satisfies
ϕesc(REarth) = ϕ−esc(REarth). In general the potential is expected to vary inside the Earth.
However, if mirror electron capture is so efficient that their number density is much larger than
the net free charge, the captured mirror electrons will distribute themselves inside the Earth in
such a way that ϕesc(r) will tend to a constant value independent of r.

The numerical values of ϕ+
esc(REarth) and the functional form of ϕesc(β) exhibit a mild dependence

on the precise mirror helium fraction of the dark plasma which does not affect our conclusions. They
are notably independent of r� and whether we have a halo or disk distribution, since the dark baryon
fraction and overall velocity drop out of the right hand side of the Poisson equation. The mirror
matter fraction r� does affect the Debye length since λD ∼ r

1/2
� , see Eq. (A.48). If λD is taken to

be nonvanishing (but still much smaller than the size of the Earth), then the above piece-wise defined
potential is smoothed out on scales of λD near REarth, similar to what is shown in Fig. 9. We account
for effects from the nonvanishing Debye length in our discussion below, but it does not significantly
change our conclusions about the general features of the potential.

A varying potential inside the Earth would necessarily result in a mirror electric force that repels
the captured mirror helium particles and pushes them towards the surface. Then, to obtain the po-
tential ϕesc we would first need to solve a complicated set of coupled equations that determines the
distribution of mirror helium in the Earth as a function of ϕ taking into account the capture of mirror
helium, its diffusion in the presence of the mirror electric field and its eventual evaporation. It follows
that solving for the mirror electric potential of the Earth in the regime of significant charge accumu-
lation is extremely challenging. However, we can make use of the fact that the potential ϕ outside
the Earth continues to take the same form to derive robust upper bounds on the mirror potential at
equilibrium, both near the surface and deep within the Earth’s interior. As we now show, this can be
used to place limits on the suppression of incoming mirror helium flux near the surface where direct
detection experiments are located.

A.2.2 Upper Bound on the Net Captured Charge

At equilibrium, the flux of mirror helium exiting the Earth is equal to the flux entering it. By requiring
that the flux entering any region of the Earth not exceed the flux leaving it, we can derive upper bounds
on ϕesc(r) for 0 ≤ r ≤ REarth. We begin by considering the mirror helium flux at the surface. The
outgoing flux can be bounded from below under the assumption that mirror helium nuclei start out
stationary just below the surface and are then accelerated by the potential jump as they leave the
surface,

Fout > Fminout = nC
Ĥe
vout =

(∑
q2
i n

F
i

)
βĤe(R

−
Earth)

√
4

3

√
ϕ−esc

(
REarth)− ϕ+

esc(REarth
)
v�,Ĥe ,

(A.62)

– 58 –



where

βĤe =
2enC

Ĥe
(r)∑

q2
jn

F
j

(A.63)

is the contribution to β from mirror helium alone, and vout is the velocity of the outgoing parti-
cles. This is related to the difference between the potentials just inside and just outside the Earth,
ϕ−esc (REarth)− ϕ+

esc(REarth), by energy conservation,

vout =

√
4

3

√
ϕ−esc

(
REarth)− ϕ+

esc(REarth
)
v�,Ĥe . (A.64)

This should be considered a lower bound on the outgoing flux because the electrostatic drift inside the
Earth may increase the velocity of mirror nuclei just before they cross the jump. The bound is valid
as long as the mean free path near the surface, Eq. (A.55), is larger than the Debye length, Eq. (A.48),
so that collisions have no effect across the potential jump.

On the other hand, we can place an upper bound on the flux of mirror helium entering the Earth.
To do this we note that the incoming flux, given by

〈
nĤevr

〉
, is always less than

〈
nĤe |v|

〉
, where

the radial velocity has been replaced by the total speed. This allows us to set an upper bound on the
incoming flux,

Fin < Fmaxin =

∫
fĤe

(
R+
Earth, v

)
vdv =

(∑
q2
i n

F
i

)
αĤe

√
2

3π
v�,Ĥee

−2ϕ−esc(REarth) , (A.65)

where fĤe

(
R+
Earth, v

)
is given by Eq. (A.36). Note that this upper bound takes into account the full

Boltzmann suppression, since for large potentials only the fastest mirror nuclei penetrate below the
surface. Since the outgoing flux cannot exceed the incoming flux, Fout ≤ Fin, we obtain the relation

βĤe(R
−
Earth)

√
4

3

√
ϕ−esc (REarth)− ϕ+

esc (REarth) ≤ αĤe

√
2

3π
e−2ϕ−esc(REarth) . (A.66)

We now make use of the fact βĤe > β (we are here neglecting the effect of mirror hydrogen for
simplicity, since it evaporates efficiently and its accumulation has negligible effect), which allows us
to write:

β(R−Earth)

√
4

3

√
ϕ−esc (REarth)− ϕ+

esc (REarth) ≤ αĤe

√
2

3π
e−2ϕ−esc(REarth) . (A.67)

For the limiting case in which the speed distribution at infinity is a delta function, Eq. (A.44) allows
us to relate ϕ−esc to β(REarth) in the λD → 0 limit. This is accomplished by setting the right hand
side of Eq. (A.44) to zero inside of the potential jump near the surface. This is a valid approximation
in the λD → 0 limit since the potential does not rapidly change on Debye length scales once we are
past the potential jump near the Earth’s surface. This allows us to determine β(R−Earth), just inside
of the potential jump, as a function of ϕ−esc (REarth). With this, Eq. (A.67) can be translated into an
upper bound on the potential just inside the Earth,

ϕ−esc (REarth) < 0.6(0.35) (A.68)
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Figure 10. Maximum possible mirror electric potential inside the Earth, parametrized in terms of ϕesc(r),
shown for mirror particles in a halo (solid) and disk (dashed) distribution. Results are shown for a delta function
distribution of speeds at infinity with ε = 10−10 (grey) and for a Maxwell-Boltzmann distribution of speeds at
infinity with ε = 10−10 (red) and ε = 10−9 (blue).

calculated using the Maxwell-Boltzmann (delta-function) distribution at infinity. Notice that v�,Ĥe

dropped out of Eq. (A.67), which means that this upper bound applies to both halo and disk distribu-
tions. The resulting electrostatic suppression of the incoming mirror helium flux for direct detection
experiments near the surface can be obtained by considering the radial flux,

Fi(r) =

∫
dv
r2
∞
r2

dv∞
dv

fi(r∞, v∞)

∫
vr
vr,∞
vr

γ (v∞, vr,∞, r∞, r)
dvr,∞
v∞

, (A.69)

evaluated at r = REarth. This suppression factor turns out to be simply min(e−2ϕ−esc(REarth), 1) ' 0.3

for the Maxwell-Boltzmann distribution of speeds at infinity. While we can neglect the effects of
captured mirror hydrogen, any incoming mirror hydrogen flux would nonetheless also be affected by
this electrostatic screening. The corresponding suppression is min(e−ϕ

−
esc(REarth), 1) ' 0.55 (halo).

The effect of this suppression on the direct detection bounds for ε is marginal – less than 50% (25%)
for mirror helium (hydrogen) searches. Our sensitivity projections for ε

√
r� from mirror nuclear

recoils will therefore have at most a factor of 2 uncertainty, but only if r� � 0.01 is so small that the
sensitivity boundary lies near or above ε ∼ 10−10. For r� ∼ 0.01, we find that future experiments
probe kinetic mixings that are far below 10−10, meaning the projected sensitivities are not affected by
this modest suppression. In our discussion to this point we have neglected the effects of the Earth’s
gravity, which acts to slightly reduce in the extent of electrostatic shielding. The resulting correction
to the results is modest in the disk case and negligible in the halo case.

We move to find a similar bound on ϕesc anywhere inside the Earth. As we will see, this can be
used to place a limit on the net number of captured particles inside the Earth, and thereby show that
collisional shielding does not limit direct detection. A non-uniform mirror-electric potential ϕesc(r)
inside the Earth initiates a drift velocity towards the surface,

vdrift ∼ a ∆tcoll , (A.70)

where ∆tcoll denotes the average time between collisions, and a represents the radial acceleration of
mirror helium charges due to the electric field. The value of ∆tcoll is determined by the mirror helium
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mean free path inside the Earth, Eq. (A.55), and the average velocity of mirror helium nuclei inside
the Earth. The latter is dominated either by the drift velocity itself or by the thermal contribution
that arises from the mirror nuclei coming into equilibrium with the Earth’s interior. To approximately
account for the limits where either contribution could dominate, we write

∆tcoll ∼
`Ĥe

vdrift + vĤe,th

, (A.71)

which yields,

vdrift ∼
√
a`Ĥe +

(
vĤe,th

2

)2

−
(
vĤe,th

2

)

=

√
2ϕ′esc(r)`Ĥe

(
v�,Ĥe√

3

)2

+

(
vĤe,th

2

)2

−
(
vĤe,th

2

)
, (A.72)

where we have taken
a =

2

3
ϕ′esc(r)v

2
�,Ĥe

. (A.73)

The outgoing radial flux must be less than the incoming radial flux at any arbitrary location
r < REarth. As in Eq. (A.65), we overestimate the incoming flux by replacing the radial component
of the velocity by the total speed. From this we obtain the inequality,

β(r)vdrift ≤ βĤe(r)vdrift ≤ αĤe

√
2

3π
v�,Ĥee

−2ϕesc(r) . (A.74)

In the case of a delta function distribution of velocities we can relate β(r) to ϕesc(r) by setting the
right hand side of Eq. (A.44) to zero. We can obtain the corresponding relation for the case of a
Maxwell-Boltzmann distribution from our numerical solution. Saturating the above inequality yields
a differential equation for the maximum possible mirror electric potential ϕmaxesc (r). This differential
equation can be solved numerically. The solution is shown in Fig. 10 for the delta function and
Maxwell-Boltzmann distributions of velocities, for both halo and disk profiles. The effects of gravity,
although subdominant, have been included. From the corresponding β(r), we can obtain an upper
bound on the net captured charge by integrating over the volume of the Earth. For ε . 10−9 we
obtain,

2NĤe −Nê < 0.5
∑

q2
i n

F
i

4

3
πR3

Earth ≈ 3(8)× 1025 ×
( r�

0.05

)
, (A.75)

for the Maxwell-Boltzmann (delta-function) distribution of speeds at infinity. This bound is almost
identical for the halo and disk profiles, since the lower repulsive potential in the disk case is compen-
sated for by the smaller incoming flux.

If r� . 10−7 (10−5) in disk (halo) distributions, λD becomes comparable to or larger than
the mirror helium mean free path `Ĥe. In this parameter range the results we obtained above are
slightly modified. The potential jump just below the Earth’s surface is now smoothed out on scales
of λD & 100 km, and we have to take collisions into account when computing the outgoing flux
near the surface. The collisions suppress the outgoing velocity for the same potential difference by a
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factor of O(`Ĥe/λD). However, we see that the potential is only logarithmically sensitive to this due
to the exponential dependence of the incoming flux on ϕesc in Eq. (A.65). Therefore, although this
effect increases the upper bound on the potential ‘inside the jump’ in the Earth’s interior by a factor of
∼ log(λD/`Ĥe) compared to Eq. (A.68), the potential at the location of direct detection experiments
at depth d ∼ O(km) below the Earth’s surface is actually smaller by a factor of ∼ d/λD since the
potential varies smoothly on distance scales of order the Debye length instead of sharply increasing at
the surface. This means that the effective maximum ϕesc that electrostatically shields direct detection
experiments is reduced by a factor of∼ (d/λD) log(λD/`Ĥe). Lowering rall therefore further reduces
the modest electrostatic suppression of the incoming mirror helium flux.

A.2.3 Upper Bound on the Total Number of Captured Mirror Particles

The constraint calculated in Eq. (A.75) represents an upper bound on the net charge of the captured
mirror particles, 2NĤe − Nê. In order to establish that the effects of collisional shielding are not
important, we need to obtain upper bounds on NĤe and Nê separately. We do this by noting that if
the number of captured mirror electrons is much larger than the net captured charge, so that Nê �
2NĤe − Nê, the mirror electrons will move freely inside the Earth to neutralize any gradients in the
electric field. Therefore, in this limit the value of the potential ϕesc takes on the same value at every
point in the Earth17. This constant value is necessarily less than or equal to the upper bounds on
ϕ−esc(REarth) shown in Eq. (A.68) for the halo and disk cases.

We now show that this behavior can be used to set a bound on the neutral component that com-
plements the bound on the net captured charge in Eq. (A.75). In Section A.1.2 we obtained an upper
bound on the net number of captured mirror electrons that depends on the potential ϕesc as,

Nê . 1023 exp

(
ϕesc

Tmirror
Te

)
(A.76)

for the disc (halo) case. Setting ϕesc in this equation to its upper bound in Eq. (A.68) we find Nê .
1024 for both the disk and halo cases. This upper bound onNê has been obtained under the assumption
that the number of captured mirror electrons is much larger than the net captured charge, Nê �
2NĤe − Nê. If this assumption is valid, the upper bound on Nê also translates into an upper bound
on the number of captured helium nuclei, NĤe � Nê. It follows that the number of captured mirror
particles is at most of order 1024, far too small to result in significant self-capture.

If the assumption that the number of captured mirror electrons is much larger than the net captured
charge is not valid, so that Nê . 2NĤe −Nê, we can nevertheless still obtain an upper bound on the
captured population. In this case the upper bounds on the net captured charge in Eq. (A.75) translate
into upper bounds on the Nê and NĤe individually, so that Nê , NĤe . 1026. These are still far below
the numbers required for self-capture to play a major role. We therefore conclude that self-capture
and collisional shielding do not significantly affect direct detection.

17This can be seen by solving the Debye-Huckel equation for ϕesc inside the Earth.
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